
Normal form in filtered Lie algebra representations

Jan A. Sanders
Vrije Universiteit
Faculty of Sciences
Department of Mathematics
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands

November 5, 2004

Keywords: Normal forms, spectral sequence, filtered Lie algebras

c© 2011 Kluwer Academic Publishers. Printed in the Netherlands.

WORK51.tex; 25/01/2011; 13:40; p.1



1. Introduction

In this paper I have tried to formulate a setup for normal form theory.
It is by no means complete, but it indicates the direction.

On a more elementary level such a setup is given in (Murdock,
2003b), but even there the reader is supposed to have some idea what
normal form theory is good for at the start. There one can find refer-
ences and historical remarks, which this paper lacks completely.

Normal form theory is both a very practical theory with practical
results and a theoretical science, which tries to abstract away the theory
from the practice.

For a given problem it can deliver to you specific numbers, bifur-
cation diagrams and as such there is always a certain demand for it.
Luckily, for most concrete problems, normal form theory is not very
difficult and most people manage to invent it, or anyway use it with
some success.

The theoretical part has seen a development toward concepts such
as filtered Lie algebras and spectral sequences.

I have tried to connect the two parts. Not by illustrating everything
by examples, but by giving serious attention to the computational prob-
lem. This leads to an analysis of the computational problem in terms
of the spectral sequence. I hope in this way the reader can appreciate
the use of the spectral sequence approach, which looks very abstract
at first sight, but it is firmly rooted in the algorithmic practice.

Let me try to motivate some of the big words here for those who
need it. The concept of a filtration is familiar to anyone who has ever
done some perturbation calculation (and who hasn’t?). Let us look
at vectorfields around some equilibrium. If we write out the Taylor
expansion of the vectorfield it looks in R like

∞∑
i=1

aix
i d

dx
.

If one takes the Lie bracket of any two homogeneous terms, we obtain

[xi
d

dx
, xj

d

dx
] = (j − i)xi+j−1 d

dx
.

This strongly suggests to define the degree by: deg(xi ddx) = i − 1. For
indeed, deg([xi ddx , x

j d
dx ] = (i−1)+(j−1) = deg(xi ddx)+deg(xj ddx). We

express this by saying that we have a graded Lie algebra. We can
also consider this as a filtered Lie algebra F0 ⊃ F1 ⊃ · · ·. Its elements
will be of the form ∞∑

i=k

aix
i d

dx
∈ Fk−1,
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and we find [Fk,Fl] ⊂ Fk+l. So in the graded case we look at the
homogeneous parts, in the filtered case we drag along the tail.

In the beginning the shift by one (or two if you consider Hamiltonian
functions) is very confusing. But if you adhere to it, it prevents you from
giving talks about the following question: I’m interested in the term of
degree 4 of the normal form. Which terms of the original vectorfield
play a role in the formula for it? If you formulate this in terms of
gradings, the question is trivial. I once had to sit through a talk which
essentially treated this question.

Once the reader is convinced that the concepts of grading and fil-
tering take care of the bookkeeping aspects, the following hurdle will
be the introduction of the spectral sequence. When one computes the
unique normal form one has to come up with transformations that
start with low order terms in order to remove higher order terms.
This is new with respect to first order normal form theory, where only
the linear part of the vectorfield plays a role, and since it has degree
zero, one can always work with homogeneous terms and do the linear
algebra in the space of homogeneous terms. The spectral sequence was
invented to do the bookkeeping of exactly this kind of situation. It
collects in certain spaces (called Zmn ) the vectorfields of filtering degree
n and the transformations that take elements of filtering degree n and
transform them to filtering degree m + n. Since normal form theory
is about removing terms by transformations, one next defines spaces
Em
n , dividing out whatever can be removed and some stuff that is not

necessary at this filtering degree. We are now in a graded situation,
where we can pose a very exact and relevant question. If we have
determined Em

n then we know the vectorfields in mth order normal
form and the transformations that still can be used without ruining
our earlier computations (this last condition is very important, since
we work with transformations starting at a low degree).

REMARK 1. If you know what a spectral sequence is, you may at this
point wonder what the differential is. That is indeed the main question.
But this question was answered by Arnol’d (see (Arnol’d et al., 1985)
for the most accessible source). The fact that this answer was given in
the context of singularity theory shows that abstraction is the way to
go, since we have similar methods working in different problem areas
(this is not to imply that singularity theory can simply be done using
normal form theory, it is more complicated than that). The amazing
thing is that the property that the differential is indeed a differential
is completely trivial, and one would expect its consequences to be com-
pletely trivial too. Maybe they are, but they certainly do the bookkeeping
right!
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The first application of this idea to normal form theory of ordinary
differential equations at equilibrium under orbital equivalence is given
by Bogdanov in his treatment of the planar nilpotent unique normal
form (Bogdanov, 1979). This paper was never translated into English
and did not have the impact it should have had. It might make a fine
research topic to see how far one can simplify the analysis by combining
the spectral sequence techniques with the sl(2,R) techniques as employed
in (Baider and Sanders, 1992). Notice that in the last mentioned paper
orbital equivalence is not considered.

One should add here that the usual miracles of spectral sequences
do not work in our case, since they are usually based on the finite
dimensionality of the underlying topological problem (in this context
the following theoretical question comes to mind: if Em is trivial for
some m < ∞, how much does this tell us about the original problem,
or, in other words, can one characterize those vectorfields which have
a unique normal form as in Corollary 4?).

But some of the methods, like the Tic-Tac-Toe lemma (Bott and Tu,
1982, Proposition 12.1), are useful in our context. Another difference
that should be remarked upon is the fact that the boundary operator is
changing as we go along. This is very natural in normal form theory,
but less so in topology. The whole setup is extremely sensitive to this,
and for instance prohibits (as far as I can see) to set the whole thing
up with quadratic convergence. The problem lies with Lemma 7.

Once we have computed the spectral sequence to a certain order, we
know exactly what kind of transformations we can still use at each
stage of the actual computation. This is nice, since it allows us to
estimate how fast we will converge in the filtration topology (where
high degree means small neighborhood of zero). I have tried to give
this analysis as detailed as I could, but here we find that the theory
still needs to be expanded in order to describe the practical situation.
Nevertheless, at the end we arrive at a situation where we can start
computing and experiment with the different methods as suggested by
the theory. I may add that the last sections grew out of my frustration
with my attempts to implement in a FORM (Vermaseren, 1991; Ver-
maseren, 2000) program quadratic convergence for higher order normal
form computations. Sometimes the program worked very nicely, and at
other times, with different input, not at all. Having done the theoretical
analysis I can now turn back to the calculations...

Since the theory seems rather abstract, I have included a few exam-
ples. The main example is published in (Sanders, 2003) and will not
be repeated here.The reader is strongly advised to study this example
along with this paper. The examples I included are the Hamiltonian
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1 : 2-resonance, which was published originally in (Sanders and van der
Meer, 1992), and the averaging over spatial variables, as treated for
instance in (Sanders, 1977; Sanders, 1979). Both examples do not fit
in the theory perfectly, but this illustrates that the assumptions made
in the theoretical development are there for simplicity, they are not
the hard boundaries of the framework. All these examples share the
fact that they look completely trivial to start with, and are still more
complicated than one might have thought. As the normal form of
the Bogdanov-Takens singularity shows (Baider and Sanders, 1992),
it requires a complicated paper to do one example and even that
incompletely.

The present theory using spectral sequences does not claim to magi-
cally simplify all these examples. What it does claim is that it provides
a natural language in which to state results and that it simplifies some
of the more complicated filtration arguments that one finds in the
literature. Nevertheless, translating the Bogdanov-Takens singularity
analysis into the spectral sequence language is still a formidable under-
taking, which would only make sense if one were to use it as a guide to
work on three dimensional nilpotent singularities.

Another area of applications might be the theory of normal forms
around manifolds, see (Bronstein and Kopanskĭı, 1994).

ACKNOWLEDGMENT 1. I would like to thank Jim Murdock for long
e-mail discussions. Several of the results in his paper (Murdock, 2003a)
(which he was writing at the same time the present paper was writ-
ten) found their way into this paper (how would this result look in my
notation?). I hope he can recognize them.

2. Filtered Lie algebra representations

NOTATION 1. We denote the elements of Z/2 by {0, 1}.

We consider a filtered Lie algebra representation consisting of spaces Fkl ,
with l ∈ Z/2 and k ∈ N, such that F0

l ⊃ F1
l ⊃ F2

l ⊃ · · · ⊃ Fkl ⊃ · · · with
∩∞k=0F

k
l = 0. Here F1

0 is the filtered Lie algebra: [Fk0,F
n
0 ] ⊂ Fk+n

0 , and F0
1

is the filtered representation space: F0
1 is a module or a vector space, for

which there exists a representation ρ such that for any fk0 ∈ Fk0 one has a
linear map ρ(fk0) : Fm1 → Fm+k

1 , with ρ([fk0, g
m
0 ]) = [ρ(fk0), ρ(gm0 )], where

the last bracket is just the ordinary commutator [A,B] = AB − BA.
One could write this as ρ ◦ ad = ad ◦ ρ, with ad(x)y = [x, y].

REMARK 2. One could also set up the theory with F0
0 instead of F1

0,
to include linear transformations. This would be a bit more directed
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toward the applications, but it introduces some technical complications
that I would like to avoid here. See however section 10.

This induces an adjoint representation of K0 = F0
1 ⊕ F1

0 into itself,
which we denote by ∇: ∇(f01,f

1
0)(g

0
1, g

1
0) = (ρ(f10)g0

1 − ρ(g1
0)f01, ad(f10)g1

0).
Here the direct sum is the vector space or module direct sum. We write
x ∈ K0 as (x1, x0), but we write x1 for (x1, 0) and x0 for (0, x0). The
construction is the standard one for a trivial extension (as a Lie algebra)
of F1

0 by F0
1: one has to check the formula

[∇f,∇g] = ∇∇fg.

We call (K0,∇) obeying this relation, but not necessarily the antisym-
metry ∇xy +∇yx = 0, a Leibniz algebra (Loday, 1991). There is no
harm in replacing the word Lie algebra by Leibniz algebra in this paper,
since antisymmetry is never used. The results formulated as corollaries
for ∇ are valid for general filtered Leibniz algebras, if they make sense,
that is, if everything converges. Of course, K0 is in this specific case
also a Lie algebra, with ∇x = ad(x) and convergence in the filtration
topology is easy to verify.

Let Gkl = Fkl /F
k+1
l . Then we assume dimGkl < ∞. All our compu-

tations will be done in the Gkl , so the representations we work with
will be finite-dimensional. This assumption is made so that we can
guarantee a solution to the homological equation that will appear later
on. In practice infinite dimensional spaces do play an important role,
but as long as the homological equation can be solved, this presents
no difficulty, see section 11. For more information about solving the
homological equations, see the work of Belitskii, surveyed in (Belitskii,
2002).

We write elements in Gkl as gkl . Notice that ad(Gk10 )Gk20 ⊂ Gk1+k2
0

and ρ(Gk10 )Gk21 ⊂ Gk1+k2
1 , that is, we now have a graded Lie algebra

representation. The theory will apply to those cases where there is
no Z/2-grading, in which case the representation will be the adjoint
representation. In that case we define ∇ by ∇fg = [f, g] and call it ad.
We call the elements in F1

0 transformations (we think of them as in-
finitesimal generators of coordinate transformations) and the elements
in F0

1 (vector)fields, since local vectorfields around some equilibrium
are the main example we are working from. We call f0 ∈ G0

1 the linear
part of the field, even though it may correspond to quadratic terms of a
Hamiltonian as in section 10. This terminology will help to make things
not too abstract, but on the other hand the reader should at some point
appreciate the abstract approach and try to think of examples outside
the main stream of normal form theory.
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REMARK 3. If we consider reversible vectorfields, then one chooses
F·l such that its elements change as Rfl = (−1)lfl under the action of
the reversor R. Thus Z/2 is generated by the identity and the reversor.
In this case one starts by defining ∇ as the adjoint representation on
K0, and deriving ρ by restriction.

REMARK 4. Another case where the representation has nothing to
do with the adjoint, is that of symmetric forms under the action of
the orthogonal group. More general, one could consider the problem of
flattening the coordinate expression for a Riemannian metric by near-
identity coordinate transformations. This is basically the way Riemann
approaches the problem of normalizing the metric in his inaugural lec-
ture in 1854, which leads to the definition of connection by looking at the
transformation that does the best job, and the definition of curvature
by looking at the obstruction (the normal form) to completely flatten
the metric, cf. (Spivak, 1979). The reader may find it interesting to
translate these classical results in terms of the spectral sequences to
be defined later in this paper. For further nonstandard examples, see
(Meyer, 1994).

REMARK 5. If one studies Hamiltonian vectorfields, one is often in-
terested in properties (like eigenvalues) that remain invariant under
formal diffeomorphisms. In such a situation one might choose for F0

1

the space of formal Hamiltonians, and for F1
0 the space of formal vec-

torfields, generating the formal diffeomorphisms.

DEFINITION 1. One can define for h1
0 ∈ F1

0 its exponential as the
formal expression

eρ(h1
0) =

∞∑
i=0

1
i!
ρi(h1

0).

This defines the filtered action of a formal group on F·1. If for given
f01, g

0
1 ∈ F0

1 there exists an h1
0 ∈ F1

0 such that g0
1 = exp(ρ(h1

0))f01, then we
say that f01 and g0

1 are formally equivalent and we write f01 ≡ g0
1.

We consider the following problems here: to find all equivalence classes,
to define a normal form for each equivalence class and to determine the
transformation which brings a given f01 in its normal form. This gives
us a map from the representation space to its transformation group,
which we call the frame map, since it maps the vectorfield onto the
transformation that brings it into a certain normal form, that is, in a
cross section of the bundle of all vectorfields with the group of formal
transformations acting on it. This transformation can be identified with
a moving frame in the sense of Cartan. We remark that computationally
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there is quite a difference between just finding a certain normal form
with or without its transformation. This also reflects on the efficiency
considerations.

NOTATION 2. For fixed n ∈ N, let Hn0 = F1
0/F

n+1
0 and Hn1 = F0

1/F
n+1
1 .

These are by assumption finite-dimensional spaces.

3. First order normal form

To obtain some idea of what is involved here, let us write out the
computation to the first order: Take f01 = f0

1 + f1
1 + f21, g0

1 = g0
1 + g1

1 + g2
1

and h1
0 = h1

0 + h2
0. Then

g0
1 + g1

1 + g2
1 = exp(ρ(h1

0 + h2
0)(f0

1 + f1
1 + f21) = f0

1 + f1
1 + ρ(h1

0)f0
1 modF2

1.

It follows that g0
1 = f0

1 and g1
1 = f1

1 + ρ(h1
0)f0

1 . We now define d0f0
1 :

H1 → H1 such that d0f0
1 (x) = −∇xf0

1 (if ρ is the adjoint representa-
tion, then d0f0

1 = ad(f0
1 )). The choice of sign is unconventional in Lie

algebra cohomology, but has to do with the role reversal during the
computation, and doesn’t matter anyway. Observe that f0

1 6= 0 does
not imply that d0f0

1 6= 0; after all, the representation can be trivial.
We turn back to our computation, which now gives us the (homo-

logical) equation
d0f0

1 (h1
0) = f1

1 − g1
1.

We see that, at least to first order, the equivalence class of f1
1 lies in the

the cokernel of d0f0
1 . We now assume for the moment the existence of

an operator style δ0f0
1 : H1

1 → H1
0 such that H1

1 = ker δ0f0
1 ⊕ im d0f0

1 and
H1

0 = ker d0f0
1⊕ im δ0f0

1 . The choice of δ0f0
1 will in general not be unique

and determines the style (cf. (Murdock, 2003b)) of the normal form.
But it can always be made to any given finite order n, thanks to the fact
that by assumption our spaces are finite dimensional and if an inner
product is not already present (given by the original problem), we can
construct it on H1

0 and H1
1, and define δ0f0

1 to be the adjoint of d0f0
1 . We

now say that f1
1 is in first order normal form (with respect to δ0f0

1 )
if f1

1 ∈ ker δ0f0
1 and that h1

0 is in first order conormal form (with
respect to d0f0

1 ) if h1
0 ∈ ker d0f0

1 . Instead of taking the adjoint one could
use Jacobson-Morozov imbedding on H1

1 ⊕ H1
0 (cf. (Sanders, 1994)),

but this is computationally expensive, while the theoretical value is
still unproven in the case that the normal form involves higher order
terms, as it will in the following sections.

REMARK 6. From the equation d0f0
1 (h1

0) = f1
1 − g1

1 it is clear that we
can choose h1

0 in a complement of the kernel of d0f0
1 and it seems natural
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to take h1
0 ∈ im δ0f0

1 and this condition uniquely determines h1
0 for given

f1
1 − g1

1. Uniqueness in the transformation can be very important: if the
system has a symmetry then d0f0

1 inherits this symmetry, and if δ0f0
1

has the same symmetry then the transformation and the normal form
will inherit the symmetry from the original f1, since there should at least
be a symmetric solution to the equation, but this solution is unique (cf.
remark 9). This explains the success of rather unsophisticated normal-
izing methods, treating Hamiltonian systems as ordinary vectorfields.
In averaging theory the condition on h1

0 translates to taking h1
0 with

zero average (so that it is in the image of ∂
∂t), a condition that is well

known to simplify many results, cf. (Sanders and Verhulst, 1985).

Let Kn = Fn1 ⊕ Fn0 and Z0
n = Kn. We now define d0

n[f0
1 ] : Kn → Kn by

d0
n[f0

1 ](gn1 , h
n
0 ) = d0f0

1 ((gn1 , h
n
0 )).

Observe the conceptual difference between d0
n[f0

1 ] and d0f0
1 : the first is

a boundary operator, which we usually denote by d0
n, and the second

is a 1-form on K0, namely the coboundary of the zero form f0
1 . Let

E0
n = Z0

n/Z
0
n+1. The map d0

n : Kn → Kn induces a d0
n : E0

n → E0
n.

We see that the kernel of this induced map contains the first order
conormal forms, and the cokernel the first order normal forms. Clearly
d0
n · d0

n = 0.
Let us now formalize what we have done in a language that will be

used to define a spectral sequence, the first terms of which we have
already seen, namely E0

n. Let Z1
n = {x ∈ Kn|d0

nx ∈ Kn+1}. These are
exactly the terms (gn1 ,h

n
0 + · · ·) with ρ(hn0 )f0

1 = 0 ∈ Gn1 . Now we divide
out the image of d0

n, that is we put the elements in Z1
n in first order

normal form and we remove the elements in Kn+1, since they are in
Z1
n no matter what f0

1 is. This leads to

E1
n = Z1

n/(d
0
nZ

0
n + Z0

n+1), n ≥ 0.

So this space contains terms of the form (gn1 , h
n
0 ), with gn1 in first order

normal form and hn0 in first order conormal form. Our claim is now
that E1

n = Hn(E0,d0) = ker d0|E0
n/im d0|E0

n. This means that we
can identify first order (co)normal form theory with cohomology of E0,
and of course we would like to generalize this to higher order normal
form theory. This definition of first order normal form is completely
independent of the choice of style. Identifying E1

n as a part of E0
n is

done by choosing δ0f0
1 (so it is style dependent) and saying that

E1
n
∼= ker(δ0f0

1 |E0
n)⊕ ker(d0f0

1 |E0
n).
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4. Second order normal form

NOTATION 3. We write fq|pl for
∑p
j=q fjl ; we call fk|ml the m-jet of fkl .

Usually one considers Lie algebras over a field, but we also want to
include the case where the Lie algebra is over a local ring R, that is,
a ring with a unique maximal ideal m. The field R/m is called the
residue field. We denote the projection of f0|m

1 ∈ Hm1 on Hm1 /mHm1
by f0|m

1 . We have in mind the situation where the original vectorfield
contains parameters which may pass through zero, and so we cannot
divide by them. So we let m be generated by these parameters.

It is now clear how we can obtain the first order normal form of f01
with respect to δ0f0

1 . Is this it? The answer to that question depends
on the problem, but in principle is no. Suppose we have

eρ(h1
0)f01 = g0

1.

If we now want to transform g0
1, we better not undo our previous calcu-

lations. So whatever we do, we need the result to be again in first order
normal form. This implies that the lowest order term of any k1

0 that we
use has to be in ker d0f0

1 . So we take k1
0 = k1

0 + k2
0 + k3

0, k
1
0 ∈ ker d0f0

1 .
Then we compute

exp(ρ(k1
0))(g0

1 + g1
1 + g2

1 + · · ·) =
= g0

1 + g1
1 + ρ(k1

0)g0
1

+ g2
1 + ρ(k2

0)g0
1 + ρ(k1

0)g1
1 + 1

2ρ
2(k1

0)g0
1modF3

1

= g0|1
1 + g2

1 + ρ(k1
0 + k2

0)g0|1
1 modF3

1.

The second order normalization is now effectively done by the term
ρ(k1

0)g1
1. The term k2

0 is then used to put the remaining terms in first
order normal form again.

Remark that we now have put the system in second order normal
form by applying two transformations. Our goal is to find one transfor-
mation that does this and we will come back to this question in section
8 and 9.

We now define d1
n : Z1

n → Z1
n+1 by

d1
nx = d1f0|1

1 (x) = −∇xf0|1
1 , x ∈ Z1

n.

This induces a d1
n : E1

n → E1
n+1. We see that ker d1

n contains the
second order conormal forms, and coker d1

n the second order normal
forms. Clearly d1

n · d1
n = 0.

Let Z2
n = {x ∈ Kn|d1

nx ∈ Kn+2}. These are exactly the terms
(gn1 , h

n
0 + hn+1

0 + · · ·) with ρ(hn0 + hn+1
0 )f0|1

1 = 0 ∈ Gn+1
1 . Now we
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divide out the image of d1
n−1, that is we put the elements in Z2

n in
first order normal form and we remove the elements in Z1

n+1, since
they are trivially in Z2

n. This leads to

E2
n = Z2

n/(d
1
n−1Z

1
n−1 + Z1

n+1), n ≥ 1.

Our claim is now that E2
n = Hn(E1,d1) = ker d1|E1

n/im d1|E1
n. Iden-

tifying E2
n as a part of E1

n is done by choosing δ1f0|1
1 and saying

that
E2
n
∼= ker(δ1f0|1

1 |E
1
n)⊕ ker(d1f0|1

1 |E
1
n).

5. Definition of normal form

The definition of normal form will now be given as follows.

DEFINITION 2. We say that dmf0|m
1 : Hm+1

0 → Hm+1
1 and δmf0|m

1 :
Hm+1

1 → Hm+1
0 define operator style rules if

• Hm+1
1 = ker δmf0|m

1 ⊕ im dmf0|m
1 ,

• Hm+1
0 = ker dmf0|m

1 ⊕ im δmf0|m
1 and, with n > m,

• dnf0|n
1 |H

m+1
0 = dmf0|m

1 ,

• δnf0|n
1 |H

m+1
1 = δmf0|m

1 .

DEFINITION 3. We say that f0|m+1
1 is in m + 1th order normal

form if either it cannot be changed in Hm+1
1 or f0|m

1 is in mth order
normal form and f0|m+1

1 − f0|m
1 is in ker δmf0|m

1 , where the dmf0|m
1 and

δmf0|m
1 respect the operator style rules in definition 2 and dmf0|m

1 (x) =
−∇xf0|m

1 .

So a zeroth order normal form cannot be changed inH0
1, but this means

its linear part cannot be changed, which is true for all vectorfields under
the given action, so the concept of normal form is well defined.

A first order normal form then is such that f0
1 + f1

1 − f1
1 ∈ ker δ0f0

1 ,
in accordance with the computations we did before (since there f0

1 =
f0
1 = f0

1 ).
So far we have only been involved in how to define normal forms.

But what about the actual computation? There are basically two ap-
proaches:

1. By linear algebra, that is direct elimination.
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2. By spectral methods.

The advantage of the first method is that it involves very simple calcu-
lations and can always be used, there are no field extensions necessary,
but the disadvantage is that this is linear algebra on high-dimensional
spaces. The spectral method, which, by the way, has nothing to do with
the spectral sequences announced in the abstract, requires the knowl-
edge of the eigenvalues of d0f0

1 (assuming we can identify F1
0 and F1

1),
which is a definite disadvantage, and may also involve computations in
field extensions, which can complicate matters a lot. Its advantage is
that it is rather efficient on small expressions. It is the spectral method
that is most commonly associated with normal form theory and most of
normal form theory is dedicated to it, but with the gradual changeover
from hand calculations to computer calculations, the linear algebra
method is becoming more and more interesting.

Both methods should lead to the following two maps ∂m1 : Hm1 →
im dm−1f0|m−1

1 and πm1 : Hm1 → ker δm−1f0|m−1
1 : Given fn|m1 ∈ Hm1 , find

∂m1 fn|m1 and πm1 fn|m1 such that

fn|m1 − dm−1f0|m−1
1 (δm−1f0|m−1

1 (∂m1 fn|m1 )) = πm1 fn|m1 .

These maps exist thanks to the operator style properties given in def-
inition 2. They will be used implicitly in the theoretical computations
in section 8 and 9.

6. Some standard results

Here we formulate some well-known results, which we need in the next
section.

PROPOSITION 1. Let x, y ∈ F0
0. Then for any representation ρ one

has

ρk(y)ρ(x) =
k∑
i=0

(
k

i

)
ρ(adi(y)x)ρk−i(y).

COROLLARY 1. Let x, y ∈ K0. Then for any filtered Leibniz algebra
(K0,∇) one has

∇ky∇x =
k∑
i=0

(
k

i

)
∇∇iyx∇

k−i
y .

The following is known as the big Ad–little ad lemma:
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PROPOSITION 2. Let x ∈ F0
0 and y ∈ F1

0. Then for any filtered
representation ρ one has

ρ(ead(y)x) = eρ(y)ρ(x)e−ρ(y) = Ad(eρ(y))ρ(x).

COROLLARY 2. Let x, y ∈ L0, where L0 is a filtered Leibniz algebra.
Then

∇e∇yx = e∇y∇xe−∇y = Ad(e∇y)∇x,
if both sides converge. In the case where L0 = K0 convergence is
automatic.

COROLLARY 3. Let x, y, z ∈ L0, where L0 is a filtered Leibniz alge-
bra. Then

d exp(∇y)z(exp(∇y)x) = exp(∇y)dz(x).

PROOF 1. Follows immediately from Corollary 2.

7. Spectral sequences

The following discussion completely ignores the style. This has the
advantage that it leaves no room for discussion, but in actual com-
putations one does have to make a choice of style.

Let Kn = Fn1 ⊕ Fn0 and for m ≥ 1 let dm−1
n : Kn → Kn be de-

fined by dm−1
n (gn1 , h

n
0 ) = dm−1f0|m−1

1 ((gn1 , h
n
0 )), where dm−1f0|m−1

1 (x) =
−∇xf0|m−1

1 . Let Z0
n = Kn and

Zmn = {x ∈ Kn|dm−1
n x ∈ Kn+m},m ≥ 1.

LEMMA 1. The filtered Leibniz (or Lie) algebra (K ·,∇), leads to a
filtered differential Leibniz (or Lie) algebra (Zm· ,∇). That is, for x ∈
Zmp and y ∈ Zmq , one has

dm−1
p+q ∇xy = ∇xdm−1

q y −∇ydm−1
p x,

and, consequently, ∇xy ∈ Zmp+q.

REMARK 7. We avoid here the usage of differential filtered or differ-
ential graded since that implies the occurrence of a term (−1)|x|∇xdm−1

q y

in the relation (coming from [x, y] = xy − (−1)|x|yx). So in our usage
the words are taken together in a different order and with a different
meaning. The reader may want to verify that, if we let R(x, y) =
∇x∇y − ∇y∇x − ∇∇xy, then (just using the derivation rule d∇xy =
∇xdy−∇ydx) one finds dR(x, y)z = R(x, y)dz−R(x, z)dy+R(y, z)dx,
so it seems to be the natural defining relation of a differential Leibniz
algebra (where R(x, y) = 0 for all x, y).
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PROOF 2. Indeed, it is easy to check that ∇xy ∈ Kp+q. Since dm−1f0|m−1
1 (·)

is a coboundary, it is automatically a cocycle, and

dm−1
p+q ∇xy = dm−1f0|m−1

1 (∇xy)

= ∇xdm−1f0|m−1
1 (y)−∇ydm−1f0|m−1

1 (x)
= ∇xdm−1

q y −∇ydm−1
p x ∈ Kp+q+m,

which proves the Lemma.

A similar lemma can be formulated for the spectral sequence Em
· , to be

defined next, that can be seen as a graded differential Leibniz (or Lie)
algebra. Ultimately we want E∞· to be a trivial module with respect
to the representation. We suppress in our notation the dependence of
Zmn and dm−1

n on f0|m−1
1 . But to explicitly show the dependence on the

formal group action we write now Zmn [f0|m−1
1 ] and dm−1

n [f0|m−1
1 ]for a

while.

LEMMA 2.

Zmn [exp(∇t10
)f0|m−1

1 ] = exp(∇t10
)Zmn [f0|m−1

1 ].

PROOF 3. Indeed, Let x ∈ Zmn [f0|m−1
1 ]. Then, using Corollary 3,

dm−1
n [exp(∇t10

)f0|m−1
1 ] exp(∇t10

)x =

= dm−1 exp(∇t10
)f0|m−1

1 (exp(∇t10
)x)

= exp(∇t10
)dm−1f0|m−1

1 (x)

= exp(∇t10
)dm−1
n [f0|m−1

1 ]x ∈ Kn+m

and it follows that exp(∇t10
)x ∈ Zmn [exp(∇t10

)f0|m−1
1 ]. This gives us one

inclusion, the other follows by symmetry.

The following Lemma has been first formulated by Baider in (Baider
and Sanders, 1991, Prop. 2.7).

LEMMA 3. The removable space

dm−1
n−m+1[f0|m−1

1 ]Zm−1
n−m+1[f0|m−1

1 ]/Zm−1
n+1 [f0|m−1

1 ],

is invariant under the formal group action.
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PROOF 4. One finds

dm−1
n−m+1[exp(∇t10

)f0|m−1
1 ]Zm−1

n−m+1[exp(∇t10
)f0|m−1

1 ] ⊂

dm−1
n−m+1[f0|m−1

1 ]Zm−1
n−m+1[f0|m−1

1 ] + Zm−1
n+1 [f0|m−1

1 ].

Indeed, let x = dm−1
n−m+1[exp(∇t10

)f0|m−1
1 ]y with y ∈ Zm−1

n−m+1[exp(∇t10
)f0|m−1

1 ].

Then, by Lemma 2, y = exp(∇t10
)z with z ∈ Zm−1

n−m+1[f0|m−1
1 ]. We have

x = dm−1
n−m+1[exp(∇t10

)f0|m−1
1 ] exp(∇t10

)z =

= exp(∇t10
)dm−1
n−m+1[f0|m−1

1 ]z

∈ dm−1
n−m+1[f0|m−1

1 ]Zm−1
n−m+1[f0|m−1

1 ] + Zm−1
n+1 [f0|m−1

1 ].

Dividing out Zm−1
n+1 [exp(∇t10

)f0|m−1
1 ] has the same effect (since we started

with coboundaries) of dividing out Zm−1
n+1 [f0|m−1

1 ] and we see that we
have completed the proof.

During the construction of the spectral sequence we will put some re-
quirements on the form of the f i1. The construction itself is independent
on whether f i1 is in normal form, but of course the whole thing only
makes sense when it is, since we identify the process of normalization
with the dividing out of subspaces in the following construction, since
it is the normal form that appears in the computation during the
exponentiation.

Define, with dm−1
n−m+1 determined as before by the mth order normal

form, let E0
n = Z0

n/Z
0
n+1 = Kn/Kn+1 and

Em
n = Zmn /(d

m−1
n−m+1Z

m−1
n−m+1 + Zm−1

n+1 ), n ≥ m− 1 ≥ 0.

Observe that our previous results show that if x ∈ Em
n is equal to

zero, then exp(∇t10
)x is also zero in Em

n , so Em
n [exp(∇t10

)f0|m−1
1 ] =

exp(∇t10
)Em

n [f0|m−1
1 ] = Em

n [f0|m−1
1 ] and the definition is invariant (thanks

to the fact that Em
n is graded) under the formal group action. We have

the following result.

THEOREM 1. Given any f01 ∈ F0
1, one can define its mth order normal

form f0|m
1 and a coboundary operator dmn (gn1 , h

n
0 ) = dmf0|m

1 ((gn1 , h
n
0 )) =

−∇(gn1 ,h
n
0 )f

0|m
1 . There exists a coboundary map dmn : Em

n → Em
n+m in-

duced by dmn , but independent of the choice of style of mth order normal
form. One has that Hn(Em) ' Em+1

n canonically. We consider fm1 as
an element in Em

m,m ≥ 0.
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We prove this theorem by stating and proving some simpler facts.

PROPOSITION 3. The dmn are stable, that is, if x ∈ Kn then dmn x−
dm−1
n x ∈ Kn+m.

We could have made our life easier by defining dmn in terms of f01 instead
of its normal form jet, since they are equivalent anyway and then we
can forget about the m dependence. The problem with this approach is
that the definition of normal form (Definition 3) is inherently based on
jets, and it says something about how the higher order terms behave
with respect to the lower order jet (otherwise one might end up checking
that indeed the vectorfield commutes with itself in some cases). So in
any case one could only have a reasonable definition using f0|m

1 which
makes the proposition necessary.

PROOF 5. The difference of the normal form of f01 to order m and to
order m− 1 is an element of Fm1 . Then

dmn x− dm−1
n x ∈ Kn+m.

Remark that therefore it sits in Zm−1
n+m, since applying dm−1

n will kill it.

We now formulate two lemmas to show that the spectral sequence Em
n

is well defined.

LEMMA 4. Zm−1
n+1 ⊂ Zmn .

PROOF 6. Let x ∈ Zm−1
n+1 , then x ∈ Kn+1 ⊂ Kn and dm−2

n x =
dm−2
n+1 x ∈ Kn+m. Therefore dm−1

n x = dm−2
n x+Kn+m−1 and this implies

that dm−1
n x ∈ Kn+m, that is, x ∈ Zmn .

LEMMA 5. dm−1
n−m+1Z

m−1
n−m+1 ⊂ Zmn .

PROOF 7. If x ∈ dm−1
n−m+1Z

m−1
n−m+1 then there exists a y ∈ Zm−1

n−m+1 such
that x = dm−1

n−m+1y. This implies y ∈ Kn−m+1 and dm−2
n−m+1y ∈ Kn. It

follows that x ∈ Kn, and, since dm−1
n x = 0 ∈ Kn+m, x ∈ Zmn .

LEMMA 6. The coboundary operator dmn induces a unique (up to co-
ordinate transformations) coboundary operator dmn : Em

n → Em
n+m.

PROOF 8. dmn maps Zmn into Zmn+m (by definition of Zmn and the fact
that it is a coboundary operator). Furthermore, it maps dm−1

n−m+1Z
m−1
n−m+1+

Zm−1
n+1 into dmn+1Z

m−1
n+1 . Let x ∈ dmn+1Z

m−1
n+1 . Then there is a y ∈ Zm−1

n+1

such that x = dmn+1y. It follows from proposition 3 that dmn+1y ∈ dm−1
n+1 Z

m−1
n+1 +

Zm−1
n+m+1. Since

Em
n+m = Zmn+m/(d

m−1
n+1 Z

m−1
n+1 + Zm−1

n+m+1),
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it follows that dmn induces a coboundary operator dmn : Em
n → Em

n+m.
Now for the uniqueness: Consider dmn [f̃0|m

1 ] and dmn [f0|m
1 ]. Since f̄1 =

exp(∇t̄10
)f1 and f̃1 = exp(∇t̃10

)f1, there exists, thanks to the Campbell-

Baker-Hausdorff theory, cf. section 9, a t10 such that f̃1 = exp(∇t10
)̄f1,

and therefore one finds, using the proof of Lemma 2

dmn [f̃0|m
1 ] exp(∇t10

)(g1, g0) = exp(∇t10
)dmn [f0|m

1 ](g1, g0)

showing that dmn [exp(∇t10
)f0|m

1 ] exp(∇t10
) = exp(∇t10

)dmn [f0|m
1 ], that is,

exp(∇t10
) is a morphism of the dmn [f0|m

1 ]-complex to the dmn [exp(∇t10
)f0|m

1 ]-
complex. Since exp(∇t10

) is invertible, the induced map exp(∇t10
)? de-

fines an isomorphism of the cohomology groups. Using the result in
Lemma 7 allows us to draw the final conclusion.

LEMMA 7. There exists on the bigraded module Em
n a differential dmn

such that Hn(Em) is canonically isomorphic to Em+1
n , m ≥ 0.

PROOF 9. We follow (Godement, 1958) with modifications to allow
for the stable boundary operators. For x ∈ Zmn to define a cocycle of
degree n on Em

n it is necessary and sufficient that dmn x ∈ dm−1
n+1 Z

m−1
n+1 +

Zm−1
n+m+1, i.e. dmn x = dm−1

n+1 y + z with y ∈ Zm−1
n+1 and z ∈ Zm−1

n+m+1.
Putting u = x−y ∈ Zmn +Zm−1

n+1 ⊂ Kn, with dmn u = dm−1
n+1 y−dmn+1y+z ∈

Kn+m+1, one has u ∈ Zm+1
n . In other words, x = y+u ∈ Zm−1

n+1 +Zm+1
n .

It follows that the n-cocycles are given by

Zn(Em
n ) = (Zm+1

n + Zm−1
n+1 )/(dm−1

n−m+1Z
m−1
n−m+1 + Zm−1

n+1 ). (1)

The space of n-coboundaries Bn(Em
n ) consists of elements of dmn−mZ

m
n−m

and one has

Bn(Em
n ) = (dmn−mZ

m
n−m + Zm−1

n+1 )/(dm−1
n−m+1Z

m−1
n−m+1 + Zm−1

n+1 ). (2)

It follows, using Noether’s isomorphy U/(W +U ∩V ) ' (U +V )/(W +
V ) for submodules W ⊂ U and V and (M/V )/(U/V ) = M/U , that

Hn(Em) = (Zm+1
n + Zm−1

n+1 )/(dmn−mZ
m
n−m + Zm−1

n+1 )

= Zm+1
n /(dmn−mZ

m
n−m + Zm+1

n ∩ Zm−1
n+1 ), (3)

since dmn−mZ
m
n−m ⊂ Zm+1

n . We now first prove that Zm+1
n ∩ Zm−1

n+1 =
Zmn+1. Let x ∈ Zm+1

n ∩ Zm−1
n+1 . Then x ∈ Kn+1 and dmn+1x ∈ Kn+m+1.

This implies x ∈ Zmn+1.
On the other hand, if x ∈ Zmn+1 we have x ∈ Kn+1 ⊂ Kn and

dm−1
n+1 x ∈ Kn+m+1 ⊂ Kn+m. Thus x ∈ Kn and dm−1

n+1 x ∈ Kn+m+1.
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Again it follows that dmn+1x ∈ Kn+m+1, implying that x ∈ Zm+1
n . Fur-

thermore x ∈ Kn+1, dm−1
n+1 x ∈ Kn+m, implying that dm−1

n+1 x ∈ Kn+m+1

from which we conclude that x ∈ Zm−1
n+1 .

It follows that

Hn(Em) = Zm+1
n /(dmn−mZ

m
n−m + Zmn+1) = Em+1

n . (4)

In this way we translate normal form problems into cohomology.

This completes the proof of Theorem 1. Apart from the unicity issue,
the results so far where first published in (Sanders, 2003). The unicity
argument shows that the definition of the Hilbert-Poincaré series of
the spectral sequence as it is given there is only dependent on f , the
element to be put into normal form, itself and not on the choice of
normal form (as it should be, of course).

8. Linear convergence, using the Newton method

We now show how to actually go about computing the normal form,
once we can do the linear algebra correctly. We show how convergence
in the filtration topology can be obtained by using Newton’s method
once the normal form stabilizes.

PROPOSITION 4. Let y ∈ F1
0 and x ∈ F

p
0, p ≥ 1. Then we have the

following equality modulo terms that contain more than one ρ(x):

eρ(y+x) − eρ(y) ' ρ(
1− e−ad(y)

ad(y)
x)eρ(y).

In the sequel we construct a sequence µm, starting with µ0 = 0. These
µm indicate the accuracy to which we have a stable normal form f0|µm

1 .
Obviously, this depends on the choice of f01, but we do not express this
in our notation.

In this section we want to consider the linear problem, that is, we
want to consider an equation of the form

dµm−1h1|µm
0 = fµm−1+1|µm

1 − f̄µm−1+1|µm
1 modF

µm+1
1 ,

where µm is to be determined. To this end we determine for j = 1, 2, · · ·
the lowest number rj such that T µm−1+j−rj

rj 6= 0 and we continue to
do this as long as j < rj + 1 and j < µm−1. Then we put µm =
µm−1 + j for the maximal j to satisfy the condition. Since rj ≥ 1, we
have that j ≥ 1, so the µm-sequence is strictly increasing. We have
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µm−1 + 1 < µm + 1 ≤ 2(µm−1 + 1). This implies that µ1 = 1 and µ2

equals 2 or 3. If µm = µm−1 + 1 we speak of linear convergence, when
µm+1 = 2(µm−1 +1) of quadratic convergence at step m. The choice of
this sequence is determined by our wish to make the computation of the
normal form a completely linear problem. One can see the motivation
by considering terms of the type ρ(h1|µm

0 )fµm−1+1|µm
1 . These should not

interfere with the linear computation, that is, they should be of order
µm + 1 at least.

Suppose now that we have for m > 1, f01 = f0|µm
1 + f

µm+1
1 . Let h1|µm

0

be the transformation that brings f01 in µm−1th order normal form with
respect to δµm−2 f̄0|µm−2

1 up to order µm−1, that is

exp(ρ(h1|µm
0 ))(f0|µm

1 + f
µm+1
1 ) = f̄0|µm

1 + f̄
µm+1
1 ,

f̄0|µm−1

1 − f̄0|µm−2

1 ∈ ker δµm−2 f̄0|µm−2

1 .

We now construct k1|µm
0 such that

exp(ρ(h1|µm
0 + k1|µm

0 ))(f0|µm
1 + f

µm+1
1 ) = f̂0|µm

1 + f̂
µm+1
1 ,

f̂0|µm
1 − f̄0|µm−1

1 ∈ ker δµm−1 f̄0|µm−1

1 .

We compute (modulo F
µm+1
1 , which we indicate by ≡):

exp(ρ(h1|µm
0 + k1|µm

0 ))(f0|µm
1 + f

µm+1
1 ) ≡

≡ exp(ρ(h1|µm
0 ))f0|µm

1 + ρ(
ead(h

1|µm
0 ) − 1

ad(h1|µm
0 )

k1|µm
0 )eρ(h

1|µm
0 )f0|µm

1

≡ f̄0|µm
1 + ρ(

ead(h
1|µm
0 ) − 1

ad(h1|µm
0 )

k1|µm
0 )f̄0|µm−1

1

Let now k1|µm
0 = ad(h

1|µm
0 )

e
ad(h

1|µm
0

)−1

g1|µm
0 and solve the normal form equation

for g1|µm
0 ∈

⊕µm
j=1 T

µm−1+j−rj
rj as follows.

exp(ρ(h1|µm
0 + k1|µm

0 ))f01 ≡

≡ f̄0|µm
1 − dµm−1g1|µm

0

≡ f̂0|µm
1

and we solve g1|µm
0 from the relation f̄µm1 +ρ(g1|µm

0 )f̄0|µm−1

1 ∈ ker δµm−1 f̄0|µm−1

1 .

Notice that the term ρ(g1|µm
0 )f̄0|µm−1

1 may contribute to the normal form
f̂µm1 , but f̂µm−1

1 = f̄0|µm−1

1 , since the allowable transformations cannot
change the lower order terms of the normal form by definition.
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From g1|µm
0 we compute k1|µm

0 and we are done. After exponentiation
we can repeat the whole procedure with m increased by 1. It follows
from the relation µm−1 < µm that we make progress this way, but it
may be only one order of accuracy at each step, with µm = µm−1 + 1.

REMARK 8. So far we have not included the filtering of our local ring
R in our considerations. There seem to be two ways of doing that.

The first way to look at this is the following: we build a sieve, which
filters out those terms that can be removed by normal form compu-
tations computing modmiF0

1 starting with i = 1. We then increase
i by one, and repeat the procedure on what is left. Remark that our
transformations have their coefficients in mR, not in miR, in the same
spirit of higher order normal form as we have seen in general. This
way, taking the limit for i → ∞, we compute the truly unique normal
form description of a certain class of vectorfields. Of course, in the
description of this process one has to make i an index for the spectral
sequence that is being constructed. There seems to be no problem in
writing this all out explicitly, but I have not done so in order to avoid
unnecessary complications in the main text, but it might make a good
exercise to do so for the reader.

The second way is to localize with respect to certain divisors. For
instance, if δ is some small parameter (maybe a detuning parameter),
that is to say, δ ∈ m, then one can encounter terms like 1 − δ in the
computation (we are not computing modmF0

1 here!). This may force
one to divide through 1 − δ and in doing so repeatedly, one may run
into convergence problems, since the zeros of the divisors may approach
zero when the order of the computation goes to infinity. Since this
is very difficult to realize in practice, this small divisor problem is a
theoretical problem for the time being, which may ruin however the
asymptotic validity of the intermediate results if we want to think of
them as approximations of reality.

In general, at each step we can define the rate of progress as the
number αm ∈ Q,m ≥ 2 satisfying µm = αmµm−1 + 1. One has 1 ≤
αm ≤ 2.

Ideally, one can double the accuracy at each step in the normaliza-
tion process which consists of solving a linear problem and comput-
ing an exponential at each step. Thus we can (ideally) normalize the
2µm−1 + 1-jet fµm−1+1|2µm−1+1

1 . We proved we could normalize the µm-

jet fµm−1|µm
1 . We therefore call ∆m = 2µm−1−µm+1 m≥2= (2−αm)µm−1

the m-defect. If ∆m ≤ 0, the obvious strategy is normalize up to
2µm−1 + 1. Sooner or later we will either have a positive defect, or
we are done normalizing, because we reached our intended order of
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accuracy. In the next section we discuss what to do in case of positive
defect, if one still wants quadratic convergence.

THEOREM 2. The transformation connecting f01 ∈ F0
1 with its normal

form with coefficients in the residue field can be computed at a linear
rate at least and at a quadratic rate at theoretical optimum.

REMARK 9. If the f01 has an infinitesimal symmetry, that is, a
s0

0 ∈ F0
0 (extending the transformation space to allow for linear group

actions) then one can restrict one’s attention to ker∇s00
to set the whole

thing up, so that the normal form will preserve the symmetry, since
∇s00
∇t10

f01 = ∇t10
∇s00

f01 + ∇∇
s0
0
t10

f01. If one has two of these symmetries

s0
0, q

0
0, then ∇s00

q0
0 is again a symmetry, that is ∇∇

s0
0
q0
0
f01 = 0 so the set

of all symmetries forms again a Leibniz algebra. By the way, it is not a
good idea to do this for every symmetry of the original vectorfield (why
not?).

REMARK 10. While we allow for the existence of a nonzero linear
part of the vectorfield f01, we do not require it: the whole theory covers
the computation of normal forms of vectorfields with zero linear part.

COROLLARY 4. If for some m the representation ρ as induced on
the graded Leibniz algebra Em

· becomes trivial (either for lack of trans-
formations or because the possible transformations cannot change the
normal form anymore), then f0|m

1 is the unique normal form, unique
in the sense that if it is the normal form of some g0

1 then f01 ≡ g0
1.

9. Quadratic convergence, using the Dynkin formula

As we have seen in the last section, one can in the worst scenario only
get convergence at a linear rate using the Newton method. In order to
obtain quadratic convergence, we now allow for extra exponential com-
putations within the linear step, hoping that these are less expensive
since they are done with small transformations. To this end we now
introduce the Dynkin formula, which generalizes the results from the
last section.

LEMMA 8. Let f̄01 = exp(ρ(h̄1
0))f01 and f̂01 = exp(ρ(ĥk0))̄f01, with f̄01, f

0
1, f̂

0
1 ∈

F0
1, ĥ

k
0 ∈ Fk0, k ≥ 1 and h̄1

0 ∈ F1
0. Then f̂01 = exp(ρ(h1

0))f01, where h1
0 is

given by

h1
0 = h̄1

0 +
∫ 1

0
ψ[exp(ad(ε ĥk0)) exp(ad(h̄1

0))]ĥk0dε,

where ψ(z) = log(z)/(z − 1).
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PROOF 10. This is the right-invariant formulation, which is more
convenient in our context, where we think of ĥk0 as a perturbation of h̄1

0.
A proof of the left-invariant formulation can be found in (Hall, 2003).
Observe that in the filtration topology all the convergence issues become
trivial, so one is left with checking the formal part of the proof, which is
fairly easy. The idea is to consider Z(ε) = exp(ad(ε ĥk0)) exp(ad(h̄1

0)).
Then dZ

dε Z
−1(ε) = ad(ĥk0), and the left hand side is invariant under

right-multiplication of Z(ε) with some ε-independent invertible opera-
tor. One then proceeds to solve this differential equation.

Since the first powers of two are the consecutive numbers 20, 21, we
can always start our calculation with quadratic convergence. Suppose
now for some m, with µm−1 = 2p − 1, we find ∆m > 0. So we have
µm = 2p+1 − 1−∆m and

f̄01 = exp(ρ(h̄1
0))f01

Consider now f̄
0|2µm−1+1
1 as the vectorfield to be normalized up to order

2µm−1 + 1. In the next step, until we apply the Dynkin formula, we
compute modF

2(µm−1+1)
l .

We use the method from the last section to put f̄0|µm
1 into µm order

normal form and compute the induced vectorfield. Then we compute
∆m+1 and repeat the procedure until we have f̂2p+1−1

1 and the transfor-
mation ĥk0 connecting f̄01 with the vectorfield in 2p+1 − 1 order normal
form f̂01 by f̂01 = exp(ρ(ĥk0))̄f01.

Then we apply the Dynkin formula and continue our procedure with
increased m, until we are done.

With all the intermediate exponentiations, one can not really call
this quadratic convergence. Maybe one should use the term pseudo-
quadratic convergence for this procedure. It remains to be seen in
practice which method functions best. One may guess that the ad-
vantages of the method sketched here will only show at high order
calculations. This has to be weighted against the cost of implementing
the Dynkin formula. The Newton method is easy to implement, since
it just involves a variation of exponentiation, and certainly better than
just doing things term by term and exponentiating until everything is
right. One should also keep in mind that the Newton method keeps on
trying to double its accuracy: one may be better off with a sequence
1, 2, 3, 6 than with 1, 2, 3, 4, 6. The optimum may depend on the desired
accuracy. In principle one could try and develop measures to decide
these issues, but that does not seem to be a very attractive course.
Computer algebra computations depend on many factors and it will
not be easy to get a realistic cost estimate. If one can just assign some
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costs to the several actions, this will at best lead to upper estimates,
but how to show that the best estimated method indeed gives the best
actual performance? A more realistic approach is just to experiment
with the alternatives, until one gets a good feel for their properties.

10. The Hamiltonian 1 : 2 resonance

In this section we analyze the spectral sequence of the Hamiltonian 1 : 2
resonance. This problem was considered in (Sanders and van der Meer,
1992), but this paper contains numerous typographical errors, which we
hope to repair here. We work in T ∗R2, with coordinates x1, x2, y1, y2.
A Poisson structure is given, with basic bracket relations:

{xi, yi} = 1, {xi, xj} = {yi, yj} = 0, i, j = 1, 2.

Hamiltonians are linear combinations of terms xk1x
l
2y
m
1 y

n
2 and we put a

grading deg on these terms by

deg(xk1x
l
2y
m
1 y

n
2 ) = k + l +m+ n− 2.

One verifies that deg({f, g}) = deg(f) + deg(g). The grading induces a
filtering, and the linear fields consist of quadratic Hamiltonians. In our
case, the quadratic Hamiltonian to be considered is

H±0 = 1
2(x2

1 + y2
1)± (x2

2 + y2
2).

We’ll restrict our attention here to the H+
0 for the sake of simplicity.

The computation of E1 is standard. We have to determine ker ad(H+
0 ),

and we find that it is equal to the direct sum of two copies of

R[[B1, B2, R1]]⊕R2R[[B1, B2, R1]],

where B1 = H+
0 , B2 = H−0 and

R1 = x2(x2
1 − y2

1) + 2x1y1y2

R2 = 2x1x2y1 − y2(x2
1 − y2

1),

and we have the relation

R2
1 +R2

2 = 1
2(B1 +B2)2(B1 −B2).

The Poisson brackets are (ignoring B1, since it commutes with every-
thing)

{B2, R1} = −4R2

{B2, R2} = 4R1

{R1, R2} = 3B2
2 + 2B1B2 −B2

1 .
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We now suppose that our first order normal form Hamiltonian is H̄0|1
1 =

H+
0 + ε1R1 + ε2R2, with ε =

√
ε21 + ε22 6= 0. For a complete analysis of

this problem, one should also consider the remaining cases, but this has
never been attempted, it seems. We now do something that is formally
outside the scope of our theory, namely we use a linear transformation
in the R1, R2-plane, generated by B2, to transform the Hamiltonian to
H̄0|1

1 = H+
0 + εR1. One should realize here that the formalism is by

no means as general as could be, but since it is already intimidating
enough, I have tried to keep it simple. The reader may want to go
through the whole theory again to expand it to include this simple
linear transformation properly. One should remark that it involves a
change of topology, since convergence in the filtration topology will no
longer suffice.

Having done this, we now have to determine the image of ad(R1.
One finds

ad(H̄0|1
1 )Bn

2R
k
1 = 4nBn−1

2 Rk1R2

ad(H̄0|1
1 )Bn

2R
k
1R2 = Bn−1

2 Rk1(−4nR2
1 + 2nB3

1)

+ Bn
2R

k
1((3− 2n)B2

2 + 2(1− n)B1B2 + (2n− 1)B2
1))

The first relation allows one to remove all terms in R2R[[B1, B2, R1]],
while the second allows one to remove all terms in B2

2R[[B1, B2, R1]],
since 2n − 3 is never zero. The spectral sequence E2 looks now like
the direct sum of R[[B1, R1]] + B2R[[B1, R1]] and R[[B1, R1]] (the last
statement follows from the first relation with n = 0). A moment of
consideration shows that this is also the final result. It says that the
unique normal form is of the form

H̄0|∞
1 = H+

0 + F1(B1, R1) +B2F2(B1, R1),

with ∂F1
∂R1

(0, 0) = ε 6= 0 and F2(0, 0) = 0. The symmetries of the system

are R[[B1, H̄
0|∞
1 ]].

We have now computed the normal form of the 1 : 2-resonance
Hamiltonian under the formal group of symplectic transformations. The
reader may want to expand the transformation group to include all
formal transformations to see what happens, and to compare the result
with the normal form given in (Broer et al., 2003, page 55).
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11. Spatial averaging

For a theoretical method to be the right method, it needs to work in
situations that arise in practice. Let us have a look at equations of the
form

θ̇ = Ω0(x) +
∞∑
i=1

εiΩi(θ, x), θ ∈ S1

ẋ =
∞∑
i=1

εiXi(θ, x), x ∈ Rn.

This equation has a given filtering in powers of ε, and the zeroth order
normal form is

θ̇ = Ω0(x), θ ∈ S1

ẋ = 0, x ∈ Rn.

This means that in our calculations on the spectral sequence level
we can consider x as an element of the ring, that is the ring will be
C∞(Rn,R) and the Lie algebra of periodic vectorfields on S1×Rn acts
on it, but in such a way that the filtering degree increases if we act
with the original vectorfield or one of its normal forms, so that we can
effectively assume that the x is a constant in the first order normal form
calculations. The only thing we need to worry about is that we may
have to divide through Ω0(x) in the course of our calculations, thereby
introducing resonances (Sanders, 1977; Sanders, 1979). This leads to
interesting problems, but the formal computation of the normal form
is not affected, as long as we stay outside the resonance domain. The
first order normal form homological equation is

Ω0(x)
∂

∂θ

(
Φ1

Y1

)
−
(
Y1 · ∇Ω0

0

)
=
(

Ω1 − Ω̄1

X1 − X̄1

)
,

and we can solve this equation by taking (with dφ the normalized Haar
measure, that is,

∫
S1 dφ = 1)

X̄1(x) =
∫
S1
X1(φ, x)dφ,

and

Y1(θ, x) =
1

Ω0(x)

∫ θ

X1(φ, x)− X̄1dφ.

We let Ȳ1(x) =
∫
S1 Y1(φ, x)dφ and observe that it is not fixed yet by

the previous calculations. We now put

Ω̄1(x) =
∫
S1

Ω1(φ, x)+Y1(φ, x)·∇Ω0(x)dφ =
∫
S1

Ω1(φ, x)dφ+Ȳ1(x)·∇Ω0(x),

WORK51.tex; 25/01/2011; 13:40; p.25



26

and we observe that if ∇Ω0(x) 6= 0 we can take Ȳ1(x) in such a way
as to make Ω̄1(x) = 0. All this indicates that the second order normal
form computation will be messy, since there is still a lot of freedom in
the choice of Ȳ1(x), and this will have to be carefully used. There do
not seem to be any results in the literature on this problem apart from
(Sanders and Verhulst, 1985, §6.3). We have the following

THEOREM 3. Assuming that Ω0(x) 6= 0 and ∇Ω0(x) 6= 0 one has
that E1

1 is the direct sum of the space generated by vectorfields of the
form

θ̇ = 0, θ ∈ S1

ẋ = εX̄1(x), x ∈ Rn,

and transformations Ȳ1(x) such that

Ȳ1(x) · ∇Ω0(x) = 0.

This illustrates that the computation of the spectral sequence is not
going to be easy, but also that it mimics the usual normal form analysis
exactly.
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