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Abstract

The general spatiotemporal covariance matrix of the background noise in MEG/EEG signals is huge. To reduce the dimensionality of
this matrix it is modeled as a Kronecker product of a spatial and a temporal covariance matrix. When the number of time samples is larger
than, say, J � 500, the iterative Maximum Likelihood estimation of these two matrices is still too time-consuming to be useful on a routine
basis. In this study we looked for methods to circumvent this computationally expensive procedure by using a parametric model with
subject-dependent parameters. Such a model would additionally help with interpreting MEG/EEG signals. For the spatial covariance, models
have been derived already and it has been shown that measured MEG/EEG signals can be understood spatially as random processes,
generated by random dipoles. The temporal covariance, however, has not been modeled yet, therefore we studied the temporal covariance
matrix in several subjects. For all subjects the temporal covariance shows an alpha oscillation and vanishes for large time lag. This gives
rise to a temporal noise model consisting of two components: alpha activity and additional random noise. The alpha activity is modeled as
randomly occurring waves with random phase and the covariance of the additional noise decreases exponentially with lag. This model
requires only six parameters instead of 1

2
J(J � 1). Theoretically, this model is stationary but in practice the stationarity of the matrix is highly

influenced by the baseline correction. It appears that very good agreement between the data and the parametric model can be obtained when
the baseline correction window is taken into account properly. This finding implies that the background noise is in principle a stationary
process and that nonstationarities are mainly caused by the nature of the preprocessing method. When analyzing events at a fixed sample
after the stimulus (e.g., the SEF N20 response) one can take advantage of this nonstationarity by optimizing the baseline window to obtain
a low noise variance at this particular sample.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Background noise in MEG/EEG measurements is corre-
lated both in space and in time. When estimating dipole
source parameters one has to take into account this noise
covariance. The study of the background noise is also im-
portant for its own sake because there is still a debate
regarding the meaning of averaged brain responses in rela-
tion to the background noise (Makeig et al., 2002; Truccolo

et al., 2002; Jaşkowski and Verleger, 2002; Pham et al.,
1987). When it is assumed that the recorded signal is a
simple superposition of the brain response and the back-
ground noise, the Signal Plus Noise (SPN) model, the mea-
sured signal Rij

k at channel i and time sample j in trial k is
modeled as

Rij
k � Rij � �ij

k, (1)

where Rij is the brain response caused by the stimulus and
�ij

k the measured noise. The SPN model is based on the
assumption that the brain response Rij does not vary over
trials. In general the background noise, �ij

k , can be correlated
both in space and in time.
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The spatial part has already been studied in detail (Lüt-
kenhöner, 1998a, 1998b; Sekihara et al., 1994; Waldorp et
al., 2002; Huizenga and Molenaar, 1995); it has been
shown that the accuracy of the estimated source parameters
is improved by taking into account this spatial covariance in
the localization method. Recently the temporal noise covari-
ance has been incorporated in addition to the spatial covari-
ance. It was demonstrated in Huizenga et al. (2002) and De
Munck et al. (2002) that this generally improves the dipole
estimation further. Both approaches are based on the SPN
model. Moreover, the spatiotemporal noise covariance ma-
trix � is modeled as the Kronecker product of a spatial
covariance matrix X and a temporal covariance matrix T to
reduce the dimensionality of the parameter space to a fea-
sible size (De Munck et al., 1992):

� � X � T. (2)

Note that X and T are not unique due to a common factor;
therefore one is normalized. Furthermore, different trials k
and k� are assumed to be uncorrelated. The Kronecker
product assumes that the noise covariance between two
measurements at channels i and i� at time samples j and j�,
respectively, is the product of a spatial factor Xii� and a
temporal factor Tjj�

E��ij
k�i�j�

k� � � �ij, i�j� �k,k� � Xii�Tjj��k,k�, (3)

denoting the Kronecker delta function by �k,k�.
In Huizenga et al. (2002) a parametric model is used for

both X and T, where the matrix elements are assumed to
depend only on sensor distance and time difference, respec-
tively. In De Munck et al. (2002) Maximum Likelihood
(ML) estimates are derived for R, X, and T without further
assumptions. This yields the estimator for the brain response

R̂ �
1

K
�
k�1

K

Rk (4)

(the usual averaged signal) and the iterative estimation pro-
cedure for the covariance matrices:

X̂ �
1

JK
��

k�1

K

RkT̂�1�Rk�t � R̂T̂�1R̂t	 and (5)

T̂ �
1

IK
��

k�1

K

�Rk�tX̂�1Rk � R̂tX̂�1R̂	, (6)

where I, J, and K are the number of channels, time samples,
and trials, respectively, and Rk is the (I 
 J) data matrix of
the kth trial. At denotes the transpose and A�1 the inverse of
matrix A.

The statistics of �ij
k express properties of the ongoing

background activity. If the background noise is modeled as
the magnetic/electric field of randomly distributed station-
ary dipole sources, with the assumptions made that these
dipoles are statistically independent and that the source

positions are independent of the source time functions, then
the spatiotemporal covariance presents itself as a Kronecker
product of a spatial and temporal covariance [Eq. (2)] (De
Munck et al., 1992).

For the spatial part of this Kronecker product, models
have been described previously (De Munck et al., 1992; De
Munck and Van Dijk, 1999). In De Munck et al. (1992)
further assumptions were made to describe the spatial part
while the temporal part was explicitly left unspecified. The
model for the spatial covariance derived in that study can be
interpreted mainly as a function of sensor distance (Hui-
zenga et al., 2002; De Munck et al., 2002). It is a natural
question whether the temporal covariance has a similar
stationarity property. This would mean that the temporal
covariance only depends on time difference and is indepen-
dent of time, so that T is Toeplitz, i.e., constant along
subdiagonals (Huizenga et al., 2002).

The ML estimation of X̂ and T̂ [Eqs. (5) and (6)] is very
time consuming (typically 4 h per iteration on a P3 800
MHz for 1000 time samples, 150 channels, and 500 trials,
approximately 18 iterations per estimation). Therefore, pa-
rametrization of the noise covariance beyond the Kronecker
product with subject-dependent parameters would be favor-
able also for this reason.

To investigate the possibility of a physiologically ade-
quate parametric model for T, Eqs. (4) to (6) were applied to
several data sets; Fig. 1 shows one example of T̂. The matrix
can be visualized by plotting the average along subdiago-
nals as function of time difference. For the j0

th subdiagonal
this average is

1

J � j0
�
j�0

J�j0�1

Tj, j�j0. (7)

In Fig. 1a this average covariance (black line) and its
standard deviation (blue band) are plotted as a function of
time lag together with the diagonal of T̂ (red line), i.e., the
variance, as function of time. In Fig. 1b the same matrix is
plotted as bitmap. From this illustration it is clear that it is
not correct to assume the temporal covariance to be station-
ary.

First of all, the variance in Fig. 1a is not constant over
time but oscillates. The oscillation in the average covariance
(black line in Fig. 1a) does not indicate nonstationarity but
can be explained by alpha activity: time differences of a
multiple of alpha periods show higher covariance values.
However, the SD band around the average covariance wit-
nesses nonstationarity: the rather high and fluctuating SD
shows that on some subdiagonals the variation around the
average covariance is higher than on others. In Fig. 1b the
oscillations in both the diagonal and the antidiagonal direc-
tion (the oscillating subdiagonals and the oscillating average
covariance) result in blue spots in the figure, while in the
case of temporal stationarity one would expect a line pattern
(one color per subdiagonal). In all, Fig. 1 shows an example
of a nonstationary matrix.
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The oscillations in Fig. 1 suggest that the background
noise is (partly) generated by alpha activity. Therefore in the
following we propose a parametrization of T which is based
on a noise model consisting of two components: alpha
activity and additional random noise. The covariance of this

additional noise is modeled as an exponentially decreasing
function of time lag (i.e., as low-frequency noise). The
Ongoing Alpha Model (OAM) is based on the assumption
of ongoing alpha activity, i.e., one everlasting wave. The
Poisson Modulated Alpha Model (PoMAM) assumes that
the alpha activity consists of separated waves which occur
randomly and have fixed duration. This assumption is more
realistic because raw data clearly show separated waves.

Furthermore, the observed nonstationarity is brought into
the model by considering the detailed preprocessing of the
raw data.

Methods

Ongoing alpha model

In the OAM the temporal component of the background
noise is modeled as the sum of an ongoing alpha wave and
additional random noise. For convenience the model uses
continuous time, and is converted to discrete time in its
application to our experiment. The formula for the noise in
the kth trial, �k(t), is then given by

�k�t� � � sin��t � �k� � �k�t�, (8)

where � (fT) is the amplitude, � (rad s�1) is the frequency
of the alpha activity, and t (s) is time. Because we used a
random interstimulus interval the phase of the wave, �k

(rad), is random for each trial; i.e., the stochast �k has the
uniform distribution in [�	, 	]. For the additional noise,
�k(t) (fT), we assume

E��k�t1��k�t2�� � 
2e���t2�t1� (9)

where � is in s�1, � 
 0, and 
2 is the variance in (fT)2.
This means that the additional noise is temporally station-
ary. Furthermore, the alpha wave is assumed to be indepen-
dent of the additional noise. Now the temporal covariance
for an arbitrary trial k is

Cov�t1, t2� � E��k�t1� � �k�t2��

� E��� sin��t1 � �k� � �k�t1��

� �� sin��t2 � �k� � �k�t2��	

�
�2

2	 �
�	

	

[sin��t1 � �k�

� sin��t2 � �k�]d�k � 
2e���t2�t1�

�
�2

2
cos���t2 � t1�� � 
2e���t2�t1�.

(10)

From Eq. (10) it is clear that the OAM is stationary:
Cov(t1, t2) only depends on time lag t2 � t1. Fig. 2 shows

Fig. 1. Two different visualizations of the same ML-estimated temporal
covariance matrix.(a) Black line, average temporal covariance ( fT2) as in
Eq. (7) (� SD in the blue band) as a function of time difference (ms). Red
line, temporal variance ( fT2) as a function of time (ms). The vertical scale
is in arbitrary units because of the common factor of X and T [Eq. (2)]. (b)
The entire temporal covariance matrix (400 ms by 400 ms) plotted as
bitmap. Purple indicates highest values, white lowest values.
Fig. 2. The covariance in (fT)2 of the OAM as a function of time lag (ms)
for � � 20	 rad s�1, �2 � 3 ( fT)2, 
2 � 3.5 ( fT)2, and � � 10s�1.
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that this covariance does not vanish for large time difference
(as in Fig. 1a), but remains oscillatory. For this reason the
more realistic Poisson Modulated Alpha Model is intro-
duced.

Poisson modulated alpha model

In the PoMAM the alpha activity is modulated by an
interrupted Poisson process. A Poisson process with inten-
sity parameter 
 (s�1) is a statistical process generating
events at random with mean intermediate time 1/
 (Chung,
1993; Stirzaker, 1994). The time between two consecutive
events has the Exponential(
) probability density function:

f
�t� � 
e�
t1�0,���t�, (11)

where 1[a,b](t) � 1 for t � [a, b] and zero for t � [a, b].
In the covariance model the events stand for the onsets of

alpha waves (Fig. 3) which have fixed duration T� (s). After

each event the process is disrupted for T�, the following
wave, after which it resumes to generate the next event
(onset). Different waves are assumed to be uncorrelated.

In the PoMAM two stochastic processes are operating
simultaneously, namely the Poisson process (generating
wave onsets) and the random phase process. These two
processes are assumed to be statistically independent.

Assuming the amplitude of a wave to be constant and
equal to �, the amplitude time function (envelope) of a
wave which started at t � 0 is �1[0, T�](t). Let �k

�(t) � �k(t)
� �k(t) denote the alpha part of the noise. In Fig. 3 the alpha
activity at time t in trial k due to the wave started at tonset is

�k
��t� � �1�0,T�	 �t � tonset�sin���t � tonset� � �k�

� �1�0,T�	�t � tonset�sin��t � ��k�, (12)

where ��k � ��tonset � �k having the same probability
density function as �k, uniformly in [�	, 	]. Therefore in
the sequel �k� will be denoted as �k again. From Eq. (12) it is

Fig. 3. Alpha waves occuring according to the PoMAM. Because of the random interstimulus interval trial onsets can occur in any phase of the wave. Tint

denotes the time between waves, T� the duration of a wave. tonset indicates the onset of a wave in trial k.
Fig. 4. The covariance in (fT)2 of the PoMAM with fixed amplitude as a function of time lag (ms) for T� � 600 ms, 
 � 1/0.6 s�1, � � 20	 rad s�1, �2

� 3 (fT)2, 
2 � 3.5 (fT)2, and � � 10 s�1.
Fig. 5. The effect of the baseline correction on three signals (red, without alpha activity in the BC window; blue and green, with alpha activity in the BC
window). When the average alpha activity during the BC window is not zero the BC introduces a vertical shift in the signal (blue and green).
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clear that the Poisson process only comprises the amplitudes
of the waves, so that the expected value of the error is still
zero because of the random phase �k.

The covariance in the PoMAM is

Cov�t1, t2� � E��k�t1� � �k�t2��

� Cov��t1, t2� � Cov��t1, t2� (13)

because the alpha activity and the additional noise are as-
sumed to be independent. The second term is the same as in
the OAM

Cov��t1, t2� � 
2e���t2�t1�. (14)

The computation of the alpha part of the covariance is
complicated because there are different possibilities for t1
and t2. First, if t1 and t2 are in the same wave, then
Cov�(t1, t2) � 0 in general. Second, if one of the two
instants, say t1, is in a wave, and t2 is not in the same wave
(not in any wave or perhaps in another wave), then
Cov�(t1, t2) � 0, because either �k

�(t2) � 0 or t2 is in another
wave, and different waves are assumed to be independent.
And finally, if both instants are not in any wave, Cov�(t1, t2)
� 0, obviously. Therefore only the case of t1 and t2 being in
the same wave has to be considered.

In order to compute the covariance of the PoMAM the
Total Probability Theorem (Chung, 1993) applied to a func-
tion g of a stochast X is used:

E� g�X�� � P� A� � E� g�X��A�

� P� Ac� � E� g�X��Ac�, (15)

where Ac stands for the complement of event A. Defining A
to be the event “t1 and t2 are in the same wave” and g(X) to
be �k

�(t1)�k
�(t2), which is a function of both stochastic pro-

cesses, Eq. (15) yields

Cov��t1, t2� � E��k
��t1� � �k

��t2��

� P� A� � E��k
��t1� �k

��t2��A�. (16)

In this formula the results from Appendix 1 (P(A)) and
Appendix 2 (E(�k

�(t1)�k
�(t2)|A)) are substituted [Eqs. ((A.4)

and (B.2)]:

Cov��t1, t2�

� 
�T� � �t2 � t1�� e
T� ��0, 
T��
�2

2

� cos���t2 � t1��1��T �, T�	�t2 � t1�. (17)

This can be written as

Cov��t1, t2�

� 
T�e
T���0, 
T��
T� � �t2 � t1�

T�


 1��T�, T�	�t2 � t1�
�2

2
cos���t2 � t1��

� ��
, T��
�2�T� � �t2 � t1��

T�

1��T�, T�	�t2 � t1�



1

2
cos���t2 � t1��, (18)

where

��
, T�� � 
T�e
T� ��0, 
T��. (19)

One can regard Eq. (18) as the product of three factors:
�(
, T�), which is the probability that at least one instant is
in a wave (cf. Appendix 1 with t1 � t2), the convolution of
the amplitudes, and the covariance of the OAM with unit
amplitude.

In all, we have the total PoMAM covariance

Cov�t1, t2� � ��
, T��
�2�T� � �t2 � t1��

T�

� 1��T�, T�	�t2 � t1�
1

2
cos���t2 � t1��

� 
2e���t2�t1�. (20)

Note that this expression is entirely parametric.
From Eq. (20) it is clear that the PoMAM is a stationary

model; the formula only depends on lag t2 � t1.
For a more general envelope function of the waves �(t)

the covariance can be calculated in a similar way. The
convolution of the amplitudes then becomes

1

T�
�

0

T�

��s���s � �t2 � t1��ds (21)

and the equivalent of Eq. (20) becomes

Cov�t1, t2� � ��
, T��
1

T�
�

0

T�

��s���s � �t2 � t1�� ds

1

2
cos���t2 � t1�� � 
2e���t2�t1�. (22)

An example of the PoMAM with fixed amplitude is plotted
in Fig. 4. We see that for the PoMAM the covariance indeed
vanishes for big time lags as in Fig. 1a.

Baseline correction

Due to external influences in MEG/EEG measurements
the baselines of the single-channel signals are usually
shifted over an unknown offset which can be quite large. To
correct for these shifts one has to carry out an offset re-
moval. One standard way of performing this baseline cor-
rection (BC) is to subtract per channel the average over a
prestimulus interval. In this section the influence of this
preprocessing on the temporal covariance matrix is studied.
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Let [t0 � Tc, t0] be the interval over which the correction
is calculated. The formula for the corrected noise of the kth

trial, �k
c(t), is then

�k
c�t� � �k�t� �

1

Tc
�

t0�Tc

t0

�k�t��dt�. (23)

To compute the (co)variance of the corrected signal, the
corrected (co)variance, one has to calculate

Covc�t1, t2� � E��k
c�t1� � �k

c�t2��

� Cov�t1, t2� �
1

Tc
�

t0�Tc

t0

�Cov�t1, t��

� Cov�t2, t��	dt�

�
1

Tc
2 �

t0�Tc

t0 �
t0�Tc

t0

Cov�t�, t��dt� dt�.

(24)

The first term in Eq. (24) is the stationary uncorrected
covariance and the last term is a constant dependent on Tc

and t0. The second term, though, is in general not stationary.
In Fig. 5 the effect of the BC is illustrated. If a signal
contains alpha activity having nonzero average over the BC
window, a vertical shift is introduced by the correction.
Moreover, this introduced variance varies with time: the
variation in signals is periodically bigger or smaller. If the
BC window equals one alpha period, the average alpha
activity will be zero and this oscillating additional variance
will not occur.

For the OAM formula Eq. (24) can be computed (partly)
analytically using Eq. (10) (see Appendix 3):

Covc�t1, t2� � �2� 1

�2T c
2 �1 � cos��Tc��

�
1

2
cos���t2 � t1��

�
2

�Tc
sin

�Tc

2
cos���t2 � t1�

2 �

 cos��� t1 � t2

2
� t0 �

Tc

2 ���
� 
2e���t2�t1� �


2

Tc
�

t0�Tc

t0

�e���t1�t�� � e���t2�t���dt�

�

2

T c
2 �

t0�Tc

t0 �
t0�Tc

t0

e���t��t��dt�dt�. (25)

As an example the corrected variance (t1 � t2 � t) is plotted
in Fig. 6 for three different values of Tc for both the OAM
(Fig. 6a) and for empirical data (Fig. 6b). It is clear from
these figures that the corrected temporal covariance struc-
ture is not stationary and that this nonstationarity highly
depends on the choice of baseline correction. Although
there are differences between the OAM figure and the em-
pirical figure, the similarity in effect of baseline correction
is striking.

There is an alpha oscillation in the variance for Tc � 25
ms (blue) and Tc � 50 ms (green), but this oscillation
vanishes for Tc � 100 ms (red). This is clarified by the term
within square brackets of Eq. (25): the amplitude of this
sinusoid in (t1 � t2)/2 contains the factor sin(�Tc/2) which
is in the case of Fig. 6a equal to sin(Tc	/100) (taking time
in ms) and is zero for Tc � 100 ms. Furthermore the phase
of this oscillation is �t0 � Tc/2, so the phase shift between
the green and the blue line is 12.5 ms. The average variance
is minimum for the red line in this figure (Tc � 100 ms)
since then 1/(�2Tc

2)(1 � cos(�Tc)) � 1/(4	2)[1 �
cos(	100/50)] � 0; see Eq. (25).

The variance is minimum at t � �Tc /2, the centre of the
preprocessing window, in all cases. This drop is caused by
the second half of Eq. (25), taking t1 � t2 � t. This
corrected variance due to �(t) consists of a constant, a
nonstationary term, and another constant. The integrand in
the middle term is larger for t closer to the correction
window, because then |t � t�| is smaller. Therefore the
closer t is to this window, the larger the integral. Together
with the minus sign in front of the term, this causes the drop.
Moreover, a decrease in Tc increases the magnitude of the
drop (see Appendix 4).

To obtain stationarity one should choose Tc in such a
way that the oscillation vanishes and the drop is minimum.
This is achieved when �Tc � 2l	, l � �; i.e., when the
correction interval is taken to be l alpha periods with l � �.
The bigger l, the smaller the magnitude of the drop, thus the
more stationary the matrix. To keep the preprocessing fea-
sible taking one or two alpha periods as the preprocessing
window is adequate.

If one is interested in a particular sample after the stim-
ulus (e.g., the N20 response in a somatosensory evoked field
(SEF) experiment), advantage can be taken of the nonsta-
tionarity due to the BC. In Fig. 7 the empirical variances at
t � 20 ms and t � 60 ms after the stimulus in a SEF data
set are plotted for several values of T�. It becomes clear in
this figure that for the N20 response the optimal BC length
is 100 ms, while for t � 60 ms a BC window of 70 ms yields
the minimum variance. This can be explained by Eq. (25):
if the time sample t and the PoMAM parameters are sub-
stituted then this formula becomes a parametric expression
in t0 and T�, which can be minimized with respect to T�,
taking t0 � 0.

The covariance of the corrected error �k
c(t) in the Po-

MAM is calculated using Eqs. (20) and (24). For the Po-
MAM with fixed amplitude Eq. (24) becomes a parametric
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representation for the entries of the temporal covariance
matrix T. The main difference between the simple OAM
model and this parametric PoMAM is the decrease in am-
plitude of the oscillations in the (co)variance. The effect of
the baseline correction on the stationarity is the same for
both models. Therefore it is sufficient to examine Eq. (25)
for the simpler OAM instead of the more complicated Eq.
(24) to investigate stationarity of the PoMAM.

Results

The PoMAM was fitted to ML-estimated temporal co-
variance matrices of five subjects to see how well this
parametric model describes the abstract and nonphysiologi-
cal ML estimate. The ML estimates were obtained from
MEG data of SEF experiments where the left median nerve

was stimulated. Data were acquired on a 151-channel CTF
Omega system at a sample rate of 2 kHz. No filtering was
applied, expect for the baseline correction. Subjects 2 and 3
were stimulated at a constant stimulus rate of 1 Hz, while
the interstimulus interval in Subjects 1, 4, and 5 varied
uniformly between 800 and 1200 ms. In our experiments we
found that the best fitting values for the model parameters
reproduce very well between data sets with random and
regular stimulation within subjects. Therefore the compari-
son of parameter values for Subjects 2 and 3 with those for
the other subjects is justified. The number of trials was
approximately 500 for all subjects.

The parameters 
 (the intensity of the Poisson process)
and � (the amplitude of the waves) were fitted simulta-
neously in �̃2 � 
T�e
T��(0, 
T�)�2, for they cannot be
distinguished in the covariance Eq. (18). Furthermore, an
additional term 
hf

2 was added to the main diagonal and 1
2

hf

2

to the first subdiagonal to model high-frequency noise due
to the omitted filtering. The parameters to be fitted for are �
(alpha frequency), T� (duration of alpha wave), � (covari-
ance length of additional noise), 
2 [variance of additional
(low-frequency) noise], 
hf

2 (variance due to high-frequency
noise), and �̃2 (representing amplitude and intensity of
alpha activity).

The cost function used is

C��, T�, �, �̃2, 
2, 
hf
2 �

�
�t1 �t2�T��, T�, �,�̃2, 
2,
hf

2 ��t1,t2�t0,Tc� � T̂�t1,t2�
2

�t1 �t2 �T̂�t1, t2�	
2

� 100%, (26)

i.e., the relative squared Frobenius norm of the difference
between the model matrix T and the ML-estimated matrix T̂.
We used the Simplex method to minimize [Eq. (26)]. Only
the three nonlinear parameters (�, T�, �) were estimated by
this iterative method; the three linear parameters (�̃2, 
2,

hf

2 ) were fitted in a least-squares sense in each iteration.
The values for t0 and Tc were taken to be equal to the values
taken in the ML procedure. In our experiment we did not
strive for stationary matrices; instead we attempted to ap-
proximate as accurately as possible the ML-estimated ma-
trices irrespective of the correction window used. Moreover,

Fig. 6. Corrected OAM variance and corrected empirical variance for three
different values of Tc. (a) The corrected OAM variance as a function of t
in ms with � � 20	 rad s�1, �2 � 2 (fT)2, 
2 � 3.5 (fT)2, � � 10 s�1, and
t0 � 0 ms for different values of Tc. The blue line corresponds to Tc � 25
ms, the green line to Tc � 50 ms, and the red line to Tc � 100 ms. (b)
Corrected empirical variances. The colors and values for Tc and t0 are the
same as in (a).

Fig. 7. The empirical variance of a SEF data set at t � 20 ms (blue line)
and t � 60 ms (red line) after the stimulus for different values of Tc (length
of the BC window); t0 � 0.
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it can be verified in this way whether the effect of the
baseline correction is taken into account correctly.

The best-fitting parameter values together with the cost
function values for the five subjects are stated in Table 1.
This table shows that our model describes the temporal
covariance structure accurately: the ML-estimated matrices
can be approximated up to an error of less than 1% in
relative squared Frobenius norm by the PoMAM.

In our estimation the nonlinear parameters T� and �
appeared to be rather insensitive, while the parameter � was
most sensitive.

Discussion

The temporal covariance of the background noise in
MEG/EEG measurements can be described accurately by
the parametric PoMAM. In the PoMAM the temporal noise
is modeled in a physiological way as the sum of randomly
occurring alpha waves and additional noise. In principle this
model is stationary, but in practice the temporal stationarity
is hampered by the baseline correction, which is apparent
from Fig. 5 and Eqs. (24) and (25). Taking this preprocess-
ing into account properly, the ML-estimated temporal co-
variance matrix can be described up to an error of less than
1% (Table 1) using only six parameters.

Some parameters (especially T� and �) appeared to be
rather insensitive. This redundancy shows that a model with
even less parameters is possible. Taking these insensitive
parameters into account, we expect that it will be possible to
compose a standard PoMAM matrix T (based on standard
values for T�, �, �, 
, and 
hf, but still depending on the
sensitive parameter �) which will function considerably
better in source localization than T � 
2I does.

However, it is not straightforward how to estimate the
PoMAM parameters based on raw data. A detailed compar-
ison between the computational expense of the ML esti-
mates and the PoMAM will be made in a future study.

The temporal stationarity of the background noise highly

depends on the window used for the baseline correction [Eq.
(25)]. Taking the length of this window to be equal to a
multiple of alpha periods, one obtains the most stationary
temporal covariance. However, for a fixed sample this does
not always yield the minimum variance (Fig. 7). Therefore
one can optimize the baseline correction window in order to
minimize the variance for a certain sample of interest.

Even in analyses where no temporal correlations are
taken into account [i.e., assuming Cov(t1, t2) � 
2�(t1 �
t2)], the baseline correction alters the covariance matrix. In
that case it is inconsistent to just fix the baseline corrected
temporal covariance matrix to 
2I, because due to the cor-
rection a positive constant is added to all entries in T [see
Eq. (24)].

In Truccolo et al. (2002) it is shown that trial-to-trial
variations in the response cause nonstationarities in the
background noise when trials are averaged according to the
SPN model. In our SEF experiment the assumption of the
SPN model leads to temporally stationary background
noise; the observed nonstationarity in the matrix is caused
by the preprocessing and does not originate from the data
(Makeig et al., 2002). Therefore our methods, which con-
trary to others are based on both spatial and temporal cor-
relations of the background noise, show no reasons to reject
the SPN model.

In the PoMAM the alpha activity is modeled as a random
phase process with constant amplitude. If alpha waves were
modulated by the stimulus one would expect a different
probability density function for the phase �� and possibly a
different amplitude time function for the waves [as in Eq.
(22)] (Makeig et al., 2002). The small fit error of the Po-
MAM (Table 1) shows that our data can be well understood
without the assumption of such a stimulus-modulated alpha
model.

In all we have derived a mathematical model, the Poisson
Modulated Alpha Model, describing the temporal noise
covariance in a physiological and accurate way. For prac-
tical application of this model further study of the parameter
estimation and the effect on source localization is needed.

Table 1
Best-fitting-values for the six parameters of the Poisson Modulated Alpha Model together with the residual error for five different subjects

Subject Stim Tc �

2	
T� 1

�
�2 
2 
hf

2 C

1 Random 48 10.61 287 22.9 19980 13610 21099 0.4%
2 Regular 25 9.85 359 73.8 23527 15382 22952 0.5%
3 Regular 50 11.03 289 16.3 22651 12274 16804 0.7%
4 Random 50 8.85 536 14.7 8497 10402 11787 0.6%
5 Random 49 11.92 61 85.3 24746 11746 17293 0.4%

Average 10.45 306 42.6 19880 12683 17987 0.58%

Unit ms Hz ms ms (fT)2 (fT)2 (fT)2

Note. The number of time samples is 500. The values for t0 and Tc were taken equal to their corresponding values in the ML-estimated matrices. Subjects
2 and 3 had their eyes open; the others had their eyes closed.
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Appendix 1

In this appendix the probability that two instants, t1 and
t2, are in the same alpha wave is computed. First t1 � t2 is
assumed. For t2 � t1 
 T� this probability is obviously zero.
For t2 � t1 � T� the probability is derived below.

If the intermediate time between waves were fixed to Tint

the probability that both instants are in the same wave
would be equal to the ratio

T� � �t2 � t1�

T� � Tint
. (A.1)

One can regard Eq. (A.1) as the ratio between favorable
instants for t1 and all possible instants. By the assumption
that the alpha waves are generated by a Poisson process the
intermediate time Tint has an Exponential(
) distribution.
The above probability [Eq. (A.1)] can be interpreted as a
function of the stochast Tint. The expected value of a func-
tion g(X) of a stochast X with probability density function
fx(x) is (Chung, 1993):

E� g�X�� � �
��

�

g� x� fx� x�dx. (A.2)

Combining Eqs. (11), (A.1), and (A.2) we obtain

P(t1 and t2 in same wave)

� ETint
�PTint

�t1 and t2 in same wave��

� �
0

� T� � �t2 � t1�

T� � �

e�
� d�

� 
�T� � �t2 � t1�� e
T� �
T�

� 1

��
e�
��d��

� 
�T� � �t2 � t1�� e
T� ��0, 
T��, (A.3)

where � is the incomplete gamma function �(0, a) �
��

�(1/�)e��d�. For arbitrary values of t1 and t2 this re-
sults in

P�t1 and t2 in same wave�

� 
�T� � �t2 � t1��e
T� ��0, 
T��1��T�,T�	�t2 � t1�.

(A.4)

Appendix 2

In this appendix the last term of Eq. (16):

E���
��t1���

��t2��t1 and t2 in same wave�

is calculated. From Eq. (12) it is clear that the onset of the
wave in which t1 and t2 occur determines the amplitude of
the activity at both instants. Therefore all possible onsets
have to be taken into account. First assume t1 � t2. Given
the event “t1 and t2 are in the same wave” the stochast S �
t1 � tonset has a uniform distribution in [0, T� � (t2 � t1)].
Using Eq. (A.2) with S as stochast and �k

�(t1)�k
�(t2), the

function, yields

E��k
��t1��k

��t2��t1 and t2 in same wave, t1 � t2�

�
1

2	 �
�	

	 � �2

T� � �t2 � t1�
�

0

T���t2�t1�

1�0,T�	�s�


 sin��t1 � �k�1�0,T�	�s � t2 � t1�

� sin��t2 � �k�ds�d�k

�
�2

2
cos���t2 � t1��. (B.1)

Taking t1 and t2 as arbitrary in the same wave, this remains

E��k
��t1��k

��t2��t1 and t2 in same wave�

�
�2

2
cos���t2 � t1��. (B.2)

Appendix 3

For the simplified OAM the corrected covariance [Eq.
(24)] is calculated using the covariance for the uncorrected
case [Eq. (10)]:

Covc�t1, t2� � Cov�t1, t2� �
1

Tc
�

t0�Tc

t0

�Cov�t1, t�� � Cov�t2, t��	dt�

�
1

Tc
2 �

t0�Tc

t0 �
t0�Tc

t0

Cov�t�, t��dt�dt�

�
�2

2 �cos���t2 � t1��

�
1

Tc
�

t0�Tc

t0

�cos���t1 � t���

� cos���t2 � t���	dt�
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�
1

Tc
2 �

t0�Tc

t0 �
t0�Tc

t0

cos���t� � t���dt�dt��
� 
2�e���t2�t1� �

1

Tc
�

t0�Tc

t0

e���t1�t��

� e���t2�t��dt�

�
1

Tc
2 �

t0�Tc

t0 �
t0�Tc

t0

e���t��t��dt�dt��
�

�2

2 �cos���t2 � t1��

�
1

�Tc
�sin���t1 � t0��

� sin���t1 � t0 � Tc���

�
1

�Tc
�sin���t2 � t0��

� sin���t2 � t0 � Tc���

�
1

�2Tc
2 �2 � 2 cos��Tc���

� 
2�e���t2�t1� �
1

Tc
�

t0�Tc

t0

e���t1�t��

� e���t2�t��dt� �
1

Tc
2 �

t0�Tc

t0 �
t0�Tc

t0

e���t��t��dt�dt�� . (C.1)

Applying successively the rules

sin x � sin� x � a� � �2 sin
a

2
cos� x �

a

2� and

(C.2)

cos x � cos� x � a� � 2 cos
a

2
cos� x �

a

2� (C.3)

to the first part of this formula yields Eq. (25).

Appendix 4

The drop in the variance over the correction window
(Fig. 6a) is caused by the next to last term in Eq. (25)
(substituting t1 � t2 � t):

�
2
2

Tc
�

t0�Tc

t0

e���t�t��dt�. (D.1)

In this appendix it will be proved that a smaller value of Tc

(i.e., shorter correction window) yields a deeper drop. Con-
sider the magnitude of the drop, M, at the minimum point
(halfway point of the correction interval) as a function of Tc

by setting t � t0 � �Tc/2� in Eq. (D.1):

M�Tc� �
2
2

Tc
�

t0�Tc

t0

e���t0� �Tc/ 2��t��dt�. (D.2)

This function is positive and it has to be proven that it is
decreasing in Tc (i.e., having negative slope), which means
that a shorter correction interval yields a deeper drop. To
prove M�(Tc) � 0, we first express Eq. (D.2) as

M�Tc� �
4
2

�Tc
�1 � e�� �Tc/ 2� � (D.3)

and then take the derivative with respect to Tc:

M��Tc� �
� 4
2

�Tc
2 �

4
2

�Tc
2 e���Tc/ 2� �

2
2

Tc
e���Tc/ 2�.

(D.4)

To prove that the expression in Eq. (D.4) is negative, we

multiply this by ��Tc
2/�4
2�	 and substitute s � �Tc/2:

�Tc
2

4
2 M��Tc� � �1 � �1 � s�e�s. (D.5)

Note that s only takes strictly positive values. Now the last
expression in Eq. (D.5) is always negative because

�1 � �1 � s�e�s � 0 N 1 � s � es, (D.6)

which is true for all s 
 0. This completes the proof: a
shorter correction interval (i.e., a smaller value of Tc) yields
a deeper drop in the variance. Therefore the larger the
baseline correction window the more stationary the covari-
ance matrix.
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