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Abstract

In this paper we develop a symmetry preserving method for the rigorous computation of
stationary states of the Ohta-Kawasaki partial differential equation in three space dimensions.
By preserving the relevant symmetries we achieve an enormous reduction in computational
cost. This makes it feasible to construct computer-assisted proofs of complex 3D structures.
In particular, we provide the first existence proofs for both the double gyroid and bcc-packed
sphere solutions to this problem.

1 Introduction

It is very common for solutions to minimization problems to exhibit (a lot of) symmetries. In this
work we construct solutions to an energy minimization problem arising in material science, which
possess crystallographic symmetries. In particular, we use rigorously verified numerical methods
to find periodic solutions with additional imposed symmetries to the fourth order elliptic partial
differential equation (PDE)

−∆

(
1

γ2
∆u+ u− u3

)
− (u−m) = 0 (1.1)

in three space dimensions. This PDE arises in the Ohta-Kawasaki model for diblock copolymers.
The significance of the parameter m ∈ [−1, 1] and γ > 0 will be discussed below.

To study solutions of (1.1) which are invariant under a large symmetry group, we develop
a rigorous computational framework that incorporates symmetries. By restricting to functions
which are invariant under a group action (as well as being periodic) we prove, using computer-
assisted analysis, the existence of the double gyroid pattern depicted in Figure 1.1(a), and the
body centered cubic (bcc) packed spheres pattern in Figure 1.1(b). Although we focus here on
solutions with specific symmetries to a specific PDE, the developed approach is more generally
applicable to symmetry-invariant periodic solutions of PDEs.

Before we delve into the mathematics, let us discuss the origin of the Ohta-Kawasaki equa-
tion (1.1), sometimes called the diblock copolymer equation.

The physical problem. Diblock copolymers are linear chain molecules consisting of two cova-
lently bonded subchains, type A and type B. The subchains are monomers which repulse each
other causing the formation of type A-rich and type B-rich domains. However, the chemical bond-
ing of the subchains means that there cannot be complete macrophase separation (as one finds
in the Cahn-Hilliard problem). The combination of the chemical bonding of the chains and the
immiscibility of A and B leads to preferred energy configurations where the different types stay
“apart but never too far”.
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Figure 1.1: Solutions with m = 0.35 and γ = 5 plotted at u(x, y, z) = −m. These are both unit
cells. The volumes within these levels are type-A dominant. (a) Double gyroid profile. Note there
are two disjoint surfaces at the same level. (b) BCC-packed spheres.

Competition between short scale repulsion and long range attraction leads diblock copolymer
melts to self-assemble into a rich class of complex structures [2]. This makes the materials exciting
from both mathematical and practical points of view. Experimentally, as the temperature and mass
ratio are varied, many distinct phases have been observed [15, 1]. We will work under imposed
symmetries as all known phases are periodic and exhibit additional crystallographic symmetries.

The most commonly seen phases are lamellae, triangularly packed cylinders, bcc packed spheres,
double gyroids and close packed spheres. We constructed optimal lamellae and triangularly packed
cylinders in [28]; these can be interpreted as essentially 1D stripes and 2D hexagonal spot pat-
terns, respectively. Here we focus on the double gyroid and bcc-packed spheres, since they are
the truly three dimensional patterns most widely observed. Furthermore, to our knowledge there
is no prior rigorous proof of either phase existing as a solution to (1.1) despite having been seen
computationally [21, 7] and experimentally [15].

The mathematical problem. In [17] Ohta and Kawasaki present a free energy functional
modelling diblock copolymers, which can be rescaled as

E(u) =
1

|Ω|

∫
Ω

1

2γ2
|∇u|2 +

1

4
(1− u2)2 +

1

2
|∇v|2 dx. (1.2)

Since the symmetries of the double gyroid and bcc-packed spheres enforce a cubic unit cell, we
consider u to be a periodic function on a cubic domain Ω = [0, L]3. The average m = 1

|Ω|
∫

Ω
u(x)dx

determines the ratio between the types A and B subchains. The parameter γ measures the strength
of the long range attraction relative to the short range repulsion. The function v is the unique
solution of the linear elliptic problem −∆v = u − m with periodic boundary conditions and
satisfying

∫
v = 0. In the energy (1.2) the first term penalizes jumps in the solution, the second

favours u = ±1 and the last penalizes variation from the mean. Without the final term we have
the classical Cahn-Hilliard energy functional which is minimized by configurations which entirely
separate into one region where u = −1 (“type A”) and another where u = +1 (“type B”). Critical
points of the energy (1.2) are found by taking the gradient in H−1 [6], leading to (1.1).

Crystallographic, or space group, symmetries combine the translational symmetries of a lattice

2



together with other elements such as directional flips, rotation and screw axes. Physically, deter-
mining the space group a given material belongs to is an essential step in structure analysis as it
minimizes the information required for a complete description. We use this reduction to construct
efficient numerical methods which guarantee our solutions have the desired symmetry. The double
gyroid and bcc-packed spheres belong to space group 230 and 229, respectively.

We first describe the details of our method for space group 230 and postpone a summary of
space group 229 (which is simpler) to Section 3.7. We look for L-periodic solutions

u(x1, x2, x3) = u(x1 + L, x2, x3) = u(x1, x2 + L, x3) = u(x1, x2, x3 + L),

which are invariant under the actions of space group 230. This group is generated by the transfor-
mations

Sσx
def
= (x2, x3, x1), (1.3a)

Sτx
def
=
(
x2 + L

4 , x1 + L
4 , x3 + L

4

)
, (1.3b)

Sρx
def
=
(
−x1, x2, x3 + L

2

)
. (1.3c)

We denote the 96 element (symmetry) group generated by {Sσ, Sτ , Sρ} by G. The group includes
some elements which are relatively easy to distinguish visibly, such as the half shift along the main
diagonal

S2
τx =

(
x1 + L

2 , x2 + L
2 , x3 + L

2

)
,

as well as the point symmetry

Sπx
def
= (L− x1, L− x2, L− x3) . (1.4)

Definition 1.1. An L-periodic function u is said to be G-symmetric if u(Sx) = u(x) for all S ∈ G.

To prove the existence of a G-symmetric solution representing a double gyroid pattern, as
depicted in Figure 1.1(a), we build on previously developed rigorous computational methods,
see [22, 25] and the references therein. This technique is based on the Banach fixed point the-
orem, where the conditions for proving a contraction are reduced to checking a single, explicit but
complicated, inequality, which can be accomplished with the assistance of a computer. The main
contribution of this paper is the development of a flexible symmetry framework in such a rigorous
numerics setting. Preserving all symmetries is not only imperative for the physical problem, but
also makes our method very efficient computationally as we reduce the number of coefficients we
need to store and compute on by a factor of approximately 100. This makes it feasible to prove the
existence of complicated (but symmetric) solutions of the PDE (1.1) in three space dimensions,
see Section 4 for specific results.

Previous results. Most relevant to the current work are results discussing the structure of solu-
tions near the point m = 0, γ = 2 such as [6, 4, 28]. Various solutions have been investigated, with
periodic minimizers found as γ → ∞ [5, 12]. There have also been considerable numerical inves-
tigations of this problem by integrating the PDE in time [6, 21] or directly solving the stationary
problem [20] amongst others.

This paper is, in some ways, an extension of the ideas of [28] to three dimensions. That is,
we use a similar problem formulation and similar tools from rigorous numerics to ensure that our
computed “numerical solutions” (finite approximations) are close to solutions to the full infinite
dimensional problem in a precise and rigorously verified manner. Wanner and colleagues have used
rigorous numerics on this problem in one space dimension both to construct solutions [29] and to
find and continue bifurcation points [16].

Outline of paper. In this paper we prove existence of solutions to (1.1) whilst imposing symme-
tries observed in experimentally discovered profiles. Our method of proof requires the construction
of abstract functional analytic bounds which are then implemented practically and verified numer-
ically about given approximate solutions. The details of the approach we use for rigorous numerics
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and the various required general estimates are laid out in Section 2. In Section 3 we explain the
symmetry group, how to encode it into our estimates and how to preserve it computationally. Sec-
tion 4 contains rigorously verified solutions to (1.1) from space groups 229 and 230, discusses some
of the numerical and algorithmic issues, and also presents some rather unusual profiles. Finally, in
Section 5, we discuss possible further extensions of this approach.

Code to generate the figures in this paper and run the proofs is available at [27].

2 Rigorous computational setup

We use a functional analytic approach to rigorous numerics. The crux of this methodology is to
perform validated computations to verify that an appropriate fixed point operator is contracting
in a neighbourhood of our finite dimensional approximation. Before constructing the fixed point
theorem we need to formulate our problem and detail the necessary norms and spaces. This builds
on earlier work in two [11, 9, 28, 3] and higher [10] dimensional problems. For clarity of exposition,
we start with the setup and estimates without assuming a symmetric setting. The modifications
needed to incorporate the symmetries will be discussed in Sections 3.3–3.6.

2.1 Problem formulation

We set `
def
= L

2π . Looking for a periodic solution, we write

u(x) =
∑
k∈Z3

cke
ik·x/`,

with c0 = m. This transforms the differential equation (1.1) into Fourier space:

hk(c)
def
= (γ−2`−4k4 − `−2k2 +m)ck + `−2k2〈c3〉k = 0, (2.1)

for k ∈ Z3
0

def
= Z3 \ {0}, where

k
def
=
(
|k1|2 + |k2|2 + |k3|2

)1/2
.

We note that
h0

def
= c0 −m (2.2)

vanishes, since we impose c0 = m. Finally, 〈··〉 denotes the discrete convolution product in three
dimensions:

〈ab〉k
def
=
∑
k′∈Z3

ak′bk−k′ , (2.3)

which generalizes to 〈c3〉 = 〈〈cc〉c〉.

2.2 Functional analytic setup

We will use the 1-norm in Fourier space:

‖c‖ def
=
∑
k∈Z3

|ck|. (2.4)

The corresponding Banach space is

X
def
= {(ck)k∈Z3 : ck ∈ C , ‖c‖ <∞}. (2.5)

We are interested in real-valued u only, and one may be tempted to require c−k = c∗k in the
definition of X. However, this is just one of the symmetries that the solutions considered in this
paper will have, and we will deal with all these symmetries in Section 3 in a integrated fashion.
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It is convenient to introduce the basis vectors ek:

(ek)k′ =

{
1 for k = k′

0 for k 6= k′.

The solution average, c0 = m, is fixed, hence we look for zeros of (hk)k∈Z3
0

as defined in (2.1) in
the affine space

Xm
def
= {c ∈ X : c0 = m}. (2.6)

Since Xm is an affine linear space, it is more convenient to shift the problem to the linear space

X0
def
= {c ∈ X : c0 = 0}

as follows. Any element c̃ ∈ Xm can be written as c̃ = me0 + c, with c ∈ X0. Instead of h with
domain Xm we now consider f with domain X0 defined by

fk(c)
def
= hk(me0 + c). (2.7)

Without loss of generality, elements in X0 may be indexed by k ∈ Z3
0 rather than k ∈ Z3, and the

norm on X0 is given by

‖c‖ =
∑
k∈Z3

0

|ck|.

The norm (2.4) on X has the Banach algebra property

‖〈ab〉‖ ≤ ‖a‖‖b‖ for all a, b ∈ X.

We note that the convolution of two elements of X0 lies in X but not necessarily in X0. The second
convenient property of the 1-norm (2.4) is that the dual of X0 is the corresponding l∞ space:

X∗0 =
{

(dk)k∈Z3
0

: sup
k∈Z3

0

|dk| <∞
}
.

Any bounded linear operator Γ on X0 can be characterized by Γkk′ = (Γek′)k with k, k′ ∈ Z3
0. It

readily follows that the operator norm of Γ is given by

‖Γ‖B(X0) = sup
k′∈Z3

0

‖Γek′‖ (2.8)

= sup
k′∈Z3

0

∑
k∈Z3

0

|Γkk′ |. (2.9)

We will compute in a finite dimensional subspace. Let K ∈ N, and let

N = N(K)
def
=
∣∣{k ∈ Z3 : 0 < k ≤ K}

∣∣. (2.10)

where |.| denotes the number of elements in the set. We define

XN
def
= {c ∈ X0 : ck = 0 for all k > K}. (2.11)

Clearly, XN can be identified with a finite dimensional space CN , and we will implicitly use this
identification whenever convenient. Elements of XN

∼= CN are sometimes denoted by cN . The
natural complement of XN is

X∞
def
= {c ∈ X : ck = 0 for all k ≤ K}.

The projections onto XN and X∞ will be denoted by πN and π∞, respectively.
In preparation for a computer-assisted proof, we first find numerically an approximate zero c

in XN of the Galerkin projection πNf , i.e.

c ∈ XN
∼= CN such that πNf(c) ≈ 0.
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We also compute an N ×N matrix AN , namely a numerical (i.e. not exact) inverse of the Jacobian
JN of the finite dimensional map cN → πNf(cN ) evaluated at cN = c.

With f defined in (2.7) we now introduce the fixed point operator on X0 as

T (c)
def
= c−Af(c).

Here A is a linear block-diagonal operator of the form

πNAc = ANπNc , (2.12a)

π∞Ac = Λ−1π∞, (2.12b)

and Λ is the diagonal operator given by

(Λc)k
def
= λkck,

where
λk

def
= γ−2`−4k4 − `−2k2 +m.

We assume that K ∈ N is sufficiently large, say K ≥ γ`, so that λk 6= 0 for all k > K.
Provided A is injective (this will follow from the assumptions in Theorem 2.1, see its proof),

the zero finding problem f(c) = 0 is now equivalent to the fixed point problem T (c) = c. Since A
is an approximation of the inverse of the Jacobian of f at c, one may expect T to be a contraction
mapping on small balls around c. We denote by B the unit ball in X0:

B = {(vk)k∈Z3
0

: ‖v‖ ≤ 1}.

In Subsections 2.3 and 2.4 we will derive explicit expressions for Y > 0 and Z : R+ → R+, which
provide bounds on the residue and the derivative, respectively:

‖T (c)− c‖ ≤ Y, (2.13)

sup
w,v∈B

‖DT (c+ rw)v‖ ≤ Z(r). (2.14)

The key mathematical step is the next lemma which shows that it suffices to check that

Y + r̃Z(r̃)− r̃ < 0, (2.15)

for some r̃ > 0, to conclude that there is a unique solution of f(c) = 0 in the ball of radius r̃
around the numerical guess c. Since Z(r), as obtained in Section 2.4, is a second order polynomial,
the left-hand side of (2.15) is often called the radii polynomial (a cubic one in this case) in the
literature, see e.g. [8, 24].

Theorem 2.1. Let K ≥ γ`. Assume that Y and Z(r) satisfy the bounds (2.13) and (2.14). Let
r̃ > 0 be such that the inequality (2.15) is satisfied. Then f has a unique zero ĉ in

Br̃(c)
def
= {c ∈ X0 : ‖c− c‖ ≤ r̃}. (2.16)

Proof. It is straightforward to check that the bounds (2.13) and (2.14) together with (2.15) imply
that T is a contraction mapping on Br̃(c), see e.g. [8] for more details. By the Banach contraction
theorem, this implies that T has a unique fixed point ĉ in Br̃(c). To conclude that f(ĉ) = 0 we
need to establish that A is injective. First, π∞A is injective on X∞ since λ−1

k > 0 for k > K ≥ γ`,
hence it suffices to prove that the matrix AN is injective (or equivalently, invertible). We observe
that Z(r̃) < 1 by (2.15). Let 0 6= vN ∈ XN be arbitrary. On the one hand the bound (2.14) implies
that

‖πNDT (c)vN‖ ≤ Z(r̃)‖vN‖ < ‖vN‖, (2.17)

while on the other hand
πNDT (c)vN = (IN −ANJN )vN , (2.18)

where JN is the Jacobian of the finite dimensional map cN → πNf(cN ) at cN = c, and IN denotes
the identity matrix acting on XN . By combining (2.17) and (2.18) it follows that AN is invertible,
hence injective.
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Remark 2.2 (Error estimate). Our approach gives a precise and computable error bound. Let

u(x)
def
= m+

∑
0<k≤K

cke
ik·x/`

û(x)
def
= m+

∑
k∈Z3

0

ĉke
ik·x/`. (2.19)

It follows from the definition of the 1-norm on X and the observation that ĉ lies in Br̃(c) as defined
in (2.16), that the C0 error between the numerical approximation u and the (true) solution û
of (1.1) is bounded by r̃:

‖û− u‖∞ ≤ ‖ĉ− c‖ ≤ r̃.

Remark 2.3 (Real-valuedness). It is not a priori clear that the solution û(x) defined in (2.19) is
real-valued. One way to obtain a real-valued solution is by using the equivariance of f with respect
to the operator γ0 : X0 → X0 given by (γ0c)k = c∗−k. Indeed, it is not difficult to check that

f(γ0c) = γ0f(c).

If we choose a symmetric numerical approximation c, i.e. γ0c = c (hence u(x) is real-valued), then
the ball Br̃(c) is invariant under γ0, and it readily follows from the uniqueness of the zero of f in
Br̃(c) that γ0ĉ = ĉ, hence û(x) is real-valued. In the current paper we will not use this argument.
Instead, all symmetries (among which u(x) = u(x)∗) will be dealt with in a unified manner in
Section 3 by reducing the number of variables. We note that this equivariance argument is not
specific to complex conjugation and can be used for other symmetries as well.

Remark 2.4 (Smoothness). Since the Fourier coefficients ĉ ∈ X0 are summable, the solution û(x)
is continuous. Moreover, it follows from (2.1) and (2.7) and the Banach algebra property that any
zero ĉ of f satisfies (k2ĉk) ∈ X0, and by bootstrapping (knĉk) ∈ X0 for any n ∈ N. Hence we obtain
that û(x) ∈ C∞. Alternatively, we could have set up the problem with an exponentially weighted
norm ‖c‖ξ =

∑
k∈Z3 |ck|ξk, with ξ > 1, as to recover analyticity of the solution, see e.g. [13, 28].

This presents no technical obstacle, but in the current paper we avoid this slight notational burden
for simplicity of presentation.

2.3 The bound Y

We derive a bound satisfying (2.13). We recall that ck = 0 for k > K and note that

[T (c)− c]k = [−Af(c)]k =


[ANπNf(c)]k for 0 < k ≤ K
1
λk
f(c)k for K < k ≤ 3K

0 for k > 3K,

since for k > K we have
f(c)k = `−2k2〈(me0 + c)3〉k,

which vanishes for k > 3K. Hence, there are only finitely many nonzero terms in Af(c), which can
all be computed with interval arithmetic. We thus obtain a bound of the type (2.13) by setting

Y = ↑
∑

0<k≤3K

∣∣[Af(c)]k
∣∣,

where by ↑ I we indicate the maximum of the interval I obtained from an interval arithmetic
computation.
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2.4 The bound Z

To derive a bound satisfying (2.14), we start by calculating the derivative

Dfk(c)v = λkvk + 3`−2k2〈(me0 + c)2v〉k.

Hence, using the shift property of the convolution

〈cek′〉k = ck−k′ , (2.20)

we can express the components of the Jacobian as

Dfk(c)ek′ = δkk′λk + 3`−2k2〈(me0 + c)2〉k−k′ , (2.21)

where δ denotes the Kronecker delta. Next we decompose

Df(c+ rw) = J + [Df(c)− J ] + [Df(c+ rw)−Df(c)] ,

where J is an approximate Jacobian defined by

πNJc = JNπNc, (2.22a)

π∞Jc = Λπ∞c. (2.22b)

We recall that JN is the exact Jacobian of the finite dimensional map cN → πNfN (cN ) evaluated
at cN = c, i.e. JNπNv = πNDf(c)πNv, or equivalently

(Jek′)k = (DF (c)ek′)k for k,k′ ≤ K. (2.23)

In this notation we may split DT (c+ rw)v as follows:

DT (c+ rw)v = [I −ADf(c+ rw)]v =
[
I −AJ

]
v −A

[
Df(c)− J

]
v −A

[
Df(c+ rw)−Df(c)

]
v.

We aim to obtain bounds on the three terms

Q1 ≥ sup
v∈B
‖[I −AJ ]v‖

Q2 ≥ sup
v∈B
‖A[Df(c)− J ]v‖

Q3 ≥ sup
v,w∈B

‖A[Df(c+ rw)−Df(c)]v‖

separately. Here Q3 will depend (quadratically) on r.
The bound Q1 is a bound on the operator norm (given by (2.9)) of I − AJ . We note that,

by (2.12) and (2.22),

πN [I −AJ ]v = [IN −ANJN ]πNv,

π∞[I −AJ ]v = 0 .

Evaluating ‖I − AJ‖B(X0) is thus a finite computation, since the only non-vanishing elements
([I −AJ ]ek′)k are those with 0 < k,k′ ≤ K. In other words, the bound Q1 is the operator 1-norm
of the matrix IN − ANJN (i.e. (2.9) restricted to a finite set of indices), computed using interval
arithmetic:

Q1 = ↑‖IN −ANJN‖1.

The bound Q2 is a bound on the operator norm of A[Df(c)− J ]. We start with

([Df(c)− J ]v)k =

{
3`−2k2〈(me0 + c)2π∞v〉k for 0 < k ≤ K
3`−2k2〈(me0 + c)2v〉k for k > K.

(2.24)
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Only the convolution term appears, since the linear term cancels, and it follows from (2.23) that for
k ≤ K the terms that depend on πNv vanish. We use the expression (2.8) for the operator norm
and split the estimate in k′ ≤ 3K and k′ > 3K. Starting with the tail terms, we infer from (2.24)
and (2.20) that

([Df(c)− J ]ek′)k = 0 for k′ > 3K and k ≤ K. (2.25)

Furthermore, for k′ > 3K and k > K we have

(A[Df(c)− J ]ek′)k = (Λ−1π∞[Df(c)− J ]ek′)k =
3`−2k2

λk
〈(me0 + c)2〉k−k′ .

We estimate
`−2k2

γ−2`−4k4 − `−2k2 + 1
≤ CK

def
=

`−2K2

γ−2`−4K4 − `−2K2 + 1
(2.26)

for all k > K, where we have assumed that K ≥ `max{γ, γ1/2} (in practice this is a very mild
restriction).

We now obtain the tail estimate

‖A[Df(c)− J ]ek′‖ ≤ 3CK‖〈(me0 + c)2〉‖ for all k′ > 3K.

For k′ ≤ 3K we infer from (2.24) and (2.20) that (A[Df(c)− J ]ek′)k vanishes for k > 5K. Hence
it takes a finite computation using interval arithmetic to evaluate

Q̃2 = ↑ max
0<k′≤3K

‖A[Df(c)− J ]ek′‖,

exploiting (2.20), (2.23) and (2.25) for efficiency in practice. We thus obtain the bound

Q2 = max
{
Q̃2, ↑3CK‖〈(me0 + c)2〉‖

}
.

We evaluate the third term by expanding

([Df(c+ rw)−Df(c)]v)k = 6`−2k2〈(me0 + c)wv〉kr + 3`−2k2〈w2v〉kr2, (2.27)

and we estimate the linear and quadratic terms in r separately. Hence we define, for k ∈ Z3
0,

P (v, w)k
def
= 6`−2k2〈(me0 + c)wv〉k,

R(v, w)k
def
= 3`−2k2〈w2v〉k,

and we aim to obtain bounds

Q3,1 ≥ sup
v,w∈B

‖AP (v, w)‖,

Q3,2 ≥ sup
v,w∈B

‖AR(v, w)‖.

We must be careful with the linear term, as while 〈wv〉 lies in X and ‖〈wv〉‖ ≤ ‖w‖‖v‖ ≤ 1 for
v, w ∈ B, the convolution product 〈wv〉 does not necessarily lie in X0. We interpret 〈(me0+c)wv〉 =
〈(me0 + c)〈wv〉〉 and we want to “replace” the two arbitrary elements v, w ∈ X0 with ‖v‖, ‖w‖ ≤ 1
by an arbitrary element q ∈ X with ‖q‖ ≤ 1. To this end we introduce, for k ∈ Z3

0,

(P̃ q)k
def
= 6`−2k2〈(me0 + c)q〉k,

which may be viewed as a linear operator from X to X0. As explained above, we then have the
estimate

sup
v,w∈B

‖AP (v, w)‖ ≤ sup
q∈X,‖q‖≤1

‖AP̃q‖. (2.28)
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We interpret AP̃ in the right-hand side of (2.28) as a linear operator which maps X to X0, and we
estimate its norm analogously to the estimate above for A[Df(c)−J ]. It takes a finite computation
using interval arithmetic to evaluate

Q̃3,1 = ↑ max
0≤k′≤2K

‖AP̃ ek′‖,

where k′ = 0 is included in the maximum. In particular, for all k′ ≤ 2K we have that (AP̃ ek′)k
vanishes for k > 3K. Estimating the tail term as before, we obtain the bound

Q3,1 = max
{
Q̃3,1, ↑6CK‖me0 + c‖

}
on the operator norm of AP̃ and thus, via (2.28), on ‖AP (v, w)‖, as desired.

Finally, we deal with the quadratic term in (2.27). Analogous to the arguments above leading
to the bound Q3,1, we introduce, for k ∈ Z3

0,

(R̃q)k
def
= 3`−2k2qk,

which we view as a diagonal linear operator from X to X0 (or from X0 to X0, as R̃e0 = 0). It
takes a finite computation using interval arithmetic to evaluate

Q̃3,2 = ↑ max
0<k′≤K

‖AR̃ek′‖,

which is in fact just the 1-norm of the matrix ANπN R̃πN . Estimating the tail term as before, we
obtain the bound

Q3,2 = max
{
Q̃3,2, ↑3CK

}
on the operator norm of AR̃ and thus on ‖AR(v, w)‖, as desired.

By collecting terms we find that

Z(r) = Q1 +Q2 + rQ3,1 + r2Q3,2

gives a bound satisfying (2.14).

3 Symmetry preserving formulation

3.1 Representation of the symmetry group in Fourier space

We recall from Section 2.1 that we set `
def
= L

2π , and write the Fourier transform of an L-periodic
function as

u(x) =
∑
k∈Z3

cke
ik·x/`.

In this section we consider the symmetry group Ĝ generated by transforming the spatial symme-
tries G to Fourier space and complex conjugation of the u variable (thus incorporating that we are
only interested in real-valued u). For any S ∈ G we obtain a corresponding right group action γS
satisfying

u(Sx) =
∑
k∈Z3

[γSc]ke
ik·x/` for S ∈ G. (3.1)

In particular, for the generators {Sσ, Sτ , Sρ} of G the corresponding group actions γ on Fourier
space are given by

[γSσc]k1,k2,k3 = ck2,k3,k1 , (3.2a)

[γSτ c]k1,k2,k3 = eiπ(k1+k2+k3)/2ck2,k1,k3 , (3.2b)

[γSρc]k1,k2,k3 = eiπk3c−k1,k2,k3 . (3.2c)

For the other elements S ∈ G the corresponding group action γS acting on c is obtain by transitivity,
see Remark 3.1. For example, for the point symmetry Sπ in (1.4) we obtain

[γSπc]k1,k2,k3 = eiπ(k1+k2+k3)ck1,k2,k3 .
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Remark 3.1. To be explicit, if S ∈ G is represented by Sx = Ax + bL, with A a unitary matrix
and b a vector with values in [0, 1], then [γSc]k = e2πik·A−1bcAk. Furthermore, for S1, S2 ∈ G, let
us denote u1(x) = u(S1x) and u12 = u(S1S2x) = u1(S2x). When u has Fourier coefficients c, then
u1 has Fourier coefficients γS1

c by (3.1), and u12 has Fourier coefficients γS2
γS1

c again by (3.1).
Hence γS is a right group action:

γS1S2
c = γS2

γS1
c.

In addition to the group (action of) G, we take into account the symmetry coming from complex
conjugation of u, which is represented in Fourier space by the transformation

[γ0c]k1,k2,k3
def
= c∗−k1,−k2,−k3 . (3.3)

Rather than working with γ0 directly, it is more convenient to consider the composition of γ0 and
γSπ , which we denote by γ∗:

[γ∗c]k
def
= c∗k .

The full symmetry group Ĝ under consideration is generated by {γSσ , γSτ , γSρ , γ∗}. Here we have
slightly abused notation by identifying the action γ with the group itself (since γ is a faithful

action/representation of G). The group Ĝ has 192 elements. It splits into two normal subgroups:

Ĝ = G×H. Here H
def
= {e, γ∗}, where e denotes the identity, and G is the subgroup generated by

{γSσ , γSτ , γSρ}. Obviously G ∼= G.

3.2 Reduction to symmetry variables

From now on we will denote elements of G by g, and the action of G on c by γgc. The set of
Fourier coefficient that are symmetry invariant under G is given by

Xsym def
= {c ∈ X : γgc = c for all g ∈ G}.

Lemma 3.2. Let c ∈ Xsym with ck ∈ R for all k ∈ Z3. Then u(x) =
∑
k∈Z3 cke

ik·x/` is real-valued
and G-symmetric in the sense of Definition 1.1.

Proof. Since c is invariant under the action of G it follows from (3.1) that u is invariant under
the symmetries generated by (1.3) (in the sense of Definition 1.1). The assumption that c is real-

valued implies that c is also invariant under H, hence under the full symmetry group Ĝ. It follows
from (3.3) that u(x) is real-valued (since γ0 ∈ Ĝ).

Remark 3.3. The subgroup H is somewhat particular to the symmetries which define the space
groups 229 and 230, that we consider in this paper. It implies that we may restrict attention to real-
valued Fourier coefficients. Although this is convenient from a computational point of view, it is not
essential. In Remark 2.3 we explained how to recover real-valuedness of u(x) by using equivariance
of f under complex conjugation (rather than invariance of c under H). The remainder of the
analysis deals with G only, and we consider the general case of complex-valued Fourier coefficients.

We now study the group action of G in more detail. We write the right action γg of g ∈ G on
c ∈ X as

(γgc)k = αg(k) cβg(k).

Here βg is itself a left group action on Z3, i.e.,

βg1g2(k) = βg1(βg2(k)), (3.4)

whereas αg(k) ∈ {z ∈ C : |z| = 1} for all k ∈ Z3. The formulas for αg and βg for the generators
can be read off from (3.2). The product structure on α is given by

αg1g2(k) = αg1(βg2k)αg2(k), (3.5)

which follows directly from γg1g2 = γg2γg1 .
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Lemma 3.4. The space Xsym is closed under the convolution product (2.3).

Proof. We first note that αg(k + k′) = αg(k)αg(k
′) and αg(0) = 1 for all g ∈ G. Furthermore,

βg(k + k′) = βg(k) + βg(k
′) . By using that βg permutes Z3 we obtain

〈γga, γgb〉k =
∑
k′∈Z3

αg(k
′)aβg(k′) αg(k − k′)bβg(k−k′)

= αg(k)
∑
k′∈Z3

αg(k
′)αg(k)αg(−k′) aβg(k′)bβg(k)−βg(k′)

= αg(k)
∑
k′′∈Z3

αk′′bβg(k)−k′′

= (γg〈ab〉)k .

This concludes the proof.

We now list some properties of α that will be useful in what follows.

Lemma 3.5. Let k ∈ Z3 and g, h ∈ G.

(a) αg(k)αg−1(βg(k)) = 1.

(b) If βg(k) = βh(k) and αh−1g(k) = 1, then αg(k) = αh(k).

(c) If βg(k) = k, then αhgh−1(βh(k)) = αg(k).

Proof. For part (a) we use (3.5) to infer that

1 = αe(k) = αg−1g(k) = αg−1(βg(k))αg(k).

For part (b) we write g = hh−1g. From the first assumption and (3.4) if follows that βh−1g(k) = k.
By applying (3.5) to g1 = h and g2 = h−1g, we see that the second assumption implies

αg(k) = αhh−1g(k) = αh(βh−1g(k))αh−1g(k) = αh(k).

For part (c) we write k′ = βh(k) and apply (3.5) twice to obtain

αhgh−1(k′) = αh(βg(βh−1(k′)))αg(βh−1(k′))αh−1(k′) = αh(k)αg(k)αh−1(k′) = αg(k),

where the final equality follows from part (a).

Our goal is to exploit the symmetry group G to reduce the number of independent variables of
elements in Xsym. Before we move on to the general argument, we make some initial observations.
Ultimately we shall restrict to those c ∈ Xsym which are also invariant under H, hence real-valued.
It follows from γSτ c = c that ck = 0 whenever k1 +k2 +k3 is odd. The following remark shows that
this conclusion can also be reached using invariance under the group G only (i.e. without resorting
to H).

Remark 3.6. As warmup for what is to follow, we first consider

G′
def
= {g ∈ G : βg = e}. (3.6)

The elements of G′ act, by definition, trivially on the Fourier indices, and they thus form a subgroup
of G. In our case G′ = {e, γSπ}, which is generated by the shift Sπ in space. We note that G′

is a normal subgroup of G, since the group homomorphism φ : g → βg has G′ as its kernel. The
quotient group G/G′ is (isomorphic to) the point group Oh, the symmetry group of the cube.

It follows from (3.5) that αg(k) is a group action of G′ for each k ∈ Z3, since G′ fixes k by
definition (3.6). For c ∈ X to be invariant under the subgroup G′, we must have that αg(k)ck = ck
for all g ∈ G′ and all k ∈ Z3, hence for each k ∈ Z3 we must have either ck = 0 or αg(k) = 1 for
all g ∈ G′. Since αγSπ (k) = (−1)k1+k2+k3 it follows that for any c ∈ Xsym it holds that ck = 0 for
k ∈ Zodd, where

Zodd
def
= {k ∈ Z3 : k1 + k2 + k3 is odd}.
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This illustrates how we can take advantages of the subgroup G′, which acts trivially on all Fourier
indices k, to reduce the number of variables by a factor 2 a priori. To obtain further reductions of
the number of independent variables using the full group G, we generalize these arguments below
by considering each k ∈ Z3 separately.

To simplify the presentation in what follows we use the notation

g.k
def
= βg(k) for g ∈ G.

For any k ∈ Z3 we define the stabilizer

Gk
def
= {g ∈ G : g.k = k}.

and the orbit
G.k

def
= {g.k : g ∈ G}.

Remark 3.7 (Orbit-stabilizer). The orbit-stabilizer theorem implies that |Gk′ | = |Gk| for all
k′ ∈ G.k, where | · | denotes the cardinality. Indeed, stabilizers of different elements in an orbit are
related by conjugacy, and |G| = |Gk| · |G.k|. More generally, when Q is a function from Z3 (or a
relevant G-invariant subset thereof) to some linear space, then we have∑

g∈G
Q(g.k) = |Gk|

∑
k′∈G.k

Q(k′) for any k ∈ Z3. (3.7)

Lemma 3.8. Let k ∈ Z3 be arbitrary. We have the following dichotomy:
(a) either αg(k) = 1 for all g ∈ Gk;
(b) or

∑
g∈Gk αg(k) = 0.

Proof. Fix k ∈ Z3. We see from (3.5) that αg1g2(k) = αg1(k)αg2(k) for all g1, g2 ∈ Gk. Hence we
can interpret αg(k) as a group action of the stabilizer subgroup Gk, acting by multiplication on
the unit circle S1 = {z ∈ C : |z| = 1}. We consider the stabilizer of 1 ∈ S1:

H1
def
= {g ∈ Gk : αg(k) = 1},

and its orbit
O1

def
= {αg(k) : g ∈ Gk}.

By the orbit-stabilizer theorem (we use Remark 3.7, but now for the group Gk-action αg(k))∑
g∈Gk

αg(k) = |H1|
∑
z∈O1

z. (3.8)

The set O1 ⊂ S1 is invariant under multiplication and division. In particular, if |O1| = N ∈ N,
then O1 = {e2πin/N : n = 0, 1, . . . , N − 1}. If N = 1 then we have H1 = Gk and alternative (a)

follows, whereas if N > 1 then we see that
∑
z∈O1

z =
∑N−1
n=0 e

2πin/N = 0, hence we conclude
from (3.8) that alternative (b) holds.

Remark 3.9. The arguments in Lemma 3.8 are slightly more general than is strictly needed for
the particular symmetry group under consideration in this paper. Namely, based on Remarks 3.3
and 3.6 we could have restricted to real-valued Fourier coefficients ck while also a priori restricting
the indices k to the ones where k1 +k2 +k3 is even. It that case αg(k) simplifies to an action on R
consisting of multiplying by either +1 or −1, as is easily checked from the generators (3.6). We
present the more general argument here since it also applies to other symmetry groups (e.g. see [26,
23]).

The indices for which alternative (b) in Lemma 3.8 applies are denoted by

Ztriv
def
=
{
k ∈ Z3 :

∑
g∈Gk

αg(k) = 0
}
.

It follows from the next lemma, which is a slight generalization of Lemma 3.8, that the set Ztriv is
invariant under G.
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Lemma 3.10. Let k ∈ Z3 be arbitrary. We have the following dichotomy:
(a) either αg(k

′) = 1 for all g ∈ Gk′ and all k′ ∈ G.k;
(b) or

∑
g∈Gk′

αg(k
′) = 0 for all k′ ∈ G.k.

Proof. Let k ∈ Z3 and k′ ∈ G.k. Let g̃ ∈ G be such that g̃.k = k′. Then a conjugacy between Gk
and Gk′ is given by g → g̃gg̃−1. It follows from Lemma 3.5(c) that∑

g∈Gk′

αg(k
′) =

∑
g∈Gk

αg̃gg̃−1(k′) =
∑
g∈Gk

αg(k).

The assertion now follows from Lemma 3.8.

When considering c ∈ Xsym, the indices k in Ztriv are the ones for which ck necessarily vanishes.

Lemma 3.11. Let c ∈ Xsym. Then ck = 0 for all k ∈ Ztriv.

Proof. Fix k ∈ Z3. For any c ∈ Xsym we have in particular [γgc]k = ck for all g ∈ Gk. By summing
over g ∈ Gk and using that g.k = k for g ∈ Gk, we obtain

|Gk| ck =
∑
g∈Gk

ck =
∑
g∈Gk

(γgc)k =
∑
g∈Gk

αg(k)ck = ck
∑
g∈Gk

αg(k).

If k ∈ Ztriv then the right hand side vanishes, hence ck = 0.

It follows from the dichotomy in Lemma 3.8 that k ∈ Ztriv if there is a g ∈ Gk such that
αg(k) 6= 1, hence this construction generalizes the argument in Remark 3.6.

Lemma 3.11 implies that

Xsym ⊂ {c ∈ X : ck = 0 for all k ∈ Ztriv}.

In other words, we may restrict attention to the Fourier coefficients corresponding to indices in the
complement

Zsym
def
= Z3 \ Ztriv.

Remark 3.12. On S1 we have z−1 = z∗, and (z1 + z2)−1 = z−1
1 + z−1

2 . In particular, Lemma 3.8
implies that ∑

g∈Gk

αg(k) =
∑
g∈Gk

α−1
g (k) =

{
0 for k ∈ Ztriv,

|Gk| for k ∈ Zsym.

The sum with the inverses is computed in the code, both to identify the set Ztriv and to determine
|Gk| for k ∈ Zsym.

For c ∈ Xsym the coefficients ck with k ∈ Zsym are not all independent. To take advantage of
this, we choose a fundamental domain of G in Z3:

Zdom = {k ∈ Z3 : 0 ≤ k3 ≤ k2 ≤ k1}, (3.9)

i.e., Zdom contains precisely one element of each group orbit. In fact, the arguments below are
independent of which fundamental domain one chooses. The above choice is the one used in the
code. We now define the set of symmetry reduced indices as

Z def
= Zdom ∩ Zsym,

and the space of symmetry reduced variables as

X
def
=
{

(bk)k∈Z : bk ∈ R :
∑
k∈Z

|bk| <∞
}
.
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The choice of taking real-valued variables bk stems from Remark 3.3. In slight abuse of notation
we will also interpret ek with k ∈ Z as elements of X. We note that the action γg on these basis
vectors is

(γgek)k′ = αg(k
′)δkβg(k′) = αg(k

′)δβg−1 (k)k′ = αg(k
′)(eg−1.k)k′ ,

hence
γgek = αg(g

−1.k)eg−1.k . (3.10)

Before we specify the dependency of the coefficients {ck}k∈Zsym on the symmetry reduced
variables {ck}k∈Z for c ∈ Xsym, we derive some additional properties of αg(k) for k ∈ Zsym.

Lemma 3.13. Let g1, g2 ∈ G and k ∈ Zsym. If g1.k = g2.k, then αg1(k) = αg2(k).

Proof. Since g−1
2 g1.k = k and k ∈ Zsym we have αg−1

2 g1
(k) = 1 by Lemma 3.8(a). An application

of Lemma 3.5(b) concludes the proof.

Definition 3.14. Let k be any element of Zsym and k′ any element in its orbit G.k. We can
choose a g̃ = g̃(k, k′) ∈ G such that g̃.k = k′. For such k and k′ we define

α̃(k, k′)
def
= α−1

g̃(k,k′)(k) for k ∈ Zsym and k′ ∈ G.k.

This is independent of the choice of g̃ by Lemma 3.13, and clearly

α−1
g (k) = α̃(k, g.k) for all k ∈ Zsym and g ∈ G. (3.11)

We are now ready to symmetrize elements of X. To convert from an element b ∈ X to an
element c ∈ Xsym we apply the symmetrization

σ(b)
def
=
∑
k∈Z

bk
∑

k′∈G.k

α̃(k, k′)ek′ . (3.12)

Lemma 3.15. Let b ∈ X. Then σ(b) ∈ Xsym and σ(b)k = bk for k ∈ Z. Furthermore, σ(b)k ∈ R
for all k ∈ Z3.

Proof. For b ∈ X we define

b̃
def
=
∑
k∈Z

bk
|Gk|

ek.

To show that σ(b) ∈ Xsym it suffices to prove that it is the group average of b̃:

σ(b) =
∑
g∈G

γg b̃. (3.13)

Namely, by (3.10) and Lemma 3.5(a),∑
g∈G

γg b̃ =
∑
k∈Z

bk
1

|Gk|
∑
g∈G

γgek

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

αg(g
−1.k)eg−1.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

αg−1(g.k)eg.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

α−1
g (k)eg.k

=
∑
k∈Z

bk
1

|Gk|
∑
g∈G

α̃(k, g.k)eg.k

=
∑
k∈Z

bk
∑

k′∈G.k

α̃(k, k′)ek′ ,
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where in the penultimate equality we have used (3.11), while the final equality follows from (3.7)
with Q(k′) = α̃(k, k′)ek′ (for fixed k ∈ Z).

The assertion that σ(b)k = bk for k ∈ Z follows directly from (3.12) and α̃(k, k) = 1. Finally,
it follows from Remark 3.9 that α̃(k, k′) ∈ {−1, 1}. Since bk ∈ R for all k ∈ Z, Equation (3.12)
implies that σ(b)k ∈ R for all k ∈ Z3.

The following converse of Lemma 3.15 holds. Note that we do not restrict to real-valued c here.

Lemma 3.16. Let c ∈ Xsym. Define b =
∑
k∈Z ckek. Then σ(b) = c.

Proof. Let c̃ = c− σ(b). Then c̃ ∈ Xsym and c̃k′ = 0 for all k′ ∈ Z by Lemma 3.15. Consider any
fixed k′ ∈ Zsym, then there exists a k ∈ Z ∩G.k′. Let g̃ ∈ G be such that g̃.k = k′. Since c̃ ∈ Xsym

we have
αg̃(k)c̃k′ = (γg̃ c̃)k = c̃k = 0.

Since αg̃(k) ∈ S1 this implies that c̃k′ = 0, and since k′ ∈ Zsym was arbitrary, we conclude that
c̃k′ = 0 for all k′ ∈ Zsym. Finally, it then follows from Lemma 3.11 that

c̃ =
∑
k∈Z3

c̃kek =
∑

k∈Ztriv

c̃kek = 0 +
∑

k∈Zsym

c̃kek = 0.

Hence c = σ(b).

On X we use the 1-norm weighted by the multiplicity of each coefficient in the symmetry class:

‖b‖s
def
=
∑
k∈Z

|G.k| |bk| .

In particular, ‖ek‖s = |G.k| for k ∈ Z. We recall that |G.k| = |G|/|Gk| by Remark 3.7. This
observation is combined with Remark 3.12 to determine the weights |G.k| in the code. The next
lemma shows that the norm ‖b‖s is compatible with the symmetrization.

Lemma 3.17. For all b ∈ X we have ‖b‖s = ‖σ(b)‖.

Proof. From the definition (3.12) we obtain

‖σ(b)‖ =
∑
k∈Z

∑
k′∈G.k

|bk α̃(k, k′)| =
∑
k∈Z

|bk|
∑

k′∈G.k

|α̃(k, k′)| =
∑
k∈Z

|bk| |G.k| = ‖b‖s ,

since α̃ ∈ S1.

3.3 The functional analytic setup in symmetry reduced variables

We are now able to reconsider the formulation outlined in Subsections 2.2-2.4 in the symmetry
reduced variables.

Since the average is fixed (c0 = m), it is convenient to introduce

Z0
def
= Z \ {0},

and
X0

def
= {b ∈ X : b0 = 0}.

Any b ∈ X0 can be expressed as b =
∑
k∈Z0

bkek. Observing that σ maps X0 to X0, we define the
map F with domain X0 by

Fk(b)
def
= fk(σ(b)), (3.14)

where we recall that fk(c) = hk(me0 + c), with h defined in (2.1) and (2.2). It is trivial that

f0(c) = 0 for any c ∈ X0, (3.15)

hence we may interpret f as a map from X0 to X0. We note that X0 is invariant under the
action γ of G. Since the PDE (1.1) is equivariant under the symmetries (1.3), it follows that the
map f : X0 → X0, which is the Fourier transform of (1.1), is equivariant, as formalized in the next
lemma.
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Lemma 3.18. Let g ∈ G. We have

h(γgc) = γgh(c) for all c ∈ X, (3.16)

f(γgc) = γgf(c) for all c ∈ X0. (3.17)

Proof. Since γge0 = e0, it follows from (2.2) that [h(γgc)]0 = [γgh(c)]0. Since k is invariant under
the action βg, the linear term in (2.1) is equivariant. Equivariance of the nonlinear term follows
from Lemma 3.4. This proves (3.16). Finally, by using again that γge0 = e0 we infer that

f(γgc) = h(me0 + γgc) = h(γg(me0 + c)) = γgh(me0 + c) = γgf(c),

which establishes (3.17).

Next, we establish the fact that we may use the symmetry reduced variables X0 to obtain
symmetric solutions.

Lemma 3.19. Let b ∈ X0. If Fk(b) = 0 for k ∈ Z0, then Fk(b) = 0 for all k ∈ Z3, and

u(x) = m+
∑
k∈Z3

0

σ(b)k e
ik·x/` (3.18)

is a real-valued solution of (1.1) which is G-symmetric in the sense of Definition 1.1.

Proof. Since σ(b) ∈ Xsym by Lemma 3.15, it follows from (3.17) that γgf(σ(b)) = f(γgσ(b)) =
f(σ(b)), hence f(σ(b)) ∈ Xsym. By Lemma 3.16 this implies that

f(σ(b)) = σ(f̃), (3.19)

where
f̃

def
=
∑
k∈Z

fk(σ(b))ek = f0(σ(b)) +
∑
k∈Z0

Fk(b)ek.

By assumption, Fk(b) = 0 for all k ∈ Z0, and since f0(σ(b)) vanishes by (3.15) as well, we see that
f̃ = 0. We conclude from (3.19) that Fk(b) = fk(σ(b)) = 0 for all k ∈ Z3.

Finally, let c = me0 + σ(b), then Lemma 3.15 shows that c ∈ Xsym and ck ∈ R for all k ∈ Z3.
Hence it follows from Lemma 3.2 that u(x) =

∑
k∈Z3 cke

ik·x/` is a real-valued G-symmetric function.
Moreover, u(x) solves (1.1) because h(c) = 0, which is the Fourier equivalent of (1.1).

3.4 The fixed point operator

To solve the zero finding problem F = 0 on X0, we set up a fixed point operator as in Section 2.
The role of X0 is taken over by X0, and the norm ‖ · ‖ is replaced by the weighted norm ‖ · ‖s,
which is symmetry compatible in the sense of Lemma 3.17. The size of the Galerkin projection is

N = N sym(K)
def
= |{k ∈ Z3 : 0 < k ≤ K}|,

which is substantially smaller than N(K) as defined in (2.10), since we restrict to symmetry
reduced variables. Indeed, the number of independent variables is reduced by roughly a factor
|G| = 96, which splits into a factor roughly 48 due to restricting to a fundamental domain Zdom

(see (3.9)), and a factor roughly 2 thanks to restricting k to Zsym = Z3 \ Ztriv with Zodd ⊂ Ztriv,
see Remark 3.6. The construction of the operator T : X0 → X0 is essentially unchanged compared
to Section 2. While the construction of the approximate inverse in the symmetrized setting is
essentially the same as in Section 2, for clarity we will denote it by As and write

T (b) = b−AsF (b).

Theorem 2.1 remains valid, and by Lemma 3.19 this produces a symmetric solution of (1.1).
In sections 3.5 and 3.6 we discuss the changes that the symmetric setting causes in the explicit
expression for the bounds Y and Z(r), respectively.
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3.5 The bound Y

There are essentially no changes compared to Section 2.3 in the computation of the bound on the
residue, except that we need to take into account the symmetry respecting norm:

Y = ↑
∑

k∈Z0,k≤3K

|G.k|
∣∣AsFk(b)

∣∣ . (3.20)

3.6 The bound Z

We will comment only on the changes compared to Section 2.4 due to the symmetric setting. The
most important change is in the formula (2.21) for the derivative. It follows from the definition
of F in (3.14) and the formula (3.12) for the symmetrization σ that

DFk(b)ek′ = δkk′λk + 3`−2k2
∑

k′′∈G.k′
α̃(k′, k′′)〈(σ(me0 + b))2〉k−k′′ , for k, k′ ∈ Z0.

Taking into account this new expression for the Jacobian, the bound Q1 is essentially unchanged,
except that we need to use the weighted norm. We obtain

Q1 = ↑ max
k′∈Z0,k′≤K

1

|G.k′|
∑

k∈Z0,k≤K

|G.k|
∣∣(IN −As

NJN )kk′
∣∣. (3.21)

For the bound Q2 we observe that, with k, k′ ∈ Z,

([DF (b)− J ]ek′)k =

{
0 for k′,k ≤ K,
3`−2k2∑

k′′∈G.k′ α̃(k′, k′′)〈(σ(me0 + b))2〉k−k′′ otherwise.
(3.22)

Note that ([DF (b) − J ]ek′)k = 0 for k ≤ K and k′ > 3K. We thus use the same splitting in the
tail k′ > 3K and the finite part k′ ≤ 3K as in Section 2. Taking the symmetry reduced variables
into account, we obtain

Q̃2 = ↑ max
k′∈Z0,k′≤3K

1

|G.k′|
∥∥As[DF (b)− J ]ek′

∥∥
s
,

which is evaluated using (3.22). We obtain

Q2 = max{Q̃2, ↑3CK‖〈(σ(me0 + b))2〉‖}, (3.23)

with CK defined in (2.26).
Next, for Q3 we again follow the arguments of Section 2. We define, for q ∈ X, k ∈ Z0

(P̃ q)k
def
= 6`−2k2〈σ(me0 + b)σ(q)〉k,

and we estimate the norm of AsP̃ by (using Lemma 3.17)

Q3,1 = max{Q̃3,1, ↑6CK‖me0 + b‖s}, (3.24)

where

Q̃3,1 = ↑ max
k′∈Z,k′≤2K

1

|G.k′|
‖AsP̂ (k′)‖s,

with
P̂k(k′) = 6`−2k2

∑
k′′∈G.k′

α̃(k′, k′′)(σ(me0 + b))k−k′′ , for k′ ∈ Z.

Finally, by using analogous arguments the quadratic term in r is estimated by

Q3,2 = max{Q̃3,2, ↑3CK}, (3.25)

where

Q̃3,2 = ↑ max
k′∈Z,0<k′≤K

1

|G.k′|
‖AsR̂(k′)‖s,

with
R̂k(k′) = 3`−2k2δkk′ .
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3.7 Extensions

Whenever we mentioned specific generators, we have focussed on space group 230. The other
example used in this paper is space group 229, which is generated by

Sσx = (x2, x3, x1),

Sφx
def
= (x2, x1, x3),

Sψx
def
= (−x1, x2, x3),

S2
τx =

(
x1 + L

2 , x2 + L
2 , x3 + L

2

)
.

The conversion to the group action on Fourier space via Remark 3.1 is straightforward. We note
that Sπ, see (1.4), is an element of the group, hence we may restrict attention to real Fourier
coefficients as for the space group 230. Furthermore, the same fundamental domain Zdom can be
chosen as for space group 230.

Although we focus in this paper on the two space groups 229 and 230 only, the symmetry
preserving formulation in this section can be applied much more generally (e.g. see [26, 23]). If the
symmetries are such that we may not restrict to real Fourier coefficients (i.e. in case (x1, x2, x3)→
(−x1,−x2,−x3) is not a symmetry), then there are two ways to proceed to include the symmetry
coming from the real-valuedness of u(x). The first is to simply not include this symmetry in G
(i.e. ignoring c∗−k = ck). A disadvantage of this approach is that the number of symmetry reduced
variables is sub-optimal. An advantage is that one one can still work over complex numbers. The
final symmetry of the solution (c∗−k = ck, i.e., the solution u is real) can then be recovered via the
equivariance arguments in Remark 2.3.

The second possibility is to include the symmetry with action (k1, k2, k3) → (−k1,−k2,−k3)
on Z3 in G, with corresponding action ck → c∗−k on the Fourier coefficients. This leads to an
optimal reduction in the number of symmetry reduced variables (and thus reduced memory usage).
However, one needs to separate all Fourier coefficients into real and imaginary parts and work with
those real variables. This is a little more cumbersome than working with complex variables. We
did not need to pursue either of these approaches for the symmetry groups under consideration.

3.8 Symmetry in the code

The main symmetry operation in the code is averaging over de group action, which is performed
in symmetrize.m. In the notation of this paper, it is a function S with as input an element of XN ,
see (2.11), and as output an element of XN ∩Xsym. To be precise,

S(c)
def
=
∑
g∈G

γgc

=
∑
g∈G

∑
k≤K

ck α
−1
g (k) eg.k. (3.26)

We note that S is closely related to the symmetrization σ defined in (3.12), see also (3.13). In
particular, interpreting b =

∑
k∈Z,k≤K bkek ∈ X as an element of XN , we have

σ(b)k =
S(b)k
|Gk|

for all k ∈ Z3.

The effectiveness of the code is based on the following property of S. Let

1dom
def
=

∑
k∈Zdom

ek

be the indicator function of the fundamental domain. Fix any k′ ∈ Z3, and let k = G.k′ ∩ Zdom.
Then

S(1dom)k′ =

{
0 k′ ∈ Ztriv,

α̃(k, k′) |Gk′ | k′ ∈ Zsym.
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Namely, let g̃ be such that g̃.k = k′. Then using (3.26), the orbit-stabilizer theorem, the multipli-
cation property (3.5) of α (and α−1), Lemma 3.8, Remark 3.12 and (3.11), we obtain

S(1dom)k′ =
∑

g∈G,g.k=k′

α−1
g (k)

=
∑
g∈Gk

α−1
g̃g (k)

=
∑
g∈Gk

α−1
g̃ (g.k)α−1

g (k)

= α−1
g̃ (k) ·

{
0 k ∈ Ztriv

|Gk| k ∈ Zsym

=

{
0 k′ ∈ Ztriv

α̃(k, k′) |Gk′ | k′ ∈ Zsym.

As a consequence |S(1dom)k′ | = |Gk′ | for all k′ ∈ Zsym. In particular, S(1dom)0 equals the order of
the symmetry group.

4 Results

4.1 Implementation

Given a numerically computed approximation ū(x), expressed in terms of finitely many Fourier
modes, of a solution to (1.1), in order to prove that a nearby (true) solution û(x) exists (c.f.
Remark 2.2 and (2.19)), we proceed as follows:

1. Compute the finite Jacobian JN numerically.

2. Numerically invert the finite Jacobian to find As
N .

3. Define the parameters m, γ and l and As
N as interval objects.

4. Evaluate the residual bound Y using (3.20).

5. Evaluate the terms Q1, Q2, Q3,1 and Q3,2 as defined in (3.21), (3.23), (3.24) and (3.25)
respectively.

6. Form the radii polynomial p(r) = Y + r(Q1 +Q2 + rQ3,1 + r2Q3,2)− r.

7. Seek the roots r−, r+ > 0 such that p(r) < 0 for r− < r < r+.

If the last step is succesful then we have proven the existence of a solution û(x), satisfying

‖û(x)− ū(x)‖∞ ≤ r−.

If not, we extend the numerical approximate solution to a larger value of K (more Fourier modes),
iterate Newton’s method until convergence and try again. This procedure does not lead to the
smallest possible r−, but rather focusses on obtaining the “cheapest” proof (small K). If our goal
would be to minimize r− we could simply increase K (at computational cost of course).

We enforce the symmetry of the solution as outlined in Section 3. This does not just ensure
that the proven solution has the required symmetry. It also significantly reduces the computational
cost. In particular, we compute on the Fourier coefficients (bk)k∈Z,k≤K only. For space groups 230
this reduces the number of variables by roughly a factor 200, for example with K = 37, only 2221
modes are used out of 421875 possible. This also reduces the size of the matrices JN and As

N by a
factor O(104). One crucial aspect of the effective algorithmic implementation of both the symmetry
reduced indices and symmetry reduced variables is explained 3.8. The general algorithm is the
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Double gyroids
Label m γ ` K

(a) 0.02 2.1 1.75 9
(b) 0.04 3 1.5 19
(c) 0.05 4 1.3 27
(d) 0.06 5 1.2 37
(e) 0.1 2.1 1.75 9
(f) 0.25 3 1.5 19
(g) 0.3 4 1.3 27
(h) 0.35 5 1.2 37

bcc-packed spheres
Label m γ ` K

(a) 0.02 2.1 1 4
(b) 0.04 3 0.8 11
(c) 0.05 4 0.75 13
(d) 0.06 5 0.7 19
(e) 0.1 2.1 1 4
(f) 0.25 3 0.8 9
(g) 0.3 4 0.75 13
(h) 0.35 5 0.7 17

Table 1: Parameter values for double gyroids and bcc-packed spheres. The labels refer to Fig-
ures 4.1 and 4.2.

same for all symmetry groups. With the basic structure in place, implementing each additional
space group only requires a few additional lines of code (generating all the elements of the group
action).

We used this method to prove the existence of both double gyroids from space group 230, see
Figure 4.1, and bcc-packed spheres from space group 229, see Figure 4.2. Additionally, “exotic”
symmetric stationary states were proven to exist, see Figure 4.3. The physical and computational
parameters for these proofs can be found in Section 4.2.

All proofs were implemented in Matlab using the interval toolbox IntLab [18, 19]. The required
estimates and bounds for the fixed point proofs are all verified with interval arithmetic to avoid
any possible floating point errors. Verifiable data files, including all parameter values used in the
computational proofs, and code are available at [27].

4.2 Computational Details

All computations were performed on an early 2016 MacBook taking between a few seconds and
minutes to find small finite approximations. Running the proof requires more modes and takes
between a few minutes and several hours, scaling like O(K6).

To find double gyroid and bcc-packed sphere solutions, we started with parameters values (m, γ)
near the bifurcation point (0, 2). There, to leading order, the Fourier coefficients can be computed
by hand. We then continued in the parameters to obtain solutions for larger parameter vales.

The parameter values m, γ and ` for the proven double gyroids and proven bcc-packed spheres
are collected in Table 1. The values of K used in the proofs are also given there. These values of K
are near minimal for the proofs to work, but in some cases K − 1 may also have been sufficient.
More modes are required as γ increases, as the solutions develop sharper transitions between u > m
and u < m (in the limit γ → ∞ solutions tend to profiles which are u = ±1 almost everywhere).
Note that we need more modes to prove the double gyroid than for the spheres.

In addition to double gyroids and spheres, by starting Newton’s method with random initial
data we also encountered a number of more exotic profiles, showcasing the richness of the model
and the complexity of the energy landscape. In Figure 4.3 we present some of the more interesting
ones we found in space group 230. These profiles were all proven to exist with m = 0.2 and
γ = 3, whilst the other parameters varied, see the caption of Figure 4.3. Of particular note are
the mixture of cylinders and spheres and the deformed double gyroid. The latter has the same
triple junctions as the double gyroid but the intersections occur at right angles. The interlocking
cylinders may be related to the “woodpile” solution mentioned in [14].

5 Conclusions and future work

We have presented the first rigorous proof of existence of double gyroid solutions for the stationary
Ohta-Kawasaki problem in three dimensions, as well as bcc-packed spheres and additional exotic
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Figure 4.1: Double gyroids. The parameters m and γ both increase from left to right. In the
bottom row the values of m are larger than in the top row, see Table 1 for parameter values. The
level sets in the top row are plotted at u(x, y, z) = −m, while in the bottom to we selected the
level set u(x, y, z) = −2m. These levels are chosen for display purposes only. Each image has been
rotated to give a slightly different view.

Figure 4.2: bcc-packed structures. The parameters m and γ both increase from left to right. In
the bottom row the values of m are larger than in the top row, see Table 1 for parameter values.
The level sets are all plotted at u(x, y, z) = −m for clarity and consistency. We note that the
upper row would show disconnected (spherical) structures for different level sets.
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Figure 4.3: Exotic profiles from space group 230 computed at m = 0.2, γ = 3. Top: bumpy
orthogonal cylinders (l = 1.6,K = 35) and lozenges (l = 2.3,K = 35). Bottom: mixed spheres
and cylinders (l = 2.3,K = 37) and deformed double gyroids with right angle intersections (l =
1.9,K = 27). All profiles have been verified rigorously.

structures. This work is the first step towards rigorously computing the (minimal) energy landscape
of the Ohta-Kawasaki functional in three dimensions. In future work we plan to extend this
methodology to additional space groups and, once it is sufficiently efficient, use it to rigorously study
the phase diagram of energy minimizing states, starting from the organizing center m = 0, γ = 2
and subsequently progressing to larger values of m and γ. To do this we need also to compute
the energies with rigorous error bounds, work in general rectangular domains and optimize over
the domain sizes. Any computation of the energy landscape also needs a method to verify local
stability. We are hopeful that this can be dealt with naturally within the rigorous computational
framework laid out in the current paper.

We have developed a novel method to enforce the physically observed symmetries in a computer-
assisted proof setting. The algorithm works for general (symmetry) group actions in Fourier space,
hence it is a natural next step to extend the applicability of this technique to other PDE problems
with multiple symmetries.

Finally, some of the proofs require both patience and/or a considerable amount of memory.
Only limited effort was made to optimize the code in these respects. Further work will include
improving these performance measures. For example, calculating the nonlinear terms used an
FFT of an array of size N = 27(2K + 1)3. For K = 50 this leads to arrays of about 1GB in
memory, growing about 5% per unit increase in K. This is a considerable problem as for small γ
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solutions are very smooth but quickly approach the sharp front regime as γ increases. To resolve
this we need larger values of K and the tails (in K) decay more slowly requiring even more modes.
Reliably computing beyond γ = 10 would require approximately K > 75. Exploiting symmetry in
the FFT algorithm is possible and could make the routine considerably more efficient (in memory
and possibly runtime), but is beyond the scope of the current work.

Another avenue for refinement is to use different bounds in setting up the radii polynomial.
It can be beneficial to use bounds which are slightly less sharp, and slightly more cumbersome
to write down, but which can considerably reduce the computational effort (in particular for the
bound Q2). Although we did not pursue that here, mainly for expository reasons, we intend to
include such algorithmic improvements in future efforts.
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