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Abstract

We study the existence of solutions homoclinic to a saddle centre in a family of singularly perturbed
fourth order differential equations, originating from a water wave model. Due to a reversibility
symmetry, the occurrence of such embedded solitons is a codimension-1 phenomenon. By varying
a parameter a countable family of solitary waves is found. We examine the asymptotic frequency
at which this phenomenon of persistence in the singular limit occurs, by performing a refined
Stokes line analysis. In the limit where the parameter tends to infinity, each Stokes line splits
into a pair, and the contributions of these two Stokes lines cancel each other for a countable set
of parameter values. More generally, we derive the full leading order asymptotics for the Stokes
constant, which governs the (exponentially small) amplitude of the (minimal) oscillations in the
tails of nearly homoclinic solutions. True homoclinic trajectories are characterised by the Stokes
constant vanishing. This formal asymptotic analysis is supplemented with numerical calculations.

1 Introduction

In many singularly perturbed problems, exponentially small terms have to be taken into account to
study the persistence of solutions. Often an algebraic expansion suggests the existence of certain
(types of) solutions, which eventually — beyond all algebraic orders — are destroyed by an expo-
nentially small term. However, sometimes the coefficient of the exponentially small term vanishes,
and the conclusion derived from the algebraic expansion is then valid after all. In this paper we
consider an instructive model problem, illustrating how matched asymptotic expansions can be
used to study how frequently the relevant exponentially small term vanishes. The method will be
illustrated for a well-known model equation, introduced below, where the objects of interest are
solutions homoclinic to saddle centres, also known as embedded solitons.

It is by now well established that the homoclinic solution of the second order equation

u′′ − u+ u2 = 0 (1)

does not persist for the (singularly perturbed) fourth order problem

ε2u′′′′ + u′′ − u+ u2 = 0. (2)

To be more precise, (2) has no solution homoclinic to the origin for small positive ε, as was
observed in [1, 9] and proved in [2]. There are numerous explanations of this phenomenon using
matched asymptotics in the complex plane [12, 15], optimal truncation [14, 7] and more rigorous
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methods [13, 16], all these approaches being closely related. In particular, one may write down a
formal homoclinic solution

u =
N−1∑
n=0

ε2nun(x)

to any finite algebraic order N , but the remainder term, at any order of truncation, contains an
exponentially small, rapidly oscillating term

2πΛε−2e−π/ε sin(x/ε), (3)

where Λ 6= 0.1 In §2 we recall one route to calculating this term, namely via a matched asymptotic
expansion analysis of the Stokes line in the complex plane. As it turns out, Λ can be described in
terms of the limit of a certain recursively defined sequence.

The nonexistence of a homoclinic solution to the origin of (2) does not come as a surprise,
since the stable and unstable manifolds of the origin are both one dimensional. Taking the reversal
symmetry x → −x into account, one concludes that a homoclinic connection is a codimension-1
phenomenon. In this paper, we therefore consider the two parameter problem

ε2u′′′′ + u′′ − u+ u2 + µε2(u′2 + 2uu′′) = 0, (4)

which appears in the study of water waves [11, 8]. We are interested in the asymptotic problem
ε → 0, µ → +∞, the limits being taken in that order so that, in particular, we require µ � 1/ε2.
The additional term does not break the reversibility, and one may thus expect homoclinic solutions
for a discrete set of µ-values (for each ε > 0). We shall denote those values for which a homoclinic
orbit exists by µm(ε), and we write µm = limε→0 µm(ε) for simplicity. The number of curves
in the (µ, ε) parameter plane for which homoclinic orbits exist, can a priori be zero, finite or
infinite. Such orbits homoclinic to a saddle centre are embedded in a family of solutions that limit
to small periodic solutions in their tails, hence the name embedded solitons. Solutions that are
homoclinic to a small periodic orbit come in one parameter families (for fixed ε and µ), and exist
for any value of µ for small ε. The minimal amplitude of the periodic solutions in such a family
is πΛε−2e−π/ε, asymptotically for small ε. It is thus quite natural that (nondegenerate) zeros of
Λ = Λ(µ) correspond to homoclinic solutions in the limit ε→ 0 [5, 13].

For the water wave equation (4), numerical calculations [6] show the existence of an infinite
number of curves {µn(ε)}∞n=1 in the (µ, ε) parameter plane, for which homoclinic solutions exist
and continue to exist in the limit ε → 0. In terms of the asymptotics beyond all orders, this is
characterised by the fact that the amplitude Λ of the exponentially small term has infinitely many
zeros as a function of µ.

As was noted in [6], the first of these branches of solutions is explicit:

µ1(ε) =
5
2

5(1 + 4ε2)1/2 − 3
4 + 25ε2

, µ1 =
5
4
,

with corresponding solution

u(x) =
75

8(µ1 + 5) cosh2
(
x
( 5µ1

4(µ1+5)

)1/2) .
For m ≥ 2 the values µm cannot be expressed in closed form, but can be approximated numerically
using numerical continuation of the homoclinic orbit [6]. This is a nontrivial task, since in the limit
ε → 0 one has to distinguish true homoclinic orbits from orbits that limit to exponentially small
limit cycles. Alternatively, one may approximate Λ(µ) using a recursion formula, and calculate

1The reason why the factor 2π has not been absorbed into the constant Λ will become clearer later.
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the zeros of the resulting polynomial numerically, see §4.1. Indeed, this is a much more efficient
method for determining µm.

Although Λ(µ) can be calculated (approximately) for every value of µ (see §4.1), the dependence
on µ is not captured, in general, by an explicit formula. Hence, one cannot determine explicitly
all values of µ for which homoclinic orbits exist for small ε, but studying the asymptotics for large
µ is a feasible proposition, as noted by Champneys in [5]. In other words, one may wonder how
often homoclinic orbits occur for large µ. This question was not just posed in [5] but also studied
using normal forms and Melnikov functions (see also [13]). A drawback of the method presented
there is that one needs to invoke an “unjustified hypothesis” (cited from [5]). Here we present
an alternative method for computing the asymptotic behaviour of the sequence µm. It relies on a
matched asymptotic expansion method, which is fairly straightforward computationally, and has
the additional benefit of being fully systematic and hence self-consistent. In particular, for the
problem (4) the values µm for which there is persistence of the homoclinic orbit for ε > 0 behave
asymptotically as

µm+1 − µm ∼
π2

24
m as m→∞. (5)

The asymptotic result (5), obtained via matched asymptotic expansions, confirms the spacing
between homoclinic orbits predicted in [5]. In fact, we derive the following more refined asymptotic
expansion for the amplitude Λ = Λ(µ) appearing in (3), in terms of the parameter µ:

Λ(µ) ∼ Ωµ−19/16 sin
(

4
√

3µ1/2 +
π

16

)
as µ→ +∞, (6)

where Ω is defined as the limit of a recursively defined sequence, and its numerical value is approx-
imately −0.152.

We derive (5) via two routes. By way of introduction, in §2 we derive the recurrence relation that
leads to the definition of Λ(µ), and we show how this is related to the Stokes phenomenon (which
turns on the fast oscillations). In §3 we derive (5) directly via matched asymptotic expansions
and a detailed analysis of the asymptotic behaviour of the Stokes lines as µ → +∞. The delicate
asymptotics that lead to (6) are established in §3.2. We find that each ε → 0 Stokes line splits
into two in the limit µ→ +∞. The combined effect of the Stokes lines leads to the expression (6).
In particular, the two terms turned on when crossing these Stokes lines cancel each other for a
countable set of µ-values. The analysis of the Stokes lines for the asymptotic problem µ → +∞
builds on the one for finite µ, but is considerably more involved, which motivates us to first go over
all the necessary steps for fixed µ in §2, before moving on to the large µ asymptotics in §3.

In §4 we take the complementary approach of analysing the recurrence relation directly. Nu-
merically obtained results for the function Λ(µ) and its limit behaviour as µ→ +∞ are presented
in §4.1. Next, we show that the main asymptotic behaviour of the zeros of Λ(µ), see (5), can be
derived from the recurrence relation itself. This alternative is more lengthy than the delicate anal-
ysis of the Stokes lines preformed in §3, but it leads to additional understanding about the relation
between the matched asymptotic expansions near the pole in the complex plane and the asymp-
totics of the recurrence relation that defines Λ, and is of interest in its own right in terms of the
asymptotic analysis of difference equations. Finally, in §5 we conclude with some open problems.
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2 Role and definition of the amplitude Λ

2.1 Initial Stokes line analysis

We recall the Stokes lines analysis using optimal truncation from [7], which we reformulate slightly
to develop a framework to which we can refer in the subsequent sections, and apply to the current
example. For ε = 0 the equation has the homoclinic solution

u0 =
3
2

1
cosh2(x/2)

. (7)

In the complex plane, this function has poles on the imaginary axis; the ones closest to the real
axis are at ±πi. We expand the sought for homoclinic solution u as an algebraic series in ε, i.e.

u ∼
∞∑
n=0

ε2nun, (8)

where the functions un tend to 0 as x→ ±∞, and they have poles at the same positions as u0. As
detailed in [7] they are dominated (as n→∞, x ∈ R) by

un ∼ Γ(2n+ 2)
[
χ(x− iπ)−2n−2 + χ(x+ iπ)−2n−2

]
,

for some constant χ ∈ C. Let us truncate the formal algebraic series after N terms:

u =
N−1∑
n=0

ε2nun + wN

and study the remainder wN , which asymptotically (for small ε, large N) satisfies (neglecting
quadratic terms in wN and higher order terms in ε)

ε2w′′′′N + w′′N + (2u0 − 1)wN ∼ −ε2Nu′′′′N−1.

A WKB ansatz shows that the solutions of the homogeneous version have asymptotic behaviour
(as ε→ 0)

w ∼ eix/ε, w ∼ e−ix/ε, w ∼ u′0, w ∼ u′0
∫

(u′0)−2.

We will see that terms of the form e±ix/ε are turned on across the Stokes lines, which run down
the imaginary axis from the pole at x = πi and up the imaginary axis from the pole x = −πi (the
contributions from the other poles are negligible on the real line). As will be explained below, the
analysis near the poles also reveals the amplitude of the oscillatory term that is switched on across
the Stokes lines.

As it will turn out, in the strip 0 < Im(x) < 2π in the complex plane a term e−ix/ε is the
dominant exponentially small term. It should match near x = πi with an inner scale, as detailed
in §2.2. Although introducing this inner scale is not strictly necessary at this point, it separates
the order of magnitude (in terms of ε) from the Stokes constant Λ, and paves the way for later
generalisation (such as in §3.2).

From those local considerations in the inner scale emerges a global Stokes line across which a
term of the leading order asymptotic form A(ε)e−ix/ε is in general switched on. The position of
the Stokes line is then found by identifying where the exponent has vanishing imaginary part (and
negative real part), see e.g. [14].

2.2 Inner expansion near the pole x = πi

We recall from (7) that
u0 ∼ −6(x∓ πi)−2 as x→ ±πi.
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Substituting the expansion u =
∑
ε2nun into (4) and evaluating in a neighbourhood of the pole

x = ±πi, one sees that
un(x) ∼ en(x∓ πi)−2n−2 as x→ ±πi.

This inspires us to introduce the following new variables for an inner scale near the pole x = ±πi:

z = ε−1(x∓ πi) and u = ε−2v. (9)

The equation for v(z) at leading order is

v′′′′ + v′′ + v2 + µ(v′2 + vv′′) = 0, (10)

with
v ∼ −6z−2 for large z. (11)

We remark that the scaling (9) and equation (10) can also be found by looking directly for scales
on which a nontrivial balance of terms arises.

Equation (10) has a formal solution of the form

v(z) =
∞∑
n=0

An(−1)n+1(2n+ 1)!z−2n−2, (12)

where A0 = 6 and the An = An(µ), which are related to en via An = (−1)n+1en, satisfy the
recurrence relation

[(2n+ 4)(2n+ 5)− 2A0]An+1 = (2n+ 4)(2n+ 5)An +
n−1∑
k=0

(2k + 3)!(2n− 2k + 1)!
(2n+ 3)!

Ak+1An−k

− µ
n∑
k=0

(4n− 2k + 8)
(2k + 1)!(2n− 2k + 2)!

(2n+ 3)!
AkAn−k.

(13)

In particular, we see that An = An(µ) is a polynomial of degree n in µ. Finally, we define

Λ = Λ(µ) = lim
n→∞

An(µ). (14)

We note that the factor (−1)n+1(2n+ 1)! in (12) was chosen such that the remaining coefficient An
tends to a constant as n→∞.

Clearly, the series (12) is an asymptotic one, diverging for fixed z. Hence, we need to truncate
it:

v =
N−1∑
n=0

An(−1)n+1(2n+ 1)!z−2n−2 + RN , (15)

where the remainder satisfies to leading order (for large z, large N)

R′′′′N +R′′N = 0. (16)

As will be explained in more detail below, using the optimal truncation formalism from [7], we
can calculate that a term of the form e−iz is turned on across the Stokes line that runs down the
imaginary axis from the pole at z = 0. Similarly a Stokes line runs up the imaginary axis from z = 0
across which a term of the form e+iz is turned on. As it turns out, Λ determines the amplitude of
the oscillatory terms that are switched on across the Stokes lines.

Before going into detailed calculations, let us remark that by matching for large z to the outer
scale x∓πi = O(1), we see that the term v = ce−iz, turned on across the Stokes line running down
the imaginary axis from z = πi, corresponds to an exponentially small contribution cε−2e−π/εe−ix/ε

to u, and similarly for the term v = ceiz that is turned on when crossing the Stokes line running
up the imaginary axis from −πi. Hence, the scaling with ε of these oscillations has already been
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inferred without any involved calculations, with only the coefficient c, which depends on µ but not
on ε, remaining to be determined.

2.3 Optimal truncation

While the leading order equation for the remainder is (16), we need additional terms to perform
optimal truncation. Hence, to next order we have

R′′′′N +R′′N − 12z−2RN ∼ −v′′′′N−1, (17)

where vN−1 is the final term in the sum in (15).
We concentrate on the term e−iz and obtain the result for eiz by using the symmetry z → −z.

The following steps can also be found in [7]. First we optimally truncate the right-hand side of (17):

v′′′′N−1 ∼
(−1)N+1AN−1(2N + 3)!

z2N+4

(i.e., we choose for fixed large z the value of N for which this is smallest in magnitude). Using
polar coordinates z = reiθ we get

v′′′′N−1 ∼ (−1)N+1Λ
√

2πe−(2N+3)(2N + 3)2N+7/2r−(2N+4)e−iθ(2N+4),

which is smallest when N = r/2 + s, where s is bounded as r → ∞. Hence, when optimally
truncated equation (17) reduces to (choosing −1 = e−πi for convenience, rather than e+πi; this is
not clear a priori, but the other choice is equally valid if we keep in mind that r + 2s is always an
even integer)

R′′′′ +R′′ − 12z−2R ∼
√

2πΛr−1/2e−iπ(r+2s+2)/2e−re−iθ(r+2s+4).

Anticipating that a term of the form e−iz is turned on, we write

R = F (z)e−iz.

By using that the derivative in polar coordinates can be written as

d

dz
= − ie

−iθ

r

d

dθ
, (18)

to highest non-vanishing order (for large r) one obtains

2r−1e−iθe−ire
iθ dF

dθ
∼
√

2πΛr−1/2e−iπ(r+2s+2)/2e−re−iθ(r+2s+4),

hence
dF

dθ
∼
√
π/2Λr1/2e−iπ(r+2s+2)/2e−r(1−ie

iθ)e−iθ(r+2s+3).

The right-hand side is exponentially small, except near θ = −π/2. Let us introduce θ = −π
2 + τ θ̃,

where τ is small (to be chosen a little later). Then, expanding in τ , many terms in the exponentials
cancel and we are left with

dF̃

dθ̃
∼
√
π/2Λτr1/2eiπ/2e−rτ

2θ̃2/2.

Finally, choosing τ = r−1/2 (i.e. the scale becomes small for large r) leads to

dF̃

dθ̃
∼ πi2−1/2Λe−πθ̃

2/2,

embodying the familiar error function smoothing that occurs across a Stokes line [3]. By integrating
one obtains F̃ (+∞)− F̃ (−∞) =

∫∞
−∞ πi2

−1/2Λe−πθ̃
2/2dθ̃ = iπΛ. Hence, crossing the ray θ = −π/2

clockwise for large r, a term iπΛe−iz in v is turned on. On the real x-axis, where z = (x− πi)/ε,
this corresponds to an exponentially small term in u of size

iπΛε−2e−π/εe−ix/ε. (19)
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For the other term eiz we use the symmetry z → −z. Hence, crossing the ray θ = −π/2,
again in the clockwise direction, a term iπΛeiz is turned on for large r. Translating this back to the
original variables u(x) and noticing that for increasing x the ray emanating downwards from z = πi

is crossed in the clockwise direction, whereas the ray emanating upwards from z = −πi is crossed
in the anti-clockwise direction, we see that on crossing the origin x = 0 in total an exponentially
small term of the form

u ∼ πΛε−2e−π/ε(ie−ix/ε − ieix/ε) = 2πΛε−2e−π/ε sin(x/ε)

is turned on.
Let us remark that the above analysis does not imply that there exists a solution in the unstable

manifold of u = 0 (as x → −∞) which connects for large x to an exponentially small periodic
solution. In fact, the differential equation is conservative, the conserved quantity, the energy, being

E = ε2u′′′u′ − ε2

2
u′′2 +

1
2
u′2 − 1

2
u2 +

1
3
u3 + µε2uu′2.

It is not hard to infer that solutions that tend to 0 as x → −∞, and thus have energy E = 0,
cannot have any extremal values smaller that 3

2 . In particular no oscillations near 0 are possible
for such solutions. This implies that for solutions that start, for x→ −∞, in the unstable manifold
of 0 and that (at least initially) stay close to (7), the exponentially small rapid modulations never
become dominant as x → +∞. Instead an exponentially growing term (in x), with a coefficient
which is exponentially small in ε but of an exponential order smaller than the one considered in the
arguments above, becomes dominant before the algebraic terms in (8) have decreased sufficiently
for the exponentially small modulations to become visible.

On the other hand, solutions that are asymptotic to a small periodic orbit in both limits x→ ±∞
do exist, and the amplitude of the limit cycles is bounded below by πΛε−2e−π/ε, see e.g. [13, 10].
Asymptotically, those limit cycles are of the form P± cos(x/ε) + Q± sin(x/ε) as x → ±∞, with
P+ ∼ P− and Q+ ∼ Q− + 2πΛε−2e−π/ε, as the Stokes line analysis above shows. The asymptotic
energy of the limit cycles is E± = −1

2(P 2
± + Q2

±), with, since the energy is conserved, E+ = E−.
This implies that connections are only possible when Q− = −πΛε−2e−π/ε and Q+ = πΛε−2e−π/ε.
Furthermore, for each energy E < Emin ∼ −π2Λ2ε−4e−2π/ε/2 there are two connections between
periodic orbits, one with P± ∼ [2(Emin − E)]1/2 and one with P± ∼ −[2(Emin − E)]1/2.

3 Matched asymptotics for the Stokes line

3.1 Large µ asymptotics

In this section we derive the behaviour of Λ(µ) for large µ. Although Λ(µ) can be computed (e.g.
numerically, see §4.1) from its definition via the recurrence relation, such recurrence relations can
be difficult to work with, and it is more convenient to stick, for as long as possible, with differential
equations, for which a matched asymptotic analysis can be performed more easily.

As is discussed in detail below, in the limit µ→ +∞ an additional inner scale appears near the
poles x = ±πi, and the Stokes lines split in pairs, see Figure 1.

Near the pole x = πi of the homoclinic solution (7) of (1), let us, as in §2.2, introduce

z =
x− πi
ε

and v = ε2u.

The differential equation for v(z) at leading order is (10), with asymptotic behaviour (11). To
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ε → 0

µ → ∞

Figure 1: In the limit ε → 0 a Stokes line appears, which emanates from the pole x = πi.
A blowup near the pole allows an analysis of the exponentially small term (and its amplitude)
switched on across the Stokes line, see §2.2 and §2.3. Moreover, in the limit µ → +∞ another
scale appears in which the Stokes line splits into a pair emanating from ξ = ±

√
3π.

consider the asymptotic limit µ→ +∞, we use rescaled variables2

ξ = µ−1/2z and ψ = µv0.

This transforms (10) into the (singularly perturbed) problem

µ−1ψ′′′′ + ψ′′ + ψ2 + ψ′
2 + 2ψψ′′ = 0, (20)

so at leading order
ψ′′0 + ψ2

0 + ψ′0
2 + 2ψ0ψ

′′
0 = 0, (21)

still with
ψ0 ∼ −6ξ−2 +O(ξ−4) as |ξ| → ∞. (22)

Thanks to its Hamiltonian nature, this differential equation can be solved in two steps: a first
integral gives

1
2
ψ′0

2 +
1
3
ψ3

0 + ψ0ψ
′
0

2 = 0,

and hence, again using (22),(
1 + 2ψ0

2ψ0

)1/2

− ln
(

(1 + 2ψ0)1/2 + (2ψ0)1/2
)

=
i

2
√

3
ξ.

Here ψ0 is real and positive for ξ purely imaginary (the left-hand side decreases from +∞ to −∞
as a function of ψ0 > 0). In particular, we choose the branch on which ψ1/2

0 ∼ −i
√

6ξ−1 for large ξ.
Note also that ψ0 is real and negative for ξ real with |ξ| >

√
3π.

There are branch points when ψ0 = −1
2 , at ξ = ±

√
3π:

ψ0 ∼ −
1
2

+
(

3
32

)1/3 (
ξ −
√

3π
)2/3

as ξ →
√

3π, (23)

ψ0 ∼ −
1
2

+
(

3
32

)1/3 (−√3π − ξ
)2/3

as ξ → −
√

3π.

These are most easily derived from the identity

(1 + 2ψ0)1/2ψ′0 = −i(2
3)1/2ψ

3/2
0 , (24)

and the fact that ψ0 < 0 for real ξ with |ξ| >
√

3π. We will come back to the behaviour near ±
√

3π
in §3.2.

To determine what gets turned on across the two Stokes lines, which emanate from the singular
points ξ = ±

√
3π, see Figure 1, we use, in the spirit of §2 and without further ado, a formal WKB

2Note that µ� 1/ε2 is crucial here since the ξ scaling needs to be much smaller than that of the outer region.
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ξ ∈ C

Figure 2: The two Stokes lines emanating from ξ = ±
√

3π. They run down towards ±4
√

3− i∞.
The angle the Stokes line makes with the real axis at ξ =

√
3π is −3π/8.

ansatz and set
ψ ∼ ψ0 + µ−1ψ1 + · · ·+ µ−nψn + . . . . . .+K(ξ)µζ eµ

1/2σ(ξ),

with the constant ζ ∈ R to be determined later (by matching to the inner scale in §3.2). Substituting
this into (20) we get

σ′
4 + σ′

2 + 2ψ0σ
′2 = 0,

while the next order gives

2
(

2σ′3 + (1 + 2ψ0)σ′
)
K ′ +

(
6σ′2σ′′ + (1 + 2ψ0)σ′′ + 2ψ′0σ

′
)
K = 0.

Hence
σ′ = −i(1 + 2ψ0)1/2, (25)

with the minus sign required, as we shall see later, for the term to be exponentially small as
ξ → −i∞ (the Stokes lines corresponding to the other sign choice run in the opposite direction
and are thus not relevant to this analysis at the singularity in the upper half of the x-plane). The
equation for the amplitude is also nicely integrable:

K =
K̃0(

2σ′3 + (1 + 2ψ0)σ′
)1/2 =

K̃0

(σ′)3/2
=

K0

(1 + 2ψ0)3/4
,

for constants K̃0 and K0.
Using (24), we can rewrite (25) as

σ′ = −i(1 + 2ψ0)1/2 = (3
2)1/2ψ′0ψ

−3/2
0 (1 + 2ψ0).

In §3.2 we will need to be able to match the exponentially small term to an inner region (ξ near√
3π), hence we require σ = 0 at ξ =

√
3π (where ψ1/2

0 = −(1
2)1/2i). This implies that

σ+ = −
√

6(ψ−1/2
0 − 2ψ1/2

0 − 2
√

2i),

while for the branch point at ξ = −
√

3π (where ψ1/2
0 = −(1

2)1/2i)

σ− = −
√

6(ψ−1/2
0 − 2ψ1/2

0 + 2
√

2i).

The two Stokes lines are where Im(σ) = 0 and Re(σ) < 0, for each of these σ’s. They are
depicted in Figure 2. Since ψ1/2

0 ∼ −i
√

6ξ−1 +O(ξ−3) as |ξ| → ∞, the asymptotic behaviour of σ
is

σ± ∼ −iξ ± 4
√

3i as |ξ| → ∞. (26)
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For later reference we note that the exponentially small term behaves like

K(ξ)µζeµ
1/2σ+(ξ) ∼ K0 µ

ζ

(3
4)1/4(ξ −

√
3π)1/2

e−iµ
1/2( 3

4
)7/6(ξ−

√
3π)4/3 as ξ →

√
3π. (27)

The two terms which are turned on in passing from left of the left-hand Stokes line to right of
the right-hand one, take the form

µζ

(1 + 2ψ0)3/4
e−
√

6(ψ
−1/2
0 −2ψ

1/2
0 )µ1/2

(K0e
4
√

3iµ1/2 −K0e
−4
√

3iµ1/2
),

where the calculation of K0 requires the inner problem to be solved. Symmetry arguments (in
particular, ψ0(−ξ) = ψ0(ξ): reflection in the imaginary ξ-axis) have been used in expressing the
other coefficient as −K0. Taking into account the asymptotics as ξ → −i∞, and converting back
to (z, v) variables, we conclude that on crossing these Stokes lines an exponential term

2iSµ−1+ζ sin(4
√

3µ1/2 + Θ)e−iz, (28)

where K0 = SeiΘ, is switched on for large µ. Comparing with (19) we see that

Λ(µ) ∼ 2S
πµ1−ζ sin(4

√
3µ1/2 + Θ) as µ→ +∞. (29)

Hence the true homoclinic connections correspond to

4
√

3µ1/2 ∼ lπ −Θ as l ∈ N, l→∞, (30)

implying (5). The value of Θ is determined in §3.2 to be π/16.
One interpretation of these results is that for a countable set of values of µ the contribution

from the left-hand Stokes line (originating from ξ = −
√

3π) is cancelled (or absorbed) by the
right-hand Stokes line. It follows from (26) that in the limit ξ → −i∞ (where the real x-axis is
located) the terms exp(µ1/2σ±(ξ)) represent exponentially small oscillations in the real ξ direction
with frequency µ1/2/(2π). On the other hand, the distance between the Stokes lines (in terms of ξ)
is 8
√

3 for ξ → −i∞, hence (30) implies that exactly l oscillations fit between the two Stokes lines,
as ξ → −i∞ and l→∞, with the oscillatory contributions being abruptly turned off as the Stokes
lines are crossed. These oscillations are not directly observed in the corresponding homoclinic
solutions because of their exponentially small size, but one could argue that remnants of these
oscillations become visible when the solutions are continued far away from ε = 0, as observed in [6].

3.2 Inner expansion near ξ =
√

3π

We concentrate on the Stokes line emanating from ξ =
√

3π and running down the complex plane.
We expand the solution in an inner region near ξ =

√
3π and match to the exponentially small term

K(ξ)µζeµ
1/2σ+(ξ) from §3.1, to obtain an expression for the (complex) pre-exponential constant K0.

Close to ξ =
√

3π we set, being inspired by (23),

ψ = −1
2

+ µ−pΦ and ξ =
√

3π + µ−qZ.

Looking at (23) we impose p = 2
3q. On the other hand, for the fourth order term in (20) to balance

the nonlinear terms, we need −1− p+ 4q = −2p+ 2q. Hence we set

ψ = −1
2

+ µ−1/4Φ and ξ =
√

3π + µ−3/8Z.

This gives for Φ(Z) ∼ Φ0(Z)
Φ′′′′0 + Φ′0

2 + 2Φ0Φ′′0 = 0,

with
Φ0 ∼

( 3
32

)1/3
Z2/3 as Z → −i∞.
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Let us expand Φ0 as

Φ0 ∼
∞∑
n=0

αnZ
−8n/3+2/3 as Z → −i∞.

The recurrence relation for αn is, with α0 = ( 3
32)1/3,

(10
3 −

8n
3 )(7

3 −
8n
3 )(4

3 −
8n
3 )(1

3 −
8n
3 )αn−1

+
n∑
k=0

[
(2

3 −
8k
3 )(2

3 −
8(n−k)

3 ) + 2(2
3 −

8k
3 )(−1

3 −
8k
3 )
]
αkαn−k = 0,

hence

16n
3 (8n

3 − 1)αnα0 = −(10
3 −

8n
3 )(7

3 −
8n
3 )(4

3 −
8n
3 )(1

3 −
8n
3 )αn−1 −

n−1∑
k=1

(2
3 −

8k
3 )(−8n

3 −
8k
3 )αkαn−k.

From the balance

αn = −α−1
0 αn−1

[
(
10
3 −

8n
3 )(

7
3−

8n
3 )(

4
3−

8n
3 )(

1
3−

8n
3 )

16n
3 (

8n
3 −1)

+O(1)
]

= −α−1
0 αn−1

[
32
9 n

2 − 76
9 n+O(1)

]
= −8

9α
−1
0 αn−1

[
(2n− 7

8 − 1)(2n− 7
8 − 2) +O(1))

]
,

we conclude that
αn ∼ ω Γ(2n− 7/8)

(
−8
9α0

)n
as n→∞, (31)

for some ω ∈ R, which can be determined only by using the full sequence αn satisfying the recurrence
relation; by computing, from the recurrence relation above, the first few hundred terms of the
sequence (−9α0/8)nΓ(2n− 7/8)αn and extrapolating, one establishes that ω ≈ −0.0608.

As in §2.3 we need to perform optimal truncation to evaluate the amplitude of the oscillations
that are turned on. We thus write Φ0 =

∑N−1
n=0 αnZ

−8n/3+2/3 + RN , where the remainder RN
satisfies, to leading order (large Z, large N),

R′′′′ + α0(4
3Z
−1/3R′ + 2Z2/3R′′ − 4

9Z
−4/3R) = −αN−1(8N

3 )4Z−8N/3−2/3. (32)

Looking at the large Z behaviour of solutions by performing a WKB analysis on the homogeneous
equation, we see that what is turned on across the Stokes line is

R = dZ−1/2e−i(9α0/8)1/2Z4/3
, (33)

for some d ∈ C, which nicely matches with the exponential term in (27), provided that

ζ = − 3
16

and K0 = d
(3

4

)1/4
. (34)

While this already fixes the (algebraic) dependence on µ of the amplitude of exponential term, the
remaining task is to determine the complex constant d.

For large N and large Z the right-hand side of (32) needs to be optimally truncated. To combat
formula bloat, we introduce the constants

β
def=
(9α0

8

)1/2
=
(3

4

)7/6
and ω1

def= ω
√

2π(8
3)42−27/8 9α0

8 .

Using (31) and Stirling’s formula, and writing Z = reiθ, we obtain (for N and r large)

−αN−1(8N
3 )4Z−8N/3−2/3 ∼ (−1)Nω1r

−2/3e−2iθ/3e−8iNθ/3N2N+5/8(e2r8/3β2/4)−N .

Optimal truncation is then found to be at

N ∼ Nopt =
1
2
βr4/3,

11



and the asymptotically minimal right-hand side becomes

ω1(−1)Noptr−2/3e−2iθ/3e−8Noptiθ/3e−βr
4/3

(β2 )5/8r5/6.

Substituting
R = D(Z)Z−1/2e−iβZ

4/3

into (32), and using the expression (18) for the derivative in polar coordinates, the equation for
D(Z) becomes, to highest non-vanishing order (for large r),

α
3/2
0 25/2r−1/2e−iθ/2e−iβr

4/3ei4θ/3 dD

dθ
= ω1(β2 )5/8e−πiβr

4/3/2r1/6e−2iθ/3e−4iβr4/3θ/3e−βr
4/3
.

This simplifies to
1
r2/3

dD

dθ
= ω2e

−iθ/6eβr
4/3(iei4θ/3−1−4iθ/3−πi/2), (35)

with
ω2

def= ω1(β2 )5/8α
−3/2
0 2−5/2 = ω

√
π(8

9)1/2β−3/8.

The right-hand side in (35) is exponentially small unless θ ≈ −3π
8 , and the relevant inner scale can

be easily read off to be θ = −3π
8 + r−2/3θ̂. In the new variables the equation becomes

dD̂

dθ̂
= ω2e

iπ/16e−(8β/9)θ̂2 .

Hence, on crossing the ray θ = −3π
8 (see also Figure 2) in the clockwise direction for large r, the

term (33) is turned on via the usual error-function smoothing, with

d = ω2e
iπ/16

∫ ∞
−∞

e−(8β/9)θ̂2dθ̂ = ω2e
iπ/16(9π

8β )1/2 = ωπβ−7/8eiπ/16

Combining this with (28) and (34) we finally obtain

S = ωπ
(3

4

)−37/48
and Θ =

π

16
,

so that (29) leads to

Λ(µ) ∼ ω 2(3
4)−37/48µ−19/16 sin(4

√
3µ1/2 + π/16) as µ→ +∞, (36)

with ω ≈ −0.0608 (see above) determined by the recurrence relation via (31). This establishes (6).

4 The recurrence relation

Here we take an alternative approach to the splitting Stokes lines from §3.1. Namely, we investigate
what information can be obtained directly from the recurrence relation (13). In particular, we
present numerical results on the Stokes constant Λ, and we derive (5) directly from the recurrence
relation, see §4.3. We emphasise, however, that the results of §3 are, for our purposes, complete
and that what we present here is an instructive alternative approach.

4.1 Numerics for Λ(µ)

Our aim is to study the properties of the Stokes constant Λ = Λ(µ) numerically, and compare the
results to the asymptotic expression (6). We recall that Λ(µ) = limn→∞An(µ), see (14) and §2.3.
Using computer algebra (maple) we have computed the first few polynomials An(µ) from the
recurrence relation (13).3 They are depicted in Figure 3 and can be seen to converge as n→∞ for
fixed µ. The zeros µm of the limit function Λ(µ) are well approximated by the zeros µ̃m of An0(µ)

3We recall that An(µ) is an n-th order polynomial.
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µ

A
n

Figure 3: The polynomials An(µ), n = 1 . . . 15, which converge to Λ(µ), see (14).

m

νm

Figure 4: The normalised differences νm between square roots of consecutive zeros µ̃m and µ̃m−1

are indicated by open circles. The extrapolated data ν(2)
m are depicted by dots, while the grey line

indicates the limit value π.

for large n0 (provided µ � n2). For the numerical results presented here we have used n0 = 197.
According to (30) we expect the differences

νm = 4
√

3
(√

µ̃m −
√
µ̃m−1

)
to approach π as m→∞. Indeed, this is what can be observed in Figure 4 for the first 30 zeros of
An0(µ). To make the evidence for convergence even more convincing, we have also used Richardson
extrapolation

ν(j)
m = mν(j−1)

m − (m− 1)ν(j−1)
m−1 , j = 1, 2, . . . and m = j + 1, j + 2, . . . (37)

with ν
(0)
m = νm. For example, Figure 4 depicts the twice extrapolated data ν(2)

m as well as νm, and
the acceleration in the convergence to π is clearly visible.

In Figure 5 one can compare the shape of the function Λ(µ) for large µ, as expressed by (36),
with the numerically computed polynomial An0 . One sees that the spacing between the zeros, as
well as the decay for µ not too large, correspond very well. For the phase shift the agreement seems
to be less obvious. To investigate numerically the phase shift Θ, we define

ρm = 4
√

3
√
µ̃m − (m+ 1)π,

13



µ

Figure 5: The polynomial A197(µ) in grey, and the predicted asymptotic behaviour for large n
and µ, given by (36), in black. For µ larger than 100 one can see the two starting to diverge.

m

ρm

Figure 6: The phase shifts ρm of the zeros µ̃m are indicated by open circles; their behaviour
seems transient (not clearly converging). The fifth order extrapolated data ρ(5)

m , depicted by dots,
converge to a limit value for the phase shift. The grey line indicates Θ = π/16.

where we have shifted the index compared to (30) in order to fit with 4
√

3
√
µ1 = 2

√
15 being closer

to 2π than to π. We expect ρm to converge to Θ = π/16 as m → ∞, but this is not evident in
Figure 6. However, using repeated Richardson extrapolation, see (37), the sequence ρ(5)

m converges
quite convincingly, see Figure 6 again.

4.2 The scale µ� n2

The recurrence relation (13) can be slightly reshuffled to read

An+1 −An =
n∑
k=0

(2k + 3)!(2n− 2k + 1)!
(2n+ 5)!

Ak+1An−k

− µ
n∑
k=0

(4n− 2k + 8)
(2k + 1)!(2n− 2k + 2)!

(2n+ 5)!
AkAn−k. (38)

In order to investigate the asymptotic behaviour of Λ(µ) = limn→∞An(µ), we thus need to un-
derstand the behaviour of An(µ) for large µ and large n, where we first let n tend to infinity and
subsequently µ. As it turns out, the critical scaling is µ = O(n2), and we need to start with the
easier scale µ� n2 and the go through the scales to arrive at µ� n2.
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Introducing An = µn

(2n+1)!an leads to the following recurrence relation for an:

(2n+4)(2n+5)[an+1−
(2n+ 2)(2n+ 3)

µ
an] =

n+1∑
k=0

akan+1−k−
n∑
k=0

(4n−2k+8)(2n−2k+2)akan−k,

with a0 = 6. For µ� n2 this simplifies somewhat to

(2n+ 4)(2n+ 5)bn+1 =
n+1∑
k=0

bkbn+1−k −
n∑
k=0

(4n− 2k + 8)(2n− 2k + 2)bkbn−k, (39)

where an ∼ bn for µ� n2. The sequence bn behaves as β1(−β2)nn−β3 when n→∞. The constants
β1 and β2 cannot be calculated from asymptotic considerations (the full sequence bn is needed),
whereas β3 can be determined with some effort to be 5

3 (this involves going to second order in the
appropriate balance and replacing all summations by corresponding integrals), but that turns out
not to be relevant for the leading order asymptotics.

The recurrence relation (39) can be “solved” using the generating function

Ψ(η) =
∞∑
k=0

bk
η2k+2

,

where the function Ψ is the solution of

Ψ′′ −Ψ2 + (Ψ′)2 + 2ΨΨ′′ = 0, (40)

with asymptotic behaviour
Ψ ∼ 6

η2
as η →∞.

With these definitions we thus have

An ∼
µn

(2n+ 1)!
bn as µ, n→∞ and µ� n2. (41)

The differential equation (40) is (for obvious reasons) the same as (21), up to the change of
variables η = iξ, i.e. Ψ(η) = ψ0(ξ). We find it a bit easier to work with real variables here. The
solution is given implicitly by

1
2
√

3
η =

(
1 + 2Ψ(η)

2Ψ(η)

)1/2

− ln
((

1 + 2Ψ(η)
)1/2 +

(
2Ψ(η)

)1/2)
. (42)

4.3 The scale µ = O(n2)

We now want to consider µ and n2 going to infinity and being of the same order of magnitude. It
is useful to introduce new variables, containing an artificial small parameter δ, namely

n =
X

δ
, µ =

Y

δ2
and An(µ) = B(X,Y ).

Then the recurrence relation (38) turns into

B(X + δ, Y )−B(X,Y ) =
n∑
k=0

(2k + 3)!(2n− 2k + 1)!
(2n+ 5)!

B((k + 1)δ, Y )B(X − kδ, Y )

− µ
n∑
k=0

(4n− 2k + 8)
(2k + 1)!(2n− 2k + 2)!

(2n+ 5)!
B(kδ, Y )B(X − kδ, Y ).

However, this is not the most convenient way to write it in the scale µ = O(n2). We anticipate
that the sums are endpoint dominated, hence we rewrite the sums in (38) as

n∑
k=0

(2k + 3)!(2n− 2k + 1)!
(2n+ 5)!

Ak+1An−k ≈ 2
n/2∑
k=0

(2k + 3)!(2n− 2k + 1)!
(2n+ 5)!

Ak+1An−k
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and
n∑
k=0

(4n− 2k + 8)
(2k + 1)!(2n− 2k + 2)!

(2n+ 5)!
AkAn−k ≈

n/2∑
k=0

(2k + 1)!(2n− 2k + 1)!
(2n+ 5)!

[(4n− 2k + 8)(2n− 2k + 2) + (2n+ 2k + 8)(2k + 2)]AkAn−k.

For k � n = O(
√
µ) the terms Ak+1(2k + 3)! ∼ µk+1bk+1 and µAk(2k + 1)! ∼ µk+1bk are of the

same order. We may therefore neglect the first of these two sums (the second one has an additional
multiplicative factor n2). Also, Stirling’s formula implies that (2n−2k+1)!

(2n+5)! ∼ (2n)−2k−4. We thus
obtain

B(X + δ, Y )−B(X,Y ) ∼ −µ
n/2∑
k=0

Ak(2k + 1)! (2n)2k−48n2B(X − kδ, Y )

∼ −2
X/2δ∑
k=0

bkµ
k+1(2n)−2k−2B(X − kδ, Y )

= −2
X/2δ∑
k=0

bk

(
Y

4X2

)k+1

B(X − kδ, Y ).

Using a WKB ansatz
B(X,Y ) = M(X,Y )eφ(X,Y )/δ, (43)

we get at leading order

eφX − 1 = −2
∞∑
k=0

bk

(
Y

4X2

)k+1

e−kφX = −2eφX
∞∑
k=0

bk

(
Y 2

4X
e−φX

)k+1

= −2eφXΨ
(

2X√
Y
eφX/2

)
,

or, with Ψ defined in §4.2,
e−φX − 1 = 2Ψ

(
2X√
Y
eφX/2

)
.

It inspires us to, once again, introduce new variables

W =
X√
Y

and φX(X,Y ) = g

(
X√
Y

)
,

for which we then get
e−g − 1 = 2Ψ(2Weg/2).

Substituting this into the implicit expression (42) for Ψ, we obtain

W =
√

3 e−g/2
[(

e−g

e−g − 1

)1/2

− ln
((
e−g
)1/2 +

(
e−g − 1

)1/2)]
.

This defines W as a function of g, but also g as a function of W . We note that

g(W ) ∼ −2 lnW as W → 0,

while
g(W ) ∼ −3W−2 as W →∞. (44)

Our goal is to calculate the exponent

φ(X,Y ) =
∫ X

g

(
X̂√
Y

)
dX̂ =

√
Y

∫ W

g(Ŵ ) dŴ

in the WKB term (43), but it easier to compute
∫
W (g)dg first, namely∫

W (g) dg =
√

3
[
−4
√
e−g − 1 + 2e−g/2 ln

(
e−g/2 +

√
e−g − 1

)]
+ C.
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It follows from the inverse function theorem that∫
g(W ) dW = −

∫
W (g) dg +Wg + C.

Hence

G(W ) def=
∫ W

g(Ŵ ) dŴ

=
√

3
[
−4
√
e−g − 1 + 2e−g/2 ln

(
e−g/2 +

√
e−g − 1

)]
+Wg + Ĉ

= −2W −
√

3
4− 2e−g√
e−g − 1

+Wg + Ĉ,

where the final constant of integration is denoted by Ĉ for definiteness and will be determined by
matching to the scale µ� n2. We first infer that

G(W ) ∼ ±i4
√

3 + Ĉ − 2W lnW as W → 0, (45)

since W ∼ ±
√

3iπ/2e−g/2 for small W . Next, we note that, see (41),

An(µ) =
bnµ

n

(2n+ 1)!
∼ bn√

2π
e2n(2n)−2n−3/2µn,

with bn ∼ β1(−β2)nn−β3 as n→∞, so that in the new variables

An(µ) = e−2n lnn+n lnµ+O(n) ∼ e−(2
√
Y W lnW )/δ.

We conclude from (45) that
B(x, Y ) ∼Me

√
Y G(W )/δ

matches to An(µ) for small W (µ� n2) provided that

Ĉ = ∓i4
√

3.

Finally, taking the limit W →∞, i.e. µ� n2, we obtain, using (44), that

G(W )→ Ĉ = ±i4
√

3 as W →∞,

which implies that4

An(µ) ∼ B(X,Y ) ∼ e±i4
√

3
√
Y /δ = e±i4

√
3
√
µ for µ and n large, with µ� n2.

Indeed, this is the analogue of (30) and thus leads us once again to (5).
We note that the main difficulty in the above analysis is caused by the fact that we need to pass

through the entire scale µ = O(n2) to go from the relatively easy scale µ� n2 to the desired scale
µ� n2. In particular, the problem for bn in this intermediate scale needs to be solved completely.
The explicit “solution” of the recurrence relation for bn involves generating function techniques.
This constitutes a link with the direct Stokes line approach in §3.1. In particular, equation (40) is
the same as (21) modulo a straightforward change of variables.

We conclude that working with the recurrence relation is much more involved than working
with the differential equation directly, as in §3. We shall therefore not proceed with calculation of
the pre-exponential term via this route, but conclude that we have illustrated the principle that
the main asymptotic behaviour can also be derived using the recurrence relation.

4Here only ∼ means that the exponential dependence upon µ, but not the pre-exponential, has been captured.
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5 Conclusion

We have sought in this paper to provide a systematic approach, the need for which was noted in [5],
to constructing homoclinic connections in a class of ODEs. The key ingredient of our approach
is to extend the techniques of [7] by exploiting a second small parameter (here 1/µ, in addition
to ε) to subdivide, and make analytically tractable, the Stokes line structure. In the course of
the analysis, we have also expored some novel asymptotic techniques applicable to certain classes
of difference equations. The scope for applications of the approach is significantly broader than
the model problem treated here, no special properties of the nonlinearities having been exploited.
Indeed, we anticipate that the asymptotic structure, elucidated above, whereby the (exponentially
small) oscillations are confined to a finite range of x, will be generic in many problems of the current
class.

More specifically, for the (singularly perturbed) model equation (4) we have determined the
asymptotic dependence of the Stokes constant on the parameter µ. In particular, a vanishing
amplitude implies the occurrence of an embedded soliton, or solitary wave. The precise asymptotics
of the amplitude for large µ are given by (6). The asymptotic analysis reveals that, asymptotically,
an additional inner scale appears when µ→ +∞, where each Stokes line splits into a pair, and the
contributions of each pair of Stokes lines cancel for a countable set of µ-values. Furthermore, the
relevant Stokes constant can also be defined via a limit in a certain recurrence relation. This allows
for a complementary, partly numerical, investigation, which corroborates the asymptotic analysis,
as well as providing an alternative approach to finding the frequency at which embedded solutions
occur for large µ, shedding additional light on asymptotic methods for recurrence relations.

These results lead to several open questions. First, can they be proved, e.g. in the spirit of [17]?
Second, the leading order asymptotics (5) concur with the normal form approach in [5], but what is
the precise relation between the two methods? Third, what role is played by the conservative nature
of the differential equation? It is certainly used in the analysis, but is it essential to the asymptotic
structure? A related question is whether it is worthwhile to analyse higher order exponentially
small asymptotic terms in order to quantitatively study the phenomenon described at the end
of §2.3 (this could require the treatment of higher-order Stokes lines, cf. [4]). Such analyses may
also shed light on the occurrence of multi bump solitons (arising in related equations). Finally, for
solitary waves, an integer number of oscillations occur in between the pair of Stokes lines in the
ξ-plane (µ→ +∞), as noted in the final paragraph of §3.1. Although these are exponentially small
as ε → 0 and thus not visible in this limit, oscillations do appear in the homoclinic profile as ε
becomes large, as observed in [6]. It would be interesting to obtain insight into the connection (if
any) between these oscillations of very different size.
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