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1. Introduction

In this paper we present new families of global branches of single and multi
bump periodic solutions of the fourth order equation

—— +q—— +u—u=0, g€R. (1.1)
X i

This equation arises in a variety of problems in mathematical physics and mechan-
ics. As an important example we mention that (1.1) describes stationary solutions
of the Swift- Hohenberg (SH) equation:

2,2
%—?:—(1+%) U+aU-U%  a>0. (1.2)
Equation (1.2) was first introduced by Swift & Hohenberg [SH] in studies of
Rayleigh-Bénard convection, and was proposed by Pomeau & Manneville [PM]
as a good description of cellular flows just past the onset of instability. Of par-
ticular interest in these studies was the formation of stationary periodic patterns,
and the selection of their wave-lengths. For further references about the SH equa-
tion we refer to the book by Collet & Eckmann [CE] and the survey by Cross &
Hohenberg [CH]. If o > 1, then stationary solutions U of equation (1.2), when
suitably scaled, are readily seen to be solutions u of equation (1.1). Specifically,
U and u are related through
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It is clear from (1.3) that in this example, g only takes positive values. An example
where it takes negative values of ¢ is the Extended Fisher-Kolmogorov (EFK)
equation [CER,DS],

(1.3)
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which yields (1.1) if we set

u(z) = U(’y_1/43;) and qg= —7_1/2. (1.5)



Both, the Swift-Hohenberg equation and the Extended Fisher-Kolmogorov are
gradient systems involving functionals I(u) of the form

I(u) = / {%(«/’)2 ~ 2y + P} da,

and equation (1.1) is the corresponding Euler-Lagrange equation. Such as furnc-
tionals also arise in variational problems arising in the study of layering phenomena
in second order materials [LM,CMM,MPT]. We mention in particular in this con-
text the governing equation of a strut [HB, TG] with stiffness E1 under an axial
compression P and subjected to a load Q(y):

EIy"™ + Py" 4+ Q(y) = 0.

Here, y denotes the deflection of the strut in a direction perpendicular to its axis.

The investigation in this paper is part of a study of complex patterns in
physics and mechanics in whose description equation (1.1) plays an important
role. A typical example of such a pattern is the phenomenon of localized buckling
in mechanics. In this type of buckling, the deflections are confined to a small
portion of the otherwise unperturbed material. In Figure 1.1 we give an example
of such a pattern due to Ramsay [R]. It shows of the effect of compression on a
layered material in which the layers have different stiffness. Because the stiffer
layer (black, in the center) will not contract as easily as the more ductile material
that surrounds it, the stiff layer deflects sideways and produces folds.

Fig. 1.1. Folding of a stiff layer in a ductile material [R]

Patterns are described by bounded solutions of equation (1.1) on the real line.
Thus, mathematically this study amounts to an investigation of the different types
of bounded solutions equation (1.1) possesses.

In recent years a great deal has been learnt about the structure of the set of
bounded solutions of equation (1.1) on the real line. It turns out to depend very
much on the value of the parameter ¢q. In particular, one can identify two critical
values of ¢: +v/8 and —+/8. At these values the linearisation around the constant
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solutions u = +1, i.e. the points Py = (+1,0,0,0) in (u,u’,u”,u"") phase space,
changes character, as indicated in Figure 1.2.
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(a) ¢ <—V8 (b) q e (—V8,v3) (c) ¢> 8
Fig. 1.2. The spectrum of the linearisation around P, and P_

For ¢ < —+/8, the set of bounded solutions is very limited, and consists —
modulo translations — of a one parameter family of single bump periodic solutions,
which are even with respect to their extrema and odd with respect to their zeros,
and two heteroclinic orbits, or kinks, connecting Py and P_ [Be2,3, PT1,2]: both
are odd, one is strictly increasing and one is strictly decreasing. Because we shall
often need to refer to it, we denote the odd increasing kink for ¢ = —v/8 by ¢(z).

As ¢ increases beyond —+/8 the set of bounded solutions becomes much richer.
It has been proved that if —v/8 < ¢ < 0 it includes a great variety of multi bump
periodic solutions, heteroclinic orbits and homoclinic orbits leading to P, and P_,
as well as chaotic solutions. For detailed results we refer to [KV,KKV,PT2-4]. For
q > 0 the results are more tentative and incomplete: although numerical studies
for equation (1.1) [Bel] and related equations [BCT,CT] suggest an abundance
of bounded solutions in this parameter range as well, much of this still remains
unproved.

The object of this paper is to investigate the existence and qualitative prop-
erties of multi bump periodic solutions of equation (1.1). By this we mean here
solutions which have more than one critical point in each period. When ¢ lies in
a right neighbourhood of —+/8, then all local extrema of the periodic solutions lie
near the constant solutions u = 41, and solutions have transitions between these
uniform states. In this regime the term ‘multi bump’ corresponds to the way it
is commonly used in dynamical systems theory. However, as ¢ moves away from
—1/8, local extrema are no longer tied to u = +1, and it is not easy to identify
the transitions. However, we shall still describe such solutions as multi bump peri-
odic solutions. Thus, this work extends previous results [PT2,MPT] in which the
properties of single bump periodic solutions were studied. In particular, we will
investigate the existence and global behaviour of families of odd and even, single
and multi bump periodic solutions which bifurcate from the strictly increasing
kink ¢ at ¢ = —v/8. Odd solutions may also be even with respect to some of their
critical points. On the other hand, by even solutions we mean solutions, which are
not odd with respect to any of their zeros. Below we indicate some of our findings:

(I) We obtain a family of periodic solutions, bifurcating from the kink ¢ at
g = —V/8 and extending to infinity, i.e, these solutions exist for all ¢ > —+/8. The
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family consists of a countable infinity of distinct periodic solutions. The simplest
examples of these are shown in Figures 1.4-6. In the bifurcation diagram we graph
the supremum norm M = ||u||s against q.

(IT) In addition, another pair of families, both consisting of a countable infinity
of distinct periodic solutions, are proven to exist for ¢ € (—\/g, 0]. These solutions
continue to exist for some, but not all, positive values of ¢q. Numerical evidence
suggests that the solutions from both families pairwise lie on loops in the (g, M)
plane of which the projection on the g-axis is of the form (—+/8,¢*] (See Figure
1.7), and one solution lies on the top of the loop whilst the other solution lies on
the bottom. At ¢* > 0 the two solutions coalesce.

(III) Finally, we find a third kind of periodic solutions. These again come as
a family of countable many distinct periodic solutions which bifurcate from the
kink ¢ at ¢ = —/8. However, this family does not extend to infinity nor do they
lie on loops. Instead, our numerical results indicate that these periodic solutions
bifurcate from the constant solution © = 1 as ¢ tends to a critical value g, which
is of the form

Qn:\/i(n+%), n=1,2,.... (1.6)

Note that ¢; = /8, that ¢,4+1 > ¢, for every n > 1, and that ¢, — 0o as n — oco.
For n > 2 these solutions come in pairs. Graphs of some of them are shown
in Figures 1.8, 1.9 and 1.11. The critical values g, arise when the moduli of the
eigenvalues of the linearisation around u = 1 are a multiple of one another. Further
details of the derivation of (1.6) are given in Section 5. (see also [CTh]). Samples
of the bifurcation curves in the (g, M) plane of these types of solutions are shown
in Figure 1.3 below.

M M M
4 1.50
1.30
r,
1.15 b
) |
1 3 —f—-é G
e -8 /8 -8 a0 9 0
-8 5 q
Type (I) Type (II) Type (II)

Fig. 1.3. The three types of bifurcation graphs
Equation (1.1) admits a first integral, often referred to as the Energy,

£(w) S — () + L) + Flu), (1.7a)
where )
F(u) = Z(“2 —1)% (1.7b)

which is constant if u is a solution. For the solutions u(z) = ¢(z) and u(z) =1
it is clear that £(u) = 0. In this paper we focus on branches of periodic solutions
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which bifurcate from either u = ¢ or w = 1 or both. This motivates us to consider
solutions which have zero energy, that is for which

E(u) =0. (1.8)

In constructing periodic solutions, we make extensive use of symmetry prop-
erties of solutions: if a € R is a point where v’ = 0 as well as v’/ = 0, then thanks
to the reversibility of equation (1.1), it is easily verified that u is even with respect
to a:

u(la—y)=u(la+y) forall yeR.

Also, since the function F' is even, it follows that if b € R is a point where u = 0

as well as " = 0, then u is odd with respect to b:

ulb—y) =—-u(b+y) forall yeR.

We begin with a brief summary of previous results [PT2,MPT] in which the
existence of two families of single-bump periodic solutions v and u_ was proved.

Theorem A. For every q > —+/8 there exist two periodic solutions u and u_
of equation (1.1) such that £(uy) = 0. Both uy and u_ are odd with respect to
their zeros and even with respect to their critical points, and

M, =max{us(z):z € R} > 1 and M_ =max{u_(z):z € R} < 1.

We denote these two families of solutions by
Tt = {us(,q):q>—V8}

Numerical computations of these branches made with AUTO97 [D] are shown
in Figure 1.4. As will be done throughout this paper when depicting solution
branches, we set ¢ along the horizontal axis and the supremum norm of the solu-

tion,
def

M = ul|co,
along the vertical axis.
M
4
r,

2,

off ——
-/8 5 q

Fig. 1.4. The branches I' ;. and I'_
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Graphs of u; and u_ made with Phaseplane [E] are given in Figure 1.5.
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Fig. 1.5. Small and large single bump periodic solutions (¢ = 1)

u

1

The two families I'; and I'_ will be used to construct families of multi bump
periodic solutions of greater complexity. We shall characterise these solutions by
the critical points and the critical values of their graphs. We label the positive
critical points corresponding to local maxima by {{x} and the positive critical
points corresponding to local minima by {nx}. For odd solutions with u'(0) > 0
these points satisfy

0<& <m<&E<.,

In fact, since —u(z) is a solution whenever u(z) is, we will assume throughout that
u'(0) > 0 for odd solutions. For even, nonconstant solutions such that £(u) = 0,
we find that u(0) € R\ {—1,1}. In this case the function ' also has infinitely
many positive zeros and these satisfy

0<£1S771§§2§... if ’U,”(O)>0,
0<771§£2§772§... if UH(O)<O.

Starting from the solutions v and u_, we use a shooting technique to obtain
a countable family of odd multi bump periodic solutions which also exists on the
entire g-interval —v/8 < ¢ < co. The solutions of this family obey the rule that all

their local maxima lie above © = +1 and all their local minima lie below u = —1.
However, the first point of symmetry ¢ is an exception: at such a point u(() lies
below u = —1 if it is a mazimum and above u = +1 if it is a minimum:

©) <=1 if (=& for some k>1,
U
>+1 if (=mng for some k> 1.

We denote by T’y the branch of odd periodic solutions of this family, of which the
N*P critical point (x is the first point of symmetry:

Tn = {u(-,q) : ¢ > —V8, wu(-,q) is symmetric with respect to (x}.

In Figure 1.6 we give the numerically computed branches 75 and T3, as well as
specific solutions which lie on Ty and T3 at ¢ = 2.
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Fig. 1.6. The branches T; and T3, and corresponding solutions at ¢ = 1.5
In Section 3 the precise result for this family is formulated in Theorem 3.2.

In addition to these branches which exist on the entire g-interval (—+/8, 00),
we prove the existence of a second family of odd periodic solutions on (—\/g, 0].
They exist in pairs, and our numerical experiments indicate that they sit on loop
shaped branches, which extend well into the regime ¢ > 0. An example of such
a loop, together with the corresponding two solutions, is given in Figure 1.7.
For this particular family, the solutions are symmetric with respect to n; with

—1 < u(m) < 1. The precise description of these solutions is given in Theorems
3.3 and 3.4.

M u u
1 1

jjfj IRy
L BT

/& ¥ - -

1

Fig. 1.7. Loop shaped branch and odd periodic solutions at ¢ = —15

The techniques used to prove the existence of these solutions for —v/8 <
g < 0 have been developed in [PT2,3,4]. In the present paper we show how to
obtain several families of single and multi bump periodic solutions via this method.
However, we do not aim at completeness, and there are many more branches of
periodic solutions that can be established using this technique for —v/8 < ¢ < 0
(see also [PT3,4]) than those presented here. We are not able to extend this
existence proof to the regime g > 0. An essential difficulty seems to be that the
solutions cease to exist at a coalescence point ¢*, which is different for every branch
of solutions.

A different method for proving the existence of periodic solutions with energy
£(u) = 0 in the regime —/8 < ¢ < 0 has been presented in [KKV]. There, a
minimisation procedure is used to obtain periodic solutions both with and without
symmetry with respect to a zero or an extremum. Since only the minimisers of
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an associated functional are considered, the variational method establishes (for
example) the existence of only one of the two solutions in Figure 1.8.

In Sections 4, 5 and 6 we turn to even periodic solutions of equation (1.1).
Here we find a third type of branching phenomenon: solutions existing on finite
g-intervals of the form (—/8, g,,), still bifurcating from the kink ¢ at the lower end,
and according to numerical evidence, also bifurcating from the constant solution
u =1 at the top end. Our results here extend those obtained in our analysis [PT5]
of the equation

uiv + qu” et 1= 0, q= 62, (19)

proposed in [LMcK] in connection with the study of travelling waves (with speed
¢) in suspension bridges. Concerning even single bump periodic solutions of (1.1)
we prove the following existence theorem:

Theorem B. For every q € (—/8,/8) there exists a periodic solution u of equa-
tion (1.1), such that £(u) = 0, which is even with respect to all its critical points,
with the properties:

—1 < min{u(z) : ¢ € R} < 41 < max{u(z) : z € R}.

Two such solutions, at ¢ = —2 and ¢ = +2, are shown in Figures 1.8b and 1.8c,
and the branch of solutions on which they lie is presented in Figure 1.8a.

M

iV /ww /V“
C PEEE o

/8 /8 - -1

(a) Branch (b) ¢ = -2 (¢) g=+2

Fig. 1.8. Branch of even single bump even periodic solutions
In order to formulate our results about even multi bump periodic solutions we
need to introduce the notion of an n-lap solution. If u is an even periodic solution
for which all the critical points are local maxima or minima, we say that u is an

n-lap solution if it is symmetric with respect to its nt® critical point, so that its
graph will have 2n monotone segments in one period.

Theorem C. For each n > 2 there exist two families of even periodic n-lap
solutions when q € (—/8,¢y,). At the points of symmetry, ¢,, we have

u((n) > 1 for every n > 1.

For n =2 and n = 3, and ¢ € (—\/g, ¢n) it is possible to show in addition
that the critical values of the solutions all lie in the interval (—1,1) with the
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exception of the point of symmetry, and if the solution is symmetric with respect
to a minimum, its neighbouring maxima.

Note that the case n = 1 is discussed in Theorem B, and corresponding 1-lap
solutions are shown in Figure 1.8.

In Figure 1.9 we present two 2-lap solutions and in Figure 1.10 we show the
branches of the two solutions, as well as a blowup near the point (¢, M) = (ga, 1).

u
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u
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/-1‘8 v -6

évm\

-1

(a) On the upper branch I'y, (b) On the lower branch T’y

Fig. 1.9. Two even periodic 2-lap solutions at ¢ = 2
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Fig. 1.10. Branches of even periodic 2-lap solutions, and a blowup at g5

In Figure 1.10, the solutions on the upper branch I's, satisfy u”(0) < 0 and are
symmetric with respect to £». Along the lower branch I'g;, the solutions satisfy
u”(0) > 0 and are symmetric with respect to 7;. Thus, both branches consist of
2-lap solutions. The existence of these solutions is proved in Theorem 6.2.

Corresponding results for 3-lap solutions are presented in Figures 1.11 and

AW RVAY

/ _7 7 \ 65 6.5

(a) On the upper branch I'z, (b) On the lower branch I's

Fig. 1.11. Two even periodic 3-lap solutions at ¢ = 2
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Fig. 1.12. Branches of even periodic 3-lap solutions, and a blowup at ¢3

Solutions on the upper branch I's, satisfy »/(0) > 0 and are symmetric with
respect to £3. On the lower branch I's, the solutions satisfy u”(0) < 0 and are
symmetric with respect to 7. Thus both branches consist of 3-lap solutions. The
existence of these solutions is proved in Theorem 6.4.

It is interesting to note the difference in the local behaviour of the solution
branches near the points (¢2,1) and (g3, 1) in the (¢, M)-plane (see Figures 1.10
and 1.12). Although a detailed analysis of this local behaviour is beyond the
scope of this paper, we do present a local analysis of the branches I'y, and I'gp
near (gg,1). This yields the angles 6, and 6, between the branches I'y, and 'y,
and the ¢ axis at (ga,1). They are given by

22

tanf, = 3 and tan@, = —

53

In addition to the branches of n-lap solutions extending over (—\/g, Gn), which
bifurcate at ¢ = —v/8 and at ¢ = gy, it is possible to construct branches of even
periodic solutions which bifurcate at ¢ = —v/8 and at ¢ = Gm,n Where

Gmn =VE( S+ ), mon>1 (1.10)
m n

In this paper we do not study these solution exhaustively, but merely prove the

existence of two banches of 3-lap periodic solutions which connect ¢ = —+/8 and

g = g2,3. This is done in Theorem 6.5.

As an example of the general phenomenon we present in Figures 1.13 and 1.14
solutions which lie on the branches that bifurcate at ¢ = gy, 5 for m = 1,2, 3, 4.
In each case only solutions on one of the two branches bifurcating from each
bifurcation point are shown. All depicted solutions are at ¢ = 2. Without going
into details, we observe that n is the number of monotone laps, while m is the
number of laps that cross the constant solution © = 1 between two points of
symmetry.
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Fig. 1.13. Four branches of periodic 5-lap solutions.
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Fig. 1.14. Periodic 5-lap solutions on branches that bifurcate at ¢ = g 5
for m =1,2,3,4. All solutions are at ¢ = 2.

The organisation of the paper is the following. In Section 2 we introduce
some notation and recall the important properties of critical points obtained in
earlier papers [PT1-5]. In Section 3 we establish the existence of several families
of odd periodic solutions, some of which exist for all ¢ > —/8 and some on finite
g-intervals only. In Section 4 we begin our analysis of even periodic solutions
with a discussion of the interval —v/8 < g < /8. After a brief section on the
local behaviour of solutions near w = 1, this study is continued in Section 6 for
values of ¢ in the interval (—\/g, g3). In this interval it is possible to obtain
information about the location of the critical values of the solution graphs thanks
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to a Comparison Lemma which is valid for —v/8 < ¢ < ¢3. In Section 7, we study
the local behaviour of solution branches near ¢, and in Section 8, we establish
of families of periodic solutions with an arbitrary large number of laps (Theorem
C). In Section 9, we conclude with the rather technical proof of the Comparison
Lemma used in Section 6.

2. Critical points

To establish the existence of new families of periodic solutions we shall further
develop the topological shooting method established in [PT2-5]. For this, we begin
with a summary of the key properties of critical points in Lemmas 2.1, 2.2 and
2.3. Then, in Lemma 2.4, we prove a new global result. Finally, Lemmas 2.5 and
2.6 summarize two previously obtained global results. These properties will allow
us to extend our shooting method and enables us to obtain further families of
solutions and more detailed information about their qualitative properties.

The solutions we discuss in this paper will be either even or odd, and thus we
shall study equation (1.1), which we restate here for convenience:

u”’ +qu’ +uP —u=0 (2.1)

and supply appropriate initial conditions. When looking for odd solutions we
impose the conditions

u(0) =0, «'(0)=a, «"(0)=0, «"(0)=243, (2.2a)

u(0)=a, 4'(0)=0, «"(0)=8, +"(0)=0. (2.2b)

In both cases we shall assume that the first integral is zero, i.e.

e 1 1
E(u) L — E(U”)Z + %(Ul)z + Z(U2 —-1)?=0. (2.3)

This means that the constants a and [ are related by

———— (a#0) for odd solutions, (2.4a)

+ ——la® -1 for even solutions. (2.4b)

For brevity we denote Problem (2.1), (2.2a), (2.3), (2.4a) by Problem A and Prob-
lem (2.1), (2.2b), (2.3), (2.4b) by Problem B. We observe that if u is a solution of
equation (2.1), then so is —u. Therefore, when discussing odd solutions of Problem
A, we restrict our attention to solutions with a positive initial slope, i.e. a > 0.
For any given @ € R™T there exists a unique local solution of Problem A
and for any given o € R there exists a unique local solution of Problem B. In
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both cases we denote it by u(x,a). The critical points of the solution graphs of
u(z, a), that is the zeros of u'(z, ), will play a pivotal role in the construction and
classifiation of the different families of periodic solutions. Below we summarize the
most important properties of these points. They were derived in [PT1-5].

We begin with a preliminary lemma which implies that all critical points are
isolated.

Lemma 2.1. [PT2] Suppose that u is a nonconstant solution of (1.1) such that
E(u) = 0, and that u'(z¢) = 0 at some xy € R.

(a) If u’(z9)=0 then  wu(zo) =+1 and u'"'(zo) # 0;
(b) If wu(xzp) ==+1 then v (x9) =0 and u'"'(z0) # 0.

Lemma 2.1 implies that, unless u is a constant solution, we can number the
critical points of the graph of u(z, «). We denote the positive local maxima by &g
and the minima by 7, with £ = 1,2,.... At inflection points these points coincide.
To start the sequences, we need to distinguish two cases:

(¢) v >0 in (0,6) and  (4) u <0 in (0,9),

for some small § > 0.

Case (i). When ¢/ > 0 in a right-neighbourhood of the origin, we define
& =sup{z>0:4" >00n[0,2)}. (2.5a)
If u”(&1) < 0 we set
m =sup{z > & :u <0on (&,7)}. (2.5Db)
When »”(&1) =0, and so u(&;) = 1 by Lemma 2.1, we set

m =& (2.5¢)

Case (i3). When »' < 0 in a right-neighbourhood of the origin, we skip & and
define
m =sup{z >0:u <0on[0,z)}. (2.5d)

In (2.5a-c) we have defined the first terms in the sequences {{;} and {7} in

both cases. We can now continue formally to larger values of k. For k > 2 we
define

£ = sup{z > nx_1:u' >0o0n (Mg_1,2)}, if v >0in (r_1,M—1 + 61),
k= Me—1 otherwise,

(2.6a)
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where 7 is some small positive number. Similarly, we set

sup{z > &, :u' < 0on (&,x)}, if v/ <0 in (&, & + d2),
Nk = . (26b)
&k otherwise,
in which d5 is some small positive number. It is readily seen that
€k < Mk < &kt1, k> 1. (2.7)

We will make extensive use of the following observation:

Remark. If u is a nonconstant solution, then one of the inequalities in (2.7) must
be strict.

To see this, suppose that
§k = M-

Then, because the zeros of u’ are isolated by Lemma 2.1, it follows from (2.6b)
that v’ > 0 in a right-neighbourhood of &, so that u has an inflection point at &,
where u"” > 0. Hence, by (2.6a),

M < Ek+1-

On the other hand, if
M = Ek+1,

then by Lemma 2.1 and (2.6a), v’ < 0 in a right-neighbourhood of & and u has
an inflection point at 7, where v < 0. Therefore, by (2.6b),

§k < Mk

In particular, this implies that
&k <&k+1 and m < mgy1 for every k> 1. (2.8)

In the following lemma we present the important continuity properties of the
critical points. In particular, we emphasize that, as a changes, critical points are
preserved and cannot disappear by coalescing with one another.

Lemma 2.2. [PT2,3] Suppose that ¢ > —/8. For every o € I, where I = R¥ in
Problem A, and I = R\ {—1,+1} in Problem B, and for every k > 1,

(a) &k(a) < oo and i (a) < oo;
(b) (& (), @) = 0 and ' (ne(e), @) = 0;
(C) &k € C(I) and n € C(I)

Remarks. (1) In [PT2,3], Lemma 2.2 has been proved for solutions of Problem
A. For solutions of Problem B the proof is similar (see also [PT5]).

14



(2) For odd solutions we have the following result: If ¢ < —+/8, then there exists
a unique value ag > 0 for which the corresponding solution u(z, o) tends mono-
tonically to 1 (the Kink), so that &;(ag) = oo and the sequence {£x} is not well
defined [Be2,3,PT1].

In order to proceed with the construction of new families of periodic solutions
with complex structure, we need to determine the precise local behaviour of u (&)
and u(n,) when they cross the level w = 1 or u = —1 as « changes. This is the
subject of the next lemma.

Lemma 2.3. [PT3,5] Let ¢ € R. Suppose that for some k > 1,
wék)=1 and " (&)=0 at a=a* (2.9)
and for some § > 0,

u(lk(a),a) >1 for a*<a<a®+d. (2.10)

(a) If u"" (&) > 0 at a*, then there exists an € > 0 such that

u(ép(a),a) > ulnk(a),a) >1 for o* <a<a*+e. (2.11a)

(b) If u" (&) < 0 at o*, then there exists an € > 0 such that

w(ép(a),a) > unr_1(a),a) >1 for a* <a<a*+e. (2.11b)

Remarks. (1) In [PT3], Part (a) of Lemma 2.3 was first proved for ¢ < 0, and
in [PT5] this restriction on ¢ was subsequently removed. The proof of Part (b) is
completely analogous to that of Part (a).

(2) A similar result applies when u(&) and u(ng) cross the line u = +1 from
below, or when () and u(ng) cross the line u = —1 from above or below.

(3) It is clear from Lemma 2.3 that critical values cross the lines u = 41 in pairs.
This is a property which we shall very much exploit in Section 8.

The next three lemmas give important global properties of solutions of equa-
tion (1.1). The first one applies to solutions which have a critical point on the line
u=1or on u = —1. Thus, let u be a solution of equation (1.1), and let a € R be
a critical point where u has the following properties:

w@)=1, u'(a)=0, u'(a)=0 and u"(a)>0. (2.12)
Then ' > 0 in a right-neighbourhood of a so that the point
b=sup{z>a:u' >0 on (a,7)} (2.13)
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is well defined. By Lemma 2.2, it is also finite. We now derive some properties of
u and its derivatives at b.

Lemma 2.4. Suppose that

—\/§<q<q:3=\/§<3+%).

Let u be a solution of equation (1.1) which at a point a € R has the properties
listed in (2.12). Then

wd) >1, 4'(b)=0, «'()<0 and " (b)<O0. (2.14)

The proof of Lemma 2.4 is given in Section 9. This result will play an important
role in the analysis of n-lap periodic solutions given in Section 6.

1

The second lemma applies to solutions for which 0 < u < 75 at a critical

point, and yields properties of the subsequent maxima and minima. We emphasize
that it is only valid for nonpositive values of q.

Lemma 2.5. [PT4] Suppose that —v/8 < ¢ < 0. Let u be a solution of equation
(1.1) on R such that £(u) = 0, and that for some a € R

0 <ufa) <

_%7

v'(a)=0, u’(a) >0 and u"(a)>0.

Then
lu| > 2 whenever uw' =0 on (a,w).

Here [a,w) is the maximal interval in [a,c0) on which u exists.

We conclude with a universal bound for bounded solutions.

Lemma 2.6. [Be2,3,PT4] Suppose that —/8 < ¢ < 0. Let u be a solution of
equation (1.1), which is uniformly bounded on R. Then

lulloo < V2.

3. Odd periodic solutions

In this section we investigate the existence and qualitative properties of odd
periodic solutions u of equation (1.1) for which £(u) = 0. In previous studies
(cf. [Be] and [PT2]) is was shown that for ¢ < —+/8 there are no such odd
zero energy periodic solutions for which £(u) = 0. However, for ¢ > —/8 odd
zero energy periodic solutions do exist. In fact, it was proved in [PT2] that as ¢
increases from —+/8, two families of odd, single bump periodic solutions emerge
as the result of a bifurcation from the unique increasing kink ¢ which exists at
g = —/8, and it was shown in [PT2] and [MPT] that they continue to exist for all
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g > —V/8. A precise description of these results is given below in Theorem 3.1. As
we shall see, these families of single bump periodic solutions will form a basis for
our topological shooting arguments, which lead to the construction of multi bump
periodic solutions with a more complicated structure.

Theorem 3.1. For every ¢ > —+/8 there exist two odd periodic solutions u and
u_ of equation (1.1), such that £(u) = 0, with the following properties:

(a) [utlloo > 1 and  [Ju_floo < 1.

(b) If uy(a) = 0 for some a € R, then
ur(a—y)=—ur(a+y) for yeR.

(c) If u!, (a) = 0 for some a € R, then
ur(a—y)=us(a+y) for yeR.

By way of convention we choose the origin such that u/,(0) > 0.

It was also shown in [PT2] that, as q decreases to —/8, both families of
periodic solutions tend to the unique odd increasing kink ¢ at ¢ = —v/8:

ur(,q) =@ as g— —V8 (3.1)

uniformly on compact sets. On the other hand, as g tends to infinity, the small
amplitude solutions u_ tend to zero uniformly on R, whilst the amplitude of the
large solutions u tends uniformly to infinity. More specifically,

u_(z,q) ~ q% sin(z/q) as ¢ — oo, (3.2a)
and
uy(z,q) ~qV(z\/q) as q— oo, (3.2b)

where V is an odd solution of the equation
v 40" + 03 =0, (3.3)

which possesses the symmetry properties listed in Theorem 3.1, and

1
max{|V(t)|:t € R} € (0, —=).
V@)t e Ry (0, 57)
At present it is not known whether the solution V' is unique. Thus, the convergence

in (3.2b) is along sequences, and the function V may possibly depend on the choice
of sequence.
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A numerically obtained plot of the two branches I'; and I'_ of odd single
bump periodic solutions:

Iy ={us(-q):q>—V8},

is presented in Figure 3.1. Along the vertical axis we set M = ||u|co-

0

~/8
Fig. 3.1. The branches I'y and I'_ of odd single bump periodic solutions

In the figure below we give graphs of solutions on the branches I'; and I'_ at

qg=1.
u
1
3.75 _1.25 125 3.75 7 /-7 \\3 3\\ 7 /X
3

Fig. 3.2. Small and large single bump periodic solutions (¢ = 1)

u

As mentioned earlier, the two families of single bump periodic solutions will
be used to construct further families of periodic solutions. In the following theorem
we present a family which also exists on the entire interval —v/8 < ¢ < co. These
solutions look like % in that their local maxima lie above u = +1 and all the local

minima lie below u = —1, with the exception of the first point of symmetry x = (.
At that point these extrema lie on the wrong side of the constant solution u = +1,
in case of a maximum, or © = —1 in case of a minimum:

(){<—1 if (=¢&; for some k> 2,
> 41 if (=mn for some k> 1.

We denote by Ty (N > 2) the branch of odd periodic solutions of this family, of
which the Nt? critical point is the first point of symmetry:

TN = {u(7Q) 1qg > _\/ga ul(<N7Q) = 07 um(CN;Q) = 0}

The branches T5 and T3, as well as solutions on these branches at ¢ = 1.5 are
presented in Figure 1.6.
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The existence of this family is the content of the next theorem.

Theorem 3.2. Let ¢ > —/8.

(a) For each N > 1 there exists an odd periodic solution u of equation (1.1) such
that £(u) = 0 and u/(0) > 0, which is symmetric with respect to ny, and has the
properties

u(€g) > 1 for 1<k<N

d > 1. 3.4
u(ng) <=1 for 1<k<N-1 (N>2) and u(ny) (3.4a)

(b) For each N > 2 there exists an odd periodic solution u of equation (1.1), such
that u'(0) > 0, which is symmetric with respect to &y, and has the properties

u(ée) > 1 for 1<k<N-1

d < —1. 3.4b
ulng) < -1 for 1<k<N-1 and u({n) ( )

Proof. We use an iterative type of argument, and begin by proving the ex-
istence of a periodic solution which is symmetric with respect to n;. This is the
case N =1 of Part (a). Such a solution is illustrated in Figure 1.6.

We denote the initial slopes of the zero energy odd single bump periodic
solutions w4 and u_, constructed in Theorem 3.1, by a4 and a_ respectively,
that is @y = u/, (0). From the construction in [PT2] we know that 0 < a_ < a;.
Plainly (see Figure 3.2),

u(&x) > 1 and u(ng) < —1 for k>1 when a=ay, (3.5a)
0<u(éx) <1 and —1<u(n) <0 for k>1 when a=a_, (3.5b)

where u(&;) = u(ék (@), @) and u(ng) = u(nk (), ). In view of (3.5a) we can define
ap =inf{la >0:u(&)>1 on (a,a4)},

and it follows from (3.5b) that a; € (a—,a;). By Lemma 2.2, the location of
the first critical point, &;(«), depends continuously on «, and by standard theory,
the solution u(z,«) of Problem (2.1), (2.2) depends continuously on « for z in
compact sets. Since £(u) = 0, it follows from Lemma 2.1 that

u(&r) =1, m=¢& and u(&)>0 if a=a;. (3.6)

By Lemma 2.3 this implies that u(n; (), ) > 1 for a € (a1,a; + J), where 6 > 0
is a small positive constant. Hence, we can define

ai =sup{a >a;:u(m)>1 on (ar,a)},

As we saw in (3.5a), u(m) < —1 at ay, so that ai € (a;,ay). Invoking the
continuity of 1, () and u(z, ), we deduce that

u(m) =1, m==¢& and u'(m)<0 if a=a]. (3.7)
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Using the continuity of 7;(a) and of u and its derivatives we see that (3.6) and
(3.7) imply that there must exist a point o € (a1,a]) where u/’(1;) vanishes,
and so

u'(m(ai),0]) =0 and u"(m(ef), ef) =0.

This means that the solution u(z, af) is symmetric with respect to 7, (a}). Since
it is also odd with respect to the origin, we conclude that u(z,af) is a periodic
solution with period 4n;. It is readily verified that it has the desired properties.

We continue with the construction of the periodic solution which is symmetric
with respect to &. This is the case N = 2 of Part (b), and such a solution is
illustrated in Figure 1.6.

Because u(n1) < —1 at ay, we can define

by =infla < a;:u(m)< -1 on (o,a4)},

and it follows from (3.6) that b; € (aj’, o). Like at a]", we once again invoke the
continuity of 71 and u and the fact that £(u) = 0 to conclude from Lemma 2.1
that

u(m) = —1, m==¢& and u”(n) <0  at b (3.8)
By a result similar to Lemma 2.3 we find that u(&2) < —1 in an interval (b1, b1 +9),
where § > 0 is sufficiently small. Thus, we can define

b =sup{a > by :u(é) < -1 on (by,a)}.

Remembering (3.5a), we see that b € (b1, o), and using the continuity properties
of &2 and u, we conclude that

u(&2) = —1, Ey=m2 and u"(&) >0  at by. (3.9)

Another application of the continuity of & and w and its derivatives implies the
existence of a point b} € (b1, b;]) such that

w(és) < —1, u'(&)=0 and u”(&)=0 at b7

As in the previous case, this means that u(x, b}) is a periodic solution with period
4¢5. Recall that b3 > aq, so that u(&;) > 1. Thus, this solution has the desired
properties.

Continuing in this manner, we successively prove the existence of all the pe-
riodic solutions listed in Theorem 3.2.

In addition to these branches of solutions, which exist for all ¢ > —+/8, there
exists a multitude of odd zero energy periodic solutions for —v/8 < ¢ < 0. In
Theorems 3.3 and 3.4 we present a few of these families. They exist in pairs.
Those corresponding to Theorem 3.3 are shown in Figures 3.3 and 3.4, and those
obtained in Theorem 3.4 in Figure 3.6.
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Fig. 3.3. Solutions symmetric with respect to 7; from Theorem 3.3(a)
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Fig. 3.4. Solutions symmetric with respect to & from Theorem 3.3(b)

1

A numerical study shows that the solutions obtained in Theorem 3.3 lie on branches
which are loop shaped. The branch for Part (a) is shown in Figure 3.5.

q

7 I
Fig. 3.5. Branch of solutions as constructed in Theorem 3.3(a) for N =1
Theorem 3.3. Let —/8 < q <0.

(a) For each N > 1 there exist two odd periodic solutions u, and us of equation
(1.1) such that £(u;) = 0 and u;(0) > 0 (¢ = 1,2), which are symmetric with
respect to nn, and have the properties

Ul(fk) > 1, u2(£k) >1 for 1<k<N

ur(me) < =1, we(mx) < -1 for 1<k<N-1 (if N>2) (3.10a)
—1<ui(nn) <0 <us(nn) < 1.

21



(b) For each N > 2 there exist two odd periodic solutions u;, and us of equation
(1.1), such that £(u;) = 0 and u,(0) > 0 (¢ = 1,2), which are symmetric with
respect to £y, and have the properties

Ul(é-k) > 1, ’U,g(fk)>1 for 1<k<N-1
ur(nk) < =1, we(mk) <—1 for 1<k<N-1 (3.10b)
—1<u(én) <0< uz(én) < 1.

Proof. We pick up the line of argument in the proof of Theorem 3.2, and
consider the interval [a1, b1]. We recall that

u(m)=1 at a3 and u(m)=-1 at by.

By continuity this implies that u(n;) has a zero on (a1,b1). Let ¢; be the smallest
zero of u(ny) on (ay,b1), and let

cf =infla<er:ulm) <1l on (o,c1)}. (3.11a)
Similarly, let d; be the largest zero of u(n;) on (aq,b1), and let
df =sup{a>d; :u(n) > -1 on (di,a)}. (3.11b)
Plainly, ¢] € [a],c1) and df € (d1, b1], and
u(m)=1 at cf and u(m) = -1 at di.

Since u(&;) > 1 on (ay, b1], it follows that u'”(n:) < 0 at ¢] as well as at dy .

We deduce from Lemma 2.5 that «"’(n1) > 0 at ¢; and at d;. For suppose to
the contrary that u"”(n;) < 0 at ¢; or at d;. Then we deduce from Lemma 2.5 that
u > /2 at every critical point on the interval [—n:,m:]. But u(—n1) = 0 because
u is odd, a contradiction. Thus, u”(n;) changes sign on (c],¢1) and on (dq,d7),
so that there exist a point ¢} € (¢],c1) and a point d} € (dy,d;) such that

v (m)=0 at ¢ and dj.

Writing u;(z) = u(z,dy) and uz(z) = u(zx,c}), we conclude that u; and ug are
odd periodic solutions which are symmetric with respect to 71, and that they have
the properties

u1(§1) > 1, U2(§1) >1 and —-1< ul(nl) <0< ’LL2(’I71) < 1.

This completes the proof of the case N = 2 of Part (a).

Next, we construct a pair of odd periodic solutions which are symmetric with
respect to £o. This corresponds to the case N = 2 of Part (b). To this end, we
define

ag =inf{a < a;:u(é)>1 on (a,a4)}.
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Plainly, b; < as < ay. Because u(§3) = —1 at by and u(&2) = +1 at aq, u(&2)
has a zero on (b1,as). Let e; be the smallest zero of (&) on (b1,as) and f; the
largest. Then, proceeding as in the previous case we show that u'”(&2) has two
zeros, e} and f;, on (b1, as) such that uy(z) = u(z,e}) and ug(x) = u(z, fy) are
periodic solutions with the following properties:

ui(§1) > 1, wui(m) <-1 (i=1,2),

and
-1< U1(£2) <0< U2(£2) < 1.

This completes the proof of the case N = 2 of Part (b).
For the next step we define

by =inf{a < at :u(n2) < —1 on (o, a4)}.

Since u(n2) = 1 at asq, it follows that by > as. By repeating the arguments applied
to the interval [aq, b1] to [az, bs], we prove Part (a) for N = 2. We can continue
this process indefinitely, and so successively prove all the cases in Parts (a) and
(b) of Theorem 3.3.

Remark. Using a continuity argument, we can show that the families of periodic
solutions described in Theorem 3.3 continue to exist for small values of ¢ > 0. This
is consistent with the numerically computed bifurcation branch shown in Figure
3.5 for the case N =1 of Part (a).

In the next theorem we obtain a different family of periodic solutions. To
explain the difference, let u be a periodic solution which is symmetric with respect
to its nt" critical point ¢,. Then solutions of Theorem 3.3 have the property that

lu(lk)| >1 for 1<k<n—-—1 and |u((,)| <1.
In contrast, the solutions of Theorem 3.4 have the property that
[u(@e)| >1 for 1<k<n-2 and [u((-1)[<1, [u(C)l <1

Thus, whereas in the first family, the point of symmetry is the only critical point
at which v € (—1,1), in the second family the value of u at the point of symmetry,
as well as at the two adjacent critical points, lie in the interval (—1,1). A pair of
such solutions is shown in Figure 3.6. Since the characteristics of these solutions
are not very clear when ¢ < 0, we have set ¢ = 1.5.

M u u

>
>
>
>
—
—
=
—

1.50
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Fig. 3.6. Solutions symmetric with respect to &2 from Theorem 3.4(a)
(N =2,q=1.5)
Theorem 3.4. Let —/8 < qg <0.

(a) For each N > 2 there exist two odd periodic solutions u, and us of equation
(1.1) such that £(u;) = 0 and u;(0) > 0 (¢ = 1,2), which are symmetric with
respect to £y, and have the following properties:

ui(gk)>1 for 1<k<N-1

) for i=1,2, (3.12a)
wi(ng) <=1 for 1<k<N-2 (if N>3)

and
0<wu;j(ény)<1 for i=1,2,

3.12b
—-1< Ul(T]N_1) <0< U,2(77N_1) < 1. ( )

(b) For each N > 2 there exist two odd periodic solutions u;, and us of equation
(1.1) such that E(u;) = 0 and w;(0) > 0 (¢ = 1,2), which are symmetric with
respect to ny, and have the following properties:

ui (&) > 1 forr 1<k<N-2 (if N>3)

for i=1,2, (3.12¢)
wi(mk) <=1 for 1<k<N-1

and
0<wui(ny) <1 for i=1,2,

—1<ui(én) <0< uy(én) < 1. (3-12d)

Proof. (a) We begin with the proof for N = 2. To that end, we return to
the interval [a1,b;] defined in the proof of Theorem 3.3, and consider the two
subintervals:

I1_=[G,1,Cl] and Iii_:[dl,bl],

where ¢; and d; are, respectively, the smallest and the largest zero of u(n;) on
(a1, b1). and we observe that by Lemma 2.5,

w(é) >1 and u(ng) <—-1 for k>2 at c¢; and d;. (3.13)
We first consider the interval I7. As in (3.11a) we set
c; =infla<er:ul(m) <1l on (o,c1)}.

Then af < ¢ < ¢;. By Lemma 2.3, u(¢2) < 1 in a right-neighbourhood of ¢, so
that we can define

cf =sup{a>cy :u(é) <1 on (c],a)}
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It is clear that ¢i” € (ci,c1) and that
w(é)=u(p)=1 and u"(&)>0 at cf.

Since u" (&) < 0 at ¢y, it follows that u'”(£2) has a zero ¢ € (c;,ci). Thus
uz(z) = u(x, c}) is an even periodic solution with the properties

U2(£1) >1, 0< Ug(fz) <1l, 0K U2(7]1) <1 and u'2"(£2) =0. (3.14&)

For the second solution we consider the interval I~ = [dy, b;]. Because u(&3) =
—1 at by we can define

b7 =inf{a < by :u(é) <1 on (a,b1)},

and in view of (3.13) it follows that b € (d1,b;). Since u(n) < 0 on I; and
u(€2) = 1 at by, we conclude that u’(£2) > 0 at by . Let

by = sup{a > b :u(&) >0 on (b7, a)}.

Plainly, b7 < by < by. As in the proof of Theorem 3.3, we deduce from Lemma
2.5 that (&) < 0 at b;. Therefore, u’(&2) changes sign on (by ,b1), and hence
there exists a point b} € (b7, b1) where u'”(£2) vanishes. This means that u,(z) =
u(z, b}) is a periodic solution endowed with the properties

ur(é1) > 1, 0<ui(é&) <1, —1<ui(m)<0 and uj'(&)=0. (3.14Db)

This completes the proof of Theorem 3.4(a) for N = 2.

To prove Part (a) for N = 3, we repeat the above arguments for the interval
[a2, by] defined in the proof of Theorem 3.3. For N = 4 we consider the corre-
sponding interval [ag, b3] and generally, we consider the interval [an_1,bn_1] for
arbitrary N > 2.

For the proof of Part (b), say for N = 2, we consider the interval [by, as].
Proceeding as in the proof of Part (a) (N = 2) we now find solutions which are
symmetric with respect to 7o for values of a on (b1,e1) and (f1,az2), where e;
and f; have been defined in the proof of Theorem 3.3. The argument, and its
generalisation to higher values of N is very similar to the arguments involved in
the proof of Part (a), and we shall therefore omit the details.

4. Even periodic solutions: /8 < qg < V8

In this section we establish the existence of an infinite sequence of countable
families of even periodic solutions of equation (1.1) for ¢ € (—+/8,/8), distin-
guished by the number and location of local maxima and minima of their graphs.
Thus, whereas some of the results obtained for for odd solutions were only valid
for ¢ < 0, the results proved in this section are also valid for positive values of ¢
up to v/8. In the next five sections we go even beyond this number, and show how
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the branches of multi bump periodic solutions obtained in this section extend to
higher values of q. As we stated in Section 2, we shall use a shooting technique
to establish the existence of these solutions, and hence, thanks to symmetry with
respect to = 0, we will study the initial value problem

u’ +qu’ +ud—u=0 for x>0 (4.1a)
u0) =a, ¢ (0)=0, u"(0)=p, u"(0)=0. (4.1b)

Again, we only discuss solutions for which the first integral is zero, i.e.

£(u) %yl — %(u")2 + 2w+ Fw) =0, (4.20)
where
F(s) = 3(32 C1)? and F(s) = f(s) = s® — 5. (4.2b)
This means that
8% B(a) = i%\oﬁ _1l. (4.3)

The cases u(0) > 0 and u”(0) < 0 will be dealt with in succession. We refer to
them by, respectively, Case I and Case 1II:

CaseI: v”(0)>0 and  CaseIl: u”(0) <0.

In both cases we shall denote the solution of problem (4.1) by u(zx, «).

Note that the single bump periodic solutions of Section 3 become even solu-
tions after a shift over a quarter of a period. Thus if the period of u4 is 444, and
M:t = ||’u,:|:||oo, then

w(x,—My) =uyp(x— L) in Case I,

: (4.4)
w(z,+My) =uyp(x — L) in Case II.

These solutions provide the point of departure for the shooting arguments which

will yield new families of even periodic solutions with more complicated structure.

For convenience we provide the graphs of u(z, —M.) in Figure 4.1.

u u

1 JANEE /\

Fig. 4.1. The small and the large single bump periodic solutions for Case I
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We begin by establishing the existence of a new family of even, single bump
periodic solutions whose maxima lie above the line v = +1, and whose minima lie
between the lines u = —1 and u = +1. In Figure 4.2 we give examples of two such
solutions computed at ¢ = —2 and ¢ = 2.

ATATATAREERPAYAAYA!
/_39 \/_13 13 \/ 39 \ 15 5 5 15

-1 -1

Fig. 4.2. Even single bump periodic solutions for ¢ = —2 and ¢ = 2

It is readily apparent that these solutions are qualitatively different from those
shown in Figure 4.1, because |u(z, —M_)| < 1 for every z € R and |u(z, —M,)| >
1 at every critical point. Like I'_ and T';, this new family of solutions forms a
branch I'y which bifurcates from the unique odd kink ¢(z) at ¢ = —+/8. However,
as the bifurcation diagram in Figure 4.3 below shows, in contrast to the branches
I'_ and I'y, which extend all the way to ¢ = +o0o (see Fig. 1.3), our computations
indicate that I'; only extends over the finite g-interval (—\/g, \/6_3), and bifurcates
at ¢ = /8 from the constant solution © = +1. In Theorem 4.1 we prove that the
new solutions indeed exist for every ¢ € (—v/8,v/8).

| ‘q
-/8 /8

Fig. 4.3. Branch of even single bump periodic solutions

Theorem 4.1. Let ¢ € (—/8,1/8). Then there exists an even, single bump
periodic solution u such that £(u) = 0, and

—1 < min{u(z) : ¢ € R} < +1 < max{u(z) : z € R}.

Proof. The proof uses ideas developed in [PT5]. Since we seek a single bump
periodic solution, it follows that u''(0) > 0, so that we are in Case I. We follow
u(&1) as « varies, and seek a value of @ € (—1,1) such that

w()>1 and  4"(&) =0. (4.5)
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Then, by symmetry, u is a periodic solution with half-period L = £; whose maxima
and minima are located as indicated above:

min{u(z) :z € R} =a € (-1,1) and max{u(z):z € R} =u(&) > 1.

To find such a value of «, we use the auxiliary functional

H(u) = %(u")Q + 3wy + P, (4.6)

where F' has been defined in (4.2b). Let u(x) be a smooth function. Then we
write

Differentiation yields
H = o'y +qu/U// + f(U)UI, (4.7)

and if, in addition, u is a solution of equation (1.1), then
HII — (ulll)z +QUIUIII + f'(u)(u')z. (48)

The right hand side of (4.8) is a second order polynomial in v/, with discriminant

D = {q* — 4f"(u)}(u')*. (4.9)

Thus, H"” will be nonnegative whenever

2 4*+4
?<4Bu?-1) or ur> TR (4.10)
Define
¢*+4

= . 4.11
o 12 (4.11)

Then aq € (0,1) as long as ¢2 < 8.
Lemma 4.2. Let ¢> < 8, and let o € [ag,1). Then

u(éy) > 1 and u'"' (&) < 0.

Proof of Lemma 4.2. Let o € [ag,1). Then u”(0) > 0, so that u/(z,a) > 0
and u(z, a) > ap for 0 < z < &;. This implies, by (4.8) and (4.10), that H" (z) > 0
for 0 < z < &1, and so

H'(z)>H'(0)=0  for z € (0,&). (4.12)

Hence
H(&) > H(0). (4.13)

28



According to the identity (4.2),
(w')? =2F(u) if u =0. (4.14)
Therefore, at any critical point ¢ of u we have

H(C) = 2F (u(¢))- (4.15)

Combining (4.13) and (4.15), we conclude that

F(u(é1)) > F(ao)-

Because F/ = f < 0 on (0,1) and ag € (0, 1), this implies that u(&;) > 1. From
(4.14) we deduce that u”(£1) < 0. Because H'(&1) > 0 by (4.12), we conclude from
(4.7) that u"'(&1) < 0, and the proof of Lemma 4.2 is complete.

We now continue with the proof of Theorem 4.1. By Lemma 4.2, u(&;) > 1
at o = ag. Thus, remembering that u({;) = M_ < 1 when a« = —M_, we can
introduce the point

ap =infla<ap:u(é)>1 on (o,a0)},

and conclude that oy € (=M_, ap). It follows from the continuity of &;(a) and
u(&1(a), @), established in Lemma 2.1 and Lemma 2.2, which we can apply because
E(u) = 0, that

U(gl) = 1, u"'(ﬁl) >0 and £1 = at 1. (416)

The fact that u'”(&;) is positive at «; follows from Lemma 2.1 and the definition
of &. Thus u'(&;) has changed sign on (ai,ap). Since u''(£1(a), @) depends
continuously on a by Lemma 2.2, there must be a point af € («a1,ag) where
u"(&1) vanishes, i.e.

" (&1(a}),a3) = 0. (4.17)

Remembering that u/(£1) = 0 as well, it follows by symmetry that the function
u(z, a}) is an even, single bump periodic solution, which is symmetric with respect
to &1, such that u(&;) > 1 and the period is 2¢;. This completes the proof of
Theorem 4.1.

We continue with the construction of an even, 1-bump periodic solution, which
is symmetric with respect to £&. We have seen in (4.16) that when o = a4, then
uw=1and v > 0 at £&. This means that u(&) > 1 at ;. We now define the
point

ar=sup{a>-M_:u()<1l on (—M_,a)}.

Then &; € (—M_, ap), and (4.16) holds, but now at &;. Thus, u(&2) > 1 at @,
and we define
ay =infla < éy:u(é) >1 on (a,d1)},
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Since u(§2,—M_) = M_ < 1, we can conclude again that ag € (—M_, ay).

As before, v’ (£3) > 0 at as. Thus, it remains to determine the sign of u"’(&2)
when o« = ;. We have
Hl(gl) =0 at &1.

Because u(x) > 1 for z € (£1,&2], it follows that H” > 0 on ({1, &2), and

H' (&) =u"(&)u" (&) >0 at  a;.

Plainly, u(§2) > 1, and hence, by the first integral, u”(&2) < 0. Thus, u'/(£3) < 0
at a1, and u"’(£;) has changed sign on (ag, @), and therefore has a zero o} in
this interval:

u"(&1(03), a5) = 0. (4.18)

By symmetry this yields an even periodic solution u(z,a3) which is symmetric
with respect to &3, so that u(§2) > 1, u(§1) < 1 and the period is 2&5 (cf. Fig
4.4(a)).

We can now construct an N-bump periodic solution for any N > 2 by contin-
uing the above process in an iterative manner. This yields a decreasing sequence
of numbers {a}} such that the solutions ug(z) = u(z, ) are even and periodic
with period 2£;. They have the properties

up(&) <1 for j=1,...,k—1 and wug(&) > 1. (4.19)

Thus we have proved:

Theorem 4.3. Let —/8 < ¢ < /8. Then for any N > 2 there exists an even
periodic solution u of equation (1.1) such that £(u) = 0 and u"(0) > 0, which is
symmetric with respect to &n and has the properties:

(a) u has N — 1 local maxima on the interval (0,&y).

(b) All the local maxima of u, except the one at the point of symmetry, £y, lie
below the line u = 1, but u(éy) > 1, i.e.

w(ér) <1 for 1<k<N-1 and u(ly)> 1.

For N =2 and N = 3 such solutions are shown below in Figure 4.4.

AN A\ A A
/\/,\/\ /\/,\/\x MM
/ 7 7 \ 11 11

(a) N =2 (b) N =3
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Fig. 4.4. Multi bump periodic solutions of Theorem 4.3; u"'(0) > 0 and ¢ = 2

In addition to the family of periodic solutions uy described in Theorem 4.1
and Theorem 4.3, which are symmetric with respect to &£y for some N > 1, there
exists a corresponding family of periodic solutions which are similar to uy, but
they are symmetric with respect to nx. Such solutions are shown in Figure 4.5.
The existence of this family of solutions is established in Theorem 4.4.

NRAVNAN |
] 7 85 8.5 \ 125 125
(a) N=2 (b) N=3

Fig. 4.5. Multi bump periodic solutions of Theorem 4.4; v”(0) > 0 and ¢ = 2

Theorem 4.4. Let —/8 < qg < /8. Then for every N > 1 there exists an even
periodic solution u of equation (1.1) such that £(u) = 0 and u”(0) > 0, which is
symmetric with respect to nny and has the properties:

(a) u has N local maxima on the interval (0,ny).

(b) w(ég) <1l for 1<k<N-1 if N>2
(c) u(én) >1 and wu(nn) > 1.

Proof. We give the proof for N = 2. For N =1 and for N > 3 it is similar.
For further details we refer to [PT5]. We recall the point ay defined in the proof
of Theorem 4.3, and in particular that

u(é2) =1, u" (&) >0 and &= at  as. (4.20)
Therefore, by Lemma 2.3, u(nz) > 1 for a € (g, as + §) for some small § > 0.

At the point a5 > ay — also defined in the proof of Theorem 4.3 — the solution
u(z, ad) is symmetric with respect to &2, and hence

u(n) = u(m) <u(é) <1 at  aj.

Thus
@z =sup{a > a2 :u(n2) >1 on (az, )}

is well defined, and @ € (a2, 03). We have
u(&2) > 1, u(nz) =1 and o (n2) <0  at as.
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Remembering from (4.20) that u'/(n2) > 0 at ag, we conclude that there must
be a point a3* € (ag,@2) where u’(n2) vanishes, so that u(z,a3*) is a periodic
solution of equation (1.1) with the properties listed in Theorem 4.4 for N = 2.

For any g € (—/8,v/8), there exists yet another family {u,,} of even periodic
solutions. They are characterised by the properties:

(P1) For every n > 1, u,, is symmetric with respect to the n*® critical point (,;

un(Cx) > 1 if (g is a maximum

(P2) } if k=1,...,n—1.

un(Ck) <1 if (g is a minimum

and these inequalities are reversed at k = n. This family was first investigated in
some detail in [PT5], where the proof of their existence can be found. We show
three solutions of this family in Figure 4.6.

45 45 -7 7 95 95

Fig. 4.6. Multi bump periodic solutions at ¢ = 2.5
These solutions are interesting because of the following conjecture:

Conjecture. Let u,, be a sequence of even periodic solutions with the properties
P1 and P2, and let u,(0) = a,. Then a,, — a* asn — oo, and u(x, a*) is an even
homoclinic solution of equation (1.1) with u(0, a*) < 1.

Remark. Following the construction described in [PT5], it is possible to obtain an
infinite sequence of periodic solutions wy,, such that w,, (0) > 1 and w]/(0) < 0. This
leads one to conjecture that there exists a homoclinic solution w(z) of equation
(1.1) with w(0) > 1.

We now investigate Case II, where we assume that u”(0) < 0, and establish
results similar to those obtained in Theorems 4.1, 4.3 and 4.4 for Case I. We
emphasize that since the first critical point is now a minimum, which is denoted
11, we skip £&; and number the critical points as follows:

0<771<§2<772<....

We begin our analysis of Case I by proving a result analogous to Lemma 4.2. For
this recall the definition of ag given in (4.11), and the fact that 0 < o < 1 for

—V/8 < g < V8.
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Lemma 4.5. Let ¢> < 8, and 4" (0) < 0. Then there exists a point & € (ag,1)
such that if o € [&, 1), then

uw()>1 and u"(&) <0 at o

Proof. From a linear analysis at u = 1, of which the details can be found in
the Appendix, we see that

3m a . Ta
& (a) — m and u(m (a), @) ~ 1—(1—a)z smh(2—b) as a— 1,

where a and b are positive constants which are independent of «, and given in
equation (A.4) of the Appendix. Thus, there exists an @ € (ap,1) such that if
a € (a,1), then

u(z,a) >ap if 0<z<E.

Hence, by (4.10),
H'(z) >0 if 0<z<&.

Because H'(0) = u”(0)u"’(0) = 0, this implies that
H((z)>0 if 0<z<&. (4.21)

Thus H(0) < H(m) < H(&), and hence, by (4.15), F(u(0)) < F(u(m)) <
F(u(&2)). This means that u(&3) > 1. We also deduce from (4.21) that H' =
u"u" > 0 at &. Since u”(&2) < 0, we conclude that u"/(£2) < 0. This completes
the proof.

Thus, for a € (0,1) sufficiently close to 1, we have u(&2) > 1 and u"’(§3) < 0.
On the other hand, when o = M_, we have u(€2) < 1. Therefore, we can define
the number

az =inf{la<1:u(f) >1 on (1)}

and o € (M_,&). Plainly, u(é) = 1 and u"'(§2) > 0 at aq, so that u'(&2)
must have a zero for some a3 € (M_, 1), which yields the first of a family of even
periodic solutions with u”(0) < 0. As in the proof of Theorems 4.3 and 4.4, we can
continue inductively and prove the existence of two families of periodic solutions:

Theorem 4.6. Let —/8 < ¢ < /8. Then for any N > 2 there exists an even
periodic solution u of equation (1.1) such that £(u) = 0 and u”(0) < 0, which is
symmetric with respect to £x and has the properties:

(a) uw has N — 2 local maxima on the interval (0,&y).

(b) uw(é) <1l for 2<k<N-1 if N >3,
(c) u(én) > 1 if N>2.
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Theorem 4.7. Let —/8 < qg < /8. Then for every N > 2 there exists an even
periodic solution u of equation (1.1) such that £(u) = 0 and u”(0) < 0, which is
symmetric with respect to ny and has the the properties:

(a) u has N — 1 local maxima on the interval (0,nn).

(b) u(ép) <1l for 2<k<N-1 if N>3
(c) u(én)>1 and u(ny)>1 if N>2.
u u

N N 1 N

TimiTuIVAYVAY

_1 1

(a) See Theorem 4.6: N = 2 (b) See Theorem 4.7: N = 2
Fig. 4.7. Multi bump periodic solutions: " (0) < 0 and ¢ = 2

5. Local analysis near v =1

In order to extend the existence results of the previous section to the range
g > /8, we need to develop further analytical techniques. This is because Lemma
4.2 no longer holds for ¢ > /8. These techniques will rely on a detailed analysis
of the local behaviour of solutions near © = 1. Thus, we substitute ©« = 1 +ev into
(1.1) and require that u(0) = 1 — ¢ After omitting the higher order terms in ¢, we
then obtain the linear equation

v+ v +20=0 (5.1a)
and at the origin, the initial conditions become

v(0) = —1, v'(0) = 0, (v")2(0) =2, and v"'(0)=0. (5.1b)

The fact that v should be even implies that v’ and v"” vanish at the origin, and the
assumption that the energy & is zero leads to the condition on (v”)%. A detailed
analysis of this problem is given in the Appendix of this paper and in Appendix
B of [PT5]. For easy reference, we give here the main results of this analysis. As

in Section 4, it is necessary to distinguish two cases:
CaseI: v"(0)=+v2 and Casell: v"(0) = —V2,

and we denote the solution of Problem (5.1) in these two cases by v (z), so that

V1 (0) = +v/2.
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The roots £\ and +u of the corresponding characteristic equation are defined
by
A=ida and p=1b, (5.2a)

in which @ > 0 and b > 0 are defined by

a2:%(q+ vq?>—8) and b2:%(q—\/q2—8). (5.2b)

In what follows, the values of ¢ at which resonance occurs (cf. [GH], p. 397), i.e.

%:%, m,n € N (n>m) (5.3)

will play a special role. These values are readily computed to be
n om
Gmn = V2 (— + —). (5.4a)
m n

For convenience we write ¢, = q1.p, 1.€.

I = V2 (n + %) (5.4b)

In the following two lemmas we state the main results about the solutions v (z)
of Problem (5.1). In the first one we present the explicit expressions of these
solutions.

Lemma 5.1. The solutions vy (z) of Problem (5.1) are given by
vy (z) = Ay cos(azx) + By cos(bx), (5.5a)

where
VP FV2

a2 — b2

_d’FV2

Ay e

and Bi = (5.5Db)

In the second lemma we focus on the critical points of the solutions vy of
Problem (5.1). In particular, it will be important for our shooting arguments in
Section 6 that we know the location of these point with respect to the v = 0 axis

— above or below — and the sign of the third derivative v/’ at these points.

Lemma 5.2. Let ¢ be a critical point of the solution v of Problem (5.1), i.e.
v'(¢) = 0. Then

sin(a() + sin(b¢) = 0 in Case I, (5.6a)
sin(a¢) — sin(b{) = 0 in Case II, (5.6b)
and
v (Q) = C;;Fi_\b/f{:l:g cos(al) — cos(bC)} (5.6¢)
v"l'(¢) = b(a® F V2) sin(bC). (5.6d)
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In both cases,
sgnv(¢) = —sgn (cos(b¢)) (5.6e)

and
sgnv’’(¢) = sgn (sin(b()). (5.6f)

The proof of Lemma 5.2 is elementary, and makes use of the observation that
Ai/Bi = +b/a and that ab = /2.

6. Even periodic solutions: —/8 < ¢ < ¢3

In this section, and in Section 8, we investigate the existence of even periodic
solutions u for which £(u) = 0. As was explained in the Introduction, we find it
convenient to label the solutions according to the number of monotone segments,
or Laps, that go in a half-period. Thus, the solutions of Theorem 4.1 are called
1-lap solutions. In the subsequent theorems of Section 4 we have shown that for
every q € (—/8,v/8) there exist n-lap solutions for any n > 1.

Numerical evidence suggest that 1-lap solutions no longer exist for ¢ > v/8,
but that 2-lap solutions still exist for some values of ¢ > /8, and that n-lap
solutions exist for n large enough. Specifically, we prove the following result. Let

qn:\/§<n+%), n > 1. (6.1)

Theorem 6.1. For each n > 2 there exist two families of even periodic n-lap
solutions when q € (—/8,q,). At the points of symmetry, (,, we have

u(Cn) > 1 for every n > 1.

Whereas in Section 4 we could use the properties of the functional H(u),
when ¢ > /8 this is no longer possible. The main ingredients used in the proof
will now be the linear analysis given in Section 5, a powerful Comparison Lemma,
(Lemma, 2.4) valid for ¢ € (—/8, ¢3) and, in Section 8, a counting argument which
is reminiscent of a topological degree argument.

The Comparison Lemma, enables us to obtain information about the location
of all the critical values of the solutions with respect to the line u = 1. In the
present section we assume that —/8 < ¢ < g3, so that the Comparison Lemma
holds. In Section 8 we allow ¢ to be arbitrary large, and develop the counting
argument.

In the first result of this section we show that when —v/8 < ¢ < g9, then there
exist two families of n-lap solutions with n > 2. We begin with a pair of 2-lap
solutions.

Theorem 6.2. Let —/8 < ¢ < ¢o. Then there exist two even 2-lap periodic
solutions us, and ugy of equation (1.1), such that €(us,) = 0 and & (ugp) = 0, with
the following properties:
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(a) The solution us, is even with respect to s,

uy,(0) <0  and  wug.(&1) > 1.

(b) The solution ugp is even with respect to 1,

uhp(0) >0  and  wugp(my) > 1.

We denote the branches of these solutions by, respectively, I's, and I'y,. These
branches, as well as graphs of two specific solutions us, and ugp, are presented in
Figure 6.1. Recall that M = ||u|co-

M M
1.50 |

1.25+1 1.25 +

7J§‘ JG% dz dz

(a) The branches I'y, and I'y, and a blowup at ¢o

u u
A 1 /\\ [\ f/\ / \ / \1 / \ / \
o1 7 7 21@‘ / 18 \/ 6 6 \/ 18 (
-1 -1
(b) Graph of ug, at ¢ =2 (c) Graph of ugp at ¢ =3

Fig. 6.1. Solutions of Theorem 6.2

Proof. We first consider Part (b) and prove the existence of the solution uap,
for which «”(0) > 0 (Case I). For convenience we have dropped the subscript 2b.
We distinguish three cases:

(i) V8<q<ugss (i) q=ygss, (477) q35 <q < qo.
According to (5.3) and (5.4a), these cases correspond to

a a
N <@ @D iy O o
(1) 1< p <3 (17) p = 3 (131) - < —-<2
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Case (i): Recall from Section 5 that v denotes the solution of equation (5.1a), the
linearisation of equation (1.1) around u = 1. It follows from Lemma 5.2 that in
this case

v(&1) >0 and  ov(m) <0.

Hence, it follows from continuity that there exists a § > 0 such that
w(é1)>1 and wu(m)<1 for 1-d<a<l. (6.2)
Recall that u(¢;) = M_ < 1 when @ = —M_, and define
ap =infla<1:u(§)>1 on (o,1)}.

Then, by Lemma 2.3, u(n;) > 1 for a1 < a < a; + v for some small v > 0.
However, u(n:) < 1 for « close to 1. Therefore

by =sup{a >aj:u(m) >1 on (a1,a)} € (a1, 1).
Plainly, at b; we have u(n;) = 1 and by Lemma 2.1, u"”(n1) < 0. Since u"'(n1) > 0
at a; and v’ (n1) < 0 at by, it follows that u”’(1;) has a zero for some o* € (a1, by),

and again we use symmetry to conclude that u(x,a*) is a periodic solution with
the desired properties.

Case (2¢2): From Lemma 5.2 we see that in this case
v(&1) > v(n) >0 and " (m) <0.
Hence, there exists a § > 0 such that
w(é) >u(p)>1 and u”'(m)<0 for 1-d<a<l. (6.3)
As before, we define
ap =infla<1:u(&)>1 on (a,l]}.

and
by =sup{a >aj:u(m)>1 on (a1,a)} € (a1,1].

Recall that u"'(n1) > 0 at a1, so that by > a; by Lemma 2.3. If b; = 1, then
(6.3) implies that u’(n1) < 0 for @ near by. On the other hand, if b; < 1, then
u"(m1) < 0 at by. Thus, in both cases v’ (1) changes sign on (a1, b1). Once again
the existence of a periodic solution of the desired type follows.

Case (22): From Lemma 5.2 we see that in this case,
v(€) >v(m)=0 and  v"(m) <O0.
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Thus, there exists a 6 > 0 such that
w(é)>1 and u"'(m)<0 for 1-6<a<l. (6.4)

Fix a € (1 —4,1). If, for this value of o, u(n;) < 1 we can complete the proof as
in Case (2), and if u(n;) > 1, we can complete it as in Case (¢i7). This finishes the
proof of Part (b).

Next, we prove Part (a). Recall that £, denotes the first positive local maxi-
mum of u since u”(0) < 0. From Lemma 5.2 we conclude that

v(n) <0 and w(&) >0, v"(&) <0
for the entire interval ¢; < ¢ < g2. Hence, there exists a § > 0 such that
u(m) <1 and u(é&)>1 u"(&)<0 for 1-d<a<]l. (6.5)

Set
ay =infla <1:u(§2) >1 on (o, 1)}

Then M_ < ay < 1. Plainly, v"’(§2) > 0 at aq. Since by (6.5), u"’(£2) < 0 for o
close to 1, it follows that there exists a point a} € (az, 1) such that u"’(£;3) > 0 at
o, and hence u(z,a}) is an even periodic solution with period 2£2(c). Finally,
u(€2,a3) > 1 since ay < aj < 1. This completes the proof of Theorem 6.2.

Remark. We have now shown that the solutions us, and wug, exist over the entire
interval (—+/8, g2). Our numerical investigation (Figure 6.1(a)) indicates that uap
does not exist past go although it appears that us, does exist on a small g-interval
beyond gs. Our experiments also indicate that the branches I's, and I'g,, on which
these solutions sit, disappear at g as a result of a bifurcation from the constant
solution u = 1. In Section 7 we shall give an explanation for the behaviour of the
two branches I'y, and I'g, near the point (¢, M) = (g2, 1).

Theorem 6.2, together with Lemma 2.4, enables us to establish the existence
of two families of even n-lap periodic solutions, for any n > 2.

Theorem 6.3. Let —/8 < q < g2, and let n > 2. Then there exist two families
of even n-lap periodic solutions u of equation (1.1), such that £(u) = 0, one for
which u"(0) > 0 and one for which u"(0) < 0. They are symmetric with respect
to the n® critical point (,,. The critical values have the properties

w(Cr) <1l if k<n—-2(Mm>3) and u((,) > 1,

and
w(Cp—1) <1 if (, is a maximum,

w(ln_1) >1 if (, is a minimum.

Proof. The proof proceeds very much along the lines of the proofs of Theorems
4.3 and 4.4. To show how Lemma 2.4 is used, we give the proof for the 3-lap
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solution when u”(0) > 0. This solution is symmetric with respect to £s. Otherwise,
we leave the proof as an exercise.
Let
a; =sup{a>-M_:u(1) <1 on (—M_a)}.

It follows from Theorem 6.2 that a; € (—M_,1). In addition,
w(é)=1 and «"(&)>0 at aj.
Thus, in view of Lemma, 2.4,
u()>1 and u"(&) <0 at aj.

Next, let
ap = inf{la < a] :u(&) >1 on (a,a7)}.

Then as € (—M_,a’z), and
uw() =1 and (&) >0 at as.

Therefore, u"’(£3) changes sign, and thus has a zero o, on (ag,a7). It is clear
from the construction that the solution u(x, %) has the required properties.

Next, we turn our attention to the interval (—\/g, g3), and show that n-lap
solutions continue to exist up to g3 for n > 3. We first focus on 3-lap solutions.

Theorem 6.4. Let —/8 < ¢ < q3. Then there exist two even 3-lap periodic
solutions ug, and ugp of equation (1.1), such that £(us,) = 0 and & (ugp) = 0, with
the following properties:

(a) The solution us, is even with respect to s,

Uga(()) >0 and u3a(§1) < 1a u3a(€2) > 1.
(b) The solution ugy is even with respect to ns,

usy(0) < 0 and  wugp(n2) > 1.

The branches I'3, and '3y, of these solutions, as well as graphs of the solutions
uz, and ugp at a specific value of g are presented in Figure 6.2.

1.50 +

1.25 +
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(a) The branches I's, and I's, and a blowup at g3

N\ N\ N
NARNANEEVAVYAY
(b) Graph of ug, (¢) Graph of ugp

Fig. 6.2. Solutions of Theorem 6.3 at ¢ = 2

Proof. For —/8 < ¢ < ¢, the existence of solutions such as us, and usp has
been established in Theorems 4.3, 4.7 and 6.3. Thus, it suffices to prove Theorem
6.4 for g2 < q < q3.

(a) Set
ap =sup{a>—-M_:u() <1 on (—M_,a)}.

From Lemma 5.2 we know that when ¢, < g < ¢3, then
v(&) >1 and w(n) < 1.
Hence, by continuity, there exists a constant § > 0 such that
w(é1) >1 and wu(np) <1l for 1-d<a<l. (6.6)

Therefore a; € (—M_, 1), and

w(é) =1, u'(&)=0 and (&) >0 at a=a;.
This implies that u(€2) > 1 and, by Lemma 2.4, that u'”'(£2) < 0. Let

ap = inf{a < ay :u(é) >1 on (o, a1)}.

Then
u() =1 and u"(&) >0 at a=ao,

because u(n;) < u(&;) < 1. Therefore, u”’(£3) changes sign on (az,a1), so that
there exists a point a3 € (ag, a1) such that u'”(&2) = 0 at a3, and u(zx, a}) is a peri-
odic solution which is symmetric with respect to 2. By construction u(&1,a3) < 1
and u(§2,a3) > 1, as required.

(b) We analyse the following three cases separately:

(1) @2 <qg<gqs7 () ¢=gqs7, (731) g37 < ¢ < g3.
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Again, according to (5.3) and (5.4a), these cases correspond to

7 7
S (m‘)§<9<3.

a
) o< @
(i) 2= < 3’ b

w3

e

Case (2): It follows from Lemma 5.2 that in this case
v(&) > 0, v(n2) <0 and v"'(m2) <0,
so that for some small § > 0,
w(é)>1 and wu(n) <1 for 1-d<a<l. (6.7)

Define
a; =inf{la<1:u(é)>1 on (a,1)}.

Because u(§2) = M_ < 1 when o = M_, it follows that M_ < a; < 1, and hence
u(€)=1 and u"(&)>0 at as,

since u(n1) < M_ < 1 at a;. This means, according to Lemma 2.3, that u(ny) > 1
for a1 < a < a1 + v where v > 0 is some small constant. Define

by = sup{a > ay :u(nz) >1 on (a,q)}. (6.8)

As we have seen in (6.7), u(n2) < 1 for « close to 1. Therefore b; € (a1,1). Since
u(€2) > 1 at by it follows that u'/(n2) < 0 at by. Hence, in view of (6.8), u'”(n2)
changes sign, and therefore has a zero, at a point af € (a1, b1). Thus, u(x, ) is
an even periodic solution which, by construction, is symmetric with respect to 73,
and u(n2, af) > 1, as required.

Case (222): In this case
v(&s) > 0, v(n2) >0 and o"'(n2) <O,
so that
u(&2) > 1, u(nz) >1 and u”(n2) <0 for (1-—46,1) (6.9)
when § > 0 is sufficiently small. As before, we define
ag =infla <1l:u(é)>1 on (a,1)},

and since u(€2) = M_ when a = M_, it follows that ay € (M_,1). Because in
this case, u(n1) < @ < 1 we deduce that

w(é) =u(m) =1 and u"(n2) >0 if «a=as. (6.10)
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By Lemma 2.3, u(n2) > 1 in a right-neighbourhood of as. Let
by =sup{a > az :u(n2) >1 on (az,a)}.

We claim that u"’(n9) changes sign on (ag, bs).

— If ba = 1, then this assertion follows at once from (6.9), (6.10), and continuity.
— If by < 1, then u(ne) = 1 at by, and because u(£2) > 1 at by, it follows that
u(n2) < 0, so that in view of (6.10), u'”(n2) also changes sign on (a2, bs).

Thus, there exists a point a5 € (ag,bs) such that u(z,a3) is an even periodic
solution which is symmetric with respect to 73, such that

ulm) <1, wu(é)>1 and wu(ne) > 1.

Case (212): By Lemma 5.2,
v(&2) > 0, v(n2) =0 and v"'(m2) <O,
so that for some small § > 0,
u()>1 and u"(np) <0 for 1-6<a<l. (6.11)

If u(n2) < 1 we continue as in the proof of Case (i) and if u(n2) > 1 we continue
the proof as in Case (i37). This completes the proof of Theorem 6.4.

About the families of n-lap solutions we can repeat the claim of Theorem 6.3
for the larger range of g-values: ¢ € (—\/g, g3). However, the minimum number of
laps is now raised from 2 to 3.

Up till now we have studied branches of even multibump periodic solutions
with £ = 0 on intervals of the form (—+/8, g,) for n > 1. These branches appear to
bifurcate from the points (g,, 1). In addition to these solutions there exist families
of even periodic solutions which exist on intervals of the form (—+/8, dm,n), Where
gm,n is given in (1.10), and n > m > 2. The corresponding branches appear to
bifurcate from the points (g, n,1). We shall not go into a general analysis of such
solutions. Instead, we provide the details for one example, and choose m = 2 and
n = 3. We denote the two branches of even periodic solutions by I's 3, and I's 3,
and the solutions that sit on these branches by wus 3, and s 33, respectively. Two
such solutions are presented in Figure 6.3b.c, at ¢ = 2.

We note that gz 3 = %\/5 € (q1,q2). Therefore, we may again use Lemma
2.4 to prove the existence of these two new families of solutions.

Theorem 6.5. Let —/8 < ¢ < g2,3. Then there exist two even 3-lap periodic
solutions us 3, and usg sp of equation (1.1) such that £(uz 3,) = 0 and E(ua 3p) =0
with the following properties:

(a) The solution ug 3, is symmetric with respect to 7z, and
u230(0) <1, u53,(0) <0, wuz3.(€2) >1, wuz3a(n2) <1
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(b) The solution ug 3 is symmetric with respect to &3, and

u2,35(0) > 1,  uf 3 (0) >0, wasp(m) <1, wuz3a(é2) > 1.

(a) The branches I'y 3, and I'y 3, and a blowup at g2 3

u u
VARIRY, VAYARYAY,
_7.35 7.35 ’ 75 75 ’

1 1

(b) Graph of uy 3, (c) Graph of ug 3

Fig. 6.3. Solutions of Theorem 6.5 at ¢ = 2

Proof. (a) If g1 < ¢ < g2,3, then, according to Lemma 5.2,
v(0)=—-1, wv(m) <0, v(&)>0, v(n)<0 and v"(n2) >0. (6.11)

Hence, for any ¢ € (¢1,¢2,3) there exists by continuity a § > 0 such that for
a€e(l-4,1)

u(m) <1, u(&)>1, u(np) <1, and u"(n) > 0. (6.12)

Let
a; =infla<1:u(é2)>1 on (1)}

Because u(€2) < 1 when o = M_, where M_ is the amplitude of the small single
bump periodic solution u_ (cf Fig. 4.1), it follows that a; € (M_, 1), and

uw(2) =1 and wu(nm)=1 at a.

Next, let
ay =inf{la <1:u(n2) <1 on (a,1)}.
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Then as > a1 by Lemma 2.3 and hence
u(m) =1, wu(é&)>1 and u"(n2) <0 at as. (6.13)

Remembering (6.12), we conclude that u'”(ny) changes sign on (ag,1). Thus, by
continuity there exists an a3 € (ag2,1) such that u"’(n2) = 0 at a%. Therefore,
u*(z) = u(z,a}) is a periodic solution which is symmetric with respect to 7o and
has the properties

U*(O) <1, U*(nl) <1, U*(£2) > 1, U*(772) <1,
as required.

(b) If g1 < ¢ < q2,3, then, according to Lemma 5.2, or (6.11) when we multiply by
a factor —1 and relabel the critical points,

v(0)=1, v(&) >0, v(m) <0, v() >0 and 2" (&) <0. (6.14)

We now proceed exactly as in Case (a), except that instead of the small single
bump periodic solution u_, we now use that large single bump periodic solution
u4 with amplitude M, (cf Fig. 4.1) as a reference. We omit the details.

Proving that the solutions us 3, and wus 3 exist for -8 < q < ¢1 as well is
also left as an exercise.

7. Local behaviour near ¢

In Figure 1.10 (or 6.1) we saw that the numerically computed branches I'y,
and I'y, of even 2-lap periodic solutions approach the bifurcation point (go, 1) in the
(g, M)-plane from different directions. In this section we present a local analysis at
the point (go, 1), and compute the angles 6, and 6, which these branches make with
the positive g-axis at the bifurcation point. Specifically we obtain the following
result.

Proposition 7.1. Let 6, and 60, be the angles with which the branches I's, and
Iy approach (qa,1). Then

22 V2

tanf, = 3 and tan @y, = —5

We shall discuss the two branches in succession.
(1) The branch I'y,. The solutions that sit on I'y, have the properties
u'(0) <0 and u"(&) =0,

and & is the first point of symmetry. We use ¢ = 1—u(0) > 0 as a small parameter,
and we make the Ansatz

u(e) = 14+ ev + 2w + O(®), (7.1a)
4(e) = qo + €1 + O(e?), (7.1b)
£(e) = &o + el + O(e?). (7.1c)
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To keep the notation simple, we have denoted the zerot™ order terms in the ex-
pansion of g and &2 by, respectively, go and . Thus, in this notation, go = g2 and
&0 = &3e—o. We recall that

_ 0
qo \/i

and we obtain from Lemma 5.1 that

and hence a=2%* and b=2"Y% (a=20), (7.2a)

€0 = % =9l (7.2b)

In this notation, we need to compute

v(&o)
q '

tanf, =

When we substitute the Ansatz (7.1) into equation (1.1), use the initial con-
ditions

w(0)=1-—¢, ¥ (0)=0, u"(0)=-

and equate terms of equal order in £, we obtain

v + gov” + 20 =0 (7.3a)
v(0)=—-1, ¥ (0)=0, 2"(0)=-v2, +"(0)=0, (7.3b)
and A " " 2
w* + gow" + 2w = —q1v" () — 3v (371) 7.4a)
w(0)=0, w'(0)=0, w’(0)=+—, w"(0)=0. 7.4b
(0) (0) (0) 7 (0) (7.4b)
The problem for v has been discussed in Section 5, where we found that
v(z) = cos(ax) — 2 cos(bx). (7.5)

Note that v does not depend on the value of ¢;. For later use we note that

v(&) =3, V(&) =0, v'(&)=-6b%, v"(&) =0, v™(&)=18b*. (7.6)
Thus, we find that

u(é,e,q) =1+ev(éo+eér) +*w(éo +ebi,qr) + - ..
=1+ev(&) + O(?)
=1+ 3¢ +0(e?). (7.7)
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In order to compute &; we write
u' (€€, q) = ev' (€ + €&1) + €*w' (€0 + €61, q1)
= 6’0’(50) + 6251’0”(&)) -+ 82’11),(&), q1) =0.

Hence

_ _w'(f(),(h)
§1= () (7.8)

To compute ¢; we observe that we can write

w(z,q1) = wo(r) + qrwi (), (7.9)

and an easy computation shows that

wo(z) = f(z) — 3g(x), (7.10a)
where f is given by
1
f(z) = m{— cos(ax) + cos(bx)}. (7.10b)
and g is given by ) .
o) = 5oy /O K (z — t2(t) d, (7.10¢)
in which ) )
K(z) = smébx) B Slniax)‘ (7.10d)
For wq(z) we find
wi(x) = — i 72 /093 K (z —t)v"(t) dt. (7.11)

We wish to choose ¢; in such a way that v/ (£, €, q¢) = 0. Differentiating u we
obtain

u" (&, e, q) = ev" (&) + €°610™ (§o) + 2 {wp (§o) + qrwl’ (&)} + O(€®)

= ?{£10" (&) + wp' (éo) + arwy’ (&) } + O(e?), (7.12)
because v"’(£y) = 0 by (7.6). Remembering from (7.8) the expression for &; we
write .

10 (60) = — 2 e i (€) + aywl (€o))- (7.13)
v"(&o)
We saw in (7.6) that v (&)/v" (&) = —%. When we use this in (7.13) and

substitute the result into (7.12), we find that
u”/(£7 €, Q) = €2X(q1) + 0(53)7
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where

X(@) = wf (60) + ~suh(&0) + o {wf'(€0) + pui(E)}.  (7.14)

V2 V2

Thus we need to choose ¢; so that X(g;) = 0. Using the expression for wy
given in (7.10a) and for w; given in (7.11), we find that

3
wy(§o) =0 and  wy' (§o) = Y
T 7T
wi (&) = ~3 and wi’ (&) = T b.
Therefore 5 . 5 5 A
T T T T T
X(Q1):—T+Q1(?b—ﬁ%> = T‘i‘Ql?b,

so that X (¢1) =0 if
9 9

T4 22

Remembering (7.7), we conclude that the branch I'y, leaves the point (¢, M) =
(g2,1) under an angle 6, given by

q1

2v/2

3
tanf, = — = —.
0 3

(2) The branch I'y,. The solutions that sit on I'g, have the properties
v’(0) >0 and u"(m)=0.
In the notation introduced in (7.1), we now need to compute

v(€o)

tanfp = ,
q1

where now &y denotes the location of the first maximum of v when ¢ = qp.
For solutions on this branch, 7; is the first point of symmetry. We expand u
and ¢ as in (7.1) drop the subscript 1 from 7;, and write
n(e) = no + em + O(€?). (7.15)

We emphasize that in the remainder of this section, 11 will denote the first order
term in the expansion for n(e). From Lemma 5.1 we find that

v(z) = —%{cos(am) + 2cos(br)},
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and

_ T T 1 " _ V2 iv _ 7
50—31)’ o = b’ 0(50)_2’ v (770)_ 3 v (770)_ 3’
so that .
v" (o) 7

o) V2

We now proceed exactly as in the previous case, and we find that
u"(€,e,q) = e?Y (1) + O(e%),

where

7 7
Y =w/’ + —w! + {w"' + —w } 7.16
(q1) = wq (m0) 7 o(m0) + q1qwy’ (o) 7 1(m0) (7.16)
For wy and w; and their derivatives we obtain at 7g:
27 5
/ . " _
wy(10) = b3 and wy (1M0) = T
T
wi (o) = 35 and wi’(no) = —nb.
Therefore 4
T T
Y = — —b
(q1) b +q1 3 O

and Y(ql) =0 if

Since v(&) = 3, it follows that

Near ¢ = g2 and o =1 (¢ = 0), we may use (7.1a) and the information about
v and w obtained in this section to make the following observations.

(¢) There exists a 6 > 0 such that in the case that u”(0) < 0 we have for ¢ = ¢»
u(é2) >1 and u"'(&) <0 forl—6<a<l.

Therefore, the proof of the existence of uy, in Theorem 6.1 also holds for g = ¢-.

(#7) Again in the case that u”(0) < 0, for every § > 0 we have

u" (&) <0 for g =gz +e(q1+9)
u”(&2) >0 for ¢ =gy +e(q1 — )
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for ¢ > 0 sufficiently small. Hence, fixing § > 0, there exists an g9 > 0 such
that for g3 < ¢ < ¢2 + ¢ there are two periodic solutions ug, and s, which
are symmetric with respect to & and such that u(§3) > 1. The first one has

1-— ;Il_—ffs <a<l-— gl__ffs, and it is found by varying o between these values and
a—q>

searching for an a such that u"'(§2) = 0. The second one has o < 1 — =% and
can be found as in the proof of Theorem 6.1. A similar statement holds for the
solutions of type wugp, but there is only one solution of this type. Continuity of
the branches near ¢ = g3 and & = 1 can be proved using the Implicit Function
Theorem, but we will not going into that here.

8. Even periodic solutions: ¢ > g3

In Section 4 we have exhibited the existence of an even single bump, or 1-lap
periodic solution for —v/8 < ¢ < ¢1 = v/8. In Section 6, we extended this result
and showed that there exist two even 2-lap periodic solutions for —v/8 < ¢ < g2
and two even 3-lap periodic solutions —v/8 < ¢ < g3. One solution is convezr at
the origin (u”(0) > 0) and one solution is concave at the origin (u”(0) < 0). The
goal of this section is to extend these results to the parameter regime ¢ > q3. It
is important to note that the sharp qualitative results obtained in Sections 4 and
6 were proved by means of Lemma 2.4. However, this lemma no longer applies in
the range ¢ > ¢3. Thus, to determine the existence and qualitative properties of
periodic solutions, we shall develop further analytical techniques.

We recall that an even periodic solution u is called an n-lap periodic solution
if it is even, and symmetric with respect to its n* positive critical point ¢, (and
not symmetric with respect to any of the critical points in between 0 and ().
In order to determine if an n-lap periodic solution u attains a relative maximum
or minimum at the point of symmetry, one needs to know whether n is odd or
even, as well as whether «/(0) is positive or negative. For convenience we list the
correspondence in the following table:

Cn =&m+1)/2  when n isodd

} if 4" (0) > 0,

Cn = Tn/2 when n is even

=&m when n is even
b = Snta)/2 } if (0 < 0.

Cn = NM(n+1)/2 when n is odd

In the present section we extend the above existence theorems to n-lap peri-
odic solutions for arbitrary n > 2.

Theorem 8.1. Let n > 2, and let
_\/§ < q<qp.
Then there exist two even n-lap periodic solutions, u, and up, such that
Ua,p(Cn) > 1 and  ugy(C) =0, (8.1)
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whilst u))(0) > 0 and uj (0) < 0.

We prove Theorem 8.1 in two steps: first, we establish the existence of n-lap
solutions which satisfy (8.1) in intervals of the form (g3 2n,—1,¢n), and then we
show that these n-lap solutions exist on the whole interval (—v/8, g,)-

Lemma 8.2. Let n > 2. Then for all g32,—1 < q < gqn there exist two even
periodic solution u, and u, which are symmetric with respect to their n** positive
critical point (,, such that

Uq,p(Cn) > 1 and ) (0) >0, uy(0)<0.

Proof. For the cases n = 2 and n = 3 we refer to the stronger results of
Section 6. Thus, in the remainder of this proof we assume that n > 4.

We only consider the case where u”(0) > 0. The case u”(0) < 0 is analogous.
Let u(z, a_) be a small amplitude, even, single bump periodic solution for which
u”(0) > 0. Then o = —M_, where M_ = |ju(-,a_)|lec < 1. In particular,
u(ér(a-),a_) <1 and u(ne(e—),a_) > —1 for all k > 1 (see Figure 4.1).

Fix n > 4 and define m = (n+1)/2 if n is odd, and m = n/2 if n is even. We
set

a=sup{a>a_:ul&(a),a) <1 for i=1,...,m}. (8.2)

We stress that this definition is completely different from the ones used so far. For
all @ > a at least one of the maxima & withi = 1,2, ...m lies in the region {u > 1}.

We assert that a < 1. To see this we study the behaviour of u(z,a) when «
is close to 1. Let v be the solution of the problem obtained by linearising around
u = 1, which was introduced in Section 5. Then, according to Lemma 5.2,

v(€m) >0 and v"(&n) <0 if g€ (g32n-1,qn)-
Therefore, there exists a constant § > 0 such that
u(lém(a),a) >1 and u"(&n(a),a) <0 for 1-6<a<l. (8.3)

From the first inequality in (8.3) we deduce that a < 1, as claimed.
It follows from the definition of ¢ and Lemma 2.1 that

u(ék(a),a) <1 for k=1,...,m—1 and wu({m(a),a)=1. (8.4)

From (8.4) and the energy identity (1.8) it follows that u"”(&,,) # 0 at a. Because
U(Nm—1) < u(&rn—1) < 1 it follows that

u"(&m(a), a) = u"' (nm(a), a) = u" ((u(a), @) > 0, (8.5)

where we remark that ¢, = &,, if n is odd, and {,, = 1, if n is even. We now
define
b=sup{a € (a,1):u((,) >1 on (a,a)}, (8.6)
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which is well-defined because of the definition of a, Equation (8.4) and Lemma 2.3.
Besides, we define (in view of (8.5))

c=sup{a € (a,1):u"(() >1 on (a,)}.

We now first consider the case that (, = &, (i.e. n odd). If b = 1, then it
follows from (8.3) that ¢ < 1, thus u(z, ¢) is an even n-lap periodic solution which
is symmetric with respect to &,, and u(&,,) > 1.

If b < 1 we use the following result to obtain a solution.

Lemma 8.3. Let a and b be defined as in (8.2) and (8.6). Ifb < 1, then u""'((,,) <
0 at b.

We postpone the proof of Lemma 8.3 for a moment and first finish the proof
of Lemma 8.2. We conclude from Lemma 8.3 that ¢ < b, and as we saw before
this implies that there exists an even periodic solution which is symmetric with
respect to &, such that u(&,,) > 1. The case that {,, = 7, (i.e. n even) is dealt
with in a similar manner, but we have to distinguish three cases (the situation is
similar to the proof of Part (b) of Theorem 6.2). According to Lemma 5.2 we have

0" (nm) < 0 for all ¢ € (¢3,2n—1,4n),

and .
V(M) >0 if 93,2n+1 < ¢ < (n,

v(m) =0 if g= q3,2n+1,
V(M) <0 if g39n-1 < ¢ < g3,2n+1-
If g32n+1 < g < @, then the proof is finished in the same way as above. If

g32n-1 < ¢ < g32n+1 then b < 1 and the proof is finished with the help of
Lemma 8.3. Finally, if ¢ = ¢3,2,41 then we have, for 6 > 0 small enough,

u(ém)>1 and v’ (nm) <0 forl-6<a<l.

We now choose an a € (1 —§,1). If u(n,,) > 1 then we finish the proof as in the
case where g3 2n41 < ¢ < @y, whereas if u(7n,,) < 1 then we finish the proof as in
the case where g3 2,,—1 < ¢ < g3 25,4+1- This completes the proof of Lemma 8.2.

Before we give the proof of Lemma 8.3 we introduce some notation. We define

the sets of maxima and minima in the region {u > 1} by

Cy={1<k<m-—1":u(&)>1},
C_={1<k<m-—1:u(np) >1}

The following Proposition shows that for all a € [a,b] we have u(&) > 1 if and

only if u(n,) > 1. Besides, if u(&y) > 1 for some 1 < £ < m — 1 then u({) > 1 for
all critical points ¢ in between &, and &,,.
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Proposition 8.4. For all o € [a,b] we have

Cy=C_=0 or CL=C_={t+1,...,m—1} for some l € {1,2,...m—1}.
(8.7)

Proof. We first notice that u(0) < 1 and u(&,,) > 1 for all « € (a,b) (note
that u(n,,) > 1 implies that u(&,) > 1). For a = a Equation (8.7) holds since
Cy =C_ = 0. Tt follows from the definition of @ and Lemma 2.3 that Cy =C_ =0
for a € (a,a+0) with 6 > 0 sufficiently small. We now use a continuation argument
in a to show that Equation (8.7) holds for all « € [a,b). We define

a, = sup{a € (a,b) : Equation (8.7) holds on (a, )},

and we suppose, for contradiction, that «, < b. Then at a, we have u(&,) = 1
for some 1 < n < m — 1. There are now two possibilities: either u(n,_1) =1 or

u(ng,) = 1.
Concerning the first case, it follows from Lemma 2.1 that at o = a

w(€p—1) >1 and u(n,) <1, (8.8)

and by continuity (8.8) holds for @ € (. — 4, ) with § > 0 sufficiently small.
However, this contradicts the fact that Equation (8.7) holds for all @ € (a, ax).
Thus at . there there is no k € {1,2,...,m — 1} such that u({x) = u(nr—1) = 1.

Therefore, we must have u(§,) = u(n,) = 1 at a, for some 1 < n < m — 1.
As before, it follows that

w(€py1) >1 and u(np-1) < 1.

We assert that this implies that u(&,_1) < 1. Namely, the possibility u(&,_1) >
1 is excluded by the definition of «, and the fact that u(nm,_1) < 1. Besides,
w(§n—1) = 1 would imply that u(n,_2) = 0 which has already been excluded above.
Hence u(§,_1) < 1, and thus also u(n,_2) < 1. A repeated argument shows that
u(€g) < 1 for all 1 < k < n—1. Analogously it is proved that u(ng) > 1 for all
n—+ 1<k <m—1. By continuity this also holds for « close to a.

Finally, by the definition of a, there must exist a sequence «; | a4 such that

w(én(ay), ;) >1 and u(n(a;), ;) < 1.

The existence of such a sequence is excluded by the proof of Lemma 2.3, which
can be found in [PT5, Lemma 2.5]. Hence, having obtained a contradiction, we
have proved that Equation (8.7) holds on the entire interval a € [a,b). The case
a = b follows by continuity.

Remark. It follows from the previous Proposition that u () and u(n) can only
enter and leave the region {u > 1} together.
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Proof of Lemma 8.3. To prove Lemma 8.3 we argue by contradiction. Thus,
suppose that u”’((,) > 0 at b. Then (, = &, = N, and it follows that u(nm,—1) <
1 at & = b. Therefore, m —1 ¢ C_. By Propostion 8.4, this implies that u(ng) < 1
for all 1 <k <m — 1, so that C_ = (). Besides, since C_ = C; by Proposition 8.4,
this also implies that Cy = (). Thus, we conclude that u(§;) < 1 for all 1 <k <
m—1 and u(&n) = u(nm) = 1 at @ = b. Since a was defined as the largest value of
« for which this situation occurs, this situation is excluded and we have reached
a contradiction.

We recall the definition
c=sup{a>a:u"((,) >0 on (a,a)}.
Clearly ¢ < b < 1 by the proof of Lemma 8.2.

Proposition 8.5. For all « € [a, c] we have that

u" (&) >0 and u"'(mg) >0  forallkeCy=C_.

Proof. We first notice that since u(&x) and u(ny) only enter {u > 1} together,
we must have u”’(£x) > 0 and u”’(n;) > 0 at the point of entry. Suppose now,
for contradiction, that there exists a smallest « € [a, c|, for which Proposition 8.5
does not hold: let

d=sup{a>a:u" (&) >0, u" (n) >0 forall keC,},

and suppose that d < ¢. Then at a = d there is a critical point ¢ € (0, (,) such
that u(¢) > 1 and u"’(¢) = 0, i.e., € is a point of symmetry.

Since by Proposition 8.4 all the critical values between ( and (, lie above
u = 1, it follows that that u(z) > 1 for z € [(,(,]. In fact, since ¢ is a point
of symmetry, we have that u(z) > 1 for all x € [2( — (,,(s]. Since u(0) < 1,
this means that 2¢ — ¢, > 0. By symmetry, 2¢ — (,, is a critical point, and from
the definition of d we see that v’ (2¢ — (,) > 0. Therefore, again by symmetry,
u”'(¢n) <0, so that from definition of ¢ it follows that ¢ < d. Since by assumption,
d < ¢, we conclude that d = ¢, and u'"({,) = 0. But then u is symmetric with
respect to both ¢ and (,,. This means that u(z) > 1 for all z € R, which contradicts
the fact that u(0) < 1.

Remark. Another way of obtaining the above contradiction is via the observation
that

(W +qu') =u(l—u?) <0  on ((,¢)
Upon integrating over ((,(,) we obtain that u"’({,) < 0 at a = d, contradicting
the assumption that d < c.

Lemma 8.6. Let n > 4. For every q € [¢n_1,qyn) there exist two even n-lap
solutions ug and up such that uq5(¢n) > 1 and u;,(¢n) = 0, whilst u; (0) > 0 and
uy (0) < 0.

Proof. Since ¢3.2,—1 < qn—1 for n > 4, it follows immediately from Lemma
8.2 that there exist two periodic solutions which are symmetric with respect to
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Cn, and such that u, p(¢,) > 1. We assert that ¢, is the first point of symmetry.
Proposition 8.5 ensures that ¢, is the first point of symmetry in the region {u > 1}.
Besides, there is no critical point 0 < ¢ < ¢, with «//(¢) = 0 in the region {u < 1},
since that would imply (by Proposition 8.4 and the symmetry with respect to 0)
that u(z) <1 for all z € R, contradicting the fact that u((,) > 1.

The following Lemma is a reformulation of Theorem 8.1. It shows that the
n-lap solutions obtained in Lemma, 8.6 exists for all ¢ € (—/8, qn).

Lemma 8.7. Let n > 2 and let —/8 < ¢ < ¢,,. For any N > n there exist two
even N-lap solutions u, and up such that uep(Cn) > 1 and ug'y(Cy) = 0, whilst
u, (0) > 0 and uy (0) < 0.

Proof. The range ¢ € (—/8,q3) was already covered in Sections 4 and 6.
For q € [¢n_1,Gs) With n > 4 we see from Lemma 8.6 that there exists two n-lap
solutions. For N > n we again restrict our attention to the case u”(0) > 0, the
other case being completely analogous. We can define a, b and c¢ as before for
both n and N. We have a,, < ¢, < b, <landay <cy <by <1. If ey <1
then clearly we have an N-lap solution. Arguing by contradiction we assume that
cy = 1. It follows directly from the definition of ¢ and (8.4) that ay < ay.
Proposition 8.5 shows that u"'({,) > 0 if u(¢,) > 1 for all @ € (an,1]. However,
u"'(¢n) =0 for a = ¢, > ay, > an, a contradiction.

9. Proof of Lemma 2.4

In this section we prove Lemma 2.4. We recall the setting: we assume that u is a
solution of equation (1.1), and that a € R is a critical point where u has the following
properties:

w(a@)=1, u'(a)=0, v (a)=0 and u"'(a)>0. (2.13)

Then ' > 0 in a right-neighbourhood of a so that the point
b=sup{z >a:u" >0 on (0,7)} (2.14)

is well defined. By Lemma 2.2, it is also finite.

Lemma 2.4. Suppose that
1
—\/§<q<q3=\/§(3+§>.

Let u be a solution of equation (1.1) which at a point a € R has the properties listed in
(2.13). Then, at its next critical point b defined by (2.14), we have

ud)>1, 4'(b)=0, «'(b)<0 and u"(b)<0. (2.15)

Proof. If —/8 < ¢ < v/8 we use the function H introduced in Section 4. Since u > 1
on (a,b), it follows that H” > 0 on (a,b). At critical points of u, we have by (4.7)

HI — 'U,/I’U,I”.
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Hence H' = 0 at a, and therefore H' > 0 at b. Since u”(b) < 0, and even u”(b) < 0 by the
first integral, it follows that u"’(b) < 0, as asserted.

If ¢ > /8 we can no longer prove that H” > 0 on (a,b) and we have to proceed
differently.

Without loss of generality we may assume that a = 0 and consider the initial value
problem

u” + qu'’ +u® —u =0, (9.1a)
w(0)=1, «'(0)=0, «"(0)=0 u"(0)=\ (9.1b)

where the initial values are derived from (2.13) and A is a positive number. We denote
the solution of Problem (9.1) by u(z, \), and its first critical point, corresponding to b, by

¢(A):
¢(A)=sup{z >0:4'(-,A) >0 on (0,7)}.

We need to show that
u""(C(\),\) <0 for every > 0. (9.2)

As a first step we show that (9.2) is satisfied for A large enough. This can be proved
by means of a simple scaling argument. With the variables

=275 and wu(z, ) = A\Pw(t, N), A>0, (9.3)

the initial value problem (9.1) can be written as

,wiv + q)\—2/5wll + ’IU3 - )\_4/5’11) =0,
w(0) =A"2° w'(0)=0, w"(0)=0, w"(0)=1.

By standard ODE arguments, w(t, A\) — W (t¢) on compact intervals, as A — oo, where W
is the solution of the limit problem

W™ +W? =0,
w(0) =0, W'(0)=0, W"(0)=0, W"(0)=1

Plainly,
T=sup{t>0:W' >0 on (0,t)} <0

and W"'(T) < 0. Hence, by continuity, for A large enough, w"’ (-, A) < 0 at the first zero
of w'(-, A). Thus, v ({(N\),A) < 0 for A large enough.

Proceeding with the proof of Lemma 2.4, we suppose that (9.2) is false and that
u”'(C(Ao), Ao) > 0 for some Ay > 0. Then there exist a constant \* € [\g,00) such that
u” (C(A*), A*) = 0. At ¢* = {(N\*) we then have

v >0 on (0,¢%), uw'(¢*) =0 and u"(¢*) =0. (9.4a)
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This means that u(-, A*) is symmetric with respect to ¢* and that
v <0 on (C*,2¢*), u(2¢*) =1 and u'(2¢*) =0. (9.4Db)
For further reference, we introduce the notation

¥\ ok 1" (% _L . 04*2 c
u((*) =« and hence u((j)—ﬁ(l (@*)?). (9.4c)

In the remainder of the proof we show that if 1 < a/b < 3 , where a and b have been
defined in (5.2b) (i.e. if v/8 < ¢ < g¢3), then a solution u(z, \*) with the properties listed
in (9.4) cannot exist. We shift the origin to = (* and u = 1 and write

r=C"4+% and u(z) =14 w(Z). (9.5)
Then w is the solution of the problem

w” + qu” + 2w = —w?(3 + w), (9.62)
w(0)=a* -1, w'(0)=0, w'(0)= %(1 — (a*)?), w"(0) =0, (9.6b)

where we used (9.4) and have dropped the tilde. We shall compare the solution w =
w(z, a*) of Problem (9.6) with the solution v of the linear problem

v " _
v’ +qu” 4+ 2v =0, 1 (9.72)
v(0)=a—1, 2'(0)=0, 2"(0)= 5(1 —a?), v"(0)=0, (9.7b)

where a > 1 is an arbitrary number, which eventually will be chosen equal to a*. We
denote the solution of Problem (9.7) by v(z) or v(z,a). An elementary computation
shows that v(z) can be written as

v(z) = Acos(ar) + B cos(bz), (9.8)
where we recall that a and b are the positive roots of the equation
k*—qk>+2=0,

given by
1 1
azzi(q+\/q2—8) and b2:§(q—\/q2—8). (9.9)

The coefficients A and B are given by

a—1)+p 1

M and B:a2( ﬂ:_ﬁ

A=— a2 — b2 a2 —p2

(a® —1). (9.10)
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Let
zo(a) =sup{z > 0:v(-,a) >0 on [0,z)}.

In order to proceed with our comparison argument we need the following result.

Lemma 9.1. Suppose that

a
V8 < g < g3 or, equivalently, 1< 7 < 3.

Then for any oo > 1 we have z¢(a) < oo and v'(-, ) < 0 on (0, zo(cx)].
We postpone the proof of this lemma until after the proof of Lemma 2.4 has been completed.
We now continue with the proof of Lemma 2.4. Let
yo(a) =sup{z > 0:w(-,a) >0 on [0,2)}.

Our goal is to prove that w'(yo(a), @) < 0 for any o > 0. Translating this result back to
the variables z and u, we find in particluar that «’(2¢*) < 0, which contradicts (9.4b) and
completes the proof.

By the variation of constants formula, we find that

w(z) = v(z) ﬁ /O w{% sin(bt) — %sin(at)}h(a: ) d, (9.11)
where h(s) = w?(s){3 +w(s)} > 0 as long as w > 0, i.e. on [0, %o]. Note that
w'(z) =v'(z) — ﬁ /Ow{cos(bt) — cos(at) }h(z —t) dt. (9.12)

At the first zero zy of v we have

w(zy) = _Tibz /Oﬁ{% sin(bt) — ésin(at)}h(mo — t)dt.

Hence, if

1 1
K (t) def 5 sin(bt) — - sin(at) >0 for 0<t< xo, (9.13)

then w < v on (0, x|, and therefore yg < xo. In addition, if

K'(t) = cos(bt) — cos(at) >0 for 0 <t < zo, (9.14)

then w’ < v’ < 0 on (0, ] by (9.12). In particular, w’(yp) < 0, as asserted.

The conclusion of the proof consists of a detailed analysis of the function K (t) to show
that (9.13) and (9.14) hold on (0, yo]. An elementary computation shows that

K(0)=0, K'(0)=0, K"(0)=0, K"(0)=a®-0b*>0.
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Hence K > 0 and K’ > 0 in a right-neighbourhood of the origin. We set
ti=sup{t>0: K >0 on (0,t)},

and
to=sup{t>0:K' >0 on (0,t)}.

Plainly 0 < tp < t; and K'(t1) < 0. We recall the assumption that

a T T 3m 3w
1< =<3 — — < =< — < —. 9.15

b 20 2b  2a 2b ( )
Because a/b > 1, it follows from (9.13) and (9.15) that ¢1 € (35, 3%), and hence, that
to < 32’—2. On the other hand, since 7. < g7 it is clear that K’ > 0 on (p, 5-] so that
to > 5-. Observe that

T 37

cos(at) <0 on (%,%) and cos(bt) >0 on (0,2%).

Because a/b < 3 and hence 3% > 7 it follows that K’ > 0 on [4-, 2], and we conclude

2a 2b?
that 3
™ Vs
2_b <ty < 2_b (916)

The value of v at ¢ can easily be computed by using the formula (9.14) for K’ in the
expression (9.8) for v. We obtain

(07
’U(t()) = m COS(th),

which, in view of (9.16), shows that v(tp) < 0. We conclude that z¢ < ty < t1, and hence
that the properties (9.13) and (9.14) of respectively K and K’ are true. This completes
the proof of Lemma 2.4.

Proof of Lemma 9.1. We first show that the assertion is true for
a>qvV2-1 (9.17)

Note that
(W"+q") =—-2v<0 aslongas v>0, (9.18)

and hence, still as long as v > 0,

v"(z) + qu(z) < v"(0) + qu(0) = (1 — a)(H—Wa - q).

Therefore, if (9.17) holds then
v/ < —qu<0 aslongas v>0,
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so that zg(a) < oo and v/'(+, ) < 0 for 0 < z < xo().

Let
o =inf{a@ >1:z¢(a) <oo and v'(,a) <0 for & < a < oc}.

If * = 1, then the assertion is proved. Therefore, we suppose that o* > 1. We distinguish
two cases:

(1) zo(a*) =00 and v'(-,a*) <0 for 0 < x < o0, or
(13) zo(a*) < 0o and v'(zg, a*) = 0, for some z; < xo(a*).

To keep the notation as simple as possible, we shall henceforth omit the asterisk when
referring to a*.

Case (i): Because v/ = 0 and v"/ = 0 at the origin, integration of (9.18) over (0, z) shows
that
v (z) + qv'(z) <0 for z>0.

Hence, integrating (9.18) again, but now over (1, z) we conclude that
(W"(z) + quv(z)) <v"'(1) +qu(1) = -6 for z>1,
where J is a postive constant. Hence
v (z) + qu(z) < C —§(x — 1) and therefore v'(z) <C —6§(x—1) for z>1,

where C' = v"(1) + quv(1) is a constant. Thus v"(z) — —oc as £ — oo, which implies that
zo(@) < 00, a contradiction.

Case (47): Suppose that z; < z¢(a). Then

v(z1) >0, v'(z1)=0 and v"(z1)=0. (9.19)

When we multiply equation (9.7a) by v’, integrate over (0, z) and use the initial conditions,
we obtain

1 1
v’v”’—ﬁ(v”)2+%(v’)2+v2:(a—1)2{1—2(1+a)2} for z €0, xzo),

Evaluating the left hand side at x;, using the properties of v at z; listed in (9.19), we
obtain

v?(@1) = (a = 1)*{1 - i(1+a)2}. (9.20)

Since a > 1, the right hand side of (9.20) is negative, whilst the left hand side is nonneg-
ative, a contradiction.

It remains to consider the case that r; = xy, so that
v(zg) =0 and '(zp) = 0. (9.21)
We begin with a preliminary result.
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Lemma 9.2. Suppose that 1 < a/b < 3. Then, if the solution v of Problem (9.7) has the
properties (9.21), the point xo must lie in the interval (0, 33 ).

Proof. We recall the formula for v:
v(xz) = Acos(az) + B cos(bx), (9.22)

where a and b are given in (9.9) and A and B are given in (9.10). We discuss in succession
the three cases:

(i) A=0, (i) A<0 and (ii) A> 0.

Case (i) A =0: Since A+ B = a — 1, it follows that in this case B = a — 1 and hence

v(z) = (a — 1) cos(bzx).

Thus, 2o = g;. However, v'(x) < 0, which contradicts (9.21), so that A cannot be zero.

Case (12) A < 0: Observe that in this case

B cos(bxp) = |A| cos(axp),

and B=a—1—A=a—1+|A| > |A|. Remembering that a > b, we conclude that

Bcos(bz) > |Alcos(az) >0 if 0<z< 2—
a

By assumption

™ _am 37w
T2t o 2
2 < b2 < 2 (9.23)
and hence
B > A if — < —
cos(bx) > 0 > |A|cos(ax) i 2a <z 2b
Therefore 3
™ T
— — .24
2% ST g (9:.24)
This implies that
v" + a’v = (a® — b*) cos(br) <0 on (2%,3:0),

and hence, because v’ < 0 on (0, ),
{(v")? +a*v*Y = 20" 4+ a*v)v' >0 on (%,xo).

When we integrate this inequality over (2, z¢), we find that

2b°

(v)*(w0) > {(v)? +a%?}|_

/2b
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which means that v'(zp) < 0. This contradicts (9.21), so that the case A < 0 cannot occur
either.

Case (222) A > 0: We have

T am
v(2—b) = Acos(z 5)

But, in view of (9.23), cos(%%) < 0. This means that v(Z;) < 0, so that zo < 2.

Summarising, we have found that the constant A in (9.22) must be positive, and
hence, that zo < 5;.

Proof of Lemma 9.1 — Conclusion. Using the explicit expression (9.22) for v, we deduce
from (9.21) that the constants A and B must satisfy the equations

Acos(axg) + Bceos(bzg) =0 and aAsin(azg)+ bBsin(bzy) = 0. (9.25)

Since A + B = a — 1, they cannot both be equal to zero. Therefore, the determinant of
the system (9.25) of equations must be zero, and hence

cos(bxg) sin(azg) = cos(azxg) sin(bxg). (9.26)

By Lemma 9.2, cos(bzg) > 0. Hence, if cos(azg) = 0, then sin(azg) = 0 as well, and this
is impossible. Thus, cos(azg) # 0 and we may divide (9.26) by cos(azg) cos(bxg). We thus
find that xy must be a solution of the equation

s T

a
= — i — —, = 9.27
tan(bz) a tan(az) in (0, 2@) U (Za’ 2b)’ (9.27)
because 3T > Z according to (9.23). With A = a/b and bz = t, we can write (9.27) as
def . def s Tow
$(t) = Atan(Mt) —tan(t) =0 in I = (0, ﬁ) U (ﬁ’ 5) (9.28)
Thus, we seek a root 7 = bz of equation (9.28).
Lemma 9.3. If1 < A\ < 3, then equation ¢(t) = 0 has no roots in the set I.
Proof. Observe that
Atan(At) > tan(t) if 0<t< % (9.29a)
and - -
Atan(At) < 0 < tan(t) if o < t < % (9.29Db)

If A <2, then m/2\ > 7/2, so that it is immediately clear from (9.29) that ¢ cannot have
a zero in 1.
If 2 < A < 3, then m/X < w/2 < 3w/2\ and it follows that if ¢(¢) has a zero in I, then it

must lie in the interval (T, %), where both terms in ¢(t) are positive. Plainly,

¢(§) = —tan(g) <0 and ¢() > -0 as t— g ) (9.30)
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Suppose that ¢(t) has a zero, and that ¢, is the largest zero on (¥, 5 ). Then (9.30) implies
that ¢'(tp) < 0. However, an easy computation shows that

¢'(t)=22—1>0 when ¢(t)=0.

Thus, we have a contradiction, and ¢(¢) cannot have a zero in I. This completes the proof
of Lemma 9.1.
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Appendix

We linearize around the constant solution u = 1 of the equation
U + qu’ +ud —u =0, (A.1)

Thus, we write u = 1 4+ ¢v and substitute into the initial value problem for u. Omitting
higher order terms, we obtain

0™ + qv” + 20 = 0. (A.2a)
v(0)=—1, v'(0)=0, v"(0)=+v2, "(0)=0. (A.2b)
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We denote the corresponding solutions by vi ().
Substitution of v(z) = e** yields the characteristic equation

M+’ +2=0. (A.3)
We distinguish two cases:
Case A: —V/8<g< V8 and Case B: V8 < ¢ < .

Case A: Equation (A.3) has roots
A= ta +ib, (A.4a)
in which @ > 0 and b > 0 are given by

1 1
azﬁ\/\/g—q and b:§ V8 +4q. (A.4b)
S

An elementary computation shows that the solutions vy (x) and v_(z) of Problem (A.2)
are given by

v (z) = — cosh(az) cos(bx) + K4 sinh(az) sin(bz), (A.ba)
where
— b
K.=2= VB-a o ko=t (A.5b)
b V8+g a
Thus,

V! (x) = (K4ya + b) cosh(az) sin(bx)
v’ () = (K_b — a)sinh(az) cos(bx),

and we see that for v_(z), we obtain

m(a) - #ﬂ and  &(a) = ;TW—H] as a— 1. (A.6a)
and, since € = 1 — q,
u_(m(a),a)~1—(1- a)g sinh(Z—Z) as a— 1. (A.6D)
Case B: Equation (A.3) has roots
A==ia and X = +ib, (A.7a)
where
azzé(q-l—m) and b2=%(q— q* —8). (A.7b)
For the solutions vy (z) of Problem (A.2) we find
vy (z) = Ay cos(azx) + By cos(bx), (A.8a)
in which ) )
Ay = baf_‘b/f and By = —Zi\b/f. (A.8b)

Properties of the solutions v (z) and their critical points and values are given in Lemma
5.2.
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