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ABSTRACT. For a large class of second order Lagrangian dynamics, one may refor-
mulate the problem of finding periodic solutions as a problem in solving second-order
recurrence relations satisfying a twist condition. We project periodic solutions of such
discretized Lagrangian systems onto the space of closed braids and apply topological
techniques. Under this reformulation, one obtains a gradient flow on the space of
braided piecewise linear immersions of circles. We derive existence results for closed
braided solutions using Morse-Conley theory on the space of singular braid diagrams.

CARACTERISTIQUES FERMEES POUR DES SYSTEMES DE TWIST PAR LES TRESSES

Pour une grande classe de systéemes Lagrangiens du deuxiéme ordre, on peut re-
formuler le probleme de chercher solutions periodiques comme 'investigation d’une
relation de récurrence qui satisfait une condition ‘Twist’. On projette les solutions
periodiques d’un tel systeme Lagrangien discretisé sur ’espace des tresses fermées.
Un flot gradient et obtenu sur l’espace des tresses linéaires par morceaux. Nous
dérivons des résultats d’existence pour des solutions periodiques tressées en appli-
quant la théorie de Morse-Conley.

VERSION FRANGAISE ABREGEE

Considérons un systeme Lagrangien du deuxiéme ordre (L,dt), ot L € C*(R*;R)
est nondégénéré: 02 L(u,v,w) > § > 0. Le but principal est de trouver des func-
tions bornées v : R — R qui sont stationnaires pour l'intégrale d’action J[u] =
J L(u,u',u")dt. Ces caratéristiques bornées sont contenues dans des surfaces d’énergie.
Dans cette Note nous décrivons les méthodes pour étudier les orbites fermés dans le
contexte présent qui est caractérisé par des surfaces d’énergie noncompactes.

Pour un niveau d’energie E qui est régulier, les extrémes d’une caractéristique sont
contenus dans les ensembles fermés {u | L(u,0,0)+ E > 0}, dont les composantes con-
nexes sont denotées par Ir. Pour formuler le principe variationel des caractéristiques
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en termes des extrémes de u, I’hypothése Twist a été introduite dans [6]. Cette hy-
pothese signifie que les pieces monotones entre les minima et les maxima sont uniques:
celles-ci sont les caractéristiques (géodésiques) brisées.

Théoréme 1. On considére l’equation (1.1) pour un niveau d’energie régulier E sous
Uhypothese Twist (T). Les conditions suivantes suffisent pour ’existence d’un nombre
infini de caractéristiques fermées (dans des classes de tresse distincts):

e Une composante connexe compacte Iy et lexistence d’une/d’ d’orbite(s) fermée(s)
dont la representation de tresse est nontrivialle (voir Figure 1, d gauche); ou,

e Une composante Iy = R avec du comportement asymptotique dissipatif (voir §2.2)
et lexistence d’une paire d’orbites fermées dont les representations de tresse ne
sont pas enlacées (non-mazimalles, voir Figure 1, o droite).

1. FOURTH ORDER TWIST SYSTEMS

Consider a second order Lagrangian system (L, dt), where L = L(u,u’,u") is the
Lagrangian. We assume that L € C?*(R®;R) satisfies the nondegeneracy hypothesis
02 L(u,v,w) > ¢ > 0. Our aim is to find bounded functions v : R — R, which are
stationary for the action integral J{u] = [ L(u,u’,u")dt. Such bounded characteristics
satisfy the energy constraint

(1.1) <8L d&L) ,  OL

' dt + a //U’” - L(U, ula U'”) = F = constant.
U

ow  diow )"

By transforming to a Hamiltonian context, one finds that characteristics reside on non-

compact three-dimensional energy surfaces in R*. In this Note we describe the tools

and perspectives necessary for the study of closed characteristics (closed orbits) on
non-compact energy surfaces in the present context.

For a fixed regular! energy value E the extrema of a characteristic are contained in
the closed set {u | L(u,0,0)+FE > 0} whose connected components I are called interval
components. In order to set up a variational principle for bounded characteristics in
terms of the extrema of u the following twist hypothesis was introduced in [6].

(T) inf{Jg[u] := [/ (L(u,v,u") + E)dt|u € X-(u1,us), 7 € R"} has a minimizer
u(t;ur, ue) for all {(ui,us) € Ig X Ig|uy # us}, and u and 7 are C*-smooth
functions of (u1,us).

Here X, = X, (u1,u2) = {u € C*([0,7]) | u(0) = u1, u(r) = ug, v'(0) = u'(7) =

0 and w'|(o,r) > 0 if uy < ug, and v'|(gr) < 0if u1 > up}. Hypothesis (T) assumes that

the monotone laps between minima and maxima are essentially unique. Numerical

evidence indicates that this is a valid hypothesis for most second order Lagrangian
systems. A nondegenerate second order Lagrangian system that satisfies (T) is called

a Twist system.?

Le. 8&(u,0,0) # 0 for all u that satisfy L(u,0,0) + E = 0.
2The paper [6] proves (T) for a large class of Lagrangians L, and numerics suggest that (T) is
satisfied on interval components of regular energy surfaces in general.
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We will restrict here to two special cases: a compact component Iz or a component
I = R with dissipative asymptotic behavior (for a definition see §2.2).

The twist hypothesis (T) allows one to encode any characteristic by its extrema
{u;}. Assume without loss of generality that u; is a local minimum. We can construct
a piecewise linear (PL) graph by connecting the consecutive points (i,u;) € R? with
straight line segments. If u is a closed characteristics then its critical points are encoded
in a finite sequence {ui}?ﬁl, where 2p is the [discrete] period. The PL graph is really
cyclic: one restricts to 1 < 7 < 2p 4+ 1 and identifies the end points abstractly. A
collection of n closed characteristics of period 2p then gives rise to a collection of n cyclic
PL graphs. We place on these diagrams a braid structure by assigning a crossing type
(positive) to every transversal intersection of the graphs. We thus project collections
of periodic sequences of extrema to closed, positive, PL braid diagrams.

Theorem 1. Consider Equation (1.1) for a regular energy level E under the twist
hypothesis (T). The following are sufficient conditions for the existence of infinitely
many distinct® closed characteristics.

e A compact interval component I and the existence of any closed orbit(s) whose
braid diagram is nontrivial* (e.g., Figure 1, left); or,

e An infinite interval component Iy = R with dissipative asymptotic behavior and
the existence of any pair of closed orbits whose braid representations are unlinked
(not mazimally linked, e.g., Figure 1, right).

2. THE PRIMARY INGREDIENTS

2.1. Discretization of the variational principle. We recast the problem of finding
smooth periodic orbits for a given energy level E into solving second-order recurrence
relations. This is accomplished via a method comparable to broken geodesics, which in
the present context are concatenations of the monotone laps given by (T) (see [6]).

A closed characteristic u at energy level F is a (C%-smooth) function v : [0,7] —
R, 0 < 7 < oo, which is stationary for the action Jg[u| with respect to variations
du € C?,.([0,7]), and 67 € R". Using (T), a broken geodesic u : [0,7] — R is a

per
closed characteristic at energy level E taking values in a fixed Iy if and only if the
sequence of its extrema u = (u;) satisfies VWay(us, - .., Uitop) = 0, where Wy,(u) =

S S(ui, uir1), and S(u;, ;1) is the action of a lap connecting u; and wu;y,. This
function S is a generating function and the functional W, is a discrete action defined
on the space of 2p-periodic sequences.

Critical points of W5, satisfy the recurrence relation

(2.1) R(Uiz1, Ui, Uit1) & 025 (Ui—1,u;) + 015 (s, uir1) = 0,

3In particular having distinct braid types: see §3.
4For example, any closed orbit of minimal period larger than two, or a pair of period-2 orbits which
are linked.
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and® can be found by analyzing the gradient flow u) = R(u;_1,u; u;r1) on a space
of sequences, where we may assume, without loss of generality, that (—1)""lu; <
(—1)"u;yq, for u;,u;r1 € Ig. In this context, the twist hypothesis (T) translates
into the twist property for R:

(22) OiR >0 and 0O3R > 0.

2.2. Boundary conditions. In order have a smooth flow on a compact space we
consider two natural boundary conditions for the generating function S, which are
derived from the behavior of S near d(Ir X Ir). In the compact case we can find a
compact interval I C Ip such that (I x I) is repelling, and in case I = R we assume
(the natural condition) that there exists a compact interval I C R such that 0( x I)
is attracting (dissipativity assumption):

(C) [compact] large amplitudes are repelling; or

(D) [dissipative| large amplitudes are attracting.

2.3. Braids. Via the discussion in §1 the gradient flow of (2.1) on 2p-periodic se-
quences immediately translates to a flow on the space of closed positive k-strand PL-
braid diagrams, denoted Dj, for any k£ > 1, completed to include certain singular braid
diagrams. Property (2.2) implies that the variational flow is transversally oriented on
the singular braids:

Proposition 2. The word metric in the braid group corresponds to a (weak) Lyapunov
function for the variational flow on Dy.

The strategy behind Theorem 1 is to construct isolating neighborhoods for the gra-
dient flow of (2.1) on PL-braid diagrams and compute their Conley homology [3].
Non-trivial Conley homology implies the existence of closed characteristics.®

3. MORSE-CONLEY THEORY ON THE SPACE OF PL-BRAID DIAGRAMS

Consider the special situation of (n + 1)-strand braid diagrams where n designated
strands, the skeleton, corresponds to a collection of closed characteristics. This induces
a flow on a 2p-dimensional invariant subset fl,n of 5n+1: the relative braid diagrams.

We can now use the relative braid types in D, to construct various isolating neigh-
borhoods for the induced flow. The space D,,,; of all (n + 1)-strand positive PL-braid
diagrams is partitioned into braid classes by codimension-1 “walls” of singular braids
(cf. [7]). This also induces a partitioning of D;,. The equivalence classes of braid
types in D, , are candidates for isolating neighborhoods.

Under (1) either boundary condition (C) or (D), and (2) braid classes for which
the (n + 1)st strand is non-isotopic to the skeleton (i.e., none of the strands of the
skeleton is contained in the boundary), Proposition 2 implies that the closure of the

5See also [1] where similar recurrence relations are studied for twist maps of the annulus.
6Compare with [2] where the Conley homology of certain knot types is computed.
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braid class is a proper isolating neighborhood for the induced flow. Consequently the
Conley homology is well-defined.

T O

FIGURE 1. Two examples of solutions (dashed) whose Conley homology
with respect to the fixed strands (solid) is nontrivial. Left: X , with
p=06,r =38, and ¢ = 1; Right: Y , with p =6, 7 =0, and ¢ = 5.

In order prove the main theorem we carry out the above construction for two special
braid classes: see Figure 1. In the compact case we consider a skeleton of two linked
strands with period 2p > 4 and crossing number 0 < r < 2p. The third strand (dashed)
has linking number ¢ with the skeleton, with 0 < 2¢ < r < 2p. We denote this braid
class by X7 . In the dissipative case we consider a skeleton of two linked strands of
period 2p with crossing number 0 < r < 2p . The third strand (dashed) has linking
number ¢ with the skeleton, and satisfies 0 < r < 2¢ < 2p. We denote this braid class
by Yy

Proposition 3.  Consider the braid classes X, (with 0 < 2qg <1 < 2p) and Y,
(with 0 < r < 2q < 2p) given in Figure 1. The Conley homology of the gradient flow
of (2.1) on these braid classes is well-defined and is equal to

, Z k=2q—1,2q , Z k=2q2¢+1
CHk(Xp,q) = { 0 else CH’“(Y;”‘I) - { 0 else

From this computation one easily constructs an infinite family of distinct braid types
forced by the pair of not maximally linked orbits (under condition (D)) or linked orbits
(condition (C)). Indeed, the above homology computation yields an infinite number of
closed characteristics by taking coverings, and applying Proposition 3 iteratively, i.e.
replacing p and r by p' = kp and ' = kr, for any k£ > 1, and then projecting the orbits
back to the original setting. However, many additional classes of closed characteristics
can be found by considering more elaborate braid types (e.g. ¢ > 1). This is the
subject of ongoing research [4].

4. AN EXAMPLE: THE SWIFT-HOHENBERG MODEL

As an application of the main theorem we consider the so-called Swift-Hohenberg
model that is used in various physical settings: phase-transitions, non-linear optics,
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shallow water waves, and amplitude equations. The Swift-Hohenberg model is defined

via a Lagrangian of the form L(u,u’,u") = |u"|> + ¢|v/|* + F(u), @ < 0. It is shown

in [6] that the Swift-Hohenberg model satisfies the Twist property (T).

Suppose that F has two non-degenerate global minima, say at (singular) energy level
Ey, and F(u) ~ |ul®, with s > 1 as |u| — oo, for example F(u) = 1(u? — 1)2. Then
there exists an € > 0 such that for each regular E' € (Ey, Ey + €) there exist at least

two unlinked simple closed characteristics. For all F > Ej, Ir = R and the dissipative
boundary conditions are met for any sufficiently large subinterval I € R (see [6]).
Part 2 of Theorem 1 now yields an infinity of non-simple closed characteristics for all
E € (FEy, FEy + €). These characteristics still exist in the limit £ = Ey, o < 0.

As for an example of the compact case, consider any F that has a compact in-
terval component Ig, for energy Ey, which contains an interior local minimum (non-

degenerate) for F at Ey, for example F(u) = —3(u® — 1)? with E; = ;. As before,

there exists an € > 0 such that for each regular E € (FEy, Ey + €) there exists at
least one non-simple closed characteristic. This follows from results obtained in [4, 5].
Part 1 of Theorem 1 now yields an infinity of non-simple closed characteristics for all
E € (Ey, Ey + €), and also in the limit F = Ey, a < 0.
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