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Abstract. Theory suggests that evolutionary branching via disruptive selection may
drive substantial phenotypic divergence as part of the speciation process. Here, we
extend this theory to social insects, which have novel social axes of phenotypic diver-
sification. Our model, built around turtle ant (Cephalotes) biology, is used to explore
whether disruptive selection can drive the evolutionary branching of divergent colony
phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in
social insect diversification exemplified in the turtle ants. We show that phenotypic mu-
tants can gain competitive advantages that induce disruptive selection and subsequent
branching. A soldier caste does not generally appear before branching, but can evolve
from subsequent competition. The soldier caste then evolves in association with spe-
cialized resource preferences that maximize defensive performance. Overall, our model
indicates that resource specialization may occur in the absence of morphological special-
ization, but that when morphological specialization evolves, it is always in association
with resource specialization. This evolutionary coupling of ecological and morphological
specialization is consistent with recent empirical evidence, but contrary to predictions
of classical caste theory. Our model provides a new theoretical understanding of the
ecology of caste evolution that explicitly considers the process of evolution.
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1. Introduction

How ecology shapes phenotypic diversification remains a central question in the field
of evolutionary biology. There has been a resurgence of interest in this question in
recent years, including a significant amount of new theoretical and empirical work on
“ecological speciation” (reviewed in Schluter, 2000; Rundle and Nosil, 2005; Rueffler et al.,5

2006; Weissing et al., 2011; Nosil, 2012; Rabosky, 2013). Broadly defined, ecological
speciation is the production of new species from ecologically-based divergent selection
between environments (derived from Schluter, 2000; Nosil, 2012). This general process
may result from a number of specific ecological scenarios, but most are expected to
produce phenotypically divergent daughter species, each adapted to the environment it10

inhabits (Nosil, 2012). This mode of speciation is therefore thought to be key in driving
adaptive phenotypic diversification within lineages, but much is still to be learned about
the different stages of this process, the conditions that favor it, and its prevalence across
taxa (Nosil, 2012).

Among the different ecological scenarios that favor ecological speciation, competition15

within a population, resulting in disruptive selection, may be particularly powerful in
driving phenotypic divergence (Nosil, 2012). Disruptive selection can be seen as a special
form of divergent selection where a more common phenotype in the population has a fit-
ness disadvantage with respect to low-frequency phenotypic extremes (e.g., Bolnick, 2004;
Bolnick and Lau, 2008; Calsbeek and Smith, 2008; Martin and Pfennig, 2009; Hendry20

et al., 2009). By gaining access to resources that are being competed over less intensely,
individuals with the extreme phenotypes have higher fitness, driving up the tails of the
phenotypic distribution, without associated changes in the underlying resource distribu-
tion. If this phenotypic and ecological divergence also results in a significant degree of
reproductive isolation among the phenotypic extremes, either directly or indirectly, spe-25

ciation may follow (Rueffler et al., 2006; Weissing et al., 2011; Nosil, 2012). The result is
two daughter species with adaptive phenotypic differences that are maximally divergent
within the bounds of the original phenotypic distribution. This process, although previ-
ously seen as controversial or at least rare, is now thought to be relatively common when
appropriate ecological conditions prevail (Rueffler et al., 2006; Nosil, 2012). Nevertheless,30

recent advances in the theoretical and empirical understanding of ecological speciation
via disruptive selection have been relatively limited in taxonomic representation, entirely
within the realm of “unitary” organisms (see reviewed case studies in Nosil (2012)). It
is therefore likely that much is still to be learned from work on underrepresented taxa,
especially those that typically interact in ecological contexts favorable to disruptive se-35

lection.
Derived social insect taxa have been entirely overlooked with respect to work on dis-

ruptive selection and ecological speciation. These taxa have undergone a transition in
biological complexity (Bourke, 2011) such that the colony operates as an integrated adap-
tive unit (Strassman and Queller, 2010; Pepper and Herron, 2008). This gap is significant40

for a number of reasons. The first is simply the evolutionary and ecological significance of
this group. For instance, the ants alone have diversified to over 13,000 described species,
undergone repeated bursts of adaptive radiation, and today represent a diverse and eco-
logically dominant fauna worldwide, especially in the tropics (reviewed in Lach et al.
(2010)). Second, little work has been done on mechanisms of speciation in social insects,45

and existing theory to explain phenotypic diversification (Oster and Wilson, 1978) does
not explicitly account for the evolutionary process. Third, although this same theory has
inspired a considerable amount of social insect research, it is now over 35 years old and
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there has been weak to no support for many of its central premises and predictions for
phenotypic diversification (e.g. (Walker and Stamps, 1986; Kaspari and Byrne, 1995; Fer-50

ster et al., 2006; Powell, 2009)). Finally, social insects have numerous axes of phenotypic
diversification not seen in unitary organisms. For instance, selection has favored the evo-
lution of phenotypically and functionally differentiated individuals or, “castes”, within
the colonies of many species. Individuals of different castes then serve as different traits
of the functionally integrated organismal colony (Powell, 2008; Strassman and Queller,55

2010). Furthermore, overall colony structure, including the presence and absence of cer-
tain castes and their relative representation, adds additional axes. We would argue that
these complex social axes of phenotypic diversification have previously served to isolate
social insect research from mainstream evolutionary theory. Nevertheless, this isolation
may have obscured commonalities in processes and patterns of phenotypic diversification60

across levels of biological complexity.
Here we extend the theoretical framework for evolutionary branching via disruptive

selection to social insects. We focus on the capacity for resource competition and dis-
ruptive selection to drive the evolution of daughter phenotypes with novel defense traits,
represented by a “soldier” caste. Soldier evolution is one of the major, recurrent themes65

in the diversification of social insects, with independent origins in 6 major insect lineages
(ants: Dornhaus and Powell, 2010; aphids: Stern, 1994; polyembryonic wasps: Cruz,
1981; stingless bees: Grüter et al., 2012; termites: Thorne et al., 2003; thrips: McLeish
and Chapman, 2007). In addition, soldiers have evolved multiple times independently in
the ants, including in some of the most diverse and ecologically important genera (Baroni70

Urbani, 1998; Dornhaus and Powell, 2010). The classical caste evolution theory predicts
that specialized castes like soldiers should evolve when the species expands the breadth
of resources the colony uses (Oster and Wilson, 1978). However, recent empirical work
with the charismatic turtle ants (Cephalotes) suggests the opposite: the evolution of a
specialized soldier caste is associated with species using more specialized nesting resources75

(Powell, 2008, 2009). Turtle ants have armored heads used to defend the entrances of the
pre-existing arboreal cavities that they find in the environment and inhabit (Figure 1;
(Creighton and Gregg, 1954; Powell, 2008, 2009)). The use of an increasingly narrow
range of entrance sizes is then associated with a number of discrete transitions in the
evolution of a specialized soldier phenotype, with the first transition being the one from80

no soldier to soldier present (Powell, 2008). These significant phenotypic shifts in associ-
ation with species using a narrower set of resources is broadly consistent with the pattern
expected under ecological speciation via disruptive selection (Rueffler et al., 2006; Nosil,
2012), and inconsistent with existing caste evolution theory (Oster and Wilson, 1978).

Critically, other aspects of turtle ant biology are consistent with the broad ecological85

scenario thought to favor ecological speciation via disruptive selection. First, the arboreal,
pre-existing cavities used as nests by turtle ants are also used by most other arboreal ant
taxa (Powell et al., 2011), are a limited resource in diverse tropical systems (Philpott and
Foster, 2005; Powell et al., 2011), and aggressive cavity usurpation is common (Powell,
2009). This highly competitive environment is likely to favor the negative frequency90

dependent fitness dynamics that underlies the process of disruptive selection. Second,
a mismatch between ant head dimensions and the size of the cavity entrance-hole can
significantly increase the likelihood of cavity usurpation and mortality in turtle ants
(Powell, 2009). These strong fitness consequences associated with the specificity of the
phenotype-resource association are likely to amplify the advantages of rare phenotypic95

extremes within the population. Finally, the phenotype of extant sister species tends to be
most differentiated with respect to soldier morphology (De Andrade and Baroni Urbani,
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1999), and members of sister pairs are often sympatric in diverse contemporary turtle
ant assemblages (De Andrade and Baroni Urbani, 1999). These patterns are consistent
with an evolutionary history of ecological speciation via disruptive selection, with the100

ecological relationship between cavity hole and head morphology being the driver.
In this paper, we use this rich knowledge of turtle ant biology to develop a model for

phenotypic divergence via disruptive selection based on the Adaptive Dynamics frame-
work (AD; Metz et al. (1996); Geritz et al. (1997, 1998); Dercole and Rinaldi (2008)).
Using a structured metapopulation model to describe occupancy of nests with different105

entrance sizes blocked by soldier ants, we incorporate the mechanisms by which worker
size distribution influences nest preferences and defensive abilities. We then investigate if
the evolutionary dynamics of worker size distributions converge to evolutionary branching
points, and if at such points phenotypic divergence causes castes to form.

2. Methods110

2.1. Modelling Cephalotes. The Adaptive Dynamics model has two components: one
containing ecological dynamics, and one with evolutionary dynamics. See Figures 2 and 3
for illustrations of the main concepts. On the ecological timescale, colonies with different
traits compete over nest resources, with either an eventual winner (all colonies having the
same phenotype) or coexisting set of colonies as a result. Then in each evolutionary time115

step, a small fraction of the resident colonies mutates to have slightly different traits. The
ecological competition dynamics are then played out again, with new long-term residents
as a result. In this way, the traits of resident colonies slowly changes on the evolutionary
time scale, giving rise to evolutionary dynamics, and potentially evolutionary branching.

At this level, our use of Adaptive Dynamics is straightforward. Our model contains120

several noteworthy ingredients, however. First, since the nest size distribution is not
set by the ants (but by wood-boring beetles), the ecological dynamics are assumed to
take the form of metapopulation dynamics. Second, the ecological dynamics are infinite-
dimensional, creating some mathematical challenges. Third, to distinguish between uni-
modal and bimodal ant worker size distributions, we model such distributions with three125

traits. (Most AD models describe the evolution of only one trait.)

2.2. Ecological model. From the wide array of possible model descriptions available (Bolker,
2004; Ovaskainen and Hanski, 2004), we focus on the simplest and classical description
of metapopulation dynamics, the Levins model (Levins, 1970). We start with equations
for two phenotypes within a population competing over some resource. These are given130

by

dy

dt
= cyy(1− y − z)− eyy, (1)

dz

dt
= czz(1− y − z)− ezz. (2)

Here y and z denote the fraction of patches occupied by phenotype 1 and 2 respectively,
cy and cz are the respective colonization rates and ey and ez the extinction rates. The
term 1− y − z is thus the fraction of empty patches. See Nee and May (1992, 1997) and
May and McLean (2007) for details of such competition models.135

To include the relevant biology for Cephalotes, we introduce several extra ingredients.
We assume there is a fixed distribution of resources h(x), which we interpret as the
distribution of nest cavities with given entrance width x (illustrated in Figure S1 in
the Supplementary Information (SI)). Let y(x, t) denote the number of nest cavities with
width x occupied by colonies of phenotype 1 at time t, and similarly z(x, t) for phenotype140
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2. Let
∫
h(x) dx = 1 be the total number of patches, normalized to 1, and let Y and Z

denote the total fraction of patches occupied by phenotype 1 and 2 resp., so

Y (t) =

∫
y(x, t) dx, Z(t) =

∫
z(x, t) dx.

(We typically suppress the integral boundaries, but [0, L] for L large but finite suffices
everywhere in this paper.) Colonies vacate a patch due to a natural death rate e which
for simplicity is assumed neither to depend on the phenotype, nor on the phenotype’s145

colony size distribution.
Second, phenotypes are assumed to have a preference profile gy(x) or gz(x), which

determines the relative preference for patches of different width x. No preference for
phenotype 1 would mean gy(x) is identically equal to some constant. To incorporate the
preference function in the equations, we need to weight it with the distribution of nest150

resources h(x). To this end, we set

Hy :=

∫
gy(x)h(x) dx.

If gy ≡ 1, then of course, Hy = 1.
Including these two extensions gives a basic metapopulation model for resource distri-

butions,

dy

dt
(x, t) = cy

gy(x)

Hy
Y (h(x)− y(x, t)− z(x, t))− ey(x, t), (3)

dz

dt
(x, t) = cz

gz(x)

Hz
Z(h(x)− y(x, t)− z(x, t))− ez(x, t). (4)

For Cephalotes, defense of nest cavities has driven the evolution of soldier castes with155

specialized head morphology for entrance blocking. For the origin of castes, therefore, we
need to extend the above model to include such defense.

When colonies of phenotype 1 try to overtake a nest of width x inhabitated by a
colony of phenotype 2, then colony 1 wins with a defense probability dzy(x). We assume
that dyz(x) = 1 − dzy(x) and that resident colonies do not have a ‘home advantage’: a160

colony of the same phenotype evicts a conspecific that currently lives in a nest cavity
with probability of 1

2 . (Assuming such a home advantage instead would imply that the
growth rate (invasion fitness) of resident populations at steady state would not be zero.)

Including this last ingredient gives

dy

dt
(x, t) = cy

gy(x)

Hy
Y [dzy(x)z(x, t) + h(x)− y(x, t)− z(x, t)]

− cz
gz(x)

Hz
Zdyz(x)y(x, t)− ey(x, t),

dz

dt
(x, t) = cz

gz(x)

Hz
Z[dyz(x)y(x, t) + h(x)− y(x, t)− z(x, t)]

− cy
gy(x)

Hy
Y dzy(x)z(x, t)− ez(x, t).
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which is equivalent to165

dy

dt
(x, t) = cy

gy(x)

Hy
Y [h(x)− y(x, t)− dyz(x)z(x, t)]

− cz
gz(x)

Hz
Zdyz(x)y(x, t)− ey(x, t), (5)

dz

dt
(x, t) = cz

gz(x)

Hz
Z[h(x)− dzy(x)y(x, t)− z(x, t)]

− cy
gy(x)

Hy
Y dzy(x)z(x, t)− ez(x, t), (6)

since dyz(x) + dzy(x) = 1. In what follows, we will distinguish different phenotypes by
trait vectors t (for phenotype 1, fraction y), and t′ (for phenotype 2, fraction z). Written
in terms of these traits, the above equations are written as

dy

dt
(x, t) = c(t)

g(x; t)

H(t)
Y [h(x)− y(x, t)− d(x; t, t′)z(x, t)]

− c(t′)
g(x; t′)

H(t′)
Zd(x; t, t′)y(x, t)− ey(x, t),

dz

dt
(x, t) = c(t′)

g(x; t′)

H(t′)
Z[h(x)− d(x; t′, t)y(x, t)− z(x, t)]

− c(t)
g(x; t)

H(t)
Y d(x; t′, t)z(x, t)− ez(x, t).

2.3. Parameter mapping. In AD models, one needs to specify how the ecological pa-
rameters, such as colonization rate, preference and defense, are determined by the traits.170

To distinguish monomorphic colonies, defined here simply as colonies with workers but
no distinct soldier, from ones with castes, we describe colony size distributions by three
traits, m, s and r. Trait m describes the mean of the smaller ants, s ≥ 0 stands for the
distance between the mean of the smaller and the larger soldier ants, and r the fractional
investment in larger ants (see Figure 3). Since nest cavities are well-defended by ants175

that have the right sized head disk, the size distribution of ants in a colony is described
in x. Let t = (m, s, r) be the trait vector, and

b(x; t) = (1− r)N (x,m, σ) + rN
(
x,m+

s

2
, σ

)

be the size distribution of ants with head width x. Here N (x,m, σ) is a normal distri-
bution with mean m and standard deviation σ. This standard deviation is taken fixed
equal to 1 throughout, and is not considered to be part of the trait vector t. For small s180

this distribution is not bimodal. We also make the following observation, set aside as a
remark for future reference.

Remark 2.1. If r = 0, then for a given m, the size distribution specified by (m, s, 0) is
identical for every s.

We divide the total size distribution into small ants bs and large ants bl, but we defer a185

precise definition until later. Only small ants are assumed to contribute to reproduction
and colonization; large ants contribute to defense. The colonisation parameter c is taken
to be equal to the total contribution to reproduction by all the small ants.

To introduce a tension between reproduction and defense, we assume that ants con-
tribute optimally to colonization when they have size B, but less so when they are either190
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larger than B or smaller, by setting

c(t) = A

∫
bs(x; t)N (x,B, 0.5)dx.

A is a scalar; the standard deviation 0.5 is chosen arbitrarily, but should be chosen less
than that of the nest size distribution. Since defense strength for a nest with entrance
width x is directly related to having ants with head disks of that size, we propose that a
colony from phenotype 1 with bl(x; t) large ants is able to defend successfully a nest of195

size x from attack by bl(x; t′) ants from phenotype 2 with probability

dyz(x) = d(x; t, t′) = D(ϵ(bl(x; t)− bl(x; t
′))).

The main assumption we make is that colony phenotype 1 has a greater probability to
win a contest over a nest of size x from phenotype 2 if the first has more large ants of
that same size than the second. Function D(·) should be increasing, between 0 and 1,
and antisymmetric around 0. We examine two choices for D,200

D1(x) =
1

2
(1 + tanh(x)), D2(x) =

1

2
(1 + arctan(2x)).

Parameter ϵ measures the strength of the defense response.
Depending on the presence or absence of castes, Cephalotes species show different

preferences for nests of different widths (Powell, 2008, 2009). All species have a certain
minimal nest width they prefer, given approximately by the head size of the largest ant in
the colony. Monomorphic species have an entrance preference many times larger than the205

head size of the largest ant, and often in the range of three times the head size of one ant
(Powell, 2008). Colonies with well-developed castes prefer a much narrower range of nest
entrance widths, one that is more in line with the head size of the soldiers. To implement
this, we introduce a function λ(s, r) which measure the extent of caste specialization of
a colony. For fixed s, this function should be symmetric around r = 1

2 , be zero at r = 0210

and r = 1 (investing all biomass in soldier ants also constitutes a monomorphic colony)
and be increasing-decreasing. We try two implementations,

λ1(r, s) =
(
1− e−

3rs
σ

)(
1− e−

3(1−rs)
σ

)
, λ2(r, s) =

(
r

σ
2s + r

)(
1− r

σ
2s + (1− r)

)

The factor 3 in λ1 and 2 in λ2 are such that caste specialization is pronounced when
s ≈ 3σ.

The preference function g(x) is now defined by215

g(x) = N (x, P, π),

where P and π interpolate between the mean preference and it standard deviation between
completely monomorphic (λ = 0) and maximally specialized λ = 1 colonies,

P = λ
(
m+

s

2

)
+ (1− λ)3m,

π = λσ + (1− λ)3σ.

Finally, we define the size distributions of small and large ants, by introducing a transition
function v(x; t) that indicates the propensity for an ant of head size x to contribute to
colonization or defense, and thus be termed “small” or “large”. This function should220

increase from 0 to 1, and v(m + s
4 ;m, s, σ) = 1

2 (the half way point should occur in the
8



middle between mean m and mean m+ s
2). We try two implementations,

v1(x; t) =
1

2

(
1 + tanh

(
2σ

(
x−m− s

4

)))
,

v2(x; t) =
1

2

(
1 + arctan

(
4σ

(
x−m− s

4

)))
.

The steepness of the transition should depend on the width of the normal distributions,
which scale with σ, and this is taken into account by the factor 2σ and 4σ, respectively.
Then we define the size distributions for small and large ants by225

bs(x) = (1− λv(x))b(x), bl(x) = λv(x)b(x).

Figure 4 gives some examples of the ecological traits, both for a monomorphic colony and
for one with a pronounced caste. All the parameters used in the mapping between traits
and ecological parameters are collected in Table 2.

2.4. The AD canonical equation. In Adaptive Dynamics, the evolutionary change of
traits over time is modeled using a decoupling of the ecological and evolutionary time230

scales. In the limit of infinitesimally small mutations, deterministic equations may be
given that specify the expected evolutionary dynamics of the traits. These are called the
AD canonical equations (Dieckmann and Law, 1996; Metz et al., 1996; Geritz et al., 1997,
1998), and will be specified forthwith.

Let us denote by φ(t, t′) the invasion exponent (i.e., the intrinsic exponential growth235

rate) of the invasive mutant with trait t′ = (m′, s′, r′) into a steady state resident popu-
lation of phenotype t = (m, s, r), which has a nest occupancy ȳ(x; t) and corresponding
Ȳ (t). Let µ(m) and τ 2(m) be the mean and variance in mutation step size, respectively,
for trait m, and similarly for traits s and r. Then the evolutionary dynamics for three
trait parameters m, s and r are specified by240

ṁ =
1

2
µ(m)τ 2(m)Ȳ (t)

∂

∂m′φ(t, t
′)|m′=m, (7)

ṡ =
1

2
µ(s)τ 2(s)Ȳ (t)

∂

∂s′
φ(t, t′)|s′=s, (8)

ṙ =
1

2
µ(r)τ 2(r)Ȳ (t)

∂

∂r′
φ(t, t′)|r′=r. (9)

Here the dot means a derivative with respect to evolutionary time. The evolution of
two stably coexisting polymorphic colony phenotypes is given by analogous extension
to a system of six equations. In the above formulation we have ignored the potential
covariance of traits under mutation, since nothing is known about them. Note also that
in all simulations of these equations, the mean and variance of the mutation process are245

unknown. This is not a significant problem if there is only one trait m, since then we
would merely be rescaling evolutionary time by changing the value for µ(m)τ 2(m). Here,
this is not the case. We have no choice, however, but to take arbitrary values for these
means and variances, which we take to be unity. We have experimented with other values
of these means and variances, giving qualitatively very similar results.250

Computing φ(t, t′) requires a linear stability analysis. This is not a trivial matter for
the model under discussion, since there are no explicit expressions for the steady state
profiles ȳ(x) or for the mixed steady state profiles (ȳ(x), z̄(x)). However, as detailed in
the SI, implicit expressions may be given, and may be used in a separation of variables
approach to find the invasion exponent. It turns out that φ(t, t′) solves an integral255
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equation of the form

S(t, t′) :=

∫
D(x; t, t′)

C(x; t, t′) + φ(t, t′)
dx = 1,

where D(x; t, t′) and C(x; t, t′) are given by

D(x; t, t′) := c(t′)
g(x; t′)

H(t′)

(
h(x)− ȳ(x)d(x; t′, t)

)
, (10)

C(x; t, t′) := c(t)
g(x; t)

H(t)
d(x; t′, t)Ȳ + e. (11)

Therefore, although the invasion exponent itself is not known explicitly, we know that

signφ = sign[T (t, t′)− 1] (12)

where

T (t, t′) =

∫
D(x; t, t′)

C(x; t, t′)
dx.

This integral is a basic reproductive ratio or metapopulation capacity, and the integrand260

balances colonization against extinction. Relation (12) is well-known and found in many
models, including metapopulation models (Gyllenberg and Metz, 2001; Ovaskainen and
Hanski, 2001).

As detailed in the SI, the change in the invasion exponent whilst varying parameter m
is given by265

∂

∂m′φ(t, t
′)
∣∣∣
m′=m

=
∂

∂m′T (t, t′)
∣∣
m′=m∫ D(x;t,t′)|m′=m

C2(x;t,t′)|m′=m
dx

.

The extension to higher dimensional trait space is entirely straightforward.

2.5. Dynamics of the AD equations. We make some preliminary remarks on the use
of AD models, and the kind of dynamics they generate.

In many Adaptive Dynamics models, including this one, only a local stability analysis
can be carried out, and it is not clear analytically what the long-term behaviour of the270

unstable solutions is. However, in most models, instability leads to substitution of the
resident phenotype by the mutant phenotype (Dieckmann and Law, 1996). Indeed, this
has been proved rigorously for a class of simple ODE models (Dercole and Rinaldi, 2008),
but the current infinite-dimensional set of equations falls outside the scope of that class.
We do not know if “invasion implies substitution” holds in our model. We have carried275

out extensive simulations of the ecological metapopulations model (also to check against
simulated dynamics of the AD canonical equations), and these are all in accordance with
the “invasion implies substitution” principle.

When defense strength ϵ is zero, the defense terms d(x; t, t′) and d(x; t′, t) are trivially
1/2, and castes do not enter in the model. The AD equation is hence only given by the280

evolutionary dynamics for m, the mean of the colony size distribution. In such a case,
the evolutionary dynamics may be conveniently depicted using Pairwise-Invasibility-Plots
(PIPs). Examples are given in Figure 6. Such a PIP illustrates graphically which of a
given pair of residents and mutants invades the other. With the resident and mutant
parameters as axes, the diagonal is thus neutral (resident and mutant are ecologically285

equivalent, so the invasion exponent φ is exactly 0 on the diagonal). If the area above
the diagonal is dark, the mutant phenotype with a larger trait value will invade the
resident phenotype and become the new resident. The AD dynamics will thus show
an increase in the value of the trait. If the area below the diagonal is dark, the trait

10



value will decrease in the AD dynamics. Often the AD dynamics will converge onto an290

evolutionary equilibrium. Depending on the local nature of the PIP at this equilibrium, it
may instance be a terminal point or a branching point (for a full discussion, see (Dercole
and Rinaldi, 2008), or (Diekmann, 2004) for an accessible first introduction to AD and
PIPs).

When defense strength ϵ is positive, all three traits may change over evolutionary295

time. PIPs can now not be drawn, but the dynamics do generally converge onto a stable
evolutionary equilibrium, and this again may or may not be a branching point.

2.6. Description of simulation experiments. The numerical experiments carried out
with this model fall into two classes: establishing biologically reasonable dynamics, and
simulating evolution of caste differentiation.300

At the most basic level, we want the model to give plausible dynamics. We explore the
metapopulation dynamics of the ecological model, which gives a first indication of the
potential for coexistence of colony phenotypes. The most important biological phenomena
we wish to see are

• when we vary the optimal worker size for colonization, B, the evolution of the305

traits should track this to keep reproduction at optimal levels;
• if defense strength ϵ goes up, investment in larger ants should become more viable;
• when we increase the width of preference functions, there should be less room for
a colony phenotype with developed castes to coexist next to a monomorphic one
(and evolution of such defensive phenotypes may thus be hindered by a simple310

lack of resources not monopolized by the resident in the evolutionary equilibrium).

Secondly, and most importantly, we want to know if the AD model shows evolutionary
branching, and whether castes develop, before or after branching.

In this paper, we are chiefly interested in the interplay between ecological interactions,
branching and caste differentiation. The main idea we wish to test theoretically is whether315

sustained disruptive selection may give rise to a novel caste of larger ants. However, the
above setup does not preclude ecological branching in monomorphic colonies (colonies
with a uniform worker size distribution), in which preferences for different parts of the
resource distribution evolve. Therefore, we will first examine the simpler model (3)–
(4), to see if such branching events take place under reasonable assumptions. After320

that, defense will be included and we will study the evolution of caste formation in
the extended model (5)–(6). This latter model is more difficult to analyze, given the
additional interactions between defense on the one hand, and colonization and preference
on the other.

The details of the numerical implementation of the simulations may be found in the325

SI.

3. Results

3.1. Ecological (metapopulation) dynamics. Colonies with different phenotypes of-
ten coexist (Figures S1, S2). With increasing caste differentiation, the preference becomes
narrower and defense more pronounced. This results in a narrow size range of suitable330

nests that are inhabited by the caste-bearing phenotype. Nest occupation by two different
colony phenotypes may show overlap (Figure S1) when preferences of both phenotypes
overlap. In this case, defense of nests with small nest entrances is quite pronounced,
but it is not in line with nest preferences. As castes become more pronounced, the two
phenotypes show more exclusive use of nest resources (Figure S2). This coexistence, of335
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course, does not yet show that such a situation may be arrived at by branching from an
evolutionary equilibrium. This will be discussed below.

3.2. Evolutionary dynamics. The first test of plausibility of this model is to see that
evolutionary dynamics show a sensitivity to B, the worker size at which the colonization
rate cy is optimized. Starting at a point with no caste, t = (m, 0, 0), m ̸= B, the340

evolutionary history indeed reflects this (Figure S3).
To understand the AD dynamics further, we first recall Remark 2.1, and note that the

change from (m, 0, 0) to (m, s, r), with r small and s positive (but not necessarily small)
is continuous when seen from the perspective of size distributions. In fact it reflects only
a small change in phenotype of the larger ants.345

Starting with a colony phenotype without castes, the AD dynamics for one phenotype
invariably shows that castes do not emerge before the equilibrium is reached. Since this
could be due to monomorphic phenotypes being ill-defined (see Remark 2.1), we have
also tried to start the one-species AD dynamics with (m, s, r) for which r is small, but s
is not small. In all trials, r quickly decreased, resulting in an equilibrium with m close350

to B, r = 0 and s the value at which the dynamics had arrived when r had vanished.
As a first conclusion, we found as a robust pattern: the emergence of a stable evolu-

tionary equilbrium of the form (m̄, s̄, 0) with s̄ ≥ 0.
We have found strong evidence of branching in the absence of defensive castes. Setting

defense strength ϵ = 0, we can still find branching points, as evidenced by Figure 6b.355

The relative width of preferences versus nest size distribution seems to play an important
role in the occurrence of this phenomenon. With fixed nest size distributions, narrower
preference distributions promote branching points, and wider distributions preclude them.
Analogously, wider resource distributions promote branching for fixed preference widths.
The means of the colony size distribution diverge after branching, and remain positioned360

more or less symmetrically around the original value in the equilibrium (Figure 7). This
indicates a tug-of-war between optimal worker sizes for reproduction and colonization,
and distinct preferences to use available resources. As a result, there is still significant
overlap in resource use by the two phenotypes at the new evolutionarily stable state.

With ϵ > 0, castes stably emerge after branching (Figure 8), even if the equilibrium is365

not a branching point for the no-defense model. Predictably, larger ϵ (stronger defense)
facilitates branching and the emergence of castes. We do find, however, that the value
of s of the mutant phenotype that needs to be introduced right after branching must
not be too small. In other words, a phenotype with a few larger soldier ants needs to
be introduced in order for the branching to occur. As discussed previously, this is not370

in conflict with the assumption in AD that all mutations should be small. The small
distribution of soldier ants needs to be introduced in the tail of the main distribution,
not outside it. This still constitutes a small evolutionary change in the ant phenotypes,
since the original phenotypes had some larger ants already.

The evolutionary dynamics of branching with caste formation differs markedly from375

that of two branching monomorphic phenotypes (cf. Figures 7B vs. 8D). The pronounced
castes correspond with more specialized preferences, which coincide more and more with
the nest sizes that are well-defended by soldier ants. As a result, we find the coexistence
of a monomorphic phenotype together with one which develops a soldier caste. These two
phenotypes differ strongly in their preferences, and they are practically mutually exclusive380

in their resource use. We have never observed two phenotypes with castes coexisting in
our AD simulations. Nevertheless, we conjecture that they might be found if the model
were extended to three species, or if different soldier morphotypes with different defensive
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capabilities are introduced. Species with different morphotypes are found within the
Cephalotes lineage (De Andrade and Baroni Urbani, 1999; Powell, 2008).385

The mapping from the trait space to the ecological ingredients (preference, coloniza-
tion and defense) included choosing three explicit functions, D1(x) vs. D2(x), λ1(r, s)
vs. λ2(r, s) and v1(x; t) vs. v2(x; t). The most extreme difference in dynamics is expected
when all three functions are replaced by their counterparts. In Figure S4, the equivalent
of Figure 8 (which use D1(x), λ1(r, s) and v1(x; t)) is shown in which all three functions390

have been replaced with their alternatives D2(x), λ2(r, s) and v2(x; t). The results are
qualitatively very similar.

4. Discussion

This paper provides a new theoretical understanding of phenotypic diversification in
social insects, by showing that castes may evolve as the result of sympatric competitive395

interactions. More specifically, the benefits gained by a novel phenotypic mutant, within
the highly competitive context of defending shelter resources, can produce disruptive
selection and subsequent branching. We have shown that new castes generally do not
develop before branching, but may result from the competition over evolutionary time
with monomorphic colonies with which they compete for nest resources. Even without400

soldiers defending resources, a simple correlation between mean worker size and mean
resource preference is sufficient to cause branching. Adding defensive capabilities further
amplifies this, and may indeed cause a non-branching evolutionary equilibrium to turn
into a branching point. We thus find evidence that ecological specialization within a
population may occur in the absence of the evolution of a specialized caste, but that405

caste evolution may go hand-in-hand with the use of a narrower range of resources.

4.1. Caste evolution and ecological specialization. The intimate relationship that
we identify here between the evolution of morphological and ecological specialization in
novel colony phenotypes is concordant with empirical data for the turtle ants. As already
discussed, the use of an increasingly narrow range of entrance sizes used by turtle ants is410

associated with discrete transitions in the evolution of a specialized soldier caste (Powell,
2008). While our model was built to reflect turtle ant biology, this did not guarantee
that adaptive dynamics would generate a morphologically and ecologically specialized
novel colony phenotype. Our results, however, suggest that disruptive selection is indeed
a viable mechanism for producing the empirical pattern of coupled morphological and415

ecological speciation. Notably, this is in opposition to classical theory, which predicts the
evolution of additional castes with the broadening of a species’ ecological niche (Oster
and Wilson, 1978). So, what evidence is there to support the empirical pattern and our
modeling result in other taxa? With reexamination of recent ant work, it seems that
the evolution of a novel specialized caste may indeed often be coupled with ecological420

specialization along a key niche axis.
Across Eciton army ant species, the evolution of a morphologically specialized prey-

transport caste is associated with specialization on prey types that are more awkward
to handle (Powell and Franks, 2006, 2005). A high proportional representation in the
diet of a certain class of prey item therefore appears to have selected for a specialized425

caste to deliver it efficiently to the nest. In an intriguing example, the seed-harvester
ant Pogonomyrmex badius has been used to test directly the classical idea that niche
expansion is responsible for caste evolution, but no support has been found (Ferster
et al., 2006; Traniello and Beshers, 1991). This is an ant that, unlike other members
of the genus, has a specialized seed-milling caste and takes a larger range of seed sizes430
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than its relatives. Nevertheless, ecological specialization is best analysed as the response
to distribution and predictability of the focal resource for the organism that consumes
it (Irschick et al., 2005), not simply niche breadth. In light of the findings here, and as
proposed previously (Powell, 2008), a proportional specialization on large seeds might
therefore explain the evolution of the specialized seed miller, not the byproduct of an435

expanded overall niche that comes from adding larger seeds to the diet. Similarly, the
convergent evolution of a second specialized soldier or milling caste in a small number of
Pheidole ant species found exclusively in the Southwest USA and nearby areas of Mexico
(Moreau, 2008) might be associated with the size of available seeds (Huang and Wheeler,
2011), or defense against a specialized army ant predator (Huang, 2010). Pheidole is440

a hyper-diverse genus otherwise characterized by a discrete worker caste and a single
large-headed caste that may function as a soldier or seed miller (Wilson, 2003).

To summarize, while empirical data on the ecology of caste evolution remain generally
scarce, these studies suggest that ecological specialization may be an important force in
the evolution of specialized castes across the ants.445

4.2. Caste evolution and resource distributions. Our model suggests that for a
given resource preference range of the ants, an overall broadening of the resource base
available in the environment can drive the production of new species with more specialized
niches, and the evolution of a new specialized caste in some cases. Classical caste theory
predicts that this kind of change in the prevailing environment might provide ”ecological450

release” of a species, and thus one type of opportunity for niche expansion and subsequent
caste proliferation (Oster and Wilson, 1978). As outlined above, our results strongly
reject this proposed pattern. Nevertheless, a central premise of the ecological theory of
adaptive radiation (reviewed in Schluter (2000)) is that ”ecological opportunity”, like that
provided by an expanded resource base, initiates the accelerated production of ecologically455

divergent species. Our findings are highly consistent with this premise, and yield a
prediction that is specific to the diversification of social insect lineages: greater resource
availability within the evolutionary history of a lineage should be followed by accelerated
production of species that are both more ecologically specialized and have a greater
prevalence of specialized castes.460

A phylogenetic comparative framework has been proposed as a powerful approach to
studying the evolution of different components of trait specialization (Irschick et al.,
2005). In addition, phylogenetic comparative approaches now exist to test for the pre-
dicted accelerated accumulation of divergent species following ecological opportunity (e.g.
(Mahler et al., 2010; Frédérich et al., 2013)). Here, the turtle ants can provide a few more465

concrete examples as to how correlated ecological specialization and caste evolution might
be seen in association with new ecological opportunity. We know that turtle ants are de-
pendent on beetle-produced cavities (Creighton and Nutting, 1965; Creighton, 1963; De
Andrade and Baroni Urbani, 1999; Powell, 2008). We could therefore test whether an
increase in species accumulation and transitions in caste evolution are coincident with470

increases in cavity resource availability. Conceivably, increases in cavity resources could
be associated with a transition in habitat use (e.g. (Price et al., 2014)), moving into
geographic locations with underused cavity resources, or through the diversification of
the beetles themselves. The phylogenetic comparative patterns associated with these
possibilities are potentially testable in the turtle ants, as are generally similar scenarios475

in other taxa.

4.3. Caste evolution and the developmental origin of soldiers. While our model
suggests that caste evolution emerges stably after a branching point under a range of
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conditions, we do see that the mutant colony phenotype that ignites the process cannot
have soldiers that are too small. This has biological significance for considering the480

developmental origin of novel castes. In fact, our result would have been problematic for
the classical hypothesis of how novel phenotypes evolve. The long held view is that they
emerge from the small incremental expansion of the ancestral worker size range (Wilson,
1953; Oster and Wilson, 1978). However, recent work has suggested that novel castes
are more likely to originate from “developmental mosaics” of the existing castes (Baroni485

Urbani, 1998; Molet et al., 2012, 2014). Metamorphosis in holometabolous insects is
controlled by a series of pairs of imaginal discs distributed throughout the pupa’s body.
The developmental pathways switched on in these different discs then determines the
overall adult form. The developmental mosaic hypothesis proposes that novel castes
originate as mosaics of expression of gyne and worker phenotype across the different490

imaginal discs (Molet et al., 2012). The result is a novel adult form composed of parts
that have largely been tested by evolution in the existing castes, and that can provide
specialized functions because other life-sustaining tasks are performed by other members
of the society. Mosaic-like reproductive castes seem to be widespread in ant evolution
(Molet et al., 2012), and evidence is mounting that novel soldier phenotypes may often495

originate as mosaic-like inter-castes that approximate a gyne head on a worker body
(Molet et al., 2014). Moreover, individuals that are developmental mosaic mutants are
relatively common in colonies of many ant taxa, and survive and operate readily within
the buffered social environment (Molet et al., 2012; AntWeb, 2015). This includes turtle
ants, where full colony collections often reveal the presence of individuals with mosaic-500

like, blended caste traits (e.g., typical worker body with incompletely formed soldier
head; Powell unpublished data). All considered, the kind of initial soldier size needed to
kickstart stable caste differentiation in our model may be relatively straightforward, and
perhaps even common, within the constraints of ant developmental biology.

4.4. From branching to speciation. The evolutionary dynamics resulting in the origin505

of a new soldier-bearing phenotype within a monomorphic population, focused on here,
is the critical first step in ecological speciation, but it is not a true speciation event. This
requires that the phenotypic divergence within the population is also associated with
reproductive isolation (Schluter, 2000; Nosil, 2012). This is possible if the ecological traits
under disruptive selection also generate assortative mating. Historically, “magic traits”,510

defined as ecological traits under selection that are also directly involved in mating cues,
have been seen as a likely rare occurrence, hence the name (Nosil, 2012). Nevertheless,
recent work has made an important distinction between these “classic” magic traits and
“automatic” magic traits (Servedio et al., 2011; Nosil, 2012). The idea behind automatic
magic traits is that adaptive phenotypic divergence of ecological traits may frequently515

establish pre-mating reproductive isolation as an automatic byproduct (Servedio et al.,
2011; Nosil, 2012). Known aspects of turtle ant biology suggest that divergent selection
on worker sizes and associated entrance size preferences, as explored in this model, may
have a number of cascading, automatic effects on mating cues.

Beetle cavities with smaller entrance holes tend to be in smaller diameter stems, more520

towards the terminal tips of tree crowns (Powell unpublished data). This makes intuitive
sense because although small beetle species could potentially feed in and emerge from
large stems, the greater nutritional needs of large beetle species would naturally exclude
them from certain smaller size classes of stems. Given the demonstrated association be-
tween soldier size and entrance preferences in turtle ants (Powell, 2008, 2009), adaptive525
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divergence in these traits among populations has natural spatial implications for the lo-
cations of the cavities they occupy. Critically, mounting evidence suggests that turtle
ant virgin females (alate gynes) engage in female calling to males at or near the natal
nest. Female calling involves the release of sex pheromones that draw in winged males
to the point location of the calling females. Across ant species, this mating strategy is530

often associated with the production of small numbers of very large gynes, large robust
males, localized dispersal behavior of gynes post-mating, spatial clumping of colonies,
small colony size at reproductive maturity, and the prolonged release of sexuals instead
of a mass-release (Hölldobler and Wilson, 1990; Boomsma et al., 2005; Peeters and Molet,
2010), all of which have been documented in turtle ants (Corn (1976); De Andrade and535

Baroni Urbani (1999); Powell (2009); Powell unpublished data). Any spatial segrega-
tion in cavity locations among populations, driven by divergent selection on ecological
traits for cavity defense and selection, may therefore have profound effects on assorta-
tive mating. While these ideas are speculative at this stage, they provide a number of
testable hypotheses about the spatial and temporal aspects of turtle ant mating biology.540

It may also be possible to incorporate any new empirical insights into assortative mat-
ing into future models. The AD canonical equation we have developed here is based on
the assumption of clonal reproduction, as is common. Nevertheless, extending the AD
framework to sexually reproducing species is possible (Dieckmann and Doebeli, 1999;
Dieckmann et al., 2004), but requires that the evolutionary dynamics are modeled using545

an individual-based approach, at the expense of analytical tractability.

4.5. Critique of the modeling approach, and expected results. The model studied
in this paper is intricate, but, in a certain sense, it is also minimal. To capture the
evolution of traits in a meaningful manner, we have introduced first an ecological model
in which different species compete for resources (nest space). Additionally, we have550

defined a mapping from the trait space to the ecological parameters in that first model.
This was the most difficult step. Then, we have introduced the AD canonical equations
that describe the evolution of the traits on an evolutionary timescale.

We have tried to keep the trait space as low-dimensional as possible, but three param-
eters seem to be the smallest number to distinguish unimodal from bimodal ant worker555

size distributions. Also the mapping from trait space to the ecological functions of de-
fense, preference and colonization is kept as simple as possible, but simple it certainly is
not. We definitely do not think ours is the only implementation of this mapping. For
instance, it may well be reasonable to make defense strength ϵ an evolutionarily dynamic
variable, mimicking the evolutionary transitions in distinct soldier morphotypes among560

Cephalotes species. Since this paper’s goal was to show that sympatric ecological compe-
tition and ensuing disruptive selection is a viable mechanism for caste formation, there is
clearly no interest in trying to find exactly where the boundaries lie in parameter space
between the observed behaviors (branching versus no branching, for example).

4.6. Outlook for caste theory. Our model provides the first exploration of how re-565

source competition in sympatry might drive phenotypic divergence, caste evolution, and
potentially ultimately speciation. It remains to be seen to what extent this model may be
generalized to other well-known taxa with specialized castes, like Eciton, Pogonomyrmex
and Pheidole. For instance, in Eciton the resource base shared by different army ant
species is much more dynamic than the nest resource is for turtle ants. We have used a570

metapopulation approach for Cephalotes, but a more common Volterra competition model
of some kind might be more reasonable for Eciton. Nevertheless, our general approach
makes a conceptual shift to considering how phenotypic diversification in complex social
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taxa might be explicitly coupled with the process of ecological speciation, and adaptive
lineage diversification more generally. This provides a potentially valuable and alternative575

perspective to classical thinking on caste evolution, which explicitly considers the process
of evolutionary branching. At the most general level, our model can be seen as a critical
step in bridging the historical divide between the development of mainstream evolution-
ary theory on phenotypic diversification and the study of this process on complex social
taxa. We suggest that continued efforts to unite the study of phenotypic diversification580

across different levels of biological complexity are likely to provide valuable tests of the
general processes thought to drive adaptive evolution.
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Figure 1. A soldier (left) and two workers (right) of the turtle ant
Cephalotes depressus (A), and a soldier blocking the entrance of a nest
cavity occupied by its colony (B). Photos by Scott Powell.
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Figure 2. Cartoon-like illustration of the ecological dynamics in a single
evolutionary cycle, explaining the basic logic of the model. (A) a resident
phenotype with a few soldiers occupies nests of varying, mostly larger, en-
trance widths. The colony has a preference for larger nests (which are more
abundant), but cannot defend these very well. (B) a colony mutates, and
has larger soldier ants. Preference of this colony is for slightly smaller nests,
which can be defended better. (C) Competition ensues between the resident
and mutant colony phenotypes. (D) In this example, the mutant overtakes
the resident and becomes the new resident. The cycle then recommences.
Photos by Scott Powell.

19



Figure 3. Schematic evolutionary dynamics. (A) Ant worker size distri-
butions are speficied by three parameters, m (the mean of the smaller ant
size), s (the distance between the means of smaller and larger ant sizes, and
r, the fraction of biomass invested in larger ants. (B) Example (schematic)
evolutionary dynamics of the three traits, m, s and r. Until branching
occurs, there is no caste proliferation. After branching, one phenotype de-
velops castes (r and s positive), the other does not. (C) Example worker
size distributions at corresponding evolutionary time moments in (B).
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Figure 4. Two example choices for the important functions that define a
species’ traits. Black thick line: total biomass b; light gray: large ants bl,
dashed gray: preference; dashed-dotted line: defense d (against a monomor-
phic colony, i.e., its bl(x) = 0); Parameter choices for figure A: m = 14,
s = 0, r = 0, σ = 1, defense strength ϵ = 0. For figure B, parameters
are the same except s = 3, r = 0.3. The left figure shows a species with-
out a caste with specific abilities to defend nest sizes. The right figure
shows a species with a pronounced soldier caste, good defensive abilities
and preferences that match the nest sizes that may be defended.
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Figure 5. Example caste specialization function λ1(s, r) as a function of
r. In this example, s = 4.6. Note that λ1 is symmetric around r = 1

2 , and
is maximal there. Since the value of s is quite high, even a small bit of
biomass invested in larger ants (r > 0 small) results in a high caste spe-
cialization.
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Figure 6. Branching in the absence of defense, illustrated using Pairwise-
Invasibility-Plots (PIPs). (A): a relatively wide preference width (σ =
4.5) (relative to the nest size distribution) ensures that the evolutionary
equilibrium is convergence stable. (B): Narrowing the preference (σ = 1)
induces the occurrence of a branching point. Parameters common to both
figures are B = 14, ϵ = 0, n = 100.

21
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C D

Figure 7. Branching in the absence of defense. Evolutionary dynamics
for defense strength ϵ = 0, with parameters as in Figure 6B, so that the
evolutionary equilibrium is a branching point. (A): evolution of parame-
ters m; (B): nest occupancy of both phenotypes; (C): nest occupancy of
phenotype A only; (D): nest occupancy of phenotype B only. Phenotypes
A and B are one and the same phenotype for t ∈ [0, 10]. Note that at the
branching point, the branching phenotypes are ecologically nearly identical,
and thus share the resources nearly equally, resulting in a sudden drop in
nest use. Also note that the branching phenotypes progressively use more
exclusive nest resources.
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Figure 8. Defense facilitates branching, using D1(x) for defense, λ1(r, s)
for the caste specialization function, and v1(x, t) for the transition function
for small and large ants. . Evolutionary dynamics for defense strength
ϵ = 10, where parameters are chosen such that the ϵ = 0 model is not a
branching point. For positive ϵ, the evolutionary equilibrium is a branching
point, and distinct castes develop. (A)-(C): evolution of parameters m,
s and r, respectively. (D)-(F): nest occupancy of both phenotypes (D),
phenotype A only (E) and phenotype B only (F). Phenotypes A and B are
one and the same phenotype for t ∈ [0, 20]. Note that at the branching
point, a distinct jump in s is taken, but that the jump in r is relatively small
(relative to its final value), see Remark 5.1 in the Online Appendix. Also
keep in mind that phenotype B thus develops a soldier caste and occupies
a distinct nest size range in correspondence with its new preference and
defensive abilities. Parameters are B = 14, σ = 3.5, ϵ = 10, n = 100.
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Model ingredient Variable
Resource distribution h(x)
Preference profile gy(x) / g(x; t)
Defense probability dzy(x) / d(x; t, t′)
Colonization rate cy / c(t)
Worker biomass distribution b(x; t)
Small workers biomass distribution bs(x; t)
Large workers biomass distribution bl(x; t)
Caste specialization λ(s, r)
Size transition function v(x; t)

Table 1. Model ingredients, highlighting also the different types of nota-
tions used in the ecological model (gy(x), cy, dyz) or using trait vectors t
and t′.

Parameter Description Value/Range
B Ant size at which colonization rate is

optimal
12, 14

σ standard deviation of ant size distribu-
tions

1

ϵ strength of defense response 0, 10
A prefactor for colonization rate 100
σh standard deviation of nest size distri-

bution
4

w mean size of nest entrance 20
e rate at which nests are abandoned 1
m mean worker size of monomorphic

colony
dynamic

s distance between biomass peaks of the
worker size distribution

dynamic

r fraction of total biomass allocated to
soldier caste

dynamic

n number of different nest sizes, used in
solving ODE model numerically

100, 200

Table 2. Parameter settings used in this paper. Parameter are grouped
as: parameters whose effect on the evolution is studied; fixed model param-
eters; evolutionary trait parameters; numerical parameters used to carry
out the simulations.
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und Paläontologie), 271:1–889.

Dercole, F. and Rinaldi, S. (2008). Analysis of Evolutionary Processes. Princeton Uni-
versity Press.620

Dieckmann, U. and Doebeli, M. (1999). On the origin of species by sympatric speciation.
Nature, 400:354–357.

Dieckmann, U., Doebeli, M., Metz, J. A. J., and Tautz, D., editors (2004). Adaptive
Speciation. Cambridge University Press.

Dieckmann, U. and Law, R. (1996). The dynamical theory of coevolution: A derivation625

from stochastic ecological processes. J. Math. Biology, 34:579–612.
Diekmann, O. (2004). A beginner’s guide to Adaptive Dynamics. Banach Center Publ.,
63:47–86.

Dornhaus, A. and Powell, S. (2010). Foraging and defence strategies. In Lach, L., Parr,
C. L., and Abbott, K. L., editors, Ant Ecology, pages 210–230. Oxford University Press,630

Oxford.
Ferster, B., Pie, M. R., and Traniello, J. (2006). Morphometric variation in North Amer-
ican Pogonomyrmex and Solenopsis ants: caste evolution through ecological release or
dietary change. Ethol. Ecol. Evol., 18:19–32.

25

http://www.antweb.org/page.do?name=anomalous
http://www.antweb.org/page.do?name=anomalous
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Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., and van Heerwaarden,
J. S. (1996). Adaptive dynamics: A geometrical study of the consequences of nearly
faithful reproduction. In van Strien, S. J. and Lunel, S. M. V., editors, Stochastic and
Spatial Structures of Dynamical Systems, pages 183–231. Elsevier Science, Burlington,
MA.680

Molet, M., Maicher, C., and Peeters, C. (2014). Bigger helpers in the ant Cataglyphis bom-
bycina: Increased worker polymorphism or novel soldier caste? PLoS ONE, 9:e84929.

26



Molet, M., Wheeler, D. E., and Peeters, C. (2012). Evolution of novel mosaic castes
in ants: Modularity, phenotypic plasticity, and colonial buffering. Am. Naturalist,
180:328–341.685

Moreau, C. S. (2008). Unraveling the evolutionary history of the hyperdiverse ant genus
Pheidole (Hymenoptera: Formicidae). Mol. Phyl. Evol., 48:224–239.

Nee, S. and May, R. M. (1992). Dynamics of metapopulations: habitat destruction and
competitive coexistence. J. Anim. Ecology, 61:37–40.

Nee, S. and May, R. M. (1997). Extinction and the loss of evolutionary history. Science,690

278:692–694.
Nosil, P. (2012). Ecological Speciation. Oxford University Press.
Oster, G. F. and Wilson, E. O. (1978). Caste and Ecology in the Social Insects. Princeton
University Press, Princeton, New Jersey.

Ovaskainen, O. and Hanski, I. (2001). Spatially structured metapopulation models:695

Global and local assessment of metapopulation capacity. Theor. Pop. Biology, 60:281–
302.

Ovaskainen, O. and Hanski, I. (2004). Metapopulation dynamics in highly fragmented
landscapes. In Hanski, I. and Gaggiotti, O. E., editors, Ecology, genetics, and evolution
of metapopulations, pages 73–104. Elsevier Academic Press.700

Peeters, C. and Molet, M. (2010). Colonial reproduction and life histories. In Lach, L.,
Parr, C. L., and Abbott, K. L., editors, Ant Ecology, pages 159–176. Oxford University
Press.

Pepper, J. W. and Herron, M. D. (2008). Does biology need an organism concept? Biol.
Rev., 83:621–627.705

Philpott, S. and Foster, P. (2005). Nest-site limitation in coffee agroecosystems: Artificial
nests maintain diversity of arboreal ants. Ecol. Appl., 15:1478–1485.

Powell, S. (2008). Ecological specialization and the evolution of a specialized caste in
Cephalotes ants. Funct. Ecol., 22:902–911.

Powell, S. (2009). How ecology shapes caste evolution: linking resource use, morphology,710

performance and fitness in a superorganism. J. Evol. Biology, 22:1004–1013.
Powell, S., Costa, A. N., Lopes, C. T., and Vasconcelos, H. L. (2011). Canopy connectivity
and the availability of diverse nesting resources affect species coexistence in arboreal
ants. J. Anim. Ecology, 80:352–360.

Powell, S. and Franks, N. R. (2005). Caste evolution and ecology: a special worker for715

novel prey. Proc. Roy. Soc. London B, 272:2173–2180.
Powell, S. and Franks, N. R. (2006). Ecology and the evolution of worker morphological
diversity: a comparative analysis with eciton army ants. Funct. Ecol.

Price, S. L., Powell, S., Kronauer, D. J. C., Tran, L. A. P., Pierce, N. E., and Wayne,
R. K. (2014). Renewed diversification is associated with new ecological opportunity in720

the neotropical turtle ants. J. Evol. Biology, 27:242–258.
Rabosky, D. L. (2013). Diversity dependence, ecological speciation, and the role of com-
petition in macroevolution. Ann. Rev. Ecol. Evol. Syst., 44:481–502.

Rueffler, C., van Dooren van O. Leimar, T. J. M., and Abrams, P. A. (2006). Disruptive
selection and then what? Trends Ecol. Evol., 21:238–245.725

Rundle, H. D. and Nosil, P. (2005). Ecological speciation. Ecol. Letters, 8:336–352.
Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press.
Servedio, M. R., van Doorn, G. S. V., Kopp, M., Frame, A. M., and Nosil, P. (2011).
Magic traits in speciation: “magic” but not rare? Trends Ecol. Evol., 26:389–397.

Stern, D. L. (1994). A phylogenetic analysis of soldier evolution in the aphid family730

Hormaphididae. Proc. Roy. Soc. London B, 256:203–209.

27



Strassman, J. E. and Queller, D. C. (2010). The social organism: congresses, parties, and
committees. Evolution, 64:605–616.

Thorne, B. L., Breisch, N. L., and Muscedere, M. L. (2003). Evolution of eusociality
and the soldier caste in termites: Influence of intraspecific competition and accelerated735

inheritance. Proc. Nat. Acad. Sciences USA, 100:12808–12813.
Traniello, J. F. A. and Beshers, S. N. (1991). Polymorphism and size-pairing in the
harvester ant Pogonomyrmex badius : a test of the ecological release hypothesis. Ins.
Sociaux, 38:121–127.

Walker, J. and Stamps, J. (1986). A test of optimal caste ratio theory using the ant740

Camponotus (Colobopsis) impressus. Ecology, 67:1052–1062.
Weissing, F. J., Edelaar, P., and van Doorn, G. S. (2011). Adaptive speciation theory: a
conceptual review. Behav. Ecol. Sociobiol., 65:461–480.

Wilson, E. O. (1953). The origin and evolution of polymorphism in ants. Quart. Rev.
Biol., 28:136–156.745

Wilson, E. O. (2003). Pheidole in the New World. Harvard University Press, Cambridge
Mass.

28



SUPPLEMENTARY INFORMATION TO DISRUPTIVE SELECTION
AS A DRIVER OF EVOLUTIONARY BRANCHING AND CASTE

EVOLUTION IN SOCIAL INSECTS
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1. ODE results: Steady states1

We restate the full ecological model,2

dy

dt
(x, t) = cy

gy(x)

Hy
Y [h(x)− y(x, t)− dyz(x)z(x, t)]

− cz
gz(x)

Hz
Zdyz(x)y(x, t)− ey(x, t), (1)

dz

dt
(x, t) = cz

gz(x)

Hz
Z[h(x)− dzy(x)y(x, t)− z(x, t)]

− cy
gy(x)

Hy
Y dzy(x)z(x, t)− ez(x, t). (2)

To be able to simulate the AD canonical equations, we need to have information about3

two main objects:4

• the steady state solutions of the ecological model (1)–(2), both for the two phe-5

notype model (with one resident, one mutant) and for the three phenotype model6

(with two residents and one mutant);7

• the basic reproductive ratio that is used whenever we need to find the derivative8

of the invasion fitness.9

1.1. One resident phenotype: generalist and specialist equilibria. It is easy to10

find the steady state distribution for a generalist phenotype 1, in the absence of phenotype11

2. Set gy = 1, z = 0, and η = e/cy. Then, integrating the first equation at steady state12

over x, we find13

0 =

∫
Y

H
(h(x)− y(x)) dx− η

∫
y(x) dx,

so that14

0 =
Y

H
(H − Y )− ηY

1



which has as nontrivial solution Y = H(1−η) (phenotype 1 occupies all but a fraction of15

η of the patches) if η < 1. From this we deduce that y(x) = h(x)(1− η). We will denote16

such an equilibrium patch profile by ȳ, and the equilibrium total patch occupancy by Ȳ .17

If gy ̸≡ 1, it is in general impossible to find a closed expression for the steady state.18

However, it is possible to find an implicit expression which is still useful for numerical19

computations. Let us assume that we know the steady state value of Ȳ . Then we can20

simply solve the steady state equation for y treating Ȳ as a parameter, and find21

ȳ(x) =
gy(x)h(x)Ȳ

gy(x)Ȳ + ηHy
. (3)

This is only a steady state if additionally we know that22

Ȳ =

∫
gy(x)h(x)Ȳ

gy(x)Ȳ + ηHy
dx, (4)

or, equivalently,23

1 =

∫
gy(x)h(x)

gy(x)Ȳ + ηHy
dx. (5)

For Ȳ between its limit values 0 and 1, the right-hand side of (5) is strictly decreasing in24

Ȳ . Note that when Ȳ = 1,25
∫

gy(x)h(x)

gy(x) + ηHy
dx ≤

∣∣∣
∣∣∣

g(x)

g(x) + ηHy

∣∣∣
∣∣∣
∞

∫
h(x) dx <

∫
h(x) dx = 1,

where ||.||∞ denotes the sup norm. If we thus know that26
∫

gy(x)h(x)

ηHy
dx =

1

η
> 1,

then there exists a unique value of Ȳ such that (4) is satisfied. The condition is thus27

η < 1, and this coincides with the existence of generalist equilibria. A phenotype must28

simply colonize at a faster rate than the rate at which it leaves patches—a common29

phenomenon in metapopulation models.30

1.2. Two resident phenotypes: mixed equilibria. This implicit method may be31

extended to mixed equilibria (ȳ(x), z̄(x)).32

Equations (1) and (2) may be solved implicitly at steady state for given x, Ȳ and Z̄,33

to find34

ȳ(x) =
ĉyȲ h(x)(dzy(x)(ĉyȲ + ĉzZ̄) + e)

(ĉyȲ + ĉzZ̄ + e)(dzy(x)ĉyȲ + dyz(x)ĉzZ̄ + e)
, (6)

z̄(x) =
ĉzZ̄h(x)(dyz(x)(ĉyȲ + ĉzZ̄) + e)

(ĉyȲ + ĉzZ̄ + e)(dzy(x)ĉyȲ + dyz(x)ĉzZ̄ + e)
, (7)

where35

ĉy = cy
gy(x)

Hy
, ĉz = cz

gz(x)

Hz
.

For these identies to be true equilibria, we need them additionally to satisfy36

1 =

∫
ĉyh(x)(dzy(x)(ĉyȲ + ĉzZ̄) + e)

(ĉyȲ + ĉzZ̄ + e)(dzy(x)ĉyȲ + dyz(x)ĉzZ̄ + e)
dx, (8)

and37

1 =

∫
ĉzh(x)(dyz(x)(ĉyȲ + ĉzZ̄) + e)

(ĉyȲ + ĉzZ̄ + e)(dzy(x)ĉyȲ + dyz(x)ĉzZ̄ + e)
. (9)
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It is less clear under which general conditions these mixed steady states exist, but we can38

use this implicit form in numerics all the same.39

2. ODE results: Linear stability analysis40

The second major objective is to find the invasion exponent φ and corresponding basic41

reproductive ratio T used in the AD canonical equations. The invasion exponent φ(t, t′)42

is the linear growth rate of the mutant with trait t′ when introduced in small numbers43

in a steady state population of the resident with trait t. Let us again start with the44

situation of one resident (phenotype 1, trait t) and one mutant (phenotype 2, trait t′).45

The linearised equations for phenotype 2 around (y, z) = (ȳ, 0) have the form46

dz(x, t)

dt
= D(x; t, t′)

∫
z(x) dx− C(x; t, t′)z(x),

where D(x; t, t′) and C(x; t, t′) are given by47

D(x; t, t′) := c(t′)
g(x; t′)

H(t′)

(
h(x)− ȳ(x)d(x; t′, t)

)
, (10)

C(x; t, t′) := c(t)
g(x; t)

H(t)
d(x; t′, t)Ȳ + e. (11)

The eigenvalue problem for z(x, t) is given by testing for a solution z(x, t) = ψ(t)η(x).48

Substituting this, we find that49

ψ′(t)

ψ(t)
=

D(x; t, t′)

η(x)

∫
η(x) dx− C(x; t, t′).

The left hand side only depends on t, the right hand side only on x, so both must be a50

constant, φ, say. Hence ψ(t) = c0eφt, and the sign of φ determines whether the solution51

η(x) grows or declines in time. For this eigenfunction for a given φ, we have52

η(x)∫
η(x) dx

=
D(x; t, t′)

φ+ C(x; t, t′)
.

Integrating left and right over x, we find that φ needs to satisfy53

S(t, t′) :=

∫
D(x; t, t′)

φ+ C(x; t, t′)
dx = 1. (12)

Hence, if54

T (t, t′) :=

∫
D(x; t, t′)

C(x; t, t′)
dx > 1 (13)

then there exists a unique φ = φ(t, t′) > 0 satisfying (12) and a corresponding eigenfunc-55

tion η(x) which grows in time. Written out in full, the basic reproductive ratio reads56

T (t, t′) =
c(t′)

c(t)

H(t)

H(t′)

∫
g(x; t′)(h(x)− ȳd(x; t′, t))

g(x; t)Ȳ d(x; t′, t) +M
> 1, (14)

where M = ηH(t) = eH(t)/c(t).57

A direct, but tedious, calculation using the implicit expression for the mixed steady58

state (3) shows that T (t, t) = 1: a resident phenotype cannot invade itself. This is59

biologically trivial (and is only true under the assumption that d(x, t, t) = 1
2), but serves60

as a good benchmark for the simulations.61

The generalisation to a mutant phenotype invading a mixed steady state of a pair of62

residents is entirely straightforward, and yields a very similar expression to (14). Again,63

the reproductive ratio is 1 if the mutant is equal to one of the two resident phenotypes.64

3



Finally, we calculate how the derivative of φ(t, t′) with respect to a mutant parameter65

m′ relates to the derivative with respect to that same parameter of the basic reproductive66

ratio T (t, t′) at m = m′. Using that φ(t, t) = 0, we find67

0 =
∂

∂m′S(t, t
′)
∣∣∣
m′=m

=

∫ [(C(x; t, t′) + φ(t, t′)) ∂
∂m′D(x; t, t′)

(C(x; t, t′) + φ(t, t′))2

]∣∣∣
m′=m

dx

−
∫

( ∂
∂m′ (C(x; t, t′) + φ(t, t′))D(x; t, t′)

(C(x; t, t′) + φ(t, t′))2

]∣∣∣
m′=m

dx

=

∫ [C(x; t, t′)|m′=m
∂

∂m′D(x; t, t′)|m′=m −D(x; t, t′)|m′=m
∂

∂m′C(x; t, t′)|m′=m

C2(x; t, t′)|m′=m

]
dx

−
∫ [D(x; t, t′)|m′=m

∂
∂m′φ(t, t′)|m′=m

C2(x; t, t′)|m′=m

]
dx

=
∂

∂m′T (t, t
′)
∣∣∣
m′=m

− ∂

∂m′φ(t, t
′)|m′=m

∫
D(x; t, t)|m′=m

C2(x; t, t)|m′=m
dx.

We conclude68

∂

∂m′φ(t, t
′)
∣∣∣
m′=m

=
∂

∂m′T (t, t′)
∣∣
m′=m∫ D(x;t,t′)|m′=m

C2(x;t,t′)|m′=m
dx

.

3. Implementation of simulations69

3.1. The AD canonical equations. To integrate the AD canonical equations, whether70

for one phenotype or for two coexisting phenotypes, we have to compute the matrix71

of partial derivatives of the invasion exponent with respect to the relevant variables.72

Rather than trying to find explicit closed expressions for these derivatives, we compute73

this Jacobi matrix numerically using the numjac function in Matlab. We have used the74

variable order ode113 ODE solver in Matlab for all AD equation simulations.75

After the one-phenotype AD equations are integrated, the dynamics arrive at an evo-76

lutionary equilibrium. To make sure that we have truly arrived at the equilibrium, we77

solve the right hand side of the AD equations algebraically, using the final value of the78

ODE integration as initial guess. Specifically, we use the Matlab function fminsearch79

on the sum of squares of the right hand side of the AD equations. For a steady state this80

sum of squares is zero. If the evolutionary equilibrium is not estimated carefully enough,81

it is not to be expected that two phenotypes will be able to coexist stably after we have82

switched to the two-phenotypes AD equations.83

The evolutionary equilibrium now becomes the starting point of the two-phenotype AD84

equations. We make random mutations around the evolutionary equilibrium and each85

time compute the mixed steady state of the resulting pair of phenotypes. If, for a given86

mutation, the steady state profiles of both phenotypes occupy more than a fraction of87

10−4 of total nest space at steady state, then we define this pair as the new coexisting88

pair of phenotypes and start integrating the two-phenotypes AD equations. If such a89

mutation cannot be found after 100 tries, the evolutionary equilibrium is termed not to90

be a potential branching point and is probably a stable evolutionary equilibrium.91

3.1.1. Numerically finding steady states. To find specialist ecological steady states ȳ(x)92

for a given trait vector, we use the implicit identity (3), together with the requirement (5).93

By varying Y we find the value for which (5) is met. For mixed ecological equilibria in94
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Figure S1. Example metapopulation dynamics for two competing phe-
notypes lacking castes. Parameters are B = 14, A = 100, ϵ = 0,
n = 100; for phenotype A, we set (m, s, r) = (13.5, 0, 0), for phenotype
B (m, s, r) = (14.5, 0, 0). Initial conditions for each phenotype is set to the
respective steady state nest occupancy distributions. The first row shows
combined (a) nest occupancy dynamics, and for phenotype A (b) and B
(c) alone. The second row shows preference (d), defense capabilities (e)
(which are trivially 1/2 for both phenotypes) and worker size distributions
(f) for both phenotypes. Note that the initial conditions widely overlap in
nest occupancy, but that competition mediated by differences in preferences
induces a mostly segregated nest occupancy.

which two phenotypes coexist at steady state, we have analogous implicit definitions (6)95

and (7), with corresponding additional integral conditions (8) and (9). Conditions (5),96

(8) and (9) are computed using Newton’s method to find zeros of nonlinear equations.97

The traits s and r have natural ranges of [0,∞) and [0, 1], resp. At the boundary of98

the trait space (s = 0, r = 0 or both), we calculate the time derivatives in the usual99

manner, but set ṡ = 0 or ṙ = 0 if they happen to be negative.100

101

Gyllenberg, M. and Metz, J. A. J. (2001). On fitness in structured metapopulation102

models. J. Math. Biology, 43:545–560.103

Hanski, I. and Gaggiotti, O. E. (2004). Ecology, genetics, and evolution of metapopula-104

tions. Elsevier Academic Press.105

Ovaskainen, O. and Hanski, I. (2001). Spatially structured metapopulation models:106

Global and local assessment of metapopulation capacity. Theor. Pop. Biology, 60:281–107

302.108
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Figure S2. Example metapopulation dynamics for two competing phe-
notypes. See Figure S1 for details. Here we illustrate a phenotype A
without a caste, and B with a caste. Parameters are as in Figure S1, ex-
cept (m, s, r) = (13.5, 0, 0) for phenotype A and (m, s, r) = (13.5, 3, 0.1) for
phenotype B.
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Figure S3. Evolutionary dynamics of trait variable m. In this illustra-
tion, the starting value of m was set far away from the optimal value, set
by B. Note that the trait parameter evolves to near B. The equilibrium
value of m does not need to coincide exactly with B. The The difference
stems from various other components of the model, in particular the prefer-
ence function, whose definition is independent of reproduction. Parameter
values are ϵ = 0, A = 100, B = 14, σ = 1.
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Figure S4. Defense facilitates branching, using D2(x) for defence, λ2(r, s)
for the caste specialization function, and v2(x, t) for the transition function
for small and large ants. All other parameters and settings are equal to
those in Figure 8 in the main text.
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