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Abstract

We prove that the stationary Swift-Hohenberg equation has chaotic dynam-
ics on a critical energy level for a large (continuous) range of parameter values.
The first step of the method relies on a computer assisted, rigorous, continua-
tion method to prove the existence of a periodic orbit with certain geometric
properties. The second step is topological: we use this periodic solution as a
skeleton, through which we braid other solutions, thus forcing the existence of
infinitely many braided periodic orbits. A semi-conjugacy to a subshift of finite
type shows that the dynamics is chaotic.

1 Introduction

Finding analytic solutions of nonlinear, parameter dependent, ordinary differential
equations (ODEs) is in general an extremely difficult task, most of the time impossible.
The use of numerical techniques then becomes a useful path to adopt in order to
understand the dynamics of a given nonlinear ODE. One may obtain insight not just
through simulations, but nowadays the numerical output can also be used to rigorously
extract coarse topological information from the systems, often revealing complicated
dynamics. In particular, proving the existence of chaos in nonlinear dynamical systems
in such a way has become quite popular (see [1, 13, 16, 24, 30, 32, 33]). One may
interpret these results as forcing-type theorems, since a finite number of computable
objects can be used to draw conclusions about the existence of infinitely many other
objects. In this paper we propose a novel approach along those lines to prove existence
of chaos for a class of problems with a special structure, namely so-called second-
order Lagrangian dynamical systems with the Twist property. This is a class of
variational problems that lead to fourth order ODEs. In particular, the well-known
Swift-Hohenberg equation, one of standard models for pattern formation, falls into
this class of problems.

A common feature of the proofs in [1, 16, 24, 32, 33] is the use of interval arithmetic
to integrate the flow over sets and look for images of these rigorously integrated sets
on some prescribed Poincaré sections. In contrast, our proof only requires proving the
existence of a single periodic solution of a certain type. This will be done via validated
continuation (cf. [14, 17]). One important advantage of this validated continuation
method is that it becomes natural to prove the existence of chaos for a continuous
range of parameter values.

∗This research was supported in part by NWO grants 639.031.204 and 639.032.202.
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We focus our attention on the Swift-Hohenberg equation, a fourth order parabolic
partial differential equation (PDE), traditionally written as

∂U

∂T
= −

(
∂2

∂X2
+ 1
)2

U + αU − U3, (1)

which is widely used as a model for pattern formation due to a finite wavelength
instability, such as in Rayleigh-Bénard convection (e.g., see [10, 29]). The onset of
instability is at α = 0. Stationary profiles satisfy the ODE

−U ′′′′ − 2U ′′ + (α− 1)U − U3 = 0, (2)

which has a constant of integration, called the energy

E = U ′′′U ′ − 1
2
U ′′2 + U ′2 − α− 1

2
U2 +

1
4
U4 +

(α− 1)2

4
,

which has been normalized so that, for α > 1, the nontrivial homogeneous states
U = ±

√
α− 1 have energy E = 0. The dynamics of (2) have been studied extensively,

especially for small α > 0, but many questions remain open for larger values of the
parameter. Numerical simulations suggest chaotic behavior for most α > 0, but
this has so far not been verified rigorously. In particular, although both shooting
methods (e.g. [2, 7, 8, 25]) and variational methods (e.g. [6, 20, 22, 27]) have been used
extensively to study (2) and related fourth order equations, they have not succeeded
in revealing chaos for the Swift-Hohenberg ODE.

The energy level E = 0 is special in the sense that it is a singular energy level,
and it contains the nontrivial homogeneous states U = ±

√
α− 1. Those equilibria

are stable solutions of the PDE (1) for α > 3
2 , and saddle-foci for the ODE (2) in

the same parameter range. It is well known that saddle-foci may act as organizing
centers for complicated dynamics [15, 21], and this inspires us to focus our attention
on the dynamics in the energy level E = 0. Our main result is to establish rigorously
that the Swift-Hohenberg ODE has chaotic dynamics in the energy level E = 0 for a
large continuous range of parameter values.

Proposition 1. The dynamics of the Swift-Hohenberg ODE (2) on the energy level
E = 0 is chaotic for all α ≥ 2.

Before we discuss the method of proof, let us comment on some generalizations
of this result. First, the method is amenable to a larger class of equations, namely
second order Lagrangians with the Twist property, see [3]. Second, the result is stable
in the sense that for energy levels arbitrarily close to 0, chaos can be proved via a
few adjustments of the arguments. We will comment on both generalizations when
appropriate, but keep the focus firmly on Proposition 1 to reduce technical details.
Finally, the parameter range α ≥ 2 can be extended somewhat using our method, but
certainly not to cover the entire range α > 0, as will be explained below.

We now turn to the method behind Proposition 1. Rather than working directly
with (2) we first perform a change of coordinates that compactifies the parameter
range, as well as making the notation more convenient. The new variables are

y =
X

4
√

α− 1
, u(y) =

U(X)√
α− 1

, ν =
2√

α− 1
. (3)
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Figure 1: Sketch of a periodic solution ũ satisfying the geometric properties H.

The parameter range α ≥ 2 corresponds to ν ∈ (0, 2], and the differential equation
becomes

−u′′′′ − νu′′ + u− u3 = 0, (4)

while the expression for the energy is now

E = u′′′u′ − 1
2
u′′

2 +
ν

2
u′

2 +
1
4
(u2 − 1)2. (5)

Equation (4), and variants with different nonlinearities, have been thoroughly inves-
tigated (see [9] and [26] and the references therein), but the parameter range under
scrutiny here, namely ν ≥ 0, remains much less explored than the range ν < 0, mainly
because most methods are somewhat less powerful for positive ν. An exception are the
braid invariants introduced in [18], which are especially suited to deal with positive ν,
and which we will indeed exploit in Section 2.

In the method presented in this paper, chaos is forced by the existence of a single
periodic solution ũ with specific geometric properties, much like a period-3 solution of
an interval map implies chaos [23] (or a pseudo-Anosov braid in the context of surface
homeomorphisms [31]). The periodic solution we are looking for needs to satisfy the
following geometric properties, see also Figure 1:

H


(H1) ũ has exactly four monotone laps and extrema {ũi}4i=1;
(H2) ũ1 and ũ3 are minima, and ũ2 and ũ4 are maxima;
(H3) ũ1 < −1 < ũ3 < 1 < ũ2, ũ4;
(H4) ũ is symmetric in its minima ũ1 and ũ3.

Let the extrema ũi be attained in ỹi, then the last condition can be reformulated as

ũ(ỹ1 + y) = ũ(ỹ1 − y) and ũ(ỹ3 + y) = ũ(ỹ3 − y).

In particular, it implies that ũ2 = ũ4. We should note that condition H4 is in fact
not necessary for the results below to hold, but it simplifies the exposition.

As said before, such periodic solutions can be used to prove chaos when the equi-
libria u = ±1 are saddle-foci, i.e., when ν <

√
8.
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Figure 2: Building blocks for the solutions that lead to the chaos of Theorem 2.

Theorem 2 (forcing). Let ν ∈ [0,
√

8), and suppose there exists a periodic solution
ũ of (4) at the energy level E = 0, satisfying the geometric conditions H. Then (4)
is chaotic on the energy level E = 0 in the sense that there exists a two-dimensional
Poincaré return map which has a compact invariant set on which the topological en-
tropy is positive.

The construction of the chaotic invariant set hinges on an application of Conley
index theory for discretized braids [18], which will be adapted to our specific situation.
The formulation in terms of discretized braids and the computation of the Conley
index for well-chosen neighborhoods, whose construction involves the special periodic
solution ũ, is presented in Section 2, together with all details of the proof of Theorem 2.
Let us briefly discuss some intuition behind the result. The set of solutions of (4) that
leads us to chaotic dynamics is obtained by putting the three building blocks in
Figure 2 together. The order of the blocks should follow the intuition coming from
Figure 2, i.e., blocks 1 and 2 may be followed by block 2 or 3, while block 3 can only be
followed by block 1. The sequence of building blocks may be chosen arbitrarily as long
as these rules are obeyed, and the different possibilities are sufficiently complicated to
lead to chaos. The final technical step in proving chaos is then to find a semi-conjugacy
to a subshift of finite type, see Section 2.1.

It is important to note that the only hypothesis that needs to be verified in order
to prove the existence of chaos in (4) at E = 0 is the existence of the periodic
solution ũ satisfying H. This will be done via rigorous numerics, or computer assisted
(interval arithmetic) calculations, together with a set of analytic estimates of the “tail”
terms, i.e., the remainder terms not covered by the finite dimensional reduction. The
construction leads to the existence of the periodic solution with the required geometric
properties for a large range of parameter values.

Theorem 3 (rigorous computation). For every ν ∈ [0, 2] equation (4) has a periodic
solution at energy level E = 0 satisfying the geometric properties H.

The change of variables (3) directly converts Theorems 2 and 3 into Proposition 1.
Numerical simulations suggest that although the parameter range in Theorem 3

(and hence Proposition 1) can be increased somewhat, the solution ũ with the de-
scribed geometric behavior in fact disappears in a saddle node bifurcation at some
critical value ν∗ > 2 (ν∗ ≈ 2.03). Hence, one has to find a different mechanism to
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force chaos if one wants to prove a similar result for the parameter range ν > 2 (or
e.g. α ∈ (0, 2]).

We are going to employ Fourier transformation, a finite dimensional reduction,
and a Newton-like operator, which we will prove is a contraction map via rigorous
estimation of the tail term. This method has been successfully used in [14] and [17],
but here we need to extend it considerably in three crucial aspects. First, the require-
ment E = 0 means that, besides satisfying the differential equation, the solution must
obey an additional requirement. This means that the period of the periodic solution
cannot be fixed a priori, and instead is another unknown. The extra equation leads, at
a more technical level, to the need for better convolution estimates (see Appendix A).
Second, rigorous continuation is required in order to not just obtain result for isolated
values of ν (cf. [14, 17, 35]), but for the entire parameter interval ν ∈ [0, 2]. Note that
in [12], a result about an entire parameter interval was also obtained, but at a much
more computationally expensive price. Third, the geometric condition H needs to be
verified rigorously to be able to combine the computational effort with the topological
argument from Theorem 2, so that ũ forces chaotic dynamics.

We give a brief outline of the arguments here; full details can be found in Section 3.
Let 2π

L be the a priori unknown period of the solution ũ, and let the local minima be
attained at y = 0 and y = π

L . The symmetry condition H4 implies that u′(0) = 0,
hence evaluating the energy constraint (5) at y = 0, reduces (5) to

u′′(0) =
1√
2

(
u(0)2 − 1

)
, (6)

where we have used that, since we look for solutions satisfying H, we may assume that
u(0) < 1 is a non-degenerate minimum, hence u′′(0) > 0. In view of the symmetries,
the Ansatz

u(y) = a0 + 2
∞∑

l=1

al cos(lLy)

is natural and it reduces (4) to (with a−k ≡ ak)

gk
def=
[
1 + νL2k2 − L4k4

]
ak −

∑
k1+k2+k3=k

ki∈Z

ak1ak2ak3 = 0, for all k ≥ 0,

while (6) becomes

e
def= −2L2

∞∑
l=1

l2al −
1√
2

[
a0 + 2

∞∑
l=1

al

]2

+
1√
2

= 0.

With the notation x = (L, a0, a1, a2, . . . ) and f(x, ν) = (e, g0, g1, g2, . . . ), we are thus
looking for a solution of f(x, ν) = 0. In this formulation, and using a finite dimensional
reduction, we may now use the classical predictor-corrector algorithm for following a
continuous branch. However, we need to add a validation step (see [14]) and interval
arithmetic to make this into a mathematically rigorous proof. We stress that the
interval arithmetic, although necessary and time consuming, is of much less practical
importance than the analytic error estimates due to the finite dimensional reduction.
Using this finite dimensional reduction, we can, with the help of a computer, find
an approximate solution x̄ of f(x, ν̄) = 0, as well as an approximate solution ẋ of
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∂xf(x̄, ν̄)ẋ + ∂νf(x̄, ν̄) = 0. We also compute an approximate inverse J of ∂xf(x̄, ν̄).
Via rigorous estimates on the remainder terms we show that

T (x, ∆ν) = x− Jf(x, ν̄ + ∆ν)

is a contraction map on a small ball around x̄+∆ν ẋ in an appropriate Banach space,
for all sufficiently small ∆ν . Repeating this for many small parameter intervals leads
us to the existence of a symmetric periodic solution for all ν ∈ [0, 2], and, once we
have verified the geometric conditions H, to a proof of Theorem 3. It should be clear
from the reformulation above that it is quite natural to do parameter continuation. In
fact, we expect to find a continuous branch of solutions parametrized by ν. Although
continuity is easy to verify for each continuation step separately, and indeed this
property is used in Section 4 to reduce the amount of computations required, we do
not need a globally (i.e., for all ν ∈ [0, 2]) continuous branch for our proof. We refer
to [5] for a general view at obtaining globally continuous branches of solutions using
these techniques in the more general context of pseudo arc-length continuation.

Let us comment on further developments. We prove here that the Poincaré return
map from Theorem 2, which is in fact the map that follows solutions from one local
minimum to the next (see Section 2.1), has topological entropy of at least 0.48. It
is possible to obtain better bounds on the entropy, still based on the existence of
the periodic solution ũ, using the u → −u mirror symmetry, but we will not go
into the details here. Furthermore, an analysis along the lines of [4] may lead to
statements about the size of the attractor for boundary value problems associated to
the PDE (1), all enabled by the rigorous establishment of a single periodic solution
with the geometric properties H. This is currently under investigation.

The outline of this paper is as follows. As already noted, it suffices to prove
Theorems 2 and 3, which together imply Proposition 1. The forcing Theorem 2 is
proved in Section 2. The method that leads to the existence of the special solution
described in Theorem 3 is explained in detail in Section 3. Furthermore, Section 4
deals with the verification of the geometric properties H. The analytic estimates
in Sections 3 and 4 lead to an algorithm, in which a finite set of inequalities needs
to be checked, which is left to a computer program (with interval arithmetic). The
estimates together with the output from the computer program prove Theorem 3.
The Appendix contains some general and rather sharp convolution estimates needed
for the analytic bounds on the remainder terms.

Additional files comes with the paper. The Matlab functions SH continuation.m,
SH rigorous continuation.m, SH mesh generator.m, SH geometric properties.m and
SH run proof.m rigorously verify Procedures 16 and 21. Furthermore, the movie
SH geometry movie.mp4 shows the evolution of the rigorously computed periodic so-
lution, as we move the parameter from ν = 0 to ν = 2. In Section 3.1, details about
the computer implementation of the rigorous verification of Procedures 16 and 21 are
given, together with a brief description of the Matlab functions.

2 Forcing Theorem

In this section we assume, as in Theorem 2, that ν ∈ [0,
√

8) and that there exists a
periodic solution ũ of (4) at E = 0 with the geometric properties H. The idea behind
the proof is that we code periodic solutions u of (4) at E = 0 by their extrema (see
Figure 3). This leads to a discretization of the problem. If u′ = 0, then, by (5),
u′′ = ± 1√

2
(u2− 1). Hence, extrema are non-degenerate except at u = ±1, and we are
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ũ2 ũ2
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Figure 3: Left: sketch of the solution ũ. Right: discretized version {ũi}4i=1 and a shift
{ũi+2}4i=1.

going to avoid those values, so we may for the moment assume all extrema to be non-
degenerate. We denote the sequence of extrema of u by {ui}i∈Z, where ui represents
a local minimum for odd i and a local maximum for even i (see also Figure 3).

For ν ≥ 0 our system is a so-called Twist systems on E = 0, as defined and
proved in [3]. The fact that the energy level is singular (contains equilibria) leads
to some technical complications, but we shall overcome them relatively easily in our
present context. We can therefore use the braid theory for discretized parabolic
equations from [18]. The results about Twist systems that are needed in this paper,
are summarized in the next lemma; its proof can be found in [3] and [18, Th. 37].

Lemma 4. Let ν ≥ 0. There exist functions Ri ∈ C1(Ωi; R) with domains

Ωi =
{
(u, v, w) ∈ R3

∣∣ (−1)iu < (−1)iv, (−1)iw < (−1)iv, and u, v, w 6= ±1
}
,

with the following properties:
(a) Ri+2 = Ri, so there are really only two different functions in play.
(b) (Ri)i∈Z is a parabolic recurrence relation, i.e., it has the monotonicity property

∂ui−1Ri > 0 and ∂ui+1Ri > 0. (7)

(c) Define
Ω =

{
(ui)i∈Z

∣∣ (ui−1, ui, ui+1) ∈ Ωi for all i
}
.

A sequence (ui)i∈Z ∈ Ω solves

Ri(ui−1, ui, ui+1) = 0 for all i,

if and only if it corresponds to solution of (4) at E = 0 with non-degenerate
extrema ui.

The shapes of the domains Ωi reflect the fact that minima are preceded and
followed by maxima (and vice versa). The lemma thus implies that instead of looking
for (periodic) solutions of (4) at E = 0 with non-degenerate extrema, we may try to
find (periodic) sequences ui that solve Ri = 0. We remark that Lemma 4 (and the
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method in this paper) extends to a more general class of fourth order ODEs, namely
those derived from a second order Lagrangian satisfying the Twist property, see [3].
The Twist property, in essence, means that there are unique monotone solutions of
the ODE between extremal values ui and ui+1.

We want to exploit the fact that the energy level E = 0 contains the equilibria
u = ±1. However, these solutions do not correspond to a proper sequence of extrema.
The linearization around the equilibria is going to help us resolve this issue. Namely,
for −

√
8 < ν <

√
8 the equilibria ±1 are saddle-foci, and this leads to the following

fact (formulated here for the equilibrium +1).

Lemma 5. Let −
√

8 < ν <
√

8. For any ε > 0 there exists a sequence {uε
i}∞i=1,

0 < (−1)i(uε
i − 1) < ε,

which satisfies
Ri(uε

i−1, u
ε
i , u

ε
i+1) = 0 for i ≥ 2.

Notice that we do not claim that R1(uε
0, u

ε
1, u

ε
2) = 0; we did not even define uε

0.

Proof. The idea is that the uε
i are the extrema of an orbit in the stable manifold of +1,

which is contained in the energy level E = 0. That uε
i − 1 alternates sign, follows

from the fact that the equilibrium +1 is a saddle-focus: it is easy to check that for
−
√

8 < ν <
√

8 the linearized equation (i.e., u = 1+v with v′′′′+νv′′+2v+O(v2) = 0)
has solutions of the form

1 + Ce−λrx cos(λix + φ),

with C and φ arbitrary (with λr, λi > 0 depending on ν). In particular, the stable
manifold of the linearized problem intersects the hyperplane {u′ = 0} in the line

` =
{
(1 + v, 0,−

√
2 v, 2

√
2λrv)

∣∣v ∈ R
}
.

For the nonlinear equation we need to invoke the stable manifold theorem. Let us
denote the stable manifold by W s(+1) and the local stable manifold by W s

loc =
W s(+1) ∩ Bε0(+1) for ε0 > 0 chosen sufficiently small (so that the following argu-
ments hold). By the stable manifold theorem, the local stable manifold intersects the
hyperplane {u′ = 0} in a curve tangent to `, and thus

W s
loc ∩ {u′ = 0} ⊂

{
(1 + v, 0,−

√
2 v + O(v2), 2

√
2λrv + O(v2))

∣∣v ∈ R
}
∩Bε0(+1).

In particular, for ε0 sufficiently small, for solutions u in the local stable manifold it
holds that if u′ = 0 and u > 1 then u′′ < 0, whereas if u′ = 0 and u < 1 then u′′ > 0.
This shows that all solutions in the local stable manifold have successive extrema on
alternating sides of u = 1. Now pick one orbit in the local stable manifold and denote
its extrema by {uε0

i }∞i=1, with uε0
1 a local minimum. Then 0 < (−1)i(uε0

i − 1) < ε0,
and uε0

i → 1 as i → ∞ (exponentially fast in fact). For ε < ε0 we may choose
uε

i = uε0
i+2n(ε) for some n(ε) ∈ N sufficiently large.

We can use the symmetry to obtain an analogous result near −1. To be explicit,
ūε

i = −uε
i+1 satisfies 0 < (−1)i(ūε

i + 1) < ε. For “technical” reasons to become clear
later, we will need to shift this solution, modulo the 2p-periodicity:

ûε
i = ūε

i−2 mod 2p . (8)
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Figure 4: The “up-down” setting including the oscillating tails in the local stable
manifolds of ±1.

In fact, we have not yet chosen the period of the sequences/solutions under scrutiny,
but we will do so shortly. See Figure 4 for an illustration of uε

i and ûε
i . Notice that

ûε
i does not “close” at i = 3. Nevertheless, this will not stop us from putting it to use

below.
To study solutions of Ri = 0 we introduce an artificial new time variable s, and

consider ui(s) evolving according to the flow u′i = Ri. Clearly, we want to find
stationary points, and we are going to construct isolating neighborhoods for the flow
(any p ∈ N)

dui

ds
= Ri(ui−1, ui, ui+1), i = 1, . . . , 2p, (9)

where we identify u0 = u2p and u1 = u2p+1. The monotonicity property (7) implies
that this flow has the decreasing intersection-number property: if two solutions are
represented as piecewise linear functions (as in most of the figures), then the number
of intersections can only decrease as time s increases.

To build the isolating neighborhoods for (9), consider first the solution ũ with
geometric properties H. Since it is a periodic solution of (4) at E = 0, it follows from
Lemma 4c that (recall that ũ2 = ũ4)

R1(ũ2, ũ1, ũ2) = 0,

R2(ũ1, ũ2, ũ3) = 0,

R1(ũ2, ũ3, ũ2) = 0,

R2(ũ3, ũ2, ũ1) = 0.

Next, we choose

ε =
1
2

max{−1− ũ1, ũ2 − 1, 1− ũ3}.

Although not strictly necessary for understanding the arguments that follow, it is
worth mentioning that in the setting of discretized braids described in [18], we are
going to use a skeleton consisting of four strands (see Figure 3, right, and Figure 4):
v1

i = ũi and v2
i = ũi+2, and v3

i = uε
i and v4

i = ûε
i . To be precise, both v1 and v2

are defined for all i ∈ Z and are 4-periodic. Furthermore, v3 is defined for all i ≥ 1
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(though not periodic), while v4 is defined for i = 0, . . . 2p + 1, with v4
0 = v4

2p and
v4
2p+1 = v4

1 . All four strands satisfy

Ri(vi−1, vi, vi+1) = 0 for i = 1, . . . , 2p,

with the exception of v3 at i = 1, and v4 at i = 2, 3. Below we will make sure that
these points do not come into play in the construction of isolating neighborhoods.

Consider a finite, but arbitrarily long sequence

a = {aj}Nj=1, aj ≥ 2. (10)

Let the period of the sequences (ui) be p =
∑N

j=1 aj . Now that p is fixed, the meaning
of ûε

i in (8) is settled. We define the set of partial sums

A =
{n−1∑

j=1

aj

∣∣∣ n = 1, . . . , N
}

.

Note that 0 ∈ A. Now define the set (neighborhood) Ua ⊂ R2p as a product of
intervals

Ua = {ui ∈ Ii, i = 1, . . . , 2p},
where the intervals are given by

Ii = [uε
i , ũ2], if i is even;

Ii = [ũ3, u
ε
i ], if i is odd and

i− 1
2

/∈ A;

Ii = [ũ1, û
ε
i ], if i is odd and

i− 1
2
∈ A.

Notice that Ua is contained in the domain of definition Ω of R, since ±1 are not in
any of the intervals Ii, and the “up-down” criterion is also satisfied (the intervals Ii

for odd i lie strictly below the ones for even i). It is useful to review the intervals in
the context of Figure 4, and to look at Figure 6 for an example with a = 243.

We now prove that every Ua contains an equilibrium of (9), still under the as-
sumption that ũ is a periodic solution of (4) at E = 0 with geometric properties H.

Lemma 6. For any a defined in (10) the set Ua contains an equilibrium, correspond-
ing to a periodic solution of (4) on E = 0.

Proof. The case a = 222 . . . 2 = 2q is exceptional, since the point (ũ1, ũ2, ũ3, ũ2)q, cor-
responding to the periodic solution ũ, lies on the boundary of (the closed set) U222...2.

For all other a, the corresponding solution lies in the interior of Ua. The proof
follows from the general theory in [18]. Namely, suppose from now on that a 6=
222 . . . 2. Then Ua is an isolating block for the flow in the sense of the Conley index,
and the flow points outwards everywhere on the boundary. This is relatively easy to
check on the co-dimension 1 boundaries of Ua, i.e., exactly one of the ui lies on the
boundary of Ii, while all the others are in the interior; for the higher co-dimension
boundaries, see [18]. For the following arguments it may be helpful for the reader to
consult Figure 5.

Let us consider one of the sides of the 2p-cube Ua, for example ui = uε
i for some

even i, i.e., ui is on the lower boundary of Ii. Since ui−1 < uε
i−1, and ui+1 < uε

i+1 on
the co-dimension 1 piece of this side, we infer from the monotonicity (7) that

dui

ds
= Ri(ui−1, ui, ui+1) < Ri(uε

i−1, u
ε
i , u

ε
i+1) = 0.
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Figure 5: The thin colored lines denote the skeleton, where we represent uε and ûε

by constants for convenience. The thick black lines represent the free strand, which
is in Ua for a = (4), p = 4. One can check that on the boundary of Ua the number
of crossings with at least one of the skeletal strands decreases, hence the flow points
outwards on the boundary ∂Ua.

Hence the flow points outwards. And when ui = ũ2 for some even i (the upper
boundary point of Ii), then, since aj ≥ 2, either i−1

2 /∈ A or i+1
2 /∈ A, or both. Let us

consider the case i−1
2 /∈ A (the other case is analogous), then ui−1 > ũ3 and ui+1 > ũ1

(assuming again that (ui)
2p
i=1 is in a co-dimension 1 boundary), hence

dui

ds
= Ri(ui−1, ui, ui+1) > R2(ũ3, ũ2, ũ1) = 0,

and thus the flow points outwards again. All other (co-dimension 1) boundaries can
be dealt with analogously.

We should note that, by construction of the neighborhoods in combination with
the definition of uε and ûε, we avoid the three points where the skeleton does not
satisfy the recurrence relation. In particular, no part of the boundary ∂Ua lies in the
hyperplanes u1 = uε

1 (since u1 < −1) or u2 = ûε
2 or u3 = ûε

3 (since a1 ≥ 2, hence
u2, u3 > ũ3). We leave the remaining details to the reader.

As said before, for the higher co-dimension boundaries we refer to [18, Prop. 11,
Th. 15]. We can now conclude that since Ua is a 2p-cube and the flow points outwards
on ∂Ua, its Conley index is homotopic to a 2p-sphere, and the non-vanishing of its
Euler characteristic implies that there has to be a stationary point in the interior of
Ua [18, Lem. 36], corresponding to a solution of (4) by Lemma 4c.

Remark 7. A similar result holds for energy levels close to E = 0. The main
difference is that the infinite sequences uε

i , consisting of the extrema of a solution
in the stable manifold of 1, is not available in energy levels E 6= 0. Nevertheless,
an analogous construction can be set up for E sufficiently close to 0, provided the
sequences a = {aj}Nj=1 are now chosen with 2 ≤ aj ≤ NE < ∞, where NE tends
to infinity as E approaches 0. For E > 0 (and small) an additional difficulty arises,
because the Twist property (and hence Lemma 4) does not immediately follow from
the results in [3]. However, perturbation methods can be used to show that the Twist
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ū
ε

i
≈ −1

u
ε

i
≈ +1

ũ1

ũ3

ũ2
b b b b b b b b b

b b b b

b b b b b b

a = 2 4 3

b = 0 1 0 1 1 1 0 1 1

c = 1 3 1 2 2 3 1 2 3

Figure 6: A schematic example of a pattern in Ua, with at the top the coding a, and
below the corresponding codings b and c, which are used in the discussion of the
entropy.

property persists for small E > 0, at least away from the equilibria u = ±1. The
details are beyond the scope of the current paper.

Remark 8. When the symmetry condition H4 is dropped, then the definition of Ua

needs to be modified to accommodate for the fact that ũ2 6= ũ4. The shape of the
set Ua will be more complicated than just a single 2p-cube. Namely, one needs to
consider the appropriate discretized braid class, see [18]. Nevertheless, the results
in [18] show that the Conley index of this braid class is again homotopic to a sphere,
and Lemma 6 and the results in the next section remain valid in the non-symmetric
setting.

2.1 Topological entropy

In this section we construct a semi-conjugacy from a Poincaré section of the flow to a
subshift of finite type with positive entropy, and thereby finish the proof of Theorem 2.
This process involves a couple of somewhat technical steps.

First, we look at an alternative coding, which is more convenient when examining
the entropy. We extend any sequence a = {aj}Nj=1, aj ≥ 2 periodically to a bi-infinite
sequence: aj+N = aj . To such a periodic sequence we associate a bi-infinite sequence
of 0’s and 1’s:

b = · · · 01a−2−101a−1−101a0−1.01a1−101a2−10 · · · .

Notice, in particular, that b0 = 0. This coding is also indicated in Figure 6. It is
not hard to see that the sequences b are in the symbol space ΣB generated by the
adjacency matrix

B =
(

0 1
1 1

)
.

We now interpret Ua as an infinite product of intervals, and in terms of b the intervals

12



making up the neighborhood Ua = Ub are given by (i ∈ Z)

Ii = [uε
i , ũ2] if i is even,

Ii = [ũ3, u
ε
i ] if i is odd and b i+1

2
= 0,

Ii = [ũ1, û
ε
i ] if i is odd and b i+1

2
= 1.

Let ua = ub be the periodic solutions of (4) at E = 0 corresponding to the stationary
points in Ua = Ub, which was found in Lemma 6.

An arbitrary periodic sequence in ΣB might not have a b0 = 0, but for any periodic
sequence b 6= 1∞ in ΣB we can find a periodic solution of (4) at E = 0 in Ub by using
an appropriate shift.

It is now time to set up the semi-conjugacy from a Poincaré map of the flow to
the shift-map σ on ΣB . It is not difficult to check that the sets C ⊂ {E = 0} ⊂ R4 of
all orbits, varying over all possible periodic a’s or b’s, is uniformly bounded. Taking
the closure of this set, we obtain a compact invariant set C for the ODE. Notice that
it may include the equilibrium solution u ≡ 1.

Next we choose a Poincaré section. The energy level E = 0 is a three dimensional
subset of the phase space R4. A local minimum in E = 0 is defined by the values of
u and u′′′, since u′′ = 1√

2
|u2 − 1|. The Poincaré section is therefore defined as the

two-dimensional subset

P =
{

(u, 0, 1√
2
|u2 − 1|, u′′′) |u, u′′′ ∈ R

}
,

and the return map T : P → P follows solutions from one minimum to the next. For
the special point ±1 = (±1, 0, 0, 0) ∈ P we define T (±1) = ±1.

Lemma 9. For any ν > −
√

8 the Poincaré return map T is well-defined on P, and
T is continuous.

Proof. That T is well-defined, follows from the fact that any solution u 6≡ 1 in E = 0
has infinitely many extrema, which was proved in e.g. [26, Lem. 3.1.2]. That T is
continuous away from ±1 follows from the methods in the proof of Lemmas 3.1.3
and 3.1.4 in [26]. There, only symmetric settings were considered, but the method
prevails in the non-symmetric setting. Continuity of T at ±1 follows from the fact
that the equilibria are either saddle-foci (|ν| <

√
8) or centers (ν ≥

√
8). Roughly

speaking, the closer an orbit start to ±1, the more extrema near ±1 it has. It is not
hard to deduce continuity from at ±1 from this.

By construction and Lemma 9, the return map T , defined on P, has a compact
invariant set Λ = P ∩C. For λ ∈ Λ, we denote by uλ(y) the solution with initial data λ.

Lemma 10. Let λ ∈ Λ and let uλ be the associated solution of (4). Suppose uλ 6≡ 1.
Then uλ has only non-degenerate extrema, with the maxima in (1, ũ2], and the minima
either in [ũ3, 1) or in [ũ1,−1).

Proof. We write u = uλ. All solutions in C can be approximated arbitrarily closely
(on compact intervals) by the periodic solutions found in Lemma 6. Non-degenerate
extrema persist, whereas degenerate extrema (u′ = u′′ = 0) in E = 0 must lie on
the lines u = ±1. Hence, the bounds on the extrema follow immediately from the
definitions of Ua and Ii, once we have excluded degenerate extrema, i.e., inflection
points on u = ±1.
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To rule out inflection points we argue by contradiction (see also [26, Lem. 3.1.5]).
Suppose u ∈ C has an inflection point, say u′(0) = u′′(0) = 0. Hence u(0) = ±1
and u′′′(0) 6= 0 (if u′′′(0) = 0 then u ≡ 1 by uniqueness of the initial value problem).
We consider the case u(0) = 1 and u′′′(0) > 0; the other three cases are ruled out
in an analogous manner. Let {un}∞n=1 be a sequence of periodic solutions found in
Lemma 6, such that un → u in C3 on any bounded interval. Then by the implicit
function theorem, for large enough n, there exist points yn such that limn→∞ yn = 0
and u′′n(yn) = 0. We know that u′n(yn) 6= 0, since the un have only non-degenerate
extrema.

We now consider two cases: either u′n(yn) > 0 or u′n(yn) < 0 for infinitely many of
n ∈ N. In the former case we argue as follows. Taking a subsequence we may assume
that u′n(yn) > 0 for all n. We conclude from E = 0 and u′′n(yn) = 0 that

u′′′n (yn) +
ν

2
u′n(yn) = − (un(yn)2 − 1)2

4u′n(yn)
≤ 0.

Taking the limit n → ∞ in the above inequality leads to u′′′(0) + ν
2u′(0) ≤ 0, which

contradicts the assumption that u has an inflection point at y = 0 with u′′′(0) > 0.
In the latter case, we may assume that u′n(yn) < 0 for all n. Since in the inflection

point u′′′(0) > 0, it follows that u′(y) > 0 for y 6= 0 sufficiently small. This means
that for n large enough there are sequences y1

n < yn < y2
n of local maxima and minima

of un, respectively, such that y1,2
n → 0 as n → ∞. Since the periodic solutions un

have their extrema on alternating sides of +1 by construction, there is a sequence
y3

n ∈ (y1
n, y2

n) such that un(y3
n) = 1 and u′n(y3

n) < 0. We conclude from E = 0 and
un(y3

n) = 1 that

u′′′n (y3
n) +

ν

2
u′n(y3

n) =
u′′n(y3

n)2

u′n(y3
n)
≤ 0,

and we reach a contradiction as before by taking the limit n→∞ in this inequality,
thereby concluding the proof.

To define the semi-conjugacy ρ : Λ → ΣB we consider the solution uλ(y) of (4)
with initial data λ ∈ Λ. If uλ ≡ 1, we define ρ(λ) = 1∞. Otherwise, let uλ

i be the
sequence of extrema of uλ, indexed such that uλ

1 is the minimum corresponding to
λ ∈ P. By Lemma 10, this sequence lies in Ubλ

for some bλ ∈ ΣB , and we define
ρ(λ) = bλ.

It follows from Lemmas 9 and 10 that the map ρ is continuous (also in the point +1,
if +1 happens to lie in Λ). Moreover, ρ◦T = σ◦ρ by construction and the properties of
the return map (where σ is the shift map). Finally, ρ is surjective. Namely, all periodic
sequences in ΣB have corresponding solutions in C (and thus in Λ), and since the set
of periodic sequences is dense in ΣB and Λ is compact, surjectivity follows. Hence, ρ
defines a semi-conjugacy, and it follows (e.g. [28]) that the topological entropy of the
map T on Λ is positive:

htop

(
T |Λ

)
≥ htop

(
σ|ΣB

)
= log

(
1 +
√

5
2

)
.

This finishes the proof of Theorem 2.

Remark 11. There is another way to make a coding, that was already alluded to in
the introduction. The profile between two successive minima can, qualitatively, have
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three shapes (see Figure 2):

ui < −1 and ui+2 > −1, coded by ci = 1;
ui > −1 and ui+2 > −1, coded by ci = 2;
ui > −1 and ui+2 < −1, coded by ci = 3.

This new coding c is also indicated in Figure 6. The corresponding adjacency matrix
is  0 1 1

0 1 1
1 0 0

 .

This of course does not improve the bound on the entropy of T , but the slightly more
complicated coding c, using “up-down” building blocks, is more intuitively related to
the shape of solutions, as expressed in Figure 2.

3 Rigorous Continuation

We are going to restrict our attention to symmetric periodic solutions u satisfying H.
Hence, let

u(y) = a0 + 2
∞∑

l=1

al cos(lLy), (11)

with L an a priori unknown variable. Since u′(0) = 0, and the energy (5) is a conserved
quantity along the orbits of (4), we get that

E = u′′′(0)u′(0)− 1
2
u′′(0)2 +

ν

2
u′(0)2 +

1
4
(u2 − 1)2

= −1
2

[
u′′(0)− 1√

2

(
u(0)2 − 1

)] [
u′′(0) +

1√
2

(
u(0)2 − 1

)]
.

Since we look for u such that E = 0, u(0) < −1 and u′′(0) > 0, the energy condition
boils down to

u′′(0)− 1√
2
[u(0)2 − 1] = 0. (12)

Substituting the expansion (11) of u(y) in (12), we obtain

e(L, a) def= −2L2
∞∑

l=1

l2al −
1√
2

[
a0 + 2

∞∑
l=1

al

]2

+
1√
2

= 0. (13)

Plugging the expansion (11) in (4) and computing the inner product of the resulting
equations with each cos(kLx), k ≥ 0, we get

gk(L, a, ν) def= [1 + νL2k2 − L4k4]ak −
∑

k1+k2+k3=k

ki∈Z

ak1ak2ak3 = 0, (14)

where a = (a0, a1, . . . ). Define x = (x−1, x0, x1, . . . ) = (L, a0, a1, a2, . . . ), and g =
(g0, g1, g2, . . . )T , as well as

f(x, ν) =
[

e(x)
g(x, ν)

]
. (15)
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To simplify the presentation, we use the notation f−1 = e and fk = gk for k ≥ 0.
Now, since we want to use rigorous numerical methods to find pairs (x, ν) such that
f(x, ν) = 0, we need to consider a finite dimensional projection of (15). Define
xF = (x−1, x0, · · · , xm−1) = (L, a0, · · · , am−1) ∈ Rm+1, and

e(m)(xF ) def= −2L2
m−1∑
l=1

l2al −
1√
2

[
a0 + 2

m−1∑
l=1

al

]2

+
1√
2
,

and
g(m)(xF , ν) def= [g0(xF , ν), · · · , gm−1(xF , ν)]T .

The Galerkin projection of (15) is defined by

f (m)(xF , ν) def=
[

e(m)(xF )
g(m)(xF , ν)

]
.

It is important to note that f (m) has both a finitely truncated domain and a finitely
truncated co-domain.

We now describe how we can modify the classical, numerical, predictor-corrector
algorithm for following a continuous branch of solutions to fit our setting. Suppose
that, at parameter value ν = ν0, we have used a Newton-like iteration method to
numerically find x̄F such that

f (m)(x̄F , ν0) ≈ 0. (16)

Throughout this paper, Df represents the derivative of f with respect to the xF - or
x-variable. If (x̄F , ν0) is a solution of f (m)(xF , ν) ≈ 0 such that the Jacobian matrix
Df (m)(x̄F , ν̄) is invertible, then, by the implicit function theorem, there exists a
unique one-dimensional local continuum of solutions (xF , ν) such that the solution xF

is locally a function of the parameter ν (near ν0). Moreover, we may numerically find
a tangent vector ẋF to the solution curve at (x̄F , ν0), i.e.,

Df (m)(x̄F , ν0)ẋF +
∂f

∂ν

(m)

(x̄F , ν0) ≈ 0. (17)

We can then use this tangent vector to obtain a predictor x̂F = x̄F +(ν1−ν0)ẋF for the
solution at a parameter value ν1 close to ν0. The corrector then consists of iterating a
Newton-like map, with initial point x̂F , to converge to the zero x̃F of f (m)(xF , ν1), see
also Figure 7a. There are two essential problems to overcome in this scheme. First,
the result for the finite dimensional truncation needs to be “lifted” to the infinite
dimensional setting. This lifting is carried out via “validated continuation” [14], with
a final interval arithmetic step. Second, the described method leads to a discrete set
of solutions (x, ν), whereas we aim for solutions for a continuous range of parameter
values, and we describe our approach below.

Denote by x̄F = (L̄, ā0, ā1, · · · , ām−1) and ẋF = (L̇, ȧ0, ȧ1, · · · , ȧm−1) the ap-
proximate solutions of (16) and (17), respectively, and define their infinite extensions
x̄ = (x̄F , 0, 0, 0, . . . ) and ẋ = (ẋF , 0, 0, 0, . . . ). We define the “linear part” of gk as

µk(L, ν) def= 1 + νL2k2 − L4k4.

Furthermore, let the (m+1)×(m+1) matrix JF be the numerically computed inverse
of Df (m)(x̄F , ν0), and let 0F be the 1 × (m + 1) row vector (0, 0, . . . , 0). We define
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f
=
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(b)

Figure 7: (a) Sketch of the predictor-corrector algorithm for the truncated problem
f (m)(xF , ν) = 0. (b) The neighborhood Wxν

(r) in which we find solutions of the full
problem f(x, ν) = 0.

the linear operator on sequence spaces

A
def=


JF 0T

F 0T
F 0T

F · · ·

0F µm(L̄, ν0)−1 0 0 · · ·
0F 0 µm+1(L̄, ν0)−1 0 · · ·
0F 0 0 µm+2(L̄, ν0)−1

...
...

...
. . .

 , (18)

which acts as an approximate inverse of the linear operator Df(x̄, ν0). We shall always
make sure that m is sufficiently large, so that µm(L̄, ν0) < 0. For ν close to ν0, we
consider the Newton-like operator

Tν(x) def= x−A · f(x, ν). (19)

To formalize this approach, it is convenient to use a functional analytic setting.
As weight functions we define, for s > 0,

ωs
k =

{
1, k = −1, 0;
ks, k ≥ 1.

(20)

In general, one can play around with these weight functions (and the norm below); for
the problem in this paper, we have found the choice (20) to be appropriate, because
it leads to a proof. These weight functions are used in the norms

‖x‖s = sup
k=−1,0,1,...

|xkωs
k|, (21)

and the sequence spaces
Ωs = {x , ‖x‖s <∞},

consisting of sequences with algebraically decaying tails. For the first sum in (13) to
make sense, we shall require that s > 3.

Lemma 12. We have the following:
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(a) The sequence space Ωs with norm ‖·‖s is a Banach space for all s. The injections
Ωs1 ↪→ Ωs2 are compact for all s1 > s2.

(b) Let s > 3. The map T (x, ν) is continuous from Ωs × R to Ωs+2, and T (x, ν) is
compact from Ωs × R to Ωs.

(c) Let s0 > 3 and fix ν. Zeros of f(x, ν), or, equivalently, fixed points of T (x, ν),
that are in Ωs0 , are in Ωs for all s ≥ s0.

(d) Let s > 3. A sequence x = (L, a0, a1, . . . ) ∈ Ωs is a zero of f , or a fixed point
of T , if and only if u given by (11) is a periodic solution of (4) at energy level
E = 0, with period 2π

L , and symmetric in y = 0 and y = π
L .

Proof. These are straightforward exercises in functional analysis.

Lemma 12d shows that the problem of finding (symmetric) periodic solutions of
(4) at E = 0 is equivalent to studying fixed points of T . We will find balls in Ωs on
which T , for fixed ν, is a contraction mapping, thus leading to solutions of (4). Let
us define the ball of radius r, centered at the origin,

W (r) def= [−r, r]2 ×
∞∏

k=1

[
− r

ks
,

r

ks

]
. (22)

For ∆ν = ν − ν0 small, we define the predictors based at ν0 by

xν = x̄ + ∆ν ẋ.

For ν close to ν0 we define the ball centered at xν

Wxν (r) = xν + W (r).

We look for fixed points of T inside these balls/neighborhoods, see also Figure 7b.
To show that T is a contraction mapping, we need bounds Yk and Zk for all k =
−1, 0, 1, 2, . . . , such that, with ∆ν = ν − ν0,∣∣∣[Tν(xν)− xν ]k

∣∣∣ ≤ Yk(∆ν), (23)

and
sup

w,w′∈W (r)

∣∣∣[DTν(xν + w′)w]k
∣∣∣ ≤ Zk(r, ∆ν). (24)

We will find such bounds in Sections 3.2 and 3.3, respectively. Notice that Yk ≥ 0 and
Zk ≥ 0. Although not a restriction, we will, in this paper, only consider ∆ν ≥ 0, since
we will initiate the continuation at the parameter value ν = 0 and finish at ν = 2,
hence we do continuation in one direction only.

Variants of the following lemma were also used in [12, 14, 17, 34].

Lemma 13. Fix s > 3 and ν = ν0+∆ν . If there exists an r > 0 such that ‖Y +Z‖s <
r, with Y = (Y−1, Y0, Y1, . . . ) and Z = (Z−1, Z0, Z1, . . . ) the bounds as defined in (23)
and (24), then there is a unique x̃ν ∈Wxν (r) such that f(x̃ν , ν) = 0.

Proof. We outline the proof, which can be found in more detail in [14] and [34].
The mean value theorem (applied component-wise), combined with the assumption
‖Y + Z‖s < r, implies that T (·, ν) maps Wxν (r) into itself. Since Yk ≥ 0 and Zk ≥ 0,
it follows that ‖Z‖s ≤ ‖Y +Z‖s < r. We infer from the mean value theorem that the
Lipschitz constant of T (·, ν) on Wxν

(r) can be estimated above by ‖Z‖s/r < 1, so
that T is a contraction mapping. Finally, zeros of f correspond to fixed point of T ,
hence an application of the Banach fixed point theorem concludes the proof.
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In order to verify the hypotheses of Lemma 13 in a computationally efficient way,
we introduce the notion of radii polynomials. Namely, as will become clear in Sec-
tions 3.2 and 3.3, the functions Yk(∆ν) and Zk(r, ∆ν) are polynomials in their inde-
pendent variables. Also, for sufficiently large k, say k ≥M , one may choose

Yk = 0, and Zk = ẐM

(
M

k

)s
,

for some ẐM (r, ∆ν) > 0. This leads us to the following definition.

Definition 14. Let Yk(∆ν) = 0 and Zk(r, ∆ν) = ẐM (r, ∆ν)
(

M
k

)s for all k ≥M . We
define the M + 2 radii polynomials {p−1, p0, . . . , pM−1, pM} by

pk(r, ∆ν) def=

{
Yk(∆ν) + Zk(r, ∆ν)− r

ωs
k
, k = −1, 0, . . . ,M − 1;

ẐM (r, ∆ν)− r
ωs

M
k = M.

The usefulness of the radii polynomials pk follows from the observation that the
polynomials Yk and Zk have a few exceptionally small terms. Namely, it turns out
that they are roughly of the form (to be made precise in see Sections 3.2 and 3.3)

Yk ∼ δ1 + δ2∆ν + O(∆2
ν),

Zk ∼ δ3r + O(∆νr, r2),

where the δ1, δ2 and δ3 are small, because of the choice of x̄, the choice of ẋ, and the
choice of the linear operator A in the map Newton-like map T , respectively. It is easy
to see that the zeroth order term of Zk vanishes. Hence, the radii polynomials are
roughly of the form

pk(r, ∆ν) ∼ (δ1 + ∆νδ2)−
(

1
ωs

k

− δ3

)
r + O(r2,∆νr, ∆2

ν),

so that one may anticipate them to be negative for small r (but not too small) for a
reasonably large range of ∆ν .

Lemma 15. Let s > 3 and let Yk(∆ν) = 0 and Zk(r, ∆ν) = ẐM (r, ∆ν)
(

M
k

)s for
all k ≥ M . Suppose that there exists an r > 0 such that pk(r, ∆ν) < 0 for all
k = −1, . . . ,M , then the hypotheses of Lemma 13 are satisfied for ν = ν0 + ∆ν .

Proof. Let s > 3, r > 0 and ν = ν0 + ∆ν such that pk(r, ∆ν) < 0 for all k =
−1, 0, . . . ,M . Since Yk + Zk = ẐM

(
M
k

)s for k ≥M , by definition of the radii polyno-
mials, we get that

‖Y + Z‖s = sup
k=−1,0,1,...

|[Yk(r) + Zk(r, ∆ν)]ωs
k|

= max
k=−1,0,...,M

{pk(r, ∆ν)ωs
k + r} < r.

Combining Lemmas 13 and 15, it should now become clear that proving the ex-
istence of zeros of f , and hence periodic solutions of (4) at E = 0, is computable,
since only a finite number of polynomial inequalities need to be verified. There is
one final observation to be made. The Yk and the Zk are monotonically increasing
in the variable ∆ν ≥ 0, that is Yk(∆0

ν) ≤ Yk(∆1
ν) and Zk(r, ∆0

ν) ≤ Zk(r, ∆1
ν) for
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0 ≤ ∆0
ν ≤ ∆1

ν . As a consequence, the same property holds for the radii polynomi-
als: if 0 ≤ ∆0

ν ≤ ∆1
ν , then pk(r, ∆0

ν) ≤ pk(r, ∆1
ν) for all k = −1, . . . ,M . Hence, if

the hypotheses in Lemma 13 are satisfied for some ∆0
ν > 0, then they are satisfied

for all ∆ν ∈ [0,∆0
ν ], hence there are corresponding periodic solutions of (4) for all

ν ∈ [ν0, ν0 + ∆0
ν ].

For what follows we recall that the construction of the radii polynomials pk involves
Yk and Zk, defined in (26) and (31), respectively, as well as M0 and ẐM , defined in (30)
and (32), respectively. Furthermore, because the coefficients of the polynomials Yk

and Zk are all positive, there is at most one interval in the positive half line on which
pk is negative. With these considerations in mind, the following procedure leads to a
proof of the existence part of Theorem 3. The geometric properties H will be checked
in Procedure 21 in Section 4.

Procedure 16. To check the hypotheses in Lemma 15 on the interval ν ∈ [0, 2] we
proceed as follows.

1. Choose minimum and maximum step-sizes 0 < ∆min < ∆max. Initiate s > 3,
m ∈ N, M ≥ max{3m − 2, 6}, ν0 = 0, ∆ν ∈ [∆min,∆max], ∆0

ν = 0, and
an approximate zero x̂F of f (m)(xF , 0). Calculate the analytic estimates (αk,
k = 0, . . . ,M) that are independent of everything.

2. With a classical Newton iteration, find near x̂F an approximate solution x̄F of
f (m)(xF , ν0) = 0. Calculate an approximate solution ẋF of (17). Use the first
component of x̄F to calculate with interval arithmetic M0(L̄, ν0), and check that
M0 ≤M (this is never a problem in practice).

3. Compute, using interval arithmetic, the coefficients of the radii polynomials pk,
k = −1, . . . ,M . This is the computationally most expensive step, since it in-
volves the coefficients in Tables 1, 3 and 4, and in particular requires the calcu-
lation of convolution terms.

4. Calculate numerically I = [I−, I+] def=
⋂M

k=−1{r > 0 | pk(r, ∆ν) < 0}.
• If I = ∅ then go to Step 6.

• If I 6= ∅ then let r = 11
10I−. Compute with interval arithmetic pk(r, ∆ν).

If pk(r, ∆ν) < 0 for all k = −1, . . . ,M then go to Step 5; else go to Step 6.

5. Update ∆0
ν ← ∆ν and r0 ← r. If 10

9 ∆ν ≤ ∆max then update ∆ν ← 10
9 ∆ν and

go to Step 4; else go to Step 7.

6. If ∆0
ν > 0 then go to Step 7; else if 9

10∆ν ≥ ∆min then update ∆ν ← 9
10∆ν and

go to Step 4; else go to Step 8.

7. The continuation step has succeeded. Store, for future reference, x̄F , ẋF , r0, ν0

and ∆0
ν . Determine ν1 approximately equal to, but interval arithmetically less

than, ν0 + ∆0
ν . If ν1 ≥ 2 then terminate the procedure successfully; else make

the updates ν0 ← ν1, ∆ν ← ∆0
ν , x̂F ← x̄F + ∆0

ν ẋF , and ∆0
ν ← 0, and go to

Step 2 for the next continuation step.

8. The continuation step has failed. Either decrease ∆min and return to Step 6;
or increase s or M and return to Step 3; or increase m and return to Step 2.
Alternatively, terminate the procedure unsuccessfully at ν = ν0 (although with
success on [0, ν0]).
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During the procedure, a sequence of intervals [ν0, ν0 +∆0
ν ] covering [0, 2] is stored,

together with the variables defining the neighborhoods Wxν
(r0). In Section 4, the

balls Wxν0
(r0) will be used in Procedure 21 (and Lemma 22) to check the geometric

conditions H. Concerning the usefulness of the procedure in practice, the proof of the
pudding is in the eating.

Lemma 17. Let s = 4, m = 43, M = 127, ∆min = 10−10 and ∆max = 2. Then we can
choose an approximate zero x̂F = x̂∗F of f (m)(xF , 0) such that Procedure 16 terminates
successfully. Hence there are periodic solutions of (4) at E = 0 for all ν ∈ [0, 2].

The choice of x̂∗F is made in such a way that the solutions found satisfy the geometric
conditions H. This is checked using Procedure 21.

Proof. A Matlab computer program successfully performing Procedure 16 accompa-
nies the paper. In particular, we never end up in Step 8 of the procedure. Concerning
the implementation, the only difficult evaluations are the convolution terms, which
can be computed in a very efficient way using the fast Fourier transform combined
with interval arithmetic, see [17]. More details about the implementation are given
in Section 3.1.

3.1 Implementation

In this section, we discuss in detail the implementation of the rigorous verification
of Procedure 16 and Procedure 21 (which checks the geometric properties H, see
Section 4). First of all, as seen in [14], the errors induced by the floating point
computations of the coefficients of the radii polynomials are small. Hence, finding a
positive r at which all radii polynomials are negative without interval arithmetic, gives
significant confidence about the success of Procedure 16. On top of that, the compu-
tational efficiency of floating point arithmetic in Matlab allows for fast computations.
With this in mind, we wrote a preliminary function called SH continuation.m, which
verifies, without interval arithmetic, that Procedure 16 performs successfully. Using
the values given in Lemma 17, we obtained 13068 successful non-rigorous steps in a
bit more than 7 minutes. In Figure 8, we plot the evolution of ∆ν as the parameter
ν runs from 0 to 2.

This being done, and armed with confidence, we then aimed for the proof. First we
wrote SH rigorous continuation.m, the equivalent of SH continuation.m, in the Matlab
interval arithmetic package Intlab (see [19]). We did not try to optimize for speed in
the interval arithmetic setting, since we preferred to keep the changes with respect to
the floating point version SH continuation.m limited. The speed of the interval arith-
metic is thus rather slow, and we decided to distribute the computations over 20 dif-
ferent computers, each running 3 simultaneous calculations. Hence, we used the 13068
output points from SH continuation.m to generate a non-uniform mesh {(νj , xj) | j =
1, . . . , 61} of the branch under study, where ν1 = 0 and ν61 = 2. The function
SH mesh generator.m picks 61 points out of the 13068 defining the discrete branch.
Note that we do not need to define x61, since at this point, we have already reached ν =
2. This mesh is stored in the file SH mesh points.mat. Then, for each j = 1, . . . , 60,
we called the function SH run proof(j). It first starts Intlab, loads SH mesh points.dat
and rigorously verifies Procedure 16 between the parameter values νj and νj+1, using
SH rigorous continuation.m with the initial point xj as input. Finally, it verifies, by
running the interval arithmetic function SH geometric properties.m, that the periodic
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Figure 8: The step size ∆ν as a function of the parameter ν ∈ [0, 2]. The step size
increases at first, but it then decreases as we approach a saddle-node bifurcation.

orbits rigorously generated by SH rigorous continuation(xj ,νj ,νj+1) satisfy the geo-
metric properties H, as described in Section 4. Thus, the proof of Lemma 17 (and
Lemma 22) was finished when all 60 runs ended successfully.

3.2 The bounds Yk(∆ν)

Recalling (19) and (23), in this section we want to find bounds∣∣∣[−A · f(xν , ν)]k
∣∣∣ ≤ Yk(∆ν).

We use the following notation. For an arbitrary vector yF = (y−1, y0, y1, . . . , ym−1)
the infinite extension is y = (y−1, y0, y1, . . . , ym−1, 0, 0, 0, . . . ). For an infinite sequence
z = (z−1, z0, z1, . . . ), the finite restriction is zF = (z−1, z0, z1, . . . , zm−1), whereas
zI = (0, 0, . . . , 0, zm, zm+1, zm+2, . . . ) denotes the infinite tail. Similar notation is used
for vectors/sequences of which the index starts at 0 rather than −1, in particular
the vectors āF = (ā0, ā1, . . . , ām−1) and ȧF = (ȧ0, ȧ1, . . . , ȧm−1). Also, absolute
values of vectors, infinite sequences, and matrices are taken component-wise, e.g.,
|x| = (|x−1|, |x0|, |x1|, |x2|, . . . ). Furthermore, we use the convolutions

(a ∗ b ∗ c)k =
∑

k1+k2+k3=k

k1,k2,k3∈Z

a|k1|b|k2|c|k3|,

which is of course the standard convolution when taking a−k ≡ ak, and (with the
extension convention)

(aF ∗ bF ∗ cF )k = (a ∗ b ∗ c)k =
∑

k1+k2+k3=k

|ki|<m

a|k1|b|k2|c|k3|,
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k = −1

d1
−1 −2L̄2 Pm−1

l=1 l2ȧl − 4L̄L̇
Pm−1

l=1 l2āl −
√

2
`
ā0 + 2

Pm−1
l=1 āl

´`
ȧ0 + 2

Pm−1
l=1 ȧl

´
d2
−1 −4L̄L̇

Pm−1
l=1 l2ȧl − 2L̇2 Pm−1

l=1 l2āl − 1
2

√
2

`
ȧ0 + 2

Pm−1
l=1 ȧl

´2

d3
−1 −2L̇2 Pm−1

l=1 l2ȧl

k = 0, 1, 2, . . .

d1
k

`
1 + ν0L̄

2k2 − L̄4k4
´
ȧk +

`
(2ν0L̄L̇ + L̄2)k2 − 4L̄3L̇k4

´
āk − 3(ā ∗ ā ∗ ȧ)k

d2
k

`
(2ν0L̄L̇ + L̄2)k2 − 4L̄3L̇k4

´
ȧk +

`
(ν0L̇

2 + 2L̄L̇)k2 − 6L̄2L̇2k4
´
āk − 3(ā ∗ ȧ ∗ ȧ)k

d3
k

`
(ν0L̇

2 + 2L̄L̇)k2 − 6L̄2L̇2k4
´
ȧk +

`
L̇2k2 − 4L̄L̇3k4

´
āk − (ȧ ∗ ȧ ∗ ȧ)k

d4
k

`
L̇2k2 − 4L̄L̇3k4

´
ȧk − L̇4k4āk

d5
k −L̇4k4ȧk

Table 1: The non-zero coefficients in the expansion (25) of fk. In particular, d4
−1 =

d5
−1 = 0. Notice that for k ≥ m the only non-vanishing terms are the convolution

terms. Furthermore, for k ≥ 3m− 2 all coefficients are 0.

which vanishes for k ≥ 3m− 2.
Exploiting that f is a vector of polynomials in the components of x and ν, we write

fk(xν , ν) = fk(x̄ + ∆ν ẋ, ν0 + ∆ν) = fk(x̄, ν0) +
5∑

i=1

di
k(x̄, ẋ, ν0)∆i

ν . (25)

Here the constants di
k are listed in Table 1. For the zeroth order term we have for the

finite part fF (x̄, ν0) = f (m)(x̄F , ν0), which is very small, since x̄F is a numerical zero
of f (m)(xF , ν0). The choice of ẋF given by (17) implies that the first order term d1

F

is also small, since

fF (xν , ν) = f (m)(x̄F , ν0) +

[
Df (m)(x̄F , ν0)ẋF +

∂f

∂ν

(m)

(x̄F , ν0)

]
∆ν + O(∆2

ν).

For the tail (k ≥ m) we have fk(x̄, ν0) = −(ā ∗ ā ∗ ā)k = −(āF ∗ āF ∗ āF )k, which
vanishes for k ≥ 3m− 2.

Using the vectors di from Table 1, this leads to bounds Yk(∆ν) as listed below,
with ∆ν ≥ 0:

YF = |JF · f (m)(x̄F , ν0)|+
5∑

i=1

∣∣∣JF · di
F

∣∣∣∆i
ν , (26a)

for k = −1, 0, 1, . . . ,m− 1;

Yk =
|(ā ∗ ā ∗ ā)k|+ 3|(ā ∗ ā ∗ ȧ)k|∆ν + 3|(ā ∗ ȧ ∗ ȧ)k|∆2

ν + |(ȧ ∗ ȧ ∗ ȧ)k|∆3
ν

|µk(L̄, ν0)|
, (26b)

for m ≤ k ≤ 3m− 3; and
Yk = 0, (26c)

for k ≥ 3m− 2.
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3.3 The bounds Zk(r, ∆ν)

In this section we construct bounds

sup
w,w′∈W (r)

∣∣∣[DTν(xν + w′)w]k
∣∣∣ ≤ Zk(r, ∆ν).

We will use the notation introduced at the start of Section 3.2. Furthermore, at several
instances, we employ a computational parameter M , and although not necessary, we
choose the same value of M every time, for simplicity.

Recall that JF is a numerical inverse of Df (m)(x̄F , ν0). To simplify the exposition,
we introduce an almost inverse of the operator A defined in (18):

A† def=


Df (m)(x̄F , ν0) 0T

F 0T
F 0T

F · · ·

0F µm(L̄, ν0) 0 0 · · ·
0F 0 µm+1(L̄, ν0) 0 · · ·
0F 0 0 µm+2(L̄, ν0)
...

...
...

. . .

 .

We split Dfν(xν + w′)w into two pieces:

Dfν(xν + w′)w = A†w +
[
Dfν(xν + w′)−A†]w,

hence
DTν(w′ + xν)w = [I −AA†]w −A [Dfν(xν + w′)−A†]w, (27)

where the first term will be very small. For w,w′ ∈ W (r) we consider v, v′ ∈ W (1)
defined by w = rv and w′ = rv′. Similar to Section 3.2, we expand the expression
[Dfν(xν + w′)−A†]w in terms of r and ∆ν :

(
[Dfν(xν + w′)−A†]w

)
k

=
5∑

i=1

5−i∑
j=0

ci,j
k (x̄, ẋ, v, v′, ν0)ri∆j

ν , (28)

Here the constants ci,j
k are listed in Table 2. Since A† does not depend on r or ∆ν , it

is only involved in the calculation of the coefficient c1,0
k . In particular, for the finite

part
c1,0
F = DfF (x̄, ν0)v −Df (m)(x̄F , ν0)vF ,

and for the tail (k ≥ m)

c1,0
k = Dfk(x̄, ν0)v − µk(L̄, ν0)vk.

The other coefficients ci,j
k can be easily generated with the help of a computer (e.g.

with Maple). Here we have rearranged the terms in the output somewhat, to make
the formulas in Table 2 more aesthetically pleasing. However, such cosmetic changes
are of course not needed for any practical purposes.

We now compute uniform upper bounds for the ci,j
k , i.e., Ci,j

k ≥ 0 such that∣∣∣ci,j
k (x̄, ẋ, v, v′, ν0)

∣∣∣ ≤ Ci,j
k (x̄, ẋ, ν0), for all v, v′ ∈W (1). (29)

The most involved are the convolution terms and we have a dedicated lemma to esti-
mate those. Although the formulas are quite cumbersome, the numbers defined below
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k = −1

c1,0
−1 −2L̄2 P∞

l=m l2vl −
√

2
`
ā0 + 2

Pm−1
l=1 āl

´ `
2

P∞
l=m vl

´
c1,1
−1 −4

“
L̇

Pm−1
l=1 l2āl + L̄

Pm−1
l=1 l2ȧl

”
v−1 − 4L̄L̇

P∞
l=1 l2vl −

√
2

`
ȧ0 + 2

Pm−1
l=1 ȧl

´ `
v0 + 2

P∞
l=1 vl

´
c1,2
−1 −4L̇v−1

Pm−1
l=1 l2ȧl − 2L̇2 P∞

l=1 l2vl

c2,0
−1 −4

“
v′−1

Pm−1
l=1 l2āl + L̄

P∞
l=1 l2v′l

”
v−1 − 4L̄v′−1

P∞
l=1 l2vl −

√
2

`
v′0 + 2

P∞
l=1 v′l

´ `
v0 + 2

P∞
l=1 vl

´
c2,1
−1 −4

“
v′−1

Pm−1
l=1 l2ȧl + L̇

P∞
l=1 l2v′l

”
v−1 − 4L̇v′−1

P∞
l=1 l2vl

c3,0
−1 −4v′−1v−1

P∞
l=1 l2v′l − 2(v′−1)

2 P∞
l=1 l2vl

k = 0, 1, 2, . . .

c1,0
k


−3 (ā ∗ ā ∗ vI)k for 0 ≤ k ≤ m− 1

−3 (ā ∗ ā ∗ v)k for k ≥ m

c1,1
k −k2

h`
4k2L̄3L̇− L̄2 − 2ν0L̄L̇

´
vk + 2

`
(6k2L̄2L̇− L̄− ν0L̇)āk + (2k2L̄3 − ν0L̄)ȧk

´
v−1

i
− 6 (ā ∗ ȧ ∗ v)k

c1,2
k −k2

h`
6k2L̄2L̇2 − 2L̄L̇− ν0L̇

2
´
vk + 2

`
(6k2L̄L̇2 − L̇)āk + (6k2L̄2L̇− L̄− ν0L̇)ȧk

´
v−1

i
− 3 (ȧ ∗ ȧ ∗ v)k

c1,3
k −k2L̇

h`
4k2L̄L̇2 − L̇

´
vk + 2

`
2k2L̇2āk + (6k2L̄L̇− 1)ȧk

´
v−1

i
c1,4

k −k4L̇3
h
L̇vk + 4ȧkv−1

i
c2,0

k −2k2
h`

2k2L̄3 − ν0L̄
´`

v′−1vk + v′kv−1

´
+

`
6k2L̄2 − ν0

´
ākv′−1v−1

i
− 6 (ā ∗ v′ ∗ v)k

c2,1
k −2k2

h`
6k2L̄2L̇− L̄− ν0L̇

´`
v′−1vk + v′kv−1

´
+

`
(12k2L̄L̇− 1)āk + (6k2L̄2 − ν0)ȧk

´
v′−1v−1

i
− 6 (ȧ ∗ v′ ∗ v)k

c2,2
k −2k2

h`
6k2L̄L̇2 − L̇

´`
v′−1vk + v′kv−1

´
+

`
6k2L̇2āk + (12k2L̄L̇− 1)ȧk

´
v′−1v−1

i
c2,3

k −4k4L̇2
h
L̇

`
v′−1vk + v′kv−1

´
+ 3ȧkv′−1v−1

i
c3,0

k −k2v′−1

h`
6k2L̄2 − ν0

´`
v′−1vk + 2v′kv−1

´
+ 12k2L̄ākv′−1v−1

i
− 3 (v′ ∗ v′ ∗ v)k

c3,1
k −k2v′−1

h`
12k2L̄L̇− 1

´`
v′−1vk + 2v′kv−1

´
+ 12k2

`
L̇āk + L̄ȧk

´
v′−1v−1

i
c3,2

k −6k4L̇v′−1

h
L̇

`
v′−1vk + 2v′kv−1

´
+ 2ȧkv′−1v−1

i
c4,0

k −4k4(v′−1)
2

h
L̄

`
v′−1vk + 3v′kv−1

´
+ ākv′−1v−1

i
c4,1

k −4k4(v′−1)
2

h
L̇

`
v′−1vk + 3v′kv−1

´
+ ȧkv′−1v−1

i
c5,0

k −k4(v′−1)
3

h
v′−1vk + 4v′kv−1

i
Table 2: The non-zero coefficients in the expansion (28). In the expression for c1,0

k we
have used the notation vI = (0, 0, . . . , 0, vm, vm+1, vm+2, . . . ).
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are easily calculated with a computer. We introduce the computational parameter
M ∈ N, arbitrary for now, and we define

γM
def= 2

[
M

M − 1

]s

+
[
4 ln(M − 2)

M
+

π2 − 6
3

] [
2
M

+
1
2

]s∗−2

,

where s∗ is the largest integer such that s∗ ≤ s, and

βk
def=


4 + 1

22s−1(2s−1) , k = 0;

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+
∑k−1

k1=1
ks

ks
1(k−k1)s , k = 1, 2, . . . ,M − 1;

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+ γM k = M.

Using this, we set

αk =
2βM

(M + k)s(M − 1)s−1(s− 1)
+

M+k−1∑
j=M

βj−k

js(j − k)s
, for k = 0, 1, . . . ,M − 1,

while for k = M we define

αM
def= β0 +

M−1∑
j=1

βj

js

[
1 +

1[
1− j

M

]s
]

+ βM

[
2 +

1
2s

+
1
3s

+
1

3s−1(s− 1)
+

1
(M − 1)s−1(s− 1)

+ γM

]
.

We introduce, for infinite sequence a = (a0, a1, a2, . . . ), the notation

|a|M = (|a|0, |a|1, . . . , |a|M−1).

Analogous to (21) and (22), but now for sequences with index starting at 0 rather
than −1, we define

‖a‖0s
def= sup

k=0,1,...
|akωs

k| = sup{|a0|, |a1|, 2s|a2|, 3s|a3|, 4s|a4|, . . . } ,

and

W 0(r) def= {a , ‖a‖0s ≤ r} = [−r, r]×
∞∏

k=1

[
− r

ks
,

r

ks

]
.

Lemma 18. Let M ≥ 6, and let a, b and c lie in the balls W 0(Aa), W 0(Ab) and
W 0(Ac). Then for k = 0, 1, . . . ,M − 1 we have

(a ∗ b ∗ c)k ∈
{(
|a|M ∗ |b|M ∗ |c|M

)
k

+ AaAbAcαk

}
[−1, 1],

while for k ≥M we have

(a ∗ b ∗ c)k ∈ AaAbAc
αM

ks
[−1, 1].

Proof. It is a special case of the general convolution estimates in Appendix A, with
p = 3, M1 = M , and the notation βk = α

(2)
k , αk = ε

(3)
k and αM = α

(3)
M .
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We are now ready to estimate the coefficients ci,j
k (x̄, ẋ, v, v′, ν0), but we first intro-

duce a bit more notation, namely, in view of Lemma 18,

Qk(a, b, c) def=

{
(|a|M ∗ |b|M ∗ |c|M

)
k

+ ‖a‖0s ‖b‖0s ‖c‖0sαk, k = 0, 1, . . . M − 1;
‖a‖0s ‖b‖0s ‖c‖0s αM

ks , k ≥M.

Furthermore, for s > 1, we use the notation

ζ(s, l0)
def=

∞∑
l=l0

1
ls

, and ζ(s) def= ζ(s, 1) =
∞∑

l=1

1
ls

,

and their estimates (which require only a finite computation), for l0 ≤M ,

ζM (s, l0)
def=

M∑
l=l0

1
ls

+
1

(M − 1)s−1(s− 1)
, and ζM (s) def= ζM (s, 1)

so that ζ(s, l0) ≤ ζM (s, l0) and ζ(s) ≤ ζM (s). Finally, let

I def=
(

1, 1,
1
2s

,
1
3s

,
1
4s

, · · ·
)

, and II
def=
(

0, 0, . . . , 0,
1

ms
,

1
(m + 1)s

, . . .

)
.

With this notation in place, and using Lemma 18, the bounds Ci,j
k (x̄, ẋ, ν0) satis-

fying (29), listed in Table 3, are now straightforward to derive. For fixed k, these
constants Ci,j

k each only involve a finite computation, but there are of course still
infinitely many values of k to consider. Notice first that for k ≥ m many terms in
Table 3 vanish, since only the first m elements of ā and ȧ are nonzero. For the same
reason, calculating ‖ā‖0s and ‖ȧ‖0s is a finite computation. Moreover, many terms can
be estimated using the fact that, for any A1, A2 ∈ R,∣∣∣∣A1 +

A2

k2

∣∣∣∣ ≤ max
{∣∣∣∣A1 +

A2

M2

∣∣∣∣ , |A1|
}

, for all k ≥M.

It follows from these considerations and Lemma 18 that

Ci,j
k ≤ Ĉi,j

M k4−s, for k ≥M ≥ min{m, 6},

where the Ĉi,j
M are listed in Table 4.

To conclude the calculation of Zk we need an estimate on

|µk(L̄, ν0)| = L̄4k4

∣∣∣∣1− ν0

L̄2k2
+

1
L̄4k4

∣∣∣∣
for large k. Let

M0(L̄, ν0)
def=
{

0 for ν0 ≤ 0,√
2ν0/L̄ for ν0 > 0,

(30)

then it is not hard to check that

|µk(L̄, ν0)| ≥
L̄4k4

2
for k ≥M0.
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k = −1

C1,0
−1 2 L̄2 ζM (s− 2, m) + 2

√
2

˛̨̨
ā0 + 2

Pm−1
l=1 āl

˛̨̨
ζM (s, m)

C1,1
−1 4

˛̨̨
L̇

Pm−1
l=1 l2āl + L̄

Pm−1
l=1 l2ȧl

˛̨̨
+ 4

˛̨
L̄L̇

˛̨
ζM (s− 2) +

√
2

˛̨̨
ȧ0 + 2

Pm−1
l=1 ȧl

˛̨̨ ˆ
1 + 2 ζM (s)

˜
C1,2
−1 4

˛̨̨
L̇

Pm−1
l=1 l2ȧl

˛̨̨
+ 2L̇2 ζM (s− 2)

C2,0
−1 8

˛̨
L̄

˛̨
ζM (s− 2) + 4

˛̨̨Pm−1
l=1 l2āl

˛̨̨
+
√

2
ˆ
1 + 2 ζM (s)

˜2

C2,1
−1 4

˛̨̨Pm−1
l=1 l2ȧl

˛̨̨
+ 8

˛̨
L̇

˛̨
ζM (s− 2)

C3,0
−1 6 ζM (s− 2)

k = 0, 1, 2, . . .

C1,0
k


3 Qk(ā, ā, II) for 0 ≤ k ≤ m− 1

3 Qk(ā, ā, I) for k ≥ m

C1,1
k

˛̨̨
4k2L̄3L̇− L̄2 − 2ν0L̄L̇

˛̨̨
k2−s + 2

˛̨̨
2k2

`
3L̄2L̇āk + L̄3ȧk

´
−

`
L̄āk + ν0L̇āk + ν0L̄ȧk

´˛̨̨
k2 + 6 Qk(ā, ȧ, I)

C1,2
k

˛̨̨
6k2L̄2L̇2 − 2L̄L̇− ν0L̇

2
˛̨̨
k2−s + 2

˛̨̨
6k2

`
L̄L̇2āk + L̄2L̇ȧk

´
−

`
L̇āk + L̄ȧk + ν0L̇ȧk

´˛̨̨
k2 + 3 Qk(ȧ, ȧ, I)

C1,3
k

˛̨̨
4k2L̄L̇3 − L̇2

˛̨̨
k2−s + 2

˛̨̨
2k2

`
L̇3āk + 3L̄L̇2ȧk

´
− L̇ȧk

˛̨̨
k2

C1,4
k L̇4k4−s + 4

˛̨
L̇3ȧk

˛̨
k4

C2,0
k 4

˛̨̨
2k2L̄3 − ν0L̄

˛̨̨
k2−s + 2

˛̨̨
6k2L̄2āk − ν0āk

˛̨̨
k2 + 6 Qk(ā, I, I)

C2,1
k 4

˛̨̨
6k2L̄2L̇− L̄− ν0L̇

˛̨̨
k2−s + 2

˛̨̨
6k2

`
2L̄L̇āk + L̄2ȧk

´
− āk − ν0ȧk

˛̨̨
k2 + 6 Qk(ȧ, I, I)

C2,2
k 4

˛̨̨
6k2L̄L̇2 − L̇

˛̨̨
k2−s + 2

˛̨̨
6k2

`
L̇2āk + 2L̄L̇ȧk

´
− ȧk

˛̨̨
k2

C2,3
k 8|L̇3|k4−s + 12L̇2|ȧk|k4

C3,0
k 3

˛̨̨
6k2L̄2 − ν0

˛̨̨
k2−s + 12

˛̨
L̄āk

˛̨
k4 + 3 Qk(I, I, I)

C3,1
k 3

˛̨̨
12k2L̄L̇− 1

˛̨̨
k2−s + 12

˛̨̨
L̇āk + L̄ȧk

˛̨̨
k4

C3,2
k 18L̇2k4−s + 12

˛̨
L̇ȧk

˛̨
k4

C4,0
k 16

˛̨
L̄

˛̨
k4−s + 4|āk|k4

C4,1
k 16

˛̨
L̇

˛̨
k4−s + 4|ȧk|k4

C5,0
k 5 k4−s

Table 3: The bounds uniform Ci,j
k (x̄, ẋ, ν0) on the coefficients ci,j

k (x̄, ẋ, v, v′, ν0). For
k = 0 one should read k2−s = 0 and k4−s = 0, irrespective of s.
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bC1,0
M

3(‖ā‖0
s)

2
αM

M4

bC1,1
M max

n˛̨
4L̄3L̇− L̄2+2ν0L̄L̇

M2

˛̨
, 4

˛̨
L̄3L̇

˛̨o
+

6‖ā‖0
s‖ȧ‖0

sαM

M4

bC1,2
M max

n˛̨
6L̄2L̇2 − 2L̄L̇+ν0L̇2

M2

˛̨
, 6L̄2L̇2

o
+

3(‖ȧ‖0
s)

2
αM

M4

bC1,3
M max

n˛̨
4L̄L̇3 − L̇2

M2

˛̨
, 4

˛̨
L̄L̇3

˛̨o
bC1,4

M L̇4

bC2,0
M 4max

n˛̨
2L̄3 − ν0L̄

M2

˛̨
, 2

˛̨
L̄3

˛̨o
+

6‖ā‖0
sαM

M4

bC2,1
M 4max

n˛̨
6L̄2L̇− L̄+ν0L̇

M2

˛̨
, 6L̄2

˛̨
L̇

˛̨o
+

6‖ȧ‖0
sαM

M4

bC2,2
M 4max

n˛̨
6L̄L̇2 − L̇

M2

˛̨
, 6

˛̨
L̄

˛̨
L̇2

o
bC2,3

M 8
˛̨
L̇3

˛̨
bC3,0

M 3max
n˛̨

6L̄2 − ν0
M2

˛̨
, 6L̄2

o
+

3αM

M4

bC3,1
M 3max

n˛̨
12L̄L̇− 1

M2

˛̨
, 12

˛̨
L̄L̇

˛̨o
bC3,2

M 18L̇2

bC4,0
M 16

˛̨
L̄

˛̨
bC4,1

M 16
˛̨
L̇

˛̨
bC5,0

M 5

Table 4: The uniform bounds Ĉi,j
M on ks−4Ci,j

k (x̄, ẋ, ν0) for k ≥M .
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Using the vectors Ci,j and the numbers Ĉi,j
M from Tables 3 and 4, and in view of (27),

this leads to bounds Zk(r, ∆ν) as listed below, with M ≥ min{M0,m, 6} and ∆ν ≥ 0:

ZF = |I − JF ·Df (m)(x̄F , ν0)| · IF r +
5∑

i=1

5−i∑
j=0

∣∣JF

∣∣ · Ci,j
F ri ∆j

ν , (31a)

for k = −1, 0, 1, . . . ,m− 1;

Zk =
1

|µk(L̄, ν0)|

5∑
i=1

5−i∑
j=0

Ci,j
k ri ∆j

ν , (31b)

for m ≤ k ≤M − 1; and

Zk =
2
L̄4

1
ks

5∑
i=1

5−i∑
j=0

Ĉi,j
M ri ∆j

ν , (31c)

for k ≥M . Finally, for the purpose of Definition 14 and Lemma 15, we set

ẐM
def=

2
L̄4Ms

5∑
i=1

5−i∑
j=0

Ĉi,j
M ri ∆j

ν , (32)

so that Zk = ẐM

(
M
k

)s.
4 Verification of the Geometric Properties H
We now put ourselves in the situation of a single, successful, rigorous continuation
step, where we have found an r > 0 such that the set (s > 3)

Wxν
(r) = xν + W (r), with xν = x̄ + (ν − ν0)ẋ, (33)

centered at the predictor based at ν0, contains a unique fixed point x̃ν of T (x, ν)
for each parameter value ν ∈ [ν0, ν1]. We write x̃ν = (L̃ν , ãν

0 , ãν
1 , ãν

2 , . . . ). The func-
tions ũν defined via (11), are periodic solutions of (4) with period 2π/L̃ν , which are
symmetric in y = 0 and y = π/L̃ν . For convenience, we incorporate the period of the
periodic solution in the definition of the geometric condition as follows:

HeL


(H1) ũ has exactly four monotone laps and extrema {ũi}4i=1 on [0, 2π/L̃];
(H2) ũ1 and ũ3 are minima, and ũ2 and ũ4 are maxima;
(H3) ũ1 < −1 < ũ3 < 1 < ũ2, ũ4;
(H4) ũ(x) is symmetric in its minima ũ1 and ũ3.

We need to make sure that the unique zero of f in Wxν
satisfies these properties. The

following lemma will help us in the verification process, since it shows that we only
need to check the conditions for one parameter value along any continuous branch of
solutions.

Lemma 19. Let ũν , ν0 ≤ ν ≤ ν1 be periodic solutions of (4) at the energy level E = 0
with period 2π/L̃ν , which are symmetric in y = 0 and y = π/L̃ν . Suppose that ũν and
L̃ν depend continuously on ν, i.e., ũν depends continuously on ν as a C3-function on
compact intervals. If ũν0 satisfies HeLν0 , then ũν satisfies HeLν for all ν ∈ [ν0, ν1].
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Proof. To reduce clutter, we remove all tildes from the notation. By symmetry, we
only need to consider the interval [0, π/Lν ]. Let

N =
{
ν ∈ [ν0, ν1]

∣∣ uν satisfies HLν

}
.

By assumption, ν0 ∈ N . We will show that N is both open and closed (in the relative
topology), i.e. connected, hence N = [ν0, ν1] as asserted.

It is relatively easy to see that N is open. Namely, for ν ∈ N the extrema of uν

do not lie on the lines u = ±1. It then follows from the energy identity E = 0 that
the extrema of uν are all non-degenerate. Hence, the conditions H1,2,3,4 are open
conditions (under the symmetry assumption in the lemma).

To prove that N is closed, is a bit more involved. Let {νn}∞n=1 ⊂ N be a sequence
converging to ν∗ ∈ [ν0, ν1]. Our goal is to show that ν∗ ∈ N . We denote un = uνn

and u∗ = uν∗ . Let the extrema un
1,2,3 be attained in yn

1,2,3. Clearly, we have that
yn
1 = 0 and yn

3 = π/Lν
n, while, taking a subsequence, we may additionally assume

that yn
2 converges to some y∗2 as n → ∞. Denote also y∗1 = 0 and y∗3 = π/Lν∗ . By

C3-continuity, we have u′∗(y
∗
1,2,3) = 0, and

u∗(y∗1) ≤ −1 ≤ u∗(y∗3) ≤ 1 ≤ u∗(y∗2). (34)

In fact, the inequalities are strict. We prove this for the last inequality u∗(y∗2) > 1;
the other cases are analogous. Suppose, by contradiction, that u∗(y∗2) = 1. Since
u′∗(y

∗
2) = 0, it follows from E = 0 that u′′∗(y

∗
2) = 0. By continuity,

max
y

u∗(y) = lim
n→∞

max
y

un(y) = lim
n→∞

un(yn
2 ) = u∗(y∗2) = 1.

This implies that u′′′∗ (y∗2) = 0. Uniqueness of the initial value problem for the ODE
then says that u∗(y) = 1 for all y, which contradicts u∗(y∗1) ≤ −1. Similarly one
can show that all the other inequalities in (34) are strict, hence u∗ has at least four
extrema on [0, 2π/Lν∗ ], and those satisfy H3.

The final step is to prove that u∗ does not have more than four monotone laps.
We argue once more by contradiction. Recall that y∗2 = limn→∞ yn

2 . Suppose there
is a point z ∈ (0, π/Lν∗) with u′∗(z) = 0, and z 6= y∗2 . If u′′∗(z) 6= 0, then, by
the implicit function theorem, this extremum persists for un for n sufficiently large,
leading to more than four monotone laps of un, contradicting the fact that un satisfies
the geometric conditions. Hence, it must be that u′′∗(z) = 0, and thus u∗(z) = ±1,
since E = 0. Moreover, since u∗ 6≡ ±1, we must have u′′′∗ (z) 6= 0. Let us consider the
case u∗(z) = 1 and u′′′∗ (z) > 0; all other (three) cases are analogous.

We thus have

u∗(z) = 1, u′∗(z) = 0, u′′∗(z) = 0, u′′′∗ (z) > 0. (35)

Clearly u′∗(y) > 0 for y sufficiently close but not equal to z. By continuity, we
have (un)′(z ± ε) > 0 for ε sufficiently small and n large enough. By the implicit
function theorem, for large enough n, there exist points zn ∈ [z − ε, z + ε] such that
limn→∞ zn = z and (un)′′(zn) = 0, and (un)′(zn) 6= 0, since un has no additional
extrema in (0, Lνn) besides yn

2 . In fact, (un)′(zn) > 0, since if (un)′(zn) < 0 then un

would have two extrema in [z − ε, z + ε], leading to more than four monotone laps
of un, a contradiction. Hence (un)′(zn) > 0.

We conclude from E = 0 and (un)′′(zn) = 0 that[
(un)′′′(zn) +

νn

2
(un)′(zn)

]
(un)′(zn) = −1

4
(un(zn)2 − 1)2.
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Since (un)′(zn) > 0, this means that

(un)′′′(zn) +
νn

2
(un)′(zn) ≤ 0.

Finally, we take the limit n→∞ in the above inequality to obtain

u′′′∗ (z) +
ν∗
2

u′∗(z) ≤ 0,

which contradicts (35). Hence u∗ indeed has exactly four monotone laps on [0, 2π/Lν∗ ],
implying that ν∗ ∈ N and that N is closed.

We now only need to show that the geometric properties are satisfied at ν = ν0,
since the solutions depends continuously on ν.

Lemma 20. The fixed point x̃ν ∈ Ωs depends continuously on ν for ν ∈ [ν0, ν1].
Similarly, the corresponding periodic solutions ũν depend continuously on ν as C3-
functions on compact intervals.

Proof. Recall that we are dealing with a single continuation step ν ∈ [ν0, ν1], so
that the neighborhoods on which T is a contraction mapping are given by (33). The
assertion now follows from the continuity and compactness properties of the map T ,
described in Lemma 12, using standard functional analytic arguments.

To check that ũν0 has the properties HeLν0 , we follow the procedure outlined below.
To reduce clutter, we often drop ν0 from the notation. We introduce the variables
z = L̃ν0y and v(z) = ũν0(y), so that

v(z) = ã0 + 2
∞∑

k=1

ãk cos(kz).

This way, we separate the shape of the solution from the period; only the shape is
important for the geometric conditions. Clearly, v′(0) = v′(π) = 0, and v is symmetric
in those extrema.

We recall that x̄ = (L̄, ā0, ā1, . . . , ām−1, 0, 0, . . . ), while the fixed point is given by
x̃ = (L̃, ã0, ã1, ã2, . . . ). We have ãk ∈ ak, where the intervals are given by

ak
def=


[ā0 − r, ā0 + r], k = 0;
[āk − r

ks , āk + r
ks ], k = 1, . . . ,m− 1;

[− r
ks , r

ks ], k ≥ m.

Consider z ∈ z def= [z−, z+] ⊂ R. Then, using interval arithmetic, we can compute
rigorous interval enclosures of v(z), v′(z) and v′′(z):

v(z) ∈ v[z] def= a0 + 2
m−1∑
k=1

ak cos(kz) +
2r

(m− 1)s−1(s− 1)
[−1, 1],

v′(z) ∈ v′[z] def= −2
m−1∑
k=1

ak k sin(kz) +
2r

(m− 1)s−2(s− 2)
[−1, 1],

v′′(z) ∈ v′′[z] def= −2
m−1∑
k=1

ak k2 cos(kz) +
2r

(m− 1)s−3(s− 3)
[−1, 1].

We now use the following procedure, see also Figure 9. Note that we know a priori
that v′(0) = v′(π) = 0.
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0 z0 z1 z2 z3π 2π

−1

+1

v2 v4

v1 v1

v3

Figure 9: Illustration of the procedure to make sure that v satisfies Hπ, i.e., the
periodic solution ũν0 satisfies the geometric conditions HeLν

0
. The extrema are denoted

by vi = ũν0
i .

Procedure 21. Checking that ũν0 satisfies HeLν0 is equivalent to verifying that v
satisfies Hπ. We proceed as follows.

1. Verify that v[0] ⊂ (−∞,−1). That implies that ũν0
1 = v(0) < −1.

2. Find an (approximately largest) z0 > 0 such that v′′[0, z0] ⊂ (0,∞). Hence,
there is a unique extremum in [0, z0], namely a minimum, at z = 0.

3. Find an (approximately largest) z1 > z0 such that v′[z0, z1] ⊂ (0,∞). Hence,
the interval [z0, z1] does not contain any extremum.

4. Verify that v[z1] ⊂ (1,∞).

5. Find an (approximately largest) z2 > z1 such that both v[z1, z2] ⊂ (1,∞) and
v′′[z1, z2] ⊂ (−∞, 0).

6. Verify that v′[z2] ⊂ (−∞, 0). That implies that there is a unique extremum z∗
in [z1, z2], namely a maximum ũν0

2 = v(z∗) > 1.

7. Find an (approximately largest) z3 > z2 such that v′[z2, z3] ⊂ (−∞, 0). Hence,
the interval [z2, z3] does not contain any extremum.

8. Verify that v′′[z3, π] ⊂ (0,∞) and v[π] ⊂ (−1, 1). That implies that there is a
unique extremum in [z3, π], namely a minimum ũν0

3 = v(π) ∈ (−1, 1) at z = π.

Combining Lemma 19 with Procedure 21 leads to the required result.

Lemma 22. The choice of the approximate zero x̂∗F of f (m)(xF , 0) in Lemma 17
can be made such that for each of the resulting intervals [ν0, ν0 + ∆0

ν ] covering [0, 2],
which were extracted in Procedure 16, the Procedure 21 is successful at ν0. Hence the
solutions found in Lemma 17 via Procedure 16 satisfy the geometric conditions H.
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The movie SH geometry movie.mp4, accompanying this paper, shows the changing
shape of the periodic solution ũν as the parameter ν increases from 0 to 2.

Proof. A Matlab computer program (SH geometric properties.m, see also Section 3.1)
successfully performing Procedure 21 accompanies the paper. The numerical imple-
mentation of Procedure 21 is rather straightforward. Steps 1, 4, 6 and the second part
of Step 8 are mere evaluations of a function using interval arithmetic. Steps 2, 3, 5, 7
and the first part of Step 8 are all implemented in the same fashion. For instance, we
describe here what is done in the implementation of Step 3. First, we consider a mesh
{x0, . . . , xn} of the interval [z0, π] and we find the largest k ∈ {1, . . . , n} for which
we have that v′[xi−1, xi] ⊂ (1,∞), for all i ∈ {1, . . . , k}. We then let z1 = xi. Note
that the smaller the mesh size, the nearer z1 will be to a zero of v′. Every verification
thus requires a series of evaluations of v, v′ and v′′ using interval arithmetic. In the
implementation, we chose the mesh size to be 0.01.

In conclusion, Theorem 3 is a consequence of Lemmas 17 and 22, which are based
on Procedures 16 and 21, respectively.

Appendix A: Estimates for infinite convolution sums
with power decay

In this section, we present two lemmas that are fundamental in the construction of
the radii polynomials. Let s ≥ 2 be a real number and M ≥ 6 a natural number.

We introduce an improvement of general estimates for infinite convolution sums
with power decay of the form ∑

k1+···+kp=k

a
(1)
k1
· · · a(p)

kp
, (36)

introduced in [11, 13] and used in [12, 14, 17]. Most of the estimates used in the above
papers are corollaries of Lemma 5.8 in [13]:

Lemma 23 (from [13]). Let A > 0 and s ≥ 2. Let {ak}k∈Z be such that a−k = ak,
a0 ∈ A[−1, 1] and ak ∈ A

|k|s for all k ∈ Z \ {0}. Let α = 2
s−1 + 2 + 3.5 · 2s. Then

∑
P

ni=k

an1 · · · anp
⊆

{
αp−1Ap[−1, 1] k = 0,

αp−1Ap

|k|s [−1, 1] k 6= 0.

Observe that the coefficient α provided by Lemma 23 grows exponentially in s.
One reason for being interested in getting tighter analytic estimates for sums of the
form (36), comes from the fact that in solving equations (13) and (14), we need p = 3
and s ≥ 4. If we use the bounds given by Lemma 23, the computational cost of the
rigorous continuation will dramatically increase, since we will need to use a very large
computational parameter M . A lower bound on M (depending on the α of Lemma 23)
can actually be found in ([17], Section 2.2).

In this appendix we consider general values of the degree p of the convolution and
the decay power s, since the specific case is hardly any simpler than the general one.
Moreover, the general convolution estimates may be of use for future applications of
the method laid out in this paper.
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Throughout this appendix we assume that a−k = ak for all k ∈ Z. Since∑
k1+···+kp=−k

ki∈Z

a
(1)
k1
· · · a(p)

kp
=

∑
k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp
,

we only consider the cases k ∈ N. Note that the estimates are also applicable to the
situation where a−k = −ak for all k.

Before introducing the new general estimates, we need the following result.

Lemma 24. Let s ≥ 2 and let s∗ be the largest integer such that s∗ ≤ s. Let, for k ≥ 4,

γk
def= 2

[
k

k − 1

]s

+
[
4 ln(k − 2)

k
+

π2 − 6
3

] [
2
k

+
1
2

]s∗−2

. (37)

Then, for k ≥ 4,
k−1∑
k1=1

ks

ks
1(k − k1)s

≤ γk .

Proof. First observe that

k−1∑
k1=1

ks

ks
1(k − k1)s

= 2
[

k

k − 1

]s

+
k−2∑
k1=2

ks

ks
1(k − k1)s

= 2
[

k

k − 1

]s

+ ks−1
k−2∑
k1=2

(k − k1) + k1

ks
1(k − k1)s

= 2
[

k

k − 1

]s

+ ks−1

[
k−2∑
k1=2

1
ks
1(k − k1)s−1

+
k−2∑
k1=2

1
ks−1
1 (k − k1)s

]

= 2
[

k

k − 1

]s

+ 2
k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

.

We now set, using the above,

φ
(s)
k

def=
k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

=
1
2

k−2∑
k1=2

ks

ks
1(k − k1)s

.
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We now obtain the recurrence inequality

φ
(s)
k =

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s

= ks−2
k−2∑
k1=2

(k − k1) + k1

ks−1
1 (k − k1)s

= ks−2

[
k−2∑
k1=2

1
ks−1
1 (k − k1)s−1

+
k−2∑
k1=2

1
ks−2
1 (k − k1)s

]

=
1
k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+
k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s

≤ 1
k

k−2∑
k1=2

ks−1

ks−1
1 (k − k1)s−1

+
1
2

k−2∑
k1=2

ks−2

ks−2
1 (k − k1)s−1

=
[

2
k

+
1
2

]
φ

(s−1)
k .

Hence, since k
k1(k−k1)

≤ 1 for 2 ≤ k1 ≤ k − 2 and k ≥ 4,

φ
(s)
k ≤ φ

(s∗)
k ≤ φ

(2)
k

[
2
k

+
1
2

]s∗−2

,

where s∗ is the largest integer such that s∗ ≤ s, and

φ
(2)
k =

k−2∑
k1=2

k

k1(k − k1)2
=

k−2∑
k1=2

1
k1(k − k1)

+
k−2∑
k1=2

1
(k − k1)2

=
2
k

k−2∑
k1=2

1
k1

+
k−2∑
k1=2

1
k2
1

≤ 2
k

ln(k − 2) +
π2

6
− 1 .

By combining the above inequalities, we conclude that

k−1∑
k1=1

ks

ks
1(k − k1)s

≤ 2
[

k

k − 1

]s

+
[
4 ln(k − 2)

k
+

π2 − 6
3

] [
2
k

+
1
2

]s∗−2

= γk.

Note that the estimates will be given via a recurrent definition in p, i.e., the power
of the nonlinearity. Hence, we begin by getting explicitly the estimates for the case
p = 2. Throughout this note, we use M ≥ 6 as a computational parameter; its use is
primarily to make all the estimates computable in practice.

A.1 Estimates for the quadratic nonlinearity

Lemma 25 (Quadratic Estimates). Let s ≥ 2 and M ≥ 6. Define

α
(2)
k

def=


4 + 1

22s−1(2s−1) for k = 0,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+
∑k−1

k1=1
ks

ks
1(k−k1)s for 1 ≤ k ≤M − 1,

2
[
2 + 1

2s + 1
3s + 1

3s−1(s−1)

]
+ γk for k ≥M.
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Let A1, A2 > 0 such that a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈

Ai

|k|s [−1, 1], for all k 6= 0 and for

i = 1, 2. Suppose that a
(i)
−k = a

(i)
k . Then

∑
k1+k2=k

ki∈Z

a
(1)
k1

a
(2)
k2
∈

 α
(2)
0 A1A2 [−1, 1] k = 0,

α
(2)
k A1A2

|k|s [−1, 1] k 6= 0.

Proof. Let k = 0. Then∑
k1+k2=0

ki∈Z

a
(1)
k1

a
(2)
k2

=
∑
k1<0

a
(1)
k1

a
(2)
−k1

+ a
(1)
0 a

(2)
0 +

∑
k1>0

a
(1)
k1

a
(2)
−k1

= a
(1)
0 a

(2)
0 + 2

∞∑
k1=1

a
(1)
k1

a
(2)
k1

∈ A1A2

[
1 + 2

∞∑
k1=1

1
k2s
1

]
[−1, 1]

⊆ A1A2

[
4 +

1
22s−1(2s− 1)

]
[−1, 1]

= α
(2)
0 A1A2 [−1, 1] .

Now consider k ∈ {1, . . . ,M − 1}. Then

∑
k1+k2=k

ki∈Z

a
(1)
k1

a
(2)
k2

=
−1∑

k1=−∞

a
(1)
k1

a
(2)
k−k1

+ a
(1)
0 a

(2)
k +

k−1∑
k1=1

a
(1)
k1

a
(2)
k−k1

+ a
(1)
k a

(2)
0 +

∞∑
k1=k+1

a
(1)
k1

a
(2)
k−k1

∈ A1A2

[
2
ks

+ 2
∞∑

k1=1

1
ks
1(k + k1)s

+
1
ks

k−1∑
k1=1

ks

ks
1(k − k1)s

]
[−1, 1]

⊂ A1A2

[
2
ks

+
2
ks

∞∑
k1=1

1
ks
1

+
1
ks

k−1∑
k1=1

ks

ks
1(k − k1)s

]
[−1, 1]

⊆
α

(2)
k A1A2

ks
[−1, 1] ,

where we, quite arbitrarily, have bound the infinite sum
∑∞

k1=1
1
ks
1

using an integral
estimate after the third term. For the case k ≥ M , we do the same analysis than in
the case k ∈ {1, . . . ,M − 1} and we use the upper bound γk from Lemma 24.

Remark 26. For any k ≥M ≥ 6, we have that α
(2)
k ≤ α

(2)
M .

Proof. For k ≥ 6, the fact that ln(k−1)
(k+1) ≤

ln(k−2)
k implies that γ

(s)
k+1 ≤ γ

(s)
k . The

conclusion then follows from the definition α
(2)
k for k ≥M ≥ 6.

A.2 Estimates for a general nonlinearity

Let p ≥ 3 be the degree of the nonlinearity, s ≥ 2 the decay of the coefficients, and
M ≥ 6 a natural number. We compute the general estimates recursively. Hence, we
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first suppose that for every k ≥ 0, we know explicitly α
(p−1)
k > 0 such that

∑
k1+···+kp−1=k

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1
∈


α

(p−1)
0

(∏p−1
i=1 Ai

)
[−1, 1] k = 0,

α
(p−1)
k

|k|s

(∏p−1
i=1 Ai

)
[−1, 1] k 6= 0.

and such that α
(p−1)
k ≤ α

(p−1)
M for all k ≥M . We define

α
(p)
k

def=



α
(p−1)
0 + 2

∑M−1
kp=1

α
(p−1)
kp

k2s
p

+ 2α
(p−1)
M

(M−1)2s−1(2s−1) , for k = 0;

∑M−k−1
kp=1

α
(p−1)
k+kp

ks

ks
p(k+kp)s + α

(p−1)
M

(
1 + 1

2s + 1
3s + 1

3s−1(s−1)

)
+α

(p−1)
k +

∑k−1
kp=1

α
(p−1)
kp

ks

ks
p(k−kp)s + α

(p−1)
0 +

∑M−1
kp=1

α
(p−1)
kp

ks

(k+kp)sks
p

+ α
(p−1)
M

(M−1)s−1(s−1) , for 1 ≤ k ≤M − 1;

α
(p−1)
M

[
2 + 1

2s + 1
3s + 1

3s−1(s−1) + 1
(M−1)s−1(s−1) + γk

]
+α

(p−1)
0 +

∑M−1
kp=1

α
(p−1)
kp

ks
p

[
1 + 1h

1− kp
M

is

]
, for k ≥M.

Lemma 27. For i = 1, . . . , p, let Ai > 0 such that a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈

Ai

|k|s [−1, 1], for all k 6= 0. Suppose that a
(i)
−k = a

(i)
k . Then

∑
k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp
∈


α

(p)
0

(∏p
i=1 Ai

)
[−1, 1] k = 0,

α
(p)
k

|k|s

(∏p
i=1 Ai

)
[−1, 1] k 6= 0.

Proof. Throughout the proof, we use several times that α
(p−1)
k ≤ α

(p−1)
M for all k ≥M .

For k = 0,∑
k1+···+kp=0

ki∈Z

a
(1)
k1
· · · a(p)

kp
=

−1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=−kp

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

+ a
(p)
0

∑
k1+···+kp−1=0

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

+
∞∑

kp=1

a
(p)
kp

∑
k1+···+kp−1=−kp

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

∈

(
p∏

i=1

Ai

) ∞∑
kp=1

α
(p−1)
kp

k2s
p

+ α
(p−1)
0 +

∞∑
kp=1

α
(p−1)
kp

k2s
p

 [−1, 1]

⊆

(
p∏

i=1

Ai

)α
(p−1)
0 + 2

M−1∑
kp=1

α
(p−1)
kp

k2s
p

+
2α

(p−1)
M

(M − 1)2s−1(2s− 1)

 [−1, 1]

= α
(p)
0

(
p∏

i=1

Ai

)
[−1, 1] .
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For any k ≥ 1,

∑
k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp
=

−1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

+ a
(p)
0

∑
k1+···+kp−1=k

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1
+

k−1∑
kp=1

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

+ a
(p)
k

∑
k1+···+kp−1=0

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1
+

∞∑
kp=k+1

a
(p)
kp

∑
k1+···+kp−1=k−kp

ki∈Z

a
(1)
k1
· · · a(p−1)

kp−1

∈

(
p∏

i=1

Ai

) ∞∑
kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

+
α

(p−1)
k

ks
+

k−1∑
kp=1

α
(p−1)
kp

ks
p(k − kp)s

+
α

(p−1)
0

ks
+

∞∑
kp=1

α
(p−1)
kp

(k + kp)sks
p

 [−1, 1] .

Consider now k ∈ {1, . . . ,M − 1}. Since α
(p−1)
kp

≤ α
(p−1)
M , for all kp ≥M , we have

∞∑
kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

=
M−k−1∑

kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

+
∞∑

kp=M−k

α
(p−1)
k+kp

ks
p(k + kp)s

≤
M−k−1∑

kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

+ α
(p−1)
M

∞∑
kp=M−k

1
ks

p(k + kp)s

≤
M−k−1∑

kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

+ α
(p−1)
M

∞∑
kp=1

1
ks

p(k + kp)s

≤ 1
ks

M−k−1∑
kp=1

α
(p−1)
k+kp

ks

ks
p(k + kp)s

+ α
(p−1)
M

(
1 +

1
2s

+
1
3s

+
1

3s−1(s− 1)

).

Similarly,

∞∑
kp=1

α
(p−1)
kp

(k + kp)sks
p

≤ 1
ks

M−1∑
kp=1

α
(p−1)
kp

ks

(k + kp)sks
p

+
α

(p−1)
M

(M − 1)s−1(s− 1)

 .

Recalling the definition of α
(p)
k for the cases k ∈ {1, . . . ,M − 1}, we get that

∑
k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp
∈

α
(p)
k

ks

(
p∏

i=1

Ai

)
[−1, 1] .

Consider now k ≥M , then

∞∑
kp=1

α
(p−1)
k+kp

ks
p(k + kp)s

+
α

(p−1)
k

ks
≤

α
(p−1)
M

ks

[
2 +

1
2s

+
1
3s

+
1

3s−1(s− 1)

]
.
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Using Lemma 24, we get that

k−1∑
kp=1

α
(p−1)
kp

ks
p(k − kp)s

=
M−1∑
kp=1

α
(p−1)
kp

ks
p(k − kp)s

+
1
ks

k−1∑
kp=M

ksα
(p−1)
kp

ks
p(k − kp)s

≤ 1
ks

M−1∑
kp=1

α
(p−1)
kp

ks
p

(
1− kp

k

)s +
α

(p−1)
M

ks

k−1∑
kp=M

ks

ks
p(k − kp)s

≤ 1
ks

M−1∑
kp=1

α
(p−1)
kp

ks
p

(
1− kp

M

)s + α
(p−1)
M γk

 .

Also,
∞∑

kp=1

α
(p−1)
kp

(k + kp)sks
p

≤ 1
ks

M−1∑
kp=1

α
(p−1)
kp

ks
p

+
α

(p−1)
M

(M − 1)s−1(s− 1)

 .

Combining the three above inequalities, we finally have that∑
k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp

∈ 1
ks

(
p∏

i=1

Ai

)[
α

(p−1)
0 +

M−1∑
kp=1

α
(p−1)
kp

ks
p

(
1 +

1(
1− kp

M

)s)
+ α

(p−1)
M

(
2 + 1

2s + 1
3s + 1

3s−1(s−1) + 1
(M−1)s−1(s−1) + γk

)]
[−1, 1]

=
α

(p)
k

ks

(
p∏

i=1

Ai

)
[−1, 1] .

Remark 28. For any k ≥M ≥ 6, we have that α
(p)
k ≤ α

(p)
M .

Proof. The proof is identical to that of Remark 26.

A.3 Comparison of the general estimates

We now compare the new estimates with the ones given by Lemma 23 for different
values of p and s. Since the only difference in the estimates is αp−1 versus α

(p)
k , these

are the quantities we compare in Table 5. In particular, the new estimates lead to an
improvement of a factor 102 for the values p = 3 and s = 4 used in this paper, while
for higher values of p and s they become even more beneficial. For the computation,
we fixed M = 100; in the case p ≥ 3, increasing M would make the α

(p)
k smaller still.

A.4 Refinement for k ∈ {0, . . . , M − 1}
We now present a corollary of Lemma 27, which gives better bounds for 0 ≤ k ≤M−1.

Corollary 29. Let p ≥ 3 to be the degree of the nonlinearity, s ≥ 2 the decay of the
coefficients and M ≥ 6 a natural number. Consider another computational number
M1 ≥ M . Let the {α(p−1)

k }k∈{0,...,M1} be defined in Lemma 27. For i = 1, . . . , p, let
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p s k αp−1 α
(p)
k

2 4 10 5.87 · 101 6.65 · 100

3 4 30 3.44 · 103 4.44 · 101

3 4 90 3.44 · 103 4.31 · 101

3 5 30 1.31 · 104 4.20 · 101

3 7 30 2.03 · 105 4.12 · 101

3 10 30 1.29 · 107 4.26 · 101

3 50 30 1.55 · 1031 1.68 · 102

4 4 10 2.02 · 105 3.28 · 102

4 5 10 1.50 · 106 3.17 · 102

4 7 10 9.13 · 107 3.59 · 102

5 10 10 1.65 · 1014 3.98 · 103

5 20 10 1.81 · 1026 1.82 · 105

10 25 20 4.25 · 1072 1.75 · 108

20 50 90 2.07 · 10296 5.01 · 1015

Table 5: Comparison of the estimates αp−1 versus α
(p)
k used in Lemmas 23 and 27.

Ai > 0 be such that a
(i)
0 ∈ Ai[−1, 1] and a

(i)
k ∈ Ai

|k|s [−1, 1], for all k 6= 0, and let

|a|(i)M1
=
(
|a(i)

0 |, . . . , |a
(i)
M1−1|

)
. Suppose that a

(i)
−k = a

(i)
k . For k ∈ {0, . . . ,M −1}, define

ε
(p)
k =

2α
(p−1)
M1

(M1 + k)s(M1 − 1)s−1(s− 1)
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ks
p(kp − k)s

.

Then we have that, for k ∈ {0, . . . ,M − 1},

(
a(1) ∗ · · · ∗ a(p)

)
k
∈

[(
|a|(1)M1

∗ · · · ∗ |a|(p)
M1

)
k

+

(
p∏

i=1

Ai

)
ε
(p)
k

]
[−1, 1] .

Proof. First notice that(
a(1) ∗ · · · ∗ a(p)

)
k

=
∑

k1+···+kp=k

ki∈Z

a
(1)
k1
· · · a(p)

kp

=
∑

k1+···+kp=k

|ki|<M1

a
(1)
k1
· · · a(p)

kp
+
∑

k1+···+kp=k

max{|k1|,··· ,|kp|}≥M1

a
(1)
k1
· · · a(p)

kp
.
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Without loss of generality, suppose that |kp| ≥M1 in the second sum. Then

∑
k1+···+kp=k

max{|ki|}≥M1

a
(1)
k1
· · · a(p)

kp
=

−M1∑
kp=−∞

a
(p)
kp

∑
k1+···+kp−1=k−kp

a
(1)
k1
· · · a(p−1)

kp−1

+
∞∑

kp=M1

a
(p)
kp

∑
k1+···+kp−1=k−kp

a
(1)
k1
· · · a(p−1)

kp−1

∈

(
p∏

i=1

Ai
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kp=M1

 α
(p−1)
k+kp

ks
p(k + kp)s

+
α

(p−1)
kp−k

ks
p(kp − k)s

 [−1, 1]

⊆

(
p∏

i=1

Ai

)2α
(p−1)
M1

∞∑
kp=M1

1
ks

p(k + kp)s
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ks
p(kp − k)s

 [−1, 1]

⊆

(
p∏

i=1

Ai

) 2α
(p−1)
M1

(M1 + k)s(M1 − 1)s−1(s− 1)
+

M1+k−1∑
kp=M1

α
(p−1)
kp−k

ks
p(kp − k)s

 [−1, 1] .

Recalling the definition of ε
(p)
k , we can conclude that

(
a(1) ∗ · · · ∗ a(p)

)
k
∈

[(
|a|(1)M1

∗ · · · ∗ |a|(p)
M1

)
k

+

(
p∏

i=1

Ai

)
ε
(p)
k

]
[−1, 1] .
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