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Abstract. We develop and present a computational method for producing forcing theorems for
stationary and periodic solutions and connecting orbits in scalar parabolic equations with periodic
boundary conditions. This method is based on prior work by Van den Berg, Ghrist, and Vandervorst
on a Conley index theory for solutions braided through a collection of known stationary solutions.
Essentially, the topological structure of the stationary solutions forces the existence of additional
solutions with a specified topological type. In particular, this paper studies connecting orbits and
develops and implements the algorithms required to compute the index, providing sample results as
illustrations.

1. Introduction. The Sturmian principle of second order parabolic equations
is one of the highlights of the study of partial differential equations, because of both
its elegance and its widespread applicability (e.g. in Ricci flow and other geometric
evolutions). In this paper we consider scalar nonlinear parabolic equations such as

Ut = Uxx + f(Ux, U, x), (1.1)

with periodic boundary conditions, i.e. x ∈ S1 = R/Z (we fix the spatial period to 1
without loss of generality).

In one spatial dimension, second order parabolic equations not only satisfy a
maximum and comparison principle, but also a lap-number or intersection-number
principle, see e.g. [1, 10]. When two simultaneously evolving solutions U1(x, t) and
U2(x, t) develop a tangency in their graphs {(x, U i(x, t)) |x ∈ S1} at time t = t0,
then this tangency is removed immediately for t > t0, in such a way as to strictly
decrease the number of intersections of the graphs (this even holds for highly degen-
erate tangencies [1]). When this idea is extended to the simultaneous evolution of
more than two solutions {U i(x, t)}ni=1, the natural setting turns from intersections to
braids. In this context one obtains a simplifying braid principle: the braid formed
by the strands {(x, U i(x, t), U ix(x, t)) |x ∈ S1}ni=1 can only decrease its complexity as
time progresses [8]. We come back to this in full detail later.

The class of equations can be extended to cover fully nonlinear equations Ut =
F (Uxx, Ux, U, x), as long as they are uniformly parabolic and exhibit sub-quadratic
growth in Ux, see [2, 9]. However, for simplicity of exposition we restrict our attention
to (1.1) in this paper. Discretizing Equation (1.1) in space with discretization step
size ∆x = 1/d, d ∈ N and ui(t) = U(i∆x, t) yields the system of ordinary differential
equations

dui
dt

=
ui−1 − 2ui + ui+1

(∆x)2
+ f

(ui+1 − ui−1
2∆x

, ui, i∆x
)
, i = 0, . . . , d. (1.2)

The parabolic nature of the Equation (1.1) is translated into the (easily verified) prop-
erty that the right hand side of (1.2) is increasing with respect to the variables ui±1
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at the two neighboring discretization points, at least for small values of ∆x (assuming
f grows sub-quadratically in Ux).

The general discrete version of a parabolic flow (not necessarily derived from a
parabolic partial differential equation) is given by

dui
dt

= Ri(ui−1, ui, ui+1), (1.3)

where the parabolic recurrence relation R = (Ri)i∈Z, with Ri ∈ C1(R3;R), satisfies
(i) monotonicity: ∂1Ri > 0 and ∂3Ri > 0 for all i ∈ Z;
(ii) periodicity: for some d ∈ N, Ri+d = Ri for all i ∈ Z.

Here we require d-periodicity of R because we want to study d-periodic (or nd-
periodic, n ∈ N) sequences ui. We will slightly abuse terminology and talk about
the parabolic flow R when we really mean the local flow generated by the parabolic
recurrence relation R. We note that only one of the inequalities in property (i) needs
to be strict.

We thus have that space (with variable x or i) is continuously or discretely peri-
odic. The connection between the continuous and discrete versions (1.1) and (1.2) has
been studied in [9], where stationary points and time-periodic orbits were considered.
In Section 2 we extend this approach to (the forcing of) connecting orbits. This exten-
sion culminates in Lemma 3.7. We note that parabolic recurrence relations (1.3) also
appear in the study of twist maps [16, 17], but the study of connecting orbits for (1.3)
has no natural interpretation in that context. Nevertheless, the algorithms for com-
puting the index of a single relative braid class, as explained below, are applicable in
that context.

The dynamics of the flows generated by (1.1) and (1.3) have powerful topological
properties. In both cases there are comparison principles, intersection number princi-
ples, and “simplifying braid” principles, see e.g. [1, 10] for Equation (1.1) and [13, 6]
for Equation (1.3). Here, our goal is to combine these topological structures with
Conley index techniques to derive forcing results for connecting orbits. As pioneered
in [8], the natural subdivision of phase space is into braid classes. These form isolating
neighborhoods for the flow, and we will apply Conley index arguments to study the
invariant dynamics inside (collections of) braid classes.

While a full introduction to braid classes is presented in Section 2, we outline the
main arguments here. In order to make the connection with the computational ap-
proach, we describe discretized braid structures used as representations of continuous
braids.

In the discretized setting, we use the term skeleton to denote a collection v of
stationary solutions to (1.3). A free strand, u, is an initial condition for (1.3). We
restrict our attention to one free strand in this paper. For illustration, in Figure 1.2
both the stationary solutions in the skeleton and the free strand are depicted using
piecewise linear functions, where the values at the anchor or discretization points
give the coordinates of the relevant objects. By considering a skeleton v and a free
strand u, we obtain a relative braid u # v. It is the union u ∪ v of the strands
in u and v, but we keep track of which strands belong to u and which to v. Any
discretized braid can also be interpreted as a continuous braid through its piecewise
linear interpolation.

Next, consider the equivalence class of relative braids whereby for a fixed skele-
ton v and free strand representative u, we consider all free strands u′ so that the
collection u′ # v is equivalent to u # v under the standard equivalence relation on
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(a) (b) (c) (d)

Fig. 1.1. (a) A free strand u (dotted lines) relative to the skeleton v (solid lines). (b), (c), (d)
additional free strand configurations within the same relative braid class B = [u|v], which is depicted
in Figure 1.2.

positive braids, see Section 2. Then we obtain the relative braid class B = [u|v]. Rel-
ative braid classes will serve as the basic building blocks for the Conley index theory
presented in Section 2.

Essentially, if we are able to compute a nontrivial index for a relative braid class
or collection of relative braid classes, then Conley index theory forces the existence of
solutions to (1.1) and (1.3) with the topological structure prescribed by the relative
braid classes.

However, we want to go beyond single braid classes and describe orbits that
connect different braid classes. We thus need to identify which collections of braid
classes form larger isolating neighborhoods. Those can be decomposed using Morse
decompositions and information about connecting orbits is obtained by comparing
index information of the individual constituents with the index of the aggregate. In
Section 3 we consider these Morse decompositions and the information they encode
about connecting orbits for the flows generated by (1.1) and (1.3).

To illustrate these concepts, we now consider a 2-periodic discrete skeleton v and
one free strand u (with periodicity u3 = u1) as depicted in Figure 1.1(a). The four
relative braids given in Figure 1.1 are all contained within the relative braid class
B = [u|v]. Figure 1.2(b) shows a cubical representation of B in the phase space for
the free strand u′ = (u′1, u

′
2). As mentioned before, u and v can also be interpreted

as representatives of continuous braids (through their piecewise linear interpolants).
The following results hold for both the discrete and continuous case.

Sample Result 1.1. For a flow (1.1) or (1.3) with stationary solutions in the
braid class depicted in discretized form by the skeleton v in Figure 1.2(a), there exists
a stationary solution U(x) or ui in the relative braid class [u|v] depicted (in discretized
form) in Figure 1.2(b).

As explained before, we do not want to restrict to single braid classes, but con-
sider attractor-repeller pairs, or Morse decompositions, so that we can also obtain
information about connecting orbits, in particular orbits whose α- and ω-limit sets lie
in different relative braid classes.
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(a) (b)

B

Fig. 1.2. The skeleton v and the cubical relative braid class B corresponding the four represen-
tatives in Figure 1.1, depicted in the space of all discrete configurations of the free strand.

(a) (c)

B1

B2

(b)

Fig. 1.3. Representatives u1 in (a) and u2 in (b) of braid classes B1 and B2, respectively. Both
braid classes are depicted in (c).

Sample Result 1.2. For a flow (1.1) or (1.3) with stationary solutions in
the braid class depicted in discretized form by the skeleton v in Figure 1.2(a), there
exists an orbit U(x, t) or ui(t) whose α-limit set lies in the braid class represented by
B1 = [u1 |v] and whose ω-limit set lies in the braid class represented by B2 = [u2 |v],
where both these braid classes are depicted in Figure 1.3.

The examples presented above may be computed by hand. However, as the com-
plexity of the braided solutions increases, this approach quickly becomes impractical.
In this paper we outline, implement and demonstrate a computational approach for
computing the cubical braid classes and topological indices required for the forcing
results, see Sections 4 and 5 for algorithms and more involved examples.
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With this approach in place, one can think about bootstrapping: after locating a
stationary solution by this approach, add the stationary solution to the skeleton and
perform the procedure again to look for an additional solution. In this way, one may
perform more expensive computations in order to increase the “topological resolution”
of the computational approach.

2. Braids and the Conley-Morse index. We now introduce the required
terminology, some of which may also be found in [8, 9, 15].

2.1. Topological braids. In topology, a closed braid on n strands is an un-
ordered set {βα : [0, 1] → R2}nα=1 of continuous functions with disjoint graphs, such
that

{βα(0)}nα=1 = {βα(1)}nα=1. (2.1)

The graphs {(x, βα(x)) |x ∈ [0, 1]} are the strands of the braid. When we order the
strands, there is a natural permutation τ defined by the relation (2.1) and the fact
that the strands are disjoint: βα(1) = βτ(α)(0).

Remark 2.1 (Periodic extension). Introducing this permutation τ allows us to
extend braids periodically, i.e., we can define βα(x) for all x ∈ R by requiring that
βα(x + 1) = βτ(α)(x) for all x. Periodic extension will be used throughout when
needed.

Having introduced the permutation τ , we slightly shift our viewpoint and intro-
duce the following equivalent concept of closed topological braids.

Definition 2.2. A closed topological braid on n strands is a pair (β, τ), where
τ ∈ Sn is a permutation on n symbols, and β = (βα)nα=1 is an n-tuple of functions
βα ∈ C0([0, 1];R2) with mutually disjoint graphs, such that βα(1) = βτ(α)(0).

The space of all closed topological braids consists of all such pairs (β, τ) modulo
the identification (β, τ) ∼= (β̃, τ̃) if there is a permutation ρ ∈ Sn such that βρ(α) = β̃α

and ρ ◦ τ̃ = τ ◦ ρ.
The above identification essentially “disorders” the strands, but it may be viewed

as optional. The use of the equivalence relation is natural from a topological point of
view. On the other hand, for each closed braid (β, τ) there are exactly n! − 1 other
pairs equivalent to it (corresponding to the permutations ρ 6= id). Hence, not much is
lost if we do not use the identification, which is quite cumbersome in a computational
approach. Therefore, we will not use the identification in the definitions that follow
below. Since the strands of a closed topological braid are all disjoint, specifying βα

imposes τ . In the notation we will usually suppress the permutation τ , if this is not
confusing.

The topology on the space of braids comes from the usual C0-topology for each
of the strands and the discrete topology with respect to the permutation τ (and then
dividing out the equivalence relation if needed). The connected components of the
space of closed topological braids are called topological braid classes. Finally, a set
of strands that correspond to the same cycle of the permutation τ , is a component of
the braid.

2.2. Braid diagrams. The specification of a topological braid class can be
achieved by means of a projection onto a plane, e.g. the (x1, x2) plane. A braid
may be perturbed slightly so that all crossings are transverse in this projection. Each
crossing is then labeled “+” or “−” to indicate whether the crossing is “bottom over
top” or “top over bottom”, respectively.
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Not all projections of a braid will look the same. The equivalence of projections
can be described algebraically. Namely, braids on n strands can be described by the
Artin braid group Bn generated by σ1, . . . , σn−1 with relations (see e.g. [3])

σiσj = σjσi for |i− j| > 1, (2.2a)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. (2.2b)

To a projection of a braid one can associate its braid word w = σs1i1 · · ·σ
sN
iN

with
1 ≤ ij ≤ n − 1, sj ∈ {±1} and N ∈ N. Equivalence of two braid words w1 and
w2 under the relations (2.2) is denoted by w1 ∼ w2. If all the crossing signs σj are
positive, then we call the braid word positive. Any braid that can be described by a
positive braid word is also called positive.

Closed topological braid classes can be described as the set of conjugacy classes
of Bn: w1 is conjugate to w2 if there is a braid w3 such that w3w1 ∼ w2w3. The
conjugacy problems deals with the problem of how to determine whether two braids
are conjugate, see [3, 7].

Since we are going to use braid classes to describe solutions of Equation (1.1),
the strands that we are interested in are all of the form (x, U(x), Ux(x)), x ∈ [0, 1].
Braids consisting of such strands are called Legendrian. For Legendrian braids no
specification of the crossing type is needed since all crossings are positive. All infor-
mation is thus contained in the projection (without specifying the crossing type), or
braid diagram. Let us concentrate on those.

Definition 2.3. A closed continuous braid diagram is a pair (U, τ), where
τ ∈ Sn and U is an n-tuple U = (Uα)nα=1 of C0([0, 1];R) functions, the strands, that
satisfy

1. (Periodicity) Uα(1) = Uτ(α)(0); and
2. (Transversality) for any α 6= α′ such that Uα(x0) = Uα

′
(x0) for some x0 ∈

[0, 1], it holds that Uα(x)− Uα′(x) has an isolated sign change at x = x0.
The space of closed continuous braid diagrams on n strands, denoted Ωn, is the space
of all such pairs (U, τ).

The topology on the space Ωn again comes from the usual C0-topology for each of
the strands and the discrete topology with respect to the permutation τ . We usually
drop the permutation τ from the notation. Nevertheless, for some braid diagrams the
specification of τ is essential, since it identifies the meaning of transversality when
x0 = 0 or x0 = 1 in Definition 2.3. It allows us to extend braids periodically, see
Remark 2.1. Using periodic extension the meaning of transversality at x0 ∈ {0, 1} is
unambiguous.

We will often use the terminology “braid” for a closed continuous braid diagram,
if this is not confusing, hence implicitly implying we are concerned with Legendrian
braids. Note that we choose not to divide out the equivalence relation that appears
in the definition of topological braids (see the discussion in Section 2.1).

Braid diagrams can be described by positive braid words, with the relations (2.2).
To classify closed braid diagrams we add the following relation on positive braid words
(cf. conjugacy classes):

σi1σi2 · · ·σiN ≡ σi2 · · ·σiNσi1 . (2.3)

Two positive braid words w1 and w2 are positively conjugated, denoted w1
+∼ w2, if

there are positive words w′1 ∼ w1 and w′2 ∼ w2 (see (2.2)), such that w′1 ≡ w′2. Next,
the notion of positive conjugation is made into an equivalence relation, again denoted
by

+∼, by taking the transitive-reflexive closure.
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Definition 2.4. A connected component of Ωn is called a closed continuous
braid diagram class, or (continuous) braid class for short and is denoted [U].

Algebraically, braid classes are described by the sets of positive braid words that
are positively conjugated. It will be convenient to also introduce the bigger set Ωn,
defined similarly to Definition 2.3 of Ωn, but disregarding condition 2.

Definition 2.5 (Singular braids). The set Ωn consists of all pairs (U, τ), where
τ ∈ Sn and U is an n-tuple U = (Uα)nα=1 of C0([0, 1];R) functions that satisfy
Uα(1) = Uτ(α)(0). Elements of

Σ = Σn = Ωn − Ωn

are called singular braids.

We interpret Ωn as the “full” space, including both braids and singular braids,
and all closures are taken in Ωn unless stated otherwise. Clearly, singular braids have
at least one tangency. In particular, we denote by Σ1 those singular braids with
exactly one tangency:

Definition 2.6. The set Σ1 = Σn1 consists of those singular braids U ∈ Σ for
which there is exactly one pair of strands α 6= α′ and exactly one point x0 ∈ [0, 1)
such that

1. Uα(x0) = Uα
′
(x0); and

2. there is an ε > 0 such that Uα(x) < Uα
′
(x) for all 0 < |x− x0| < ε.

This definition is a bit cluttered in the topological C0-setting; in both the C1-
setting and the discrete setting Σ1 is the natural codimension-1 part of the boundary
of Ωn. A much more “severe” tangency occurs when two strands collapse onto each
other.

Definition 2.7. The set Σ∞ = Σn∞ of collapsed singular braids consists of those
U ∈ Σ for which Uα(x) = Uα

′
(x) for all x ∈ R for some α 6= α′.

A different way of expressing this is to say that a collapsed braid has two identical
components.

We will also need a type of “complement” of the collapsed singular braids, namely
singular braids of which the singularity is not or at least not solely caused by collapses
of components.

Definition 2.8. The set Σprop = Σnprop of properly singular braids consists of
those U ∈ Σ for which there exist α 6= α′ and x0, x1 ∈ R such that

1. Uα(x0) = Uα
′
(x0); and

2. Uα(x)− Uα′(x) does not have an isolated sign change at x = x0; and
3. Uα(x1) 6= Uα

′
(x1), i.e. not collapsed strands.

Let us briefly consider the issue of regularity. The projection of a Legendrian
topological braid βα = (Uα, dU

α

dx ) onto its first component leads to a continuous braid
diagram. If one would like to have a reverse statement, one should introduce C1

(instead of C0) braids and require dUα

dx (x0) 6= dUα
′

dx (x0) as the transversality rule. In

that case one can interpret a braid diagram as a Legendrian braid βα = (Uα, dU
α

dx ).

However, that is not the path we want to follow, because, in view of (1.3) and
our computational goals, we want to discretize, which is in some sense opposite to
requiring differentiability. Here is the natural discrete version of the definition.

Definition 2.9. A d-periodic discrete braid diagram is a pair (u, τ), where
τ ∈ Sn and u is an n-tuple u = (uα)nα=1 of vectors uα = (uα0 , . . . , u

α
d ) ∈ Rd+1, the

strands, that satisfy

1. (Periodicity) uαd = u
τ(α)
0 ; and
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2. (Transversality) for any α 6= α′ such that uαi = uα
′

i for some 0 ≤ i ≤ d, it

holds that
(
uαi−1 − uα

′

i−1
)(
uαi+1 − uα

′

i+1

)
< 0.

The space of d-periodic discrete braid diagrams on n strands, denoted Dnd , is the space
of all such pairs (u, τ).

Note that for fixed τ a d-periodic discrete braid diagram is completely determined
by the nd coordinates {uαi | 1 ≤ α ≤ n, 0 ≤ i ≤ d− 1}, the anchor points of the braid.
The topology on Dnd is the one induced by the standard topology on Rnd and the

discrete topology on τ . Periodic extension is defined by the relation uαi+d = u
τ(α)
i for

all i ∈ Z. Discrete braid classes are the path components of Dnd , denoted by [u].
We may interpret a discrete braid diagram u ∈ Dnd as a continuous (piecewise

linear) braid diagram `u ∈ Ωn:

`uα(x)
def
= uαbdxc + (dx− bdxc)(uαddxe − uαbdxc). (2.4)

Here bdxc and ddxe denote the upper and lower integer part of dx, respectively. When
drawing pictures, this piecewise linear braid is much more informative than just the
anchor points {uαi }, since it shows which points belong to the same strand.

Definition 2.10. Given a continuous braid class [U] we call u ∈ Dnd a discrete
representative of [U] if `u ∈ [U].

Due to isolation of intersections, it follows that that the discretization of a con-
tinuous braid diagram U, given by uαi = Uα(i/d), is a discrete representative of [U]
if the number d of discretization points is sufficiently large.

Next, we introduce the set of singular discrete braid diagrams, cf. Definition 2.5.
If we allow “tangencies”, i.e., if we disregard condition 2 in the Definition 2.9, we
obtain a closure of Dnd , denoted by Dnd . The set Σ = Σnd

def
= Dnd −Dnd defines the set of

(d-periodic, discrete) singular braid diagrams (on n strands). The set Σnd acts as the
boundary between different discrete braid classes. Notice that Dnd may be identified
with n! copies of Rnd, one for each permutation τ . For fixed τ we will throughout
identify Dnd with Rnd. The sets Σ1, Σ∞ and Σprop in the discrete setting are defined
similarly to Definitions 2.6, 2.7 and 2.8.

2.3. Relative braids. In Section 2.4 we will consider in detail how continuous
and discrete braid diagrams evolve under the flows defined by (1.1) and (1.3), re-
spectively. We are particularly interested in the idea of forcing: given a stationary
braid V, does it force special dynamics for some other braid class U? To make this
precise we need to understand how strands of U braid relative to those of V.

We start by defining the set of all relative braid diagrams

Ωn,m
def
=
{

(U,V) : U ∈ Ωn,V ∈ Ωm,U ∪V ∈ Ωn+m
}
.

For pairs (U,V) in Ωn,m we write U#V. If two relative braids U#V and U′#V′

are in the same connected component of Ωn,m, they are called equivalent. Let us
denote such an equivalence class (connected component) by [U#V], called a relative
braid class or simply braid class. Clearly [U#V] ⊂ [U]× [V].

Having forcing in mind, we want to fix V and vary U. Associated with U#V
we have the projection

π : Ωn,m → Ωm, U#V 7→ V.

For any V′ ∈ [V] we define the fiber, see Figure 2.1,

ΠV′ [U#V]
def
=
{
U′ ∈ Ωn : (U′,V′) ∈ [U#V]

}
,
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b b

[U#V]

U

U
′

VV
′

V
′′

[U′ |V′]
[U′ |V′′]

[U′ |V′′]1

π([U#V])

Fig. 2.1. A relative braid class [U # V] in red and its projection π([U # V]) in blue. Two
fibers are indicated, one consisting of a single connected component, the other consisting of two
components [U′ |V′′]1 and [U′ |V′′]2.

which is nonempty if and only if V′ ∈ π([U#V]). For every V′ ∈ π([U#V]) and
U′ ∈ ΠV′ [U#V] we have [U′#V′] = [U#V], and we use the following alternative
notation for the fiber:

[U′ |V′] def
=
{
U′′ ∈ Ωn : (U′′,V′) ∈ [U′#V′]

}
= ΠV′ [U#V].

In this setting V is called the skeleton (fixed under the flow), and U the free braid
(free to move). A fiber [U |V] is called a relative braid class with fixed skeleton V,
where the dependence on V is often omitted when clear from the context. A fiber
[U|V] can consist of several connected components, which we denote by [U|V]k for
k = 1, . . . ,K, where we always denote the component that contains U by [U|V]1.

The set of all braids relative to a fixed skeleton V is denoted by

Ωn |V def
=
{
U ∈ Ωn : (U,V) ∈ Ωn,m

}
.

This partitions Ωn relative to V; not only are tangencies between strands of U illegal,
so are tangencies with the strands of V. Any fiber [U|V] thus consists of one or more
connected components of Ωn |V.

Similarly, the discrete relative braids are

Dn,md
def
=
{

(u,v) : u ∈ Dnd ,v ∈ Dmd ,u ∪ v ∈ Dn+md

}
,

and elements of Dn,md are denoted by u#v. Furthermore, for v ∈ Dmd let

Dnd |v
def
=
{
u ∈ Dnd : (u,v) ∈ Dn,md

}
.

To define discrete fibers we use that discrete braids represent continuous braids via
piecewise linear interpolation. Consider a relative braid class [U#V] and a discrete
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representative v ∈ Dmd of [V], i.e., `v ∈ [V]. The natural definition of the discrete
fiber is then

Πv[U#V]
def
=
{
u ∈ Dnd |v : `u#`v ∈ [U#V]

}
.

It may happen that this set is empty, even if `v ∈ π([U#V]). If there is a discrete
representative u, with d discretization points, in Π`v[U#V], then [`u#`v] = [U#V]
and the discrete fiber is given by

[u|v]
def
=
{
u′ ∈ Dnd |v : `u′#`v ∈ [`u#`v]

}
= Πv[U#V].

The connected components of [u |v] are again denoted by [u |v]k for k = 1, . . . ,K,
where u ∈ [u|v]1.

Finally, we need to consider singular relative braids. For V ∈ Ωm let

Σ|V def
= Ωn − Ωn |V,

and

Σ1 |V def
=
{
U ∈ Σ|V : U ∪V ∈ Σn+m1

}
,

Σ∞ |V def
=
{
U ∈ Σ|V : U ∪V ∈ Σn+m∞

}
,

Σprop |V def
=
{
U ∈ Σ|V : U ∪V ∈ Σn+mprop

}
.

In particular, in a collapsed singular relative braid the free strands can be col-
lapsed onto each other or onto skeletal strands. We note that in the case n = 1 we
have Σprop |V = Σ |V \ Σ∞ |V. The above definitions extend easily to the discrete
setting. For illustration, we state the definition of the codimension-1 singular relative
braids (with exactly one tangency) for discrete relative braids. The definitions of
Σ∞ |v and Σprop |v follow similarly.

Definition 2.11. For any v ∈ Dmd the set Σ1 |v consists of all singular braids
u ∈ Σ|v such that there is

• either exactly one 0 ≤ i ≤ d − 1 and exactly one pair 1 ≤ α < α′ ≤ m such
that uαi = uα

′

i ;

• or exactly one 0 ≤ i ≤ d− 1 and exactly one 1 ≤ α ≤ m such that uαi = vα
′′

i

for some 1 ≤ α′′ ≤ n.
Notice that in this definition a free strand may be tangent to multiple skeletal

strands, but in only one anchor point.

2.4. Conley Index. We consider braid diagrams evolving under the flows de-
fined by (1.1) and (1.3). To be precise, continuous braids U = (Uα(x))nα=1 evolve in
time under the equation

Uαt = Uαxx + f(Uαx , U
α, x), 1 ≤ α ≤ n, x ∈ [0, 1], (2.5)

with identified end points Uα(1) = Uτ(α)(0). Discrete braids u = (uαi )nα=1 evolve
under the equation

duαi
dt

= Ri(uαi−1, uαi , uαi+1), 1 ≤ α ≤ n, 0 ≤ i ≤ d− 1, (2.6)

with the usual periodic extension, in this case uαd = u
τ(α)
0 and uα−1 = u

τ−1(α)
d−1 .

10



(a) (b)

Fig. 2.2. (a) The skeleton v (solid lines) and a free strand u (dotted green lines) with inter-
section number ι(u,v) = 4. (b) The (cubical) space of bounded configurations of free strands u′.
The green dot gives the location of the free stand in the left picture. The grey-scale specifies the
intersection number ι(u′,v).

The main property of these parabolic flows is that they decrease the complexity
of the braid. This can be made more explicit. For positive braids the length of
the associated braid word is an invariant of a braid class. For braid diagrams this
translates into the intersection number ι.

Definition 2.12. For two strands Uα and Uα
′

of a continuous braid diagram U
we define the intersection number ι(Uα, Uα

′
) as the number of elements in the set

{x ∈ [0, 1) |Uα(x) = Uα
′
(x)}. For a closed, continuous braid U ∈ Ωn we define the

intersection number ι(U) as the total number of intersections

ι(U) =
∑

1≤α<α′≤n

ι(Uα, Uα
′
).

For a closed continuous relative braid U#V ∈ Ωn,m, we define the relative intersec-
tion number by

ι(U,V) =
∑

1≤α≤n
1≤α′≤m

ι(Uα, V α
′
).

Finally, for discrete braids (and strands) u ∈ Dnd and discrete relative braids u#v ∈
Dn,md , we extend these definitions to ι(uα, uα

′
), ι(u), and ι(u,v) using corresponding

piecewise linear representatives (2.4).
It follows that for U # V ∈ Ωn,m we have ι(U ∪ V) = ι(U,V) + ι(U) + ι(V).

The intersection number is an invariant of a (discrete or continuous) (relative) braid
class. Furthermore, the intersection number of a braid equals the length of its braid
word. For illustration, see Figure 2.2.

Along a parabolic flow the intersection number of a braid diagram cannot increase,
see [6, 8, 13]. This property motivates our development of relative braid classes in

11



(a) (b)

Fig. 2.3. (a) The skeleton v and (b) the (cubical) space of all configurations of a free strand
u, shaded by intersection number ι(u,v). There are four closed skeletal strands and the red dots
give the coordinates of these strands. The bounded discrete relative braid class components are
those cubical regions consisting of cubes with the same crossing number which are connected by
codimension-1 faces. Since a relative braid class component labeled with a red dot contains a free
strand configuration that may be collapsed onto a skeletal strand, these components are not proper.
The remaining depicted relative braid class components are proper and bounded.

Section 2.3. Namely, relative braid classes are candidates for isolating neighborhoods,
or even isolating blocks, for the continuous parabolic flow (2.5) and, in particular, for
the discrete parabolic flow (2.6). For the Conley index to be well-defined we want the
braid class to be bounded and isolating.

Definition 2.13. A relative braid class [U#V] is called bounded if every fiber
ΠV′ [U#V] is bounded in Ωn (i.e., [U′ |V′] is bounded for any U′#V′ ∈ [U#V]).

The isolation property is summarized in the following properness definition.

Definition 2.14. A relative braid class [U#V] is called proper if for every fiber
ΠV′ [U#V] = [U′ |V′] with U′#V′ ∈ [U#V] it holds that cl([U′ |V′]) ∩ (Σ|V′) ⊂
Σprop |V′. If [U#V] is not proper it is called improper.

To determine properness of a relative braid in practice it is often convenient to
exploit the invariants provided by intersection numbers. When n = 1 the condition
for properness is equivalent to cl([U′|V′])∩ (Σ∞|V′) = ∅. We remark that one could
define bounded and proper for a fixed skeleton V as well, but we want our definitions
to be invariant under perturbations of the skeleton (and independent of the coarseness
of the discretization).

We will define the Conley index for discrete relative braid classes. Their main
advantage over continuous ones is that they live in a finite dimensional setting.

Definition 2.15. A discrete relative braid class [u|v] ⊂ Dnd |v is weakly proper
if cl([u|v]) ∩ (Σ∞ |v) = ∅.

A discrete relative braid class in Dnd can be weakly proper due to a low number of
discretization points n, and it may not be proper (topologically), see Definition 2.14.
On the other hand, if [`u#`v] is proper, then certainly [u|v] is weakly proper. When
cl([u |v]) is a bounded set in Dnd and [u |v] is weakly proper, then we associate to
this relative braid class a Conley-type index for parabolic dynamics of the type (1.3),
provided v is fixed under the flow, i.e. R(v) = 0.

12



Fig. 2.4. On the boundary of each connected component of a discrete section of a relative
braid class the direction of the flow can be determined on the basis of the total intersection number
indicated by the grey-scale

.

Denote by N = N[u|v] the closure of [u|v] in Dnd . Define the exit set N− = N−[u|v]
as those singular braids at which the intersection number ι can decrease:

N−[u|v] =
{
u′ ∈ ∂N : ∀ε > 0 ∃u′′ ∈ Bε(u′) ∩ Dnd |v with ι(u′′ ∪ v) < ι(u ∪ v)

}
= cl

{
u′ ∈ ∂N : ∃ ε > 0 s.t. ι(u′′ ∪ v) ≤ ι(u ∪ v) ∀u′′ ∈ Bε(u′) ∩ Dnd |v

}
. (2.7)

The second expression states thatN− is the closure of a subset of ∂N∩Σ1|v, namely the
subset consisting of points where the intersection number decreases when departing N
at that point (of the codimension-1 boundary), see also Figure 2.4. It should be clear
that the above two expressions are equivalent, and that the latter is more convenient
from a computational point of view.

In the setting of Conley index theory, the sets N and N− act as isolating block
and exit set, respectively, for any discrete parabolic flow R that fixes v, i.e., (N,N−)
is an index pair, see [8].

Definition 2.16. The Conley index of a (bounded and weakly proper) discrete
(relative) braid class [u|v] is defined as the pointed homotopy class of spaces

h([u|v]) = [N/N−] = (N/N−, [N−]).

The following proposition, which is the main result in [8], states that this Conley
index is an invariant of the continuous relative braid class.

Proposition 2.17 ([8]). Let [U#V] be a bounded proper braid class. Let u#v
be any discrete representative of [U#V], i.e., `u#`v ∈ [U#V]. Then the homotopy
type h([u|v]) is independent of the choice of discrete representative. In other words,
for every d ∈ N and any v′ ∈ Dm

d such that `v′ ∈ π([U#V]), and any element u′ in
the fiber Πv′ [U#V], the Conley index h([u′ |v′]) is the same.

Hence, we may define the invariant

H([U#V]) = H([`u#`v])
def
= h([u|v]).

13



We note that proposition 2.17 implies that if the fiber Πv[U#V] is empty for some
discrete skeleton v ∈ Dm

d with `v ∈ [V], then the Conley index h([U#V]) is trivial.
As it stands, the Conley index is hard to compute. We will therefore restrict our

attention to the homological index (singular or simplicial homology over Z).

CH∗([U#V]) or CH∗([u|v]),

which represents the homology of the pointed spaces h([u|v]). To encode information
in CH∗([u|v]) it is convenient to use the Poincaré polynomial

P [U#V](s) = P [u|v](s) =

nd∑
i=0

βi s
i,

where βi is the rank of CHi([u|v]). Furthermore, [u|v] in general consists of several
connected components [u|v]k, k = 1, . . . ,K. For each component one may define the
isolating block Nk = cl([u|v]k) and the associated exit set N−k . Then

h([u|v]) =

K∨
k=1

h([u|v]k) =

K∨
k=1

(
Nk/N

−
k , [N

−
k ]
)
,

where the topological wedge ∨ identifies all the constituent exit sets to a single point.
This implies that

P [u|v](s) =

K∑
k=1

P [u|v]k(s). (2.8)

One is often only able to compute P [u|v]1(s), since it can be difficult (or compu-
tationally expensive) to determine the other components [u |v]k. Hence the above
decomposition is convenient.

As is usual in Conley index theory, information about the index of an isolating
neighborhood can be used to draw conclusions about the invariant dynamics inside.
For example, if the index is nontrivial, then any parabolic flow that fixes v has invari-
ant dynamics inside. In particular, since there is a Poincaré-Bendixson type result
for parabolic flows (see [5, 6]), the α- and ω-limit sets consist of stationary points,
stationary points with connections between them, or periodic orbits. Moreover, for
gradient type, or exact, systems, both periodic orbits and connections are excluded
in α- and ω-limit sets.

Definition 2.18. A parabolic recurrence relation R is exact if there exist
C2(R2;R) functions (Si)

d−1
i=0 such that (with Si+d = Si)

Ri(ui−1, ui, ui+1) = ∂2Si−1(ui−1, ui) + ∂1Si(ui, ui+1).

For exact parabolic recurrence relations the flow becomes the gradient flow of

W (u) =

d∑
i=1

Si(ui, ui+1).

Lemma 2.19 ([8]). Let R be a parabolic flow fixing v and let [u|v] be a bounded and
weakly proper braid class. If the Conley index h([u|v]) (or CH∗([u|v]) or P [u|v](s))
is nontrivial, then [u|v] contains at least one stationary or periodic solution of (1.3).
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Furthermore, if the Euler characteristic P [u|v](−1) 6= 0, then there exists at least one
stationary solution in [u|v]. If R is exact, then the number of stationary solutions is
bounded from below by the number of monomials in P [u|v](s).

In practice we usually compute the Poincaré polynomial of only one component
[u|v]1 of a fiber. The following lemma, which thus is the key to checking the assump-
tions in Lemma 2.19, follows directly from (2.8) and the fact that all coefficients βi
in P [u|v]k(s) are nonnegative.

Lemma 2.20. If P [u|v]1(s) is nontrivial then P [u|v](s) is nontrivial. The num-
ber of monomials in P [u|v](s) is bounded from below by the number of monomials in
P [u|v]1(s).

It is thus sufficient to know that P [u|v]1(s) 6= 0 in order to conclude that
H([`u# `v]) is nontrivial. On the other hand, the information that the Euler char-
acteristic P [u|v]1(−1) of one component is nonzero does not imply that the Euler
characteristic P [u|v](−1) of the entire braid class is nonzero.

Proposition (2.17) allows a limit procedure that links the discrete setting (1.2) to
the continuous case (1.1) in the limit of large d, see [9]. The information contained in
the braid invariant H([U#V]) can thus be used to draw conclusions about solutions
of (1.1). We need the following technical assumption:

(F) There exist constants C > 0 and 0 < γ < 2 such that |f(Ux, U, x)| ≤ C(1+|Ux|γ),
uniformly in both x ∈ S1 and on compact intervals in U .

Lemma 2.21 ([9]). Assume that Equation (1.1) with f satisfying hypothesis (F)
fixes a braid V. Let [U#V] be a bounded proper braid class with U a single-component
braid. If P [U#V](s) is nontrivial, then [U#V] contains at least one stationary or
periodic solution of (1.1). Furthermore, if P [U#V](−1) 6= 0, then there exists at
least one stationary solution in [U#V]. If f in (1.1) does not depend on Ux, then
the number of stationary solutions is bounded from below by the number of monomials
in P [U#V](s).

Slightly more general results can be found in [9].

3. Morse decompostions and connecting orbits. We have a partial order
on relative braid classes.

Definition 3.1. We say that [U′ # V′] < [U # V], and the braid classes are
called adjacent, if

1. ι(U′ ∪V′) = ι(U ∪V)− 2; and
2. there are continuous families Ut ∈ Ωn, and Vt ∈ Ωm, for t ∈ [0, 2], such that

(a) Ut#Vt ∈ [U#V] for t ∈ [0, 1);
(b) Ut#Vt ∈ [U′#V′] for t ∈ (1, 2];
(c) U1 ∪V1 ∈ Σ1 |V1 (exactly one tangency).

The asymmetric relation < is made into a partial order, denoted by ≺, by taking the
transitive-reflexive closure.

It should be clear that [V] = [V′] = [Vt] in the above definition. The idea is
then that [U′#V′] ≺ [U#V] if there is a path in Ωn × Ωm from U#V to U′#V′

that intersects Ωn,m \ Ωn,m a finite number of times in points where the free braid
has exactly one, non-degenerate tangency (with itself or with the skeleton), and such
that the intersection number is non-increasing along this path. The skeleton is not
allowed to have tangencies with itself along the path.

The order could be defined using braid words, but this requires setting up braid
words for relative braids, which is beyond the scope of the present paper. On the
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other hand, if one wants to define the positive conjugacy problem for relative braid
diagrams, then it could be helpful to express this in terms of relative braid words.

The following sets are now (candidates for) isolating neighborhoods for the flow.
Definition 3.2. A (nonempty) collection of braids C = {[Ui#Vi]}i∈I is called

convex if
1. [Vi] is independent of i; and
2. for any class [U′#V′] such that [Ui1 #Vi1 ] ≺ [U′#V′] ≺ [Ui2 #Vi2 ] for

some i1, i2 ∈ I, it holds that [U′#V′] ∈ C.
The first property implies that for any convex collection C the skeleton braid

class [πC] is well-defined. The collection C does not need to be fully ordered; there
just cannot be any element “missing” between ordered elements. Clearly, any pair of
adjacent braid classes forms a convex collection.

Let C be a convex collection and let v ∈ Dmd be a discrete representative of [πC],
then the corresponding discrete section is

Cv def
= cl

({
u ∈ Dnd : [`u#`v] ∈ C

})
= cl

(⋃{
[u|v] : [`u#`v] ∈ C

})
.

Such sections of convex collections serve as isolating neighborhoods to which we can
associate a Conley index and hence draw conclusions about the invariant dynamics
inside.

Lemma 3.3. Let C be a convex collection of bounded and proper braid classes, and
let v be a discrete representative of [πC]. Then the Conley index of Cv is well-defined.
Specifically, NCv = cl(Cv) is an isolating block for any parabolic flow R fixing v, and
the exit set is (see (2.7))

N−Cv =
⋃{

[u|v] ⊂ Cv : N−[u|v] ∩ ∂Cv
}
.

Moreover, the Conley index of Cv is independent of the choice of v representing [πC],
i.e. H(C) is well-defined.

Proof. For a fixed discrete representative v, isolation of the invariant set in Cv
follows from properness and convexity of C (Definition 3.2). The critical observation
is that if there would be an orbit in the invariant set that touches the boundary of Cv
then by continuity there must be an orbit nearby that leaves cl(Cv) and then enters
cl(Cv), which is impossible for convex collections of braid classes, since parabolic flows
strictly decrease intersection numbers on boundaries of braid classes, see Theorems
11 and 15 in [8]. Independence of the choice of v follows from the proof of Theorem
20 in [8].

It follows that under the conditions stated in Lemma 3.3, the relative braid classes
constituting Cv form a Morse decomposition of Cv (with respect to the partial order≺).

Although the above construction works only if all elements of C are proper, suit-
ably chosen convex collections involving improper classes may be isolating blocks as
well. For example, the four tiles surrounding a red dot (stationary point) in Fig-
ure 2.3(b) are all improper, but together they form an isolating block.

The Conley index H(C) can provide information about the (forced) existence
of connecting orbits. The following lemma describes the situation for an attractor-
repeller pair.

Lemma 3.4. Let C consist of exactly two bounded and proper braid classes
[U1 #V1] and [U2 #V2], with [U2 #V2] < [U1 #V1] (adjacent). Suppose that

H(C) 6= H([U1 #V1]) ∨H([U2 #V2]).
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Then for any discrete representative v of [πC], there exists at least one orbit in Cv,
for any parabolic flow R fixing v, with α-limit set in Πv[U1 #V1] and ω-limit set in
Πv[U2 #V2].

Proof. This is a consequence of well known properties of the Conley index [11, 14]
and topological invariance of H(C) and H([Ui#Vi]).

The following lemma is analogous to Lemma 2.21.
Lemma 3.5. Assume that Equation (1.1) with f satisfying hypothesis (F) fixes a

braid V. Let [U1 #V] and [U2 #V] be adjacent bounded proper braid classes, with
Ui a single-component braid. Let C consists of the braid classes [Ui#V], i = 1, 2. If

H(C) 6= H([U1 #V]) ∨H([U2 #V]),

then there is at least one solution of (1.1) with with α-limit set in [U1|V] and ω-limit
set in [U2 |V].

Proof. This follows from the approach and estimates in [9]. For each discrete
representative, Lemma 3.4 provides an orbit going from one braid class to the other.
Define t = 0 as the unique time the orbit is on the boundary between the braid
classes. Consider, as in [9], the limit of infinitely many discretization points. Since the
convergence results in [9] hold on arbitrary bounded intervals, consider time intervals
[−T, T ], T ∈ N, and use a diagonal argument to obtain an orbit for (1.1) that is in
[U1 |V] for t < 0 and in [U2 |V] for t > 0.

As discussed in Section 2.4, for computational purposes it is convenient to restrict
attention to Poincaré polynomials PC(s) and P [U1 # V](s). Let [ui |v] be discrete
fibers, i.e. [`ui#`v] = [Ui#V] for i = 1, 2. In practice we often only have information
about [ui|v]1, i.e. single connected components of [ui|v]. The following lemma shows
that this restricted information may be sufficient.

Lemma 3.6. Let [ui |v]1 be connected components of discrete fibers of adjacent
proper bounded braid classes. Their union Cv,1 = cl ([u1 |v]1 ∪ [u2 |v]1) is an isolating
neighborhood for any parabolic flow R fixing v. We denote its Poincaré polynomial
by PCv,1(s). If

PCv,1(s) 6= P [u1 |v]1(s) + P [u2 |v]1(s),

then

PC(s) 6= P [u1 |v](s) + P [u2 |v](s).

Proof. First, the isolating property of Cv,1 is analogous to Lemma 3.3.
To simplify notation we define R0 = cl([u1|v]), R1 = cl([u1|v]1) and R2 = cl(R0 \

R1), and similarly A0 = cl([u2 |v]), A1 = cl([u2 |v]1) and A2 = cl(A0 \A1). The pairs
(Ai, Rj), i, j = 0, 1, 2, as well as (Ai, Aj∪Rk) and (Ak∪Ri, Rj), i 6= j = 1, 2, k = 0, 1, 2,
are all pairs of attracting and repelling neighborhoods. Namely, the (interior of the)
union of each pair is isolating by the argument in Lemma 3.3, and orbits can only go
from the repelling to the attracting neighborhood, since ι(u1 ∪v) = ι(u2 ∪v) + 2 and
the flow strictly decreases the intersection number on the boundary of (a connected
component of) a braid class. The Poincaré polynomials of the corresponding Conley
indices are denoted by P (Ai), P (Ri), ect.

For each pair (A,R) of attracting and repelling neighborhoods it follows from the
Morse relations for the Conley index [11, 14] that P (A∪R)(s) = P (A)(s)+P (R)(s)+
QA,R(s)(1 + s) for some polynomial QA,R with non-negative integer coefficients. For
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convenience, let us evaluate all Poincaré polynomials at s = 1 and write P (·)(1) =
P (·). In particular, the above implies that

P (A ∪R) ≥ P (A) + P (R). (3.1)

By assumption we have the strict inequality

P (A1 ∪R1) > P (A1) + P (R1). (3.2)

Furthermore, inequality (3.1) applied to different pairs of attracting and repelling
neighborhoods gives

P (A2 ∪R1) ≥ P (A2) + P (R1) (3.3)

P (A1 ∪A2 ∪R1) ≥ P (A2) + P (A1 ∪R1) (3.4)

P (A1 ∪A2 ∪R1) ≥ P (A1) + P (A2 ∪R1), (3.5)

and by adding the inequalities (3.2)-(3.5) we obtain

2P (A1 ∪A2 ∪R1) > 2P (A1) + 2P (A2) + 2P (R1).

Since A0 = A1 ∪A2 and P (A0) = P (A1) + P (A2) by Equation (2.8), this implies

P (A0 ∪R1) > P (A0) + P (R1). (3.6)

Next, inequality (3.1) applied to yet more pairs of attracting and repelling neighbor-
hoods leads to

P (A0 ∪R2) ≥ P (A0) + P (R2) (3.7)

P (A0 ∪R1 ∪R2) ≥ P (A0 ∪R1) + P (R2) (3.8)

P (A0 ∪R1 ∪R2) ≥ P (A0 ∪R2) + P (R1). (3.9)

Again, by adding inequalities (3.6)-(3.9) we obtain

2P (A0 ∪R1 ∪R2) > 2P (A0) + 2P (R1) + 2P (R2).

Since R0 = R1 ∪ R2 and P (R0) = P (R1) + P (R2) by Equation (2.8), we conclude
that

P (A0 ∪R0) > P (A0) + P (R0),

which finishes the proof.
The following lemma leads to a computable criterion for the existence of connect-

ing orbits between braid classes.
Lemma 3.7. Assume that Equation (1.1) with f satisfying hypothesis (F) fixes

a braid V. Let [U2 #V] < [U1 #V] be adjacent bounded proper braid classes, with
Ui a single-component braid. Let [ui |v] be discrete fibers, i.e. [`ui # `v] = [Ui #V]
for i = 1, 2. Let [ui |v]1 be single connected components of [ui |v], and let Cv,1 =
cl ([u1 |v]1 ∪ [u2 |v]1). If

PCv,1(s) 6= P [u1 |v]1(s) + P [u2 |v]1(s),

then there is at least one solution of (1.1) with with α-limit set in [U1|V] and ω-limit
set in [U2 |V].

Proof. This follows by combining Lemmas 3.5 and 3.6.
Hence, it suffices to find two adjacent connected components for a discrete fiber

of two adjacent braid classes, such that their Poincaré polynomials do not add up to
the Poincaré polynomial of their union, to conclude that there must be a “connecting
orbit” between these braid classes for any parabolic flow that fixes a skeleton in [V].
This is illustrated in Figure 3.1.
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Fig. 3.1. On the basis of the Conley indices the existence of the indicated orbit structure can
be concluded for any parabolic flow (1.3) that fixes the skeleton on the left. The red dots indicate
invariant sets, not necessarily stationary points.

4. Algorithms. In this section we discuss a computational approach to deter-
mining the braid invariant H([U#V]). In fact, we “only” compute the homological
Conley index CH∗([u|v]1), and its Poincaré polynomial P [u|v]1(s), of a component
of a discrete section [u|v] of [U#V]. Due to Lemmas 2.20 and 3.7 this allows us to
draw conclusions about the dynamics of (1.1) and (1.3) in [U#V].

We note that in low dimensional examples the Conley index can be determined
by hand (see the example in the Introduction). In some high dimensional cases where
the component [u|v]1 consists of a single (high-dimensional) cube, the index can also
be computed directly, see [8]. Furthermore, for a special (infinite) family of complex
relative braid classes the Conley index was computed via a delicate decomposition
and associated MayerVietoris sequence, see [15]. Here we consider a general approach
to computing the Conley index of [u|v]1 for relative braid classes with a single free
strand. The case of multiple free strands is the subject of further research.

For computational purposes, we store the discretized skeleton braid v ∈ Dmd as
an m× (d+ 1) matrix. Then v(i, j) gives the coordinate of the i-th strand at the j-th
discretization point. A strand v(i, :) is closed if v(i, d+ 1) = v(i, 1). Note that by the
choice of the fiber, we may set the entries of v to be consecutive integer values. More
precisely, we prescribe that for each j, {v(1, j), . . .v(m, j)} = {1, . . . ,m}. Similarly, a
free strand u woven through v is given as a 1×(d+1) vector specifying the coordinates
of u at the discretization points. In choosing a representative of the fiber [u |v], it
is convenient to choose the entries of u to be non-integer numbers, representing the
position of the free strand relative to the fixed skeletal strands at the discretization
points.

Intersection numbers may be computed in a straight-forward manner. For i =
1, . . . ,m,

ι(u,v(i, :)) = #
{

1 ≤ j ≤ d : (v(i, j)− u(j)) (v(i, j + 1)− u(j + 1)) < 0
}

is the number of intersections of the free strand u with the i-th skeletal strand v(i, :).
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Then the total number of crossings between u and the skeleton v is

ι(u,v) =

m∑
i=1

ι(u,v(i, :)).

As outlined in Section 2.4, we may use the intersection number to locate the entire rel-
ative braid component [u|v]1 in D1

d. We use a cubical complex to represent these sets,

where, for example, u ∈ B0
def
=
∏d
j=1[bu(j)c, du(j)e]. In what follows, we construct

cubical sets consisting of d-dimensional cubes with vertices on the integer lattice Zd.
More specifically, we consider cubes of the form B =

∏d
j=1[lj , lj + 1] with lj ∈ Z. We

will also restrict the set of allowed cubes to a region prescribed by v. The result is
the collection

K def
=
{
B =

d∏
j=1

[lj , lj + 1] : lj ∈ {0, 1, . . . , n}
}
.

For convenience in what follows, we also define the boundary cubes in K to be

∂K def
=
{
B =

d∏
j=1

[lj , lj + 1] ∈ K : there exists j such that lj = 0 or lj = n− 1
}
.

The boundary layer ∂K is not part of [u |v]1 if the relative braid class is bounded.
Note that in Figures 2.2 and 2.3 this boundary layer is not depicted. The center cB of
B =

∏d
j=1[lj , lj +1] ∈ K has coordinates cB(j) = lj + 1

2 (and we set cB(d+1) = cB(1)
when needed). Finally, let |S| def

= ∪B∈SB denote the topological realization of S ⊂ K
as a subset of Rd.

We now give a procedure for growing a cubical representation S ⊂ K of the [u|v]1.
Begin by setting S = {B0}, where, as above, B0 ∈ K and u ∈ B0. Now compute the
codimension-1 neighboring cubes B ∈ K with B∩|S| 6= ∅, i.e., those cubes that have a
codimension-1 face in common with one of the cubes in S. We define the intersection
number for B ∈ K to be ι(B,v)

def
= ι(cB ,v). Note that ι(B,v) is the intersection

number for any free strand with coordinates in the interior of B with the skeleton v.
If a cube B in the codimension-1 boundary satisfies ι(B,v) = ι(u,v), then we add
it to S: S = S ∪ {B}. We continue adding boxes to S that satisfy B /∈ S, B ∩ |S|
is codimension-1 and ι(B,v) = ι(u,v), until no boxes remain in K that satisfy these
conditions. Since K is finite, this is a finite procedure.

Given a cubical set S, calculated as above, we next check whether it is bounded
and weakly proper. If S ⊂ K \ ∂K, then S is bounded. In particular, all neighbor-
ing configurations of the free strand have different intersection numbers with v and,
therefore, form a bounding layer around S. The check that S is proper is an easy
comparison between the centers of boxes in S and skeleton v. For B ∈ S, compute

d(cB ,v)
def
= min

1≤i≤m
v(i,1)=v(i,d+1)

{
max
1≤j≤d

|v(i, j)− cB(j)|
}
,

where the minimum is taken over closed strands of v only, since these are the strands
onto which u could possible collapse. If d(cB ,v) < 1 for any B ∈ S, then S does
not correspond to a proper relative braid class. In particular, a center cB for which
d(cB ,v) < 1 corresponds to a configuration of the free strand that may be collapsed
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(a) (b)

Fig. 5.1. (a) A discretized skeleton v which is a 6-fold repetition of the continuous braid in (b).

directly onto a strand in the skeleton v. If, on the other hand, d(cB ,v) ≥ 1 for all
B ∈ S, then |S| is weakly proper.

If S, as computed above, is bounded and proper then we may compute the Conley
index of |S| = [u|v]1 as follows. Define the cubical exit set N− as

N− def
=
{
B ∈ K : B ∩ |S| 6= ∅,dim(B ∩ |S|) = d− 1, ι(B,v) < ι(u,v)

}
,

where only codimension-1 neighboring cubes of S are considered. Note that these
cubes can be identified already during the growing procedure described above. Then,
by construction (N,N−), where N = |S| and N− = |S| ∩ |N−|, is an index pair for
[u|v]1. Since we have cubical representations for N and N−, we may now use a cubical
homology software program to compute the Conley index.

For the computations described in this paper, we use the binary tree structure
implemented in the GAIO software package [4] with a MATLAB interface to con-
struct the cubical complex, and the cubical homology program homcubes from [12] to
compute the index.

5. Examples. We now present sample results based on the computational ap-
proach outlined in Section 4. Consider the discrete relative braid depicted in Fig-
ure 5.1(a). It is a discretization of a 6-fold repetition of the continuous braid in
Figure 5.1(b). The configuration space of a free strand is 12-dimensional. There are
many free strands that one could weave through this skeleton. We begin by studying
the two free strands depicted in Figure 5.2 for which we have the following result.

Sample Result 5.1. Let K1 = [u1 |v]1 and K2 = [u2 |v]1 be the connected
components of the fibers of relative braid classes given in Figure 5.2. For any parabolic
flow (1.3) fixing v there are nonempty invariant sets in K1 and K2 as well as a
connecting orbit whose α-limit set is in K1 and whose ω-limit set is in K2.

Outline of proof. Using the matrix representation for the skeleton,

v =


6 6 6 6 6 6 6 6 6 6 6 6 6
5 3 5 3 5 3 5 3 5 3 5 3 5
4 4 2 5 4 4 2 5 4 4 2 5 4
3 2 3 2 3 2 3 2 3 2 3 2 3
2 5 4 4 2 5 4 4 2 5 4 4 2
1 1 1 1 1 1 1 1 1 1 1 1 1

 ,
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Fig. 5.2. Two relative braids, top: (dashed) free strand u1, bottom: (dashed) free strand u2.

and free strands

u1 = (2.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5)

u2 = (2.5, 3.5, 4.5, 3.5, 3.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5),

we first compute cubical representations for the adjacent relative braid class compo-
nents K1 = [u1 |v]1 and K2 = [u2 |v]1. The set K1 consists of two 12-dimensional
cubes and K2 consist of six 12-dimensional cubes. We next compute the exit faces
for each class (46 for K1 and 122 for K2) and the corresponding relative homologies.
The Poincaré polynomials for K1 and K2 are

P (K1)(s) = s12 and P (K2)(s) = s11.

By Lemma 2.19 there is a nontrivial invariant set in each of the relative braid classes.

We now introduce the notation B1 = [`u1 # `v] and B2 = [`u2 # `v], and the
collection C = {B1,B2}, which is a pair of adjacent braid classes. In light of the
definitions in Section 3 we set Cv,1 = cl (K1 ∪K2). We next compute the (164) exit
faces for the union Cv,1, and compute its index, which is trivial:

PCv,1(s) = 0.

Since the crossing number for K1 is 36, the crossing number for K2 is 34, and the
index for their union Cv,1 is not the sum of the indices for the individual adjacent
braid classes, it follows that there is a connecting orbit with α-limit set in K1 and
ω-limit set in K2, cf. Lemma 3.4.
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Sample Result 5.2. Given the relative braids in
Figure 5.2, there are two additional relative braid
classes with the same skeleton so that we have the
connecting orbit structure depicted on the right for
any parabolic flow (1.3) fixing the skeleton. Fur-
thermore, the flow (1.1) also has this connecting
orbit structure when considered on the spatial in-
terval x ∈ [0, 6], provided it fixes a braid of the type
depicted in Figure 5.1(b) for x ∈ [0, 1].

B1

B2 B3

B4
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Outline of proof. Applying Lemma 3.7 to the Sample Result 5.1 yields the upper
lefthand portion of the diagram, where B1 and B2 are labeled as before. We now add
the braid class components K3 = [u3 |v]1 and K4 = [u4 |v]1 where

u3 = (2.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5, 3.5, 3.5, 4.5, 3.5)

u4 = (2.5, 3.5, 4.5, 3.5, 3.5, 3.5, 4.5, 3.5, 4.5, 3.5, 4.5, 3.5).

The corresponding topological braid classes are B3 = [`u3 #`v] and B4 = [`u4 #`v].
The class K3 consists of six 12-dimensional cubes with 122 exit faces, and K4 con-

sists of eighteen 12-dimensional cubes with 284 exit faces. The Poincaré polynomials
of K3 and K4 are

P (K3)(s) = s11 and P (K4)(s) = s10.

There are three more pairs of adjacent braid classes C′ = {B1,B3}, C′′ = {B2,B4}
and C′′′ = {B3,B4}, with discretized braid class components C′v,1 = cl (K1 ∪K3),
C′′v,1 = cl (K2 ∪K4) and C′′′v,1 = cl (K3 ∪K4), which all have trivial index:

PC′v,1(s) = PC′′v,1(s) = PC′′′v,1(s) = 0.

Lemma 3.7 now implies the depicted connecting orbit structure.
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