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Abstract

We study travelling wave solutions of a one-dimensional two-phase
free boundary problem (FBP) which models premixed flames propa-
gating in a gaseous mixture with dust. The model combines diffusion
of mass and temperature with reaction at the flame front, the reac-
tion rate being temperature dependent. The radiative effects due to
the presence of dust account for the divergence of the radiative flux
entering the equation for temperature. This flux is modelled by the
Eddington equation. In an appropriate limit the divergence of the flux
takes the form of a nonlinear heat loss term. The resulting reduced
model is able to capture a hysteresis effect that appears if the amount
of fuel in front of the flame, or equivalently, the adiabatic temperature
is taken as a control parameter.

AMS Subject Classification. 35K55, 35B25, 80A25.

Key words. Combustion, radiation, travelling waves, phase plane analysis,
multiplicity, hysteresis, linearised stability, Evans’ function.

1 Introduction

In this paper we study travelling wave solutions of a one-dimensional two-
phase free boundary problem (FBP) which arises in the context of thermo-
diffusive models for premixed flames propagating in gaseous mixtures of fuel
and dust. We will formulate the model, determine the travelling wave so-
lutions and study their stability. The problem is a limiting case of a more
general formulation studied in [BHR01], see also [BJ94, Blo96, BJM97]. Al-
though greatly simplified from a physical point of view, the limiting problem
has many relevant features of the full problem, and its simplicity facilitates
the analysis.

Before writing down the equations, let us first introduce the important
physical parameters governing the model. The model contains the amount
of fuel in the fresh region far ahead of the flame, y−, as a control parameter.
The temperature θ− far ahead of the flame is considered to be fixed.

The flame temperature is denoted by θ∗. It determines the reaction rate
F (θ∗), a modified Arrhenius law, which may have an ignition temperature
θig below which it is zero.
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Figure 1: A travelling wave profile for the full problem with a radiative preheat
zone far ahead of the flame. The solid line is the temperature profile, the dashed
line is the fuel profile. Scales have been adjusted on the left. The profile is for
α = 0.1, χ = 0.1, see Section 2, has θ− = 1, y− = 3, θ+ = 4, and is moving with

speed µ = 2 to the left.

For travelling waves, global conservation implies that the temperature far
behind the flame is given by

θ+ = θ− + y−. (1.1)

This θ+ is called the adiabatic temperature: without radiation it would be the
uniform temperature in the burnt region behind the flame. Radiative flames
are characterised by a temperature overshoot at the flame front, which also
enhances the flame velocity (the Joulin effect, see [BJ94]).

The region ahead of the flame can be divided into a radiative preheat zone
where the temperature is lower than θ+, and a conductive preheat zone where
the temperature is higher than θ+. In the limit problem formulation below
the radiative preheat zone has disappeared from the problem formulation,
as indicated in Figure 1. The limit problem, which we derive from the full
problem in Section 2, is formulated for the temperature Θ(x, t) and fuel mass
fraction Y (x, t) as functions of position x and time t, and for the flame front
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x = s(t). It reads
Yt = Yxx, x < s(t), (1.2)

Θt = Θxx + χ(f(θ+)− f(Θ)), x 6= s(t), (1.3)

with the jump/boundary conditions

Y = [Θ] = 0; −Yx = −[Θx] = F (Θ), x = s(t), (1.4)

expressing that the mass flux going into the flame balances the heat flux
coming of the flame, and is given by the reaction rate F (Θ). The parameter
χ > 0 is a heat loss parameter, a combination of the convective and radiative
fluxes (see Section 2). Note that we have taken the diffusivities of Y and Θ
to be the same, i.e. the Lewis number is equal to one (Le = 1).

The radiative effects enter the equation for temperature through the non-
linear term f(Θ)−f(θ+), which is nothing but the divergence of the radiative
flux. Here

f(Θ) = Θ4. (1.5)

This formulation is reminiscent of the modelling of premixed flames with
radiative heat losses, see [BL82, page 43] and [Wil94, page 271], where one
would have a formulation with a nonlinear term f(Θ)−f(θ−) in the temper-
ature equation: radiative heat transfer may be compared to heat losses to a
reservoir held at the adiabatic temperature.

Let us summarise the main results derived in this paper. We will see in
Section 3 that travelling waves

Y (x, t) = y(x+ µt), Θ(x, t) = θ(x+ µt),

where µ > 0 is the flame speed, are completely characterised by the flame
temperature θ∗. More precisely, we characterise such waves by a smooth
curve θ∗ → (y−(θ∗), µ(θ∗)) in the (y−, µ)-plane, parametrised by θ∗. It is
no restriction to assume that the travelling wave profiles have their front at
x = 0, so θ∗ = θ(0). We present numerical calculations bearing evidence that
the same is true for the full model.

The relation between y− and θ∗ is in general not bijective. The physical
interpretation is that this leads to a hysteresis effect illustrated in Figure 2
where the control parameter y− is on the horizontal axis, the propagation
speed µ is on the vertical axis, and the flame temperature θ∗ parametrises
the solution curve. Note that at the starting point of the curve θ+ = θ∗ = θig
and µ = 0.
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Figure 2: Travelling wave diagram in the (y−, µ)-plane, parametrised by θ∗, with
a hysteresis loop.

We show that Figure 2 is illustrative: whether the curve moves to the
left or to the right in the (y−, µ)-plane depends on the size of F ′(θ∗), the
derivative of the reaction rate F (θ∗) with respect to the flame temperature θ∗.
We note that, from a mathematical point of view, F ′(θ∗) may be interpreted
as a parameter independent of F (θ∗). If it is smaller (larger) than a number
which only depends on θ∗, y− and µ, the curve moves to the right (left) as
θ∗ is increased. This interesting feature of possible multiple travelling wave
solutions for the same value of the control parameter was already observed
in the modelling literature, see [JE88]. In particular it is noteworthy that
flames may exist with θ+ < θig < θ∗, i.e. the adiabatic temperature may be
below the ignition temperature. This is only possible because of the radiative
effects taken into account by this model.

In Section 4 we shall argue that (orbital) stability is decided by the same
criterium as above: if the curve (y−(θ∗), µ(θ∗)) moves to the right (left) as
θ∗ increases, the corresponding travelling wave solution is stable (unstable).
Increasing y−, a stable flame loses its stability as the solution branch in
the (y−, µ)-plane folds back (turns around). This causes the flame to jump
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to another travelling wave with a much larger flame temperature. If, after
this threshold for y− has been passed, y− decreases, then the solution branch
does not see the earlier threshold and may be continued until another turning
point is reached, below which there are no travelling waves, and the flame
disappears and extinction occurs (as indicated in Figure 2).

This is based on a linearisation technique for FBPs with jump conditions,
see [BHL00] and the references therein. The novelty of this technique is that
it produces a linearised problem directly for the free boundary problem itself,
rather than taking the limit of linearised problems in the high activation limit,
as is done in [Ter90]. As usual, the linear stability analysis leads to what is
now commonly called an Evans’ function, its zeros being the eigenvalues of
the linearised problem, see [Eva75]. In the travelling wave context in [Ter90],
the Evans’ function for the FBP would be the zero order term in Evans’
function for the approximating problems, see also [BCM99], and takes a
simple form.

The functional analytic framework for this linearisation will be developed
elsewhere. Here we only discuss the Evans’ function D(λ) related to the
linearised equations. The eigenvalues of the linearised operator are zeros of
this function. Because of translation invariance, D(0) = 0, and the zero
eigenvector is the spatial derivative of the travelling wave profile

φ =

(

y′

θ′

)

.

We show that

D′(0) = 0 ⇐⇒ dy−

dθ∗
= 0,

a necessary condition for having a turning point. The sign of D′′(0) deter-
mines in which direction a real eigenvalue is passing through zero in a turning
point.

Unfortunately there is no nice formula for D′′(0). The main difficulty
here is not the nonlinear nature of the free boundary conditions but the
nonlinearity of the function f(θ). In fact we do give an explicit formula for
D(λ) in the special case that f(θ) is linear (i.e. 4 = 1 in (1.5)), a model
for conductive heat loss, which was also considered in [BJ94]. From this
formula we infer that there is at most one other eigenvalue except zero.
This eigenvalue passes through zero in a turning point. It becomes positive
(unstable flame) on the branch where dy−

dθ∗
< 0 and it stays positive as long

as, increasing θ∗, the curve moves to the left. On the other branch it becomes
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negative (stable flame), and as long as where dy−

dθ∗
> 0 it stays negative or

becomes hidden in another sheet of the Riemann surface for D(λ). So in the
case of linear f the picture is rather complete. Using numerical calculations
again we find strong evidence that with f given by (1.5) the picture is exactly
the same.

2 The model

Without radiation, the model presented below is the equidiffusional model for
premixed flames (low Mach number, constant pressure and density, simple
chemistry, planar flame), which gives the usual adiabatic flames.

The full radiative model, see e.g. [BJ94], consists of linear diffusion equa-
tions for the mass fraction Y of the fuel and the temperature Θ. In dimension
one, these are simply

Yt = Yxx, x < s(t), (2.1)

Θt = Θxx − βqx, x 6= s(t), (2.2)

where the radiative flux q in (2.2) is given by the Eddington equation

−qxx + 3α2q = −α(Θ4)x. (2.3)

The radiative parameters are the opacity α and the Boltzmann number β.
In (2.2) the divergence of the radiative flux appears with a minus sign.

As is quite common in thermo-diffusive models, the model in [BJ94] is
formulated as a free boundary problem, the thin reaction zone being replaced
by a free boundary x = s(t), the flame front, where the reaction takes place,
see also [Siv77] and [Fif88]. This is expressed by the jump conditions

Y = [Θ] = 0; −Yx = −[Θx] = F (Θ), x = s(t). (2.4)

The brackets denote the jump at x = s(t), i.e., the difference of the spatial
limits taken from the right and from the left, of the quantity in between. The
problem has to be solved for given initial conditions of the unknowns Θ(x, t),
Y (x, t) and s(t). Behind the flame front, i.e. in the burnt region x > s(t),
the mass fraction is assumed to be zero.

The nonlinear function F (Θ) models the reaction rate at the flame front.
It is assumed to be bounded and increasing for Θ > θig, zero for Θ < θig, and
smooth, except possibly at the ignition temperature Θ = θig. Typically it is
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a modification of the Arrhenius law, see (3.20) in Section 3.6. It manifests
itself in the jump conditions for Θx and Yx: the heat flux coming out of the
flame balances the mass flux going into the flame and is determined by the
value of F (Θ) at x = s(t).

The Eddington equation, a well known approximation to the radiative
field in astrophysics, can also be derived from the equation for the radia-
tive intensity as a function of position, time, frequency and direction using
the moment approximation, see [Lev96], to get an averaged flux which only
depends on position and time, see [DF99, DF00]). The closure assumption
necessary for this approach is known as the P1-model and is valid close to
radiative equilibrium. This relates the (averaged) radiative energy to Θ4

and leads to a hyperbolic system for the radiative energy and flux. The time
derivatives in this system may be neglected because photons travel with light
speed and the reduced system amounts to (2.3). The parameter α is the (di-
mensionless) opacity, the reciprocal of the mean free path of a photon.

The modelling assumptions involve limiting values for Y at x = −∞ and
Θ at x = ±∞: y−, θ− and θ+. It is quite common to put these limiting values
as boundary conditions at infinity, especially in the travelling wave context
in which problems are often formulated. Strictly speaking though they are
either the limits of the initial data, and as such preserved by the solutions
of the equations, as is the case for y− and θ−, or the limit of the (travelling
wave) solution to which the solution converges. For travelling waves, global
conservation implies that θ+ = θ− + y−. The limit at +∞ of the initial data
for Θ is left behind by the solution as it develops its travelling wave profile.

Thus the control parameter is y−, the amount of fuel far ahead of the
flame. Of course we may just as well consider θ+ as the control parameter
and in the limit case presented below it will be convenient, and not too
confusing for the reader to do so. In [BHR01] we showed that, no matter
what the values of the positive parameters θ−, θ+, α and β are, there is
always a travelling wave solution if we assume that the reaction rate F is
positive, increasing, continuous and bounded as a function of temperature.
The travelling wave speed µ satisfies

µy− = F (θ∗).

A key feature to note is that the front temperature θ∗ is larger than θ+, and
thereby also the speed µ is larger than the adiabatic speed µad = F (θ+)/y−.
This effect may be quite significant, see [JE88]. Without radiation the tem-
perature in the burnt region is identically equal to θ+. This is why θ+ is
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called the adiabatic temperature, which is the temperature behind an adia-
batic flame. In fact, the adiabatic temperature may very well be below the
ignition temperature.

The existence result in [BHR01] relies on Schauder’s Fixed Point Theo-
rem and does not give any information about multiplicity of solutions or a
global bifurcation picture. This lack of information is the main reason for
considering limit cases and the most interesting (and illuminating) one was
introduced in [BHR01]. It corresponds to

αβ = χ > 0, α→ 0. (2.5)

In [BHR01] we showed for travelling waves that in this limit the conduc-
tive preheat zone in front of the flame where the temperature is above the
adiabatic temperature, extends to x = −∞ (i.e. the radiative preheat zone
vanishes). This is why we are led to formulate the limit problem for temper-
ature profiles satisfying Θ → θ+ as x → ∞ and as x → −∞ (cf. Figure 1).
Note that multiplying (2.2) by β and invoking (2.5), one arrives at

Θt = Θxx + C − χΘ4.

The only plausible choice for the constant is C = χ(θ+)4 and therefore the
limit evolution problem is formulated with

Θt = Θxx + χ(f(θ+)− f(Θ)), x 6= s(t), (2.6)

where f is given by (1.5). Thus θ− disappears behind the horizon as far
as the temperature profile is concerned. It remains present though through
(1.1) in (2.6).

Summarising, the limit model studied in this paper is (1.2,1.3,1.4), with
θ+ = θ− + y−.

3 Travelling waves

For the travelling wave analysis we replace x by x + µt, and the equations
(2.1) and (2.6) by

Yt = Yxx − µYx, x < s(t); (3.1)

Θt = Θxx − µΘx + χ(f(θ+)− f(Θ)), x 6= s(t), (3.2)
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with a new meaning for s(t) of course. This change does not affect the
jump/boundary conditions (2.4). Recall that θ+ = θ− + y−.

A travelling wave solution for given y− and θ− is a triple (µ, θ(x), y(x))
which solves

y′′(x)− µy′(x) = 0, x < 0;

@θ′′(x)− µθ′(x) + χ(f(θ+)− f(θ(x))) = 0, x 6= 0;

y(−∞) = y−; θ(±∞) = θ− + y− = θ+;

y(0) = [θ] = 0; −y′(0) = −[θ′] = F (θ(0)) = µy−,

where the brackets denote the jump in x = 0. Keeping θ− fixed we have y−

as one single control parameter.

3.1 Global travelling wave analysis

A travelling wave solution is completely determined by µ and θ∗ = θ(0), since
θ = θ(x) follows uniquely from solving

θ′′ − µθ′ + χ(f(θ+)− f(θ)) = 0, x 6= 0; θ(±∞) = θ+; θ(0) = θ∗, (3.3)

as we shall see below. The key point in the analysis below is that θ∗

parametrises the solution set in the (y−, µ)-plane.

Theorem 3.1 Let θ− > 0 be fixed, let F (θ) be positive, smooth and increas-
ing on an interval (θig,∞), θig > θ−, let f(θ) be smooth and increasing with
f(0) = 0 and f(∞) =∞, and let χ > 0 be fixed. Then there exists a smooth
solution curve θ∗ → (y−(θ∗), µ(θ∗)), θ∗ ∈ (θig,∞). Each point on the curve
defines a travelling wave solution and there are no other solutions.

Remark 3.2 Since obviously

y(x) = y−(1− exp(µx)),

the problem of finding travelling waves is reduced to solving (3.3) with

−[θ′] = F (θ(0)) = F (θ∗) = µy− = µ(θ+ − θ−). (3.4)

With y decoupled we consider from here on only the temperature profile. Bear-
ing (1.1) in mind, θ+ is then viewed as the control parameter, and the solution
curve is represented as θ∗ → (θ+(θ∗), µ(θ∗)).
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Proof . Introducing ψ = θ′ we study the (θ, ψ)-phase plane (Figure 3)
which has a saddle point in (θ, ψ) = (θ+, 0). Let γ− be the unique orbit
emerging from this saddle having θ > θ+ and ψ > 0 and γ+ the orbit which
goes into this saddle with θ > θ+ and ψ < 0. In view of the conditions
at infinity the two orbits γ− and γ+ represent the unknown profile θ(x) for
respectively x < 0 and x > 0. We can write these orbits as graphs of functions
of θ > θ+:

γ− : ψ = ψ−(θ; θ+, µ); γ+ : ψ = ψ+(θ; θ+, µ). (3.5)

Then both ψ− and ψ+ satisfy, primes now denoting differentiation with re-
spect to θ,

ψ′(θ) = µ+ χ
f(θ)− f(θ+)

ψ(θ)
θ > θ+, (3.6)

with
ψ−(θ+) = ψ+(θ+) = 0, (3.7)

and necessarily

ψ′
∓(θ+) =

1

2

(

µ±
√

µ2 + 4χf ′(θ+)
)

. (3.8)

Note that both ψ− and ψ+ are monotone (by inspection of the phase plane),
defined for all θ > θ+ (blow-up is impossible because ψ is in the denominator
of the right hand side of (3.6)) , but unbounded as θ → ∞ (since f(θ) is
positive and unbounded). Moreover we have

ψ+(θ)2 < ψ−(θ)2 (3.9)

because

ψ−(θ)ψ′
−(θ)− ψ+(θ)ψ′

+(θ) = µ(ψ−(θ)− ψ+(θ)) > 0.

Now define the function H by

H(θ; θ+, µ) = ψ−(θ; θ+, µ)− ψ+(θ; θ+, µ). (3.10)

Then the travelling wave problem is equivalent to

H(θ∗; θ+, µ) = F (θ∗) = µ(θ+ − θ−), (3.11)

which for µ > 0 reduces further to

H(θ∗; θ− +
F (θ∗)

µ
, µ) = F (θ∗). (3.12)
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Figure 3: The phase plane for the proof of Theorem 3.1.

Fixing θ∗ > θig it is straightforward from (3.6) to see that we can make
the left hand side of (3.12) arbitrarily large by taking µ large. If we then
decrease µ we can make

θ− +
F (θ∗)

µ

increase to θ∗ and thereby make the left hand side of (3.12) as small as we
want. Clearly this implies that there exists a value of µ which solves (3.12).

Next we show that for given θ∗ there is only one solution µ of (3.12) and
that this solution varies smoothly with θ∗. Denoting the left hand side of
(3.12) by g(µ, θ∗), we note that by standard arguments g(µ, θ∗) is smooth.
Thus if we show that gµ can never be zero, the solution is unique and varies
smoothly with θ∗, in view of the implicit function theorem. To this end we
need the derivatives of (3.10) with respect to µ and θ+.

We first consider the µ-derivative. Let

φ± =
dψ±

dµ
.
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Then

φ′
±(θ) + χ

f(θ)− f(θ+)

ψ±(θ)2
φ±(θ) = 1, θ > θ+,

with
φ±(θ+) = 0,

and necessarily

φ′
∓(θ+) =

1

2

(

1± µ
√

µ2 + 4χf ′(θ+)

)

,

whence certainly φ− is positive. For the difference Hµ = φ− − φ+ we have

H ′
µ(θ) + χ

(

f(θ)− f(θ+)
) Hµ(θ)

ψ+(θ)2
=

= χ
(

f(θ)− f(θ+)
)

φ−(θ)

(

1

ψ+(θ)2
− 1

ψ−(θ)2

)

> 0,

(in view of (3.9)) with

Hµ(θ
+) = 0; H ′

µ(θ
+) =

1
√

µ2 + 4χf ′(θ+)
> 0,

so we may conclude that
Hµ > 0. (3.13)

Next we consider the θ+-derivative, so now let

φ± =
dψ±

dθ+
.

Then

φ′
±(θ) + χ

f(θ)− f(θ+)

ψ±(θ)2
φ±(θ) = −χf

′(θ+)

ψ±(θ)
, θ > θ+,

with, by differentiating (3.7) and using (3.8),

φ∓(θ+) = −1

2

(

µ±
√

µ2 + 4χf ′(θ+)
)

,
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whence certainly φ− is negative and φ+ positive. For the difference Hθ+ =
φ− − φ+ we have

H ′
θ+(θ) + χ

(

f(θ)− f(θ+)
) Hθ+(θ)

ψ+(θ)2

= χ
(

f(θ)− f(θ+)
)

φ−(θ)

(

1

ψ+(θ)2
− 1

ψ−(θ)2

)

− χf ′(θ+)

(

1

ψ−(θ)
− 1

ψ+(θ)

)

< 0,

with
Hθ+(θ+) = −

√

µ2 + 4χf ′(θ+) < 0.

We conclude that
Hθ+ < 0. (3.14)

Recalling that (3.12) rewrites as

H(θ∗; θ− +
F (θ∗)

µ
, µ) = g(µ, θ∗) = F (θ∗),

(3.13,3.14) imply gµ > 0. This completes the proof of the existence and
uniqueness of a smooth solution curve θ∗ → (θ+(θ∗), µ(θ∗)), or, equivalently,
θ∗ → (y−(θ∗), µ(θ∗)). Note that we really have a curve. Since µ(θ∗)(θ+(θ∗)−
θ−) = F (θ∗), the tangent vector is never zero.

3.2 Bifurcation from the ignition temperature

In view of (3.11) and ignoring the y-component, we may think of µ = 0 and
θ+ = θ∗ ≤ θig as the trivial solution. With an abuse of language we refer
to what happens at the end point µ = 0, θ+ = θig as bifurcation from the
ignition temperature.

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 are satisfied
and that F is also continuous in θ = θig. Then µ(θ∗) → 0 and θ+(θ∗) → θig
as θ∗ → θig. Moreover, as θ ↓ θig,

θ+(θ∗) = θ∗ − F (θ∗)

2
√

χf ′(θig)
+ o(F (θ∗)); µ(θ∗) =

F (θ∗)

θig − θ−
+ o(F (θ∗)).

If F ′(θ+
ig) exists, the curve starts out to the left if F ′(θ+

ig) > 2
√

χf ′(θig) and

to the right if F ′(θ+
ig) < 2

√

χf ′(θig).
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Proof . Since F (θ∗) → 0 as θ∗ ↓ θig, it is easy to see that in the same
limit µ(θ∗) → 0. Otherwise (3.4) implies immediately that θ+(θ∗)→ θ−. In
view of θ∗ → θig and (3.6) the jump −[θ′] then has to stay away from zero,
because in (3.5) the monotonicity in µ implies ψ−(θ; θ+, µ) > ψ−(θ; θ+, 0).
This contradicts F (θ∗)→ 0.

From the definition of H in (3.10) it then also follows that θ+(θ∗)→ θig,
so we can consider the bifurcation of the curve from µ = 0, θ+ = θig. We
first consider the “linear” case

f(θ) = θ,

for which (3.3) can be solved exactly to give

θ(x) = θ+ + (θ∗ − θ+) exp(
x

2
(µ±

√

µ2 + 4χ)),

with a plus for x < 0 and a minus for x > 0. Thus (3.4) becomes

(θ∗ − θ+)
√

µ2 + 4χ = F (θ∗) = µ(θ+ − θ−).

Since µ(θ∗)→ 0 we conclude that

θ+(θ∗) = θ∗ − F (θ∗)

2
√
χ

+ o(F (θ∗)); µ(θ∗) =
F (θ∗)

θig − θ−
+ o(F (θ∗)),

as θ ↓ θig. It is easy to see that for nonlinear f the same conclusions hold
with χ replaced by χf ′(θig). This completes the proof.

3.3 Heat loss parameter dependence and multiplicity

In this subsection we discuss the limits χ → 0 and χ → ∞ and conclude
that for small χ the behaviour illustrated in Figure 2 does indeed occur. If
we follow the reasoning starting from (3.6) we see for µ > 0 and χ = 0 that
ψ+(θ) = 0 and ψ−(θ) = µ(θ− θ+), whence, in view of (3.11), θ∗ = 2θ+ − θ−.
Thus in this limit the curve in Theorem 3.1/Remark 3.2 is given by

θ+ =
θ∗ + θ−

2
; µ =

2F (θ∗)

θ∗ − θ− , (3.15)

but this only under the assumption that µ > 0. Note that this curve starts
at µ = 0 and θ+ = (θig + θ−)/2, which is to the left of the end point of
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the solution curves for χ > 0. For χ > 0 but small we find by continuity a
branch near (3.15) which, decreasing θ∗, has to turn around and go to this
end point as θ∗ ↓ θig. Since in fact (3.15) perturbs to a unique branch, the
other branches must have µ→ 0 as χ→ 0 and therefore (in the same limit)
θ∗ = θig. Depending on whether F ′(θig) > 0 or F ′(θig) = 0 there are then at
least two and at least three branches, respectively.

If we consider the limit χ → ∞ it is easy to see from (3.6) and the
subsequent formulas that for fixed θ∗ necessarily θ+ → θ∗, because otherwise
H(θ∗, θ+, µ, χ) = F (θ∗) would blow up. Therefore we find in this limit that

θ+ = θ∗; µ =
F (θ∗)

θ∗ − θ− ,

so that for large χ there is only one branch.

3.4 Large front temperatures

Theorem 3.1/Remark 3.2 provides us with a unique smooth solution curve
(θ+(θ∗), µ(θ∗)) parametrised by θ∗ > θig. To draw conclusions for the limit
θ∗ → ∞ we need to assume that F is bounded, which is of course true for
the Arrhenius type reaction rate (3.20). We note though that in the physical
context everything takes place in a θ∗- range where F (θ∗) is nowhere near
being almost flat.

Theorem 3.4 Suppose that the assumptions of Theorem 3.1 are satisfied
and that F (θ) remains bounded as θ →∞. Then eventually the curve θ∗ →
(θ+(θ∗), µ(θ∗)) is moving to the right and downwards in the (θ+, µ)-plane,
with θ+(θ∗)→∞ and µ(θ∗)→ 0 as θ∗ →∞.

Proof . By the same argument as in Section 3.2, θ+(θ∗) → ∞ as θ∗ →
∞, because otherwise the jump −[θ′] becomes arbitrarily large. In view of
µ(θ+ − θ−) = F (θ∗) the other the statements follow.

3.5 Turning points

We recall from the proof of Theorem 3.1 and (3.11) that the solution curve
has

H(θ∗; θ+(θ∗), µ(θ∗)) = F (θ∗) = µ(θ∗)(θ+(θ∗)− θ−), (3.16)

where H is defined by (3.10).
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Theorem 3.5 Suppose that the assumptions of Theorem 3.1 are satisfied.
Then

dθ+

dθ∗
= 0 ⇐⇒ Hµ = (F ′ −H ′)

F

µF ′
=⇒ dµ

dθ∗
> 0, (3.17)

and

dµ

dθ∗
= 0 ⇐⇒ Hθ+ = (F ′ −H ′)

µ

F ′
=⇒ dθ+

dθ∗
> 0. (3.18)

Note that only (3.17) corresponds to a turning point in the sense of the ex-
planation in the introduction.

Proof . The second equality in (3.16) implies that increasing θ∗ the curve
moves through the family of hyperbolas where µ(θ+ − θ−) is constant. In
particular the derivatives of µ(θ∗) and θ+(θ∗) cannot be both nonpositive.
Thus the only two possibilities for turning points are

dθ+

dθ∗
= 0;

dµ

dθ∗
> 0,

and
dθ+

dθ∗
> 0;

dµ

dθ∗
= 0.

From (3.16) we have

Hθ+
dθ+

dθ∗
+Hµ

dµ

dθ∗
= F ′(θ∗)−H ′(θ∗); µ

dθ+

dθ∗
+ (θ+ − θ−)

dµ

dθ∗
= F ′(θ∗),

whence
dθ+

dθ∗
=
−(F

µ
−Hµ)F

′ + H′F
µ

Hµµ−Hθ+
F
µ

. (3.19)

The denominator in (3.19) is positive so the numerator determines the sign
and (3.17) follows. The proof of (3.18) is similar and omitted.

Corollary 3.6 In view of (3.19) the critical value for F ′(θ∗) is

FH ′

F − µHµ
=

HH ′

H − µHµ
,

provided this quantity is positive. Otherwise the critical value is +∞. If
F ′(θ∗) is below (above) the critical value the solution curve moves to the
right (left).
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In what follows we shall understand turning points to be points where
(3.17) holds. Depending on the higher order derivatives of H and F the
solution curve in such a point may turn to the left or to the right, and, as
we argue in Section 4, becomes, respectively, unstable or stable.

3.6 Numerics for the full problem

In this subsection we show by means of numerical calculations that the full
problem has a travelling wave solution diagram similar to the limit prob-
lem. We have used the continuation software AUTO [DCF+97] for ODEs to
perform the numerics.

In line with the literature, we have done this for a reaction rate given by
a simplified Arrhenius law, more precisely by

F (θ∗) = A exp(− 1

εθ∗
), (3.20)

where ε is a dimensionless inverse activation energy (small), and A is a (large)
positive constant, the so-called pre-exponential factor. We checked that mod-
ifying this law with an ignition temperature leads to identical pictures (within
the resolution of the eye). The solution curve shown in Figure 4 indicates
that for large A and small ε a hysteresis effect can be observed. As for α = 0,
the curve is parametrised by θ∗.

In absence of an ignition temperature the solution curve θ∗ → (θ+(θ∗), µ(θ∗))
may be continued down to θ∗ = θ−, implying

µ(θ∗)y−(θ∗) ∼ F (θ−), θ∗ ↓ θ−,

whence µ(θ∗) → ∞. Note though that in this limit y−(θ∗) → 0 and the
profiles become flat. The diagram in Figure 4 does not show this part of the
curve because it is hard to resolve numerically.

In Figure 5 we plot three temperature profiles corresponding to a fixed
value of θ+, two stable and one unstable. If we solve (3.3) for given µ subject
only to

−[θ′] = µ(θ+ − θ−),

one easily shows that θ∗ is uniquely determined as an increasing function of
µ/
√
χ, which goes from θ+ to 2θ+ − θ− as µ goes from zero to infinity (see

also [BHR01], where we showed for the full problem that θ∗ is between θ+

and 2θ+ − θ−). In Figure 5 we see that the large stable solution with the
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Figure 4: The solution diagram for A = 105, ε = 1/24, α = 0.1, χ = 1, θ− = 1.
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Figure 5: Three temperature profiles for θ+ = 2.03 in Figure 4. Notice the three
different spatial scales.
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Figure 6: The solution diagram for A = 105, ε = 1/24, χ = 1, θ− = 1 with
α = 0.1 (solid), α = 0.05 (dashed) and α = 0 (dotted). The wave speed µ is

normalised by the adiabatic wave speed µad.

higher speed has a temperature overshoot close to this upper bound, while
the other two solutions, as well as the solution depicted in Figure 1, have a
much smaller overshoot.

In Figure 6 we compare the solution diagram for small nonzero α with
α = 0, and we see that the reduced model indeed approximates the full
problem for small α very well. In this figure we have plotted the renormalised
wave speed µ

µad
, where the adiabatic wave speed (the wave speed in absence

of radiation) is given by µad = F (θ+)/y−. The figure thus confirms that
radiation may significantly enhances the wave speed, cf. [JE88].

4 Linearised stability analysis

In this section we apply the linearisation technique for FBPs with jump
conditions, see [BHL00], and compute the corresponding linearised system.
Then we introduce an Evans’ function D(λ) to characterise the spectrum
and relate the behaviour of D(λ) near λ = 0 to the turning point condition
(3.17). Finally we give an explicit formula for D(λ) when f is taken to be a
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linear function (i.e. 4 = 1 in (1.5)).

4.1 The linearised equations

Starting from the travelling wave setting (3.1,3.2) we introduce the new spa-
tial variable

z = x− s(t),
and define w(z, t) and p(z, t) by

Y (x, t) = y(z) + s(t)y′(z) + w(z, t); Θ(x, t) = θ(z) + s(t)θ′(z) + p(z, t).

This fixes the free boundary and leads to, with dots denoting time derivatives,

wt − wzz + µwz = ṡwz + ṡsy′′, z < 0;

pt − pzz + µpz + χf ′(θ)p = ṡpz + ṡsθ′′ + q(p, s), z 6= 0,

with jump/boundary conditions

w = [p];

wz = [pz] = µ[p] +
F ′(θ(0))

F (θ(0))
(θ′(0+)p(0−)− θ′(0−)p(0+)) +Q±(p, s)

in z = 0. Here

q(p, s) = χf(θ) + χf ′(θ)(sθ′ + p)− χf(θ + sθ′ + p),

Q±(p, s) = F (θ(0)) + F ′(θ(0))(sθ′(0±) + p(0±))

− F (θ(0) + sθ′(0±) + p(0±)),

which are both at least quadratic in p and s (the assumption that we are close
to the travelling wave means that s, w and p are small). The free boundary
terms s and ṡ are eliminated using

w(0) = sF (θ(0)); ṡ =
wzz(0)− µwz(0)

F (θ(0))− wz(0) + µw(0)
,

and the linearised evolution equations for w and p are

wt = wzz − µwz, z < 0; (4.1)

pt = pzz − µpz − χf ′(θ)p, z 6= 0, (4.2)

with (linearised) jump/boundary conditions

w = [p]; wz = [pz] = µ[p] +
F ′(θ∗)

F (θ∗)
(θ′(0+)p(0−)− θ′(0−)p(0+)). (4.3)
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4.2 The Evans’ function

The eigenvalue problem for the linearised problem (4.1,4.2,4.3) reads

w′′ − µw′ = λw, x < 0; p′′ − µp′ − χf ′(θ)p = λp, x 6= 0, (4.4)

with jump/boundary conditions

w(0) = [p]; w′(0) = [p′]; w′(0)− µw(0) =

F ′(θ(0))

F (θ(0))
(θ′(0+)p(0−)− θ′(0−)p(0+)). (4.5)

We look for solutions which are well behaved (e.g. bounded) as x → ±∞.
The precise definition of “well behaved” depends on the choice of function
spaces, which is not the issue here. Eigenfunctions may be sought in the
form

w(x) = Aw(x;λ);

p(x) = B−p(x;λ) (x < 0);

p(x) = = B+p(x;λ) (x > 0),

where w(x;λ) and p(x;λ) are solutions of (4.4) with (exponential) decay
rates determined by the characteristic roots of the limit equations at infinity.
These roots are 2-valued complex analytic functions

λ→ 1

2

(

µ+
√

µ2 + 4λ
)

, (4.6)

and

λ→ 1

2

(

µ+
√

µ2 + 4χf ′(θ+) + 4λ
)

. (4.7)

We normalise w(x;λ) and p(x;λ) by asking that w(0;λ) = p(0;λ) = 1. In
general p′(·;λ) will have a jump in x = 0.

One can show that as long as λ does not cross the cuts for (4.6) and (4.7)
at the negative real axis in the complex plane, the functions w(x;λ) and
p(x;λ) exist and are unique. In the case that f is linear this is immediate
from the explicit exponential formulas for w(x;λ) and p(x;λ).

The conditions (4.5) give three equations for A, B− and B+, so that a
determinant has to be zero in order to have an eigenfunction. We derive this
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condition in the form D(λ) = 0, and refer to D(λ) as the Evans’ function for
(4.4,4.5).

It is easily seen that A must be nonzero. Normalising we find from the
first jump condition in (4.5) that

A = 1; B− = −B; B+ = 1−B,

from the second that

B(p′(0−;λ)− p′(0+;λ)) =
1

2
(µ+

√

µ2 + 4λ)− p′(0+;λ), (4.8)

and from the last that

BF ′(θ∗) =
1

2
(−µ+

√

µ2 + 4λ) +
F ′(θ∗)

F (θ∗)
θ′(0−). (4.9)

The two equations (4.8) and (4.9) allow a (unique) solution for B if and only
if

D(λ) =
(

p′(0−;λ)− p′(0+;λ)
)

(

1

F ′(θ∗)

−µ+
√

µ2 + 4λ

2
+
θ′(0−)

F (θ∗)

)

+ p′(0+;λ)− µ+
√

µ2 + 4λ

2

=
(

p′(0−;λ)− p′(0+;λ)
)

(

1

F ′(θ∗)

−µ+
√

µ2 + 4λ

2
+
θ′(0+)

F (θ∗)

)

+ p′(0−;λ)− µ+
√

µ2 + 4λ

2
(4.10)

= 0. (4.11)

One readily verifies that D(0) = 0 and that the corresponding eigenfunc-
tion is

φ =

(

y′

θ′

)

.

Another calculation then gives

D′(0) =
1

F (θ∗)





∫ 0

−∞

θ′(s)2

exp(µs)
ds

θ′(0−)
+

∫∞

0
θ′(s)2

exp(µs)
ds

θ′(0+)



−F
′(θ∗) + χ(f(θ∗)− f(θ+)[ 1

θ′
]

µF ′(θ∗)
.
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To determine the connection with turning points, we note that if we apply
the implicit function theorem to the travelling wave problem without going
to the phase plane, we find from

θ′′µ − µθ′µ − χf ′(θ)θµ = θ′; θµ(0) = 0

that
θµ(x) = θ′(x)E±(x),

where

E±(x) =

∫ x

0

exp(µy)

θ′(y)2

∫ y

±∞

θ′(s)2

exp(µs)
dsdy,

with a plus for x > 0 and a minus for x < 0. Thus, since H = −[θ′] by (3.10),

Hµ =
1

θ′(0−)

∫ 0

−∞

θ′(s)2

exp(µs)
ds+

1

θ′(0+)

∫ ∞

0

θ′(s)2

exp(µs)
ds,

and the turning point condition (3.17) is equivalent to

1

θ′(0−)

∫ 0

−∞

θ′(s)2

exp(µs)
ds+

1

θ′(0+)

∫ ∞

0

θ′(s)2

exp(µs)
ds

− F (θ∗)

µF ′(θ∗)

(

F ′(θ∗) + χ(f(θ∗)− f(θ+))[
1

θ′
]

)

= 0, (4.12)

which in turn is equivalent to D′(0) = 0, completely consistent with [Kap99].
Also, it follows directly from (3.19) that the sign of D′(0) coincides with
dθ+/dθ∗. As an immediate consequence we have

Theorem 4.1 Suppose D′′(0) > 0 in a point where dθ+/dθ∗ = 0. Moving
along the solution curve a positive (negative) eigenvalue emerges from zero
if dθ+/dθ∗ becomes negative (positive)

We will spare the reader the formula for D′′(0). In the linear case dis-
cussed in the subsection below it is always positive in turning points.

4.3 Numerical investigation of the Evans’ function

In this section compare numerically the Evans functions for n = 4 and n = 1.
For n = 1 the calculations can be checked and substantiated analytically (see
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Figure 7: The image of ` = {−0.1 + it | t ∈ R} under D0 for n = 1 (dashed) and
n = 4 (solid). The parameter values are θ+ = 2, θ− = 1, µ = 5, and χ = 1

(n = 4) and χ = 32 (n = 1).
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Figure 8: The image of ` under D0/D1 for n = 1 (dashed) and n = 4 (solid).
The parameter values are the same as in Figure 7.
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Section 4.4. As in Section 3.6, the numerical calculations are performed using
AUTO.

In view of (4.10) we rewrite the Evans’ function in the form

F ′(θ∗)D(λ)

µ2 + 4λ
= D0(λ)−D1(λ)F ′(θ∗).

The factor µ2 + 4λ ensures that the limit of D0(λ) as λ→∞ is well defined,
while no new zeros or poles are introduced away from the branch point λ =
−µ2/4. Here we interpret F ′(θ∗) as a parameter that can be varied while
the travelling wave solution θ(x) is kept fixed (i.e. F (θ∗) is kept fixed), as
already mentioned in the introduction.

We calculate D0(λ) and D1(λ) on a vertical line

` = {λ = −a + it | t ∈ R}

for some small a > 0. The idea is to close this curve at infinity so that it
represents a contour around Ω = {z ∈ C | <z > −a}, which contains the
right half plane.

Our approach is the following. We start at F ′ = 0, for which, as we will
see, there is exactly one zero of D(λ) in Ω, namely λ = 0 (due to translation
invariance). We then monitor what happens on ` as F ′ increases. Clearly a
zero of D(λ) crosses ` at F ′ = D0(−a)/D1(−a), provided it is positive. If
another zero of D(λ) crosses ` then D0(−a + it)/D1(−a + it) has to be real
for some t 6= 0. We will see that this does not happen, i.e., for any F ′ > 0
there will be at most two zeros of D(λ) in Ω, one at λ = 0 and one that

crosses zero at F ′ = Fc = limx→0
D0(x)
D1(x)

. This implies that for F ′ < F ′
c the

wave is stable, while it is unstable for F ′ > F ′
c.

We note that we take different values of χ for n = 1 and n = 4 so that
the linear case n = 1 can be viewed as an approximation of the nonlinear
case n = 4. To be more precise, linearising χθ4 around θ = θ+ = 2 (which
is an easy, albeit low, choice), we take a χ to be 32 times larger for n = 1
compared to n = 4. Indeed, the pictures for n = 1 and n = 4 turn out to be
similar when this simple choice is made.

The outcome of the numerical calculations is presented in Figures 7 and 8.
As explained above we start at F ′ = 0 whereD(λ) = D0(λ). The imageD0(`)
is shown in Figure 7, where we have chosen a = 0.1. When one closes the
contour, for both n = 1 and n = 4 the image winds around 0 exactly once,
implying that there is exactly one zero of D0(λ) in Ω, namely λ = 0. Next,
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in Figure 8 we have depicted the image D0

D1
(`). For both n = 1 and n = 4 it

crosses the real axes exactly one, implying that only one zero of D(λ) crosses
` as F ′ is increased, and the conclusions drawn above about the stability
hold.

4.4 The “linear” problem

Replacing f(θ) by
f(θ) = θ,

we can almost solve the travelling wave problem in closed form. We have

θ(x) = θ+ + (θ∗ − θ+) exp(
x

2
(µ∓

√

µ2 + 4χ)),

θ′(0±) = (θ∗ − θ+)
1

2
(µ∓

√

µ2 + 4χ),

and
F (θ∗) = (θ∗ − θ+)

√

µ2 + 4χ.

Slightly changing the definition of D, we obtain

D̃(λ) =
2F ′(θ∗)D(λ)
√

µ2 + 4χ+ 4λ

= −µ+
√

µ2 + 4λ− F ′(θ∗)

(
√

µ2 + 4λ

µ2 + 4χ+ 4λ
− µ
√

µ2 + 4χ

)

,

and we can completely solve the equation D(λ) = 0. Setting

4λ = µ2z, 4χ = µ2ω F ′(θ∗) = µδ,

the equation D(λ) = 0 transforms in

D(z) = −1 +
√

1 + z − δ
(

√

1 + z

1 + ω + z
− 1√

1 + ω

)

= 0.

Fix ω > 0. Taking δ large we see there are two real roots: z = 0 and a
large positive root. Decreasing δ we hit the value δ = (1+ω)3/2/ω where the
positive root passes through zero and becomes negative. Decreasing δ further
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the negative root disappears in the branch point z = −1 for δ =
√

1 + ω.
For δ smaller there are no real roots except the origin.

Now take ω = 0. Then the only (complex root) is zero. Making ω positive
the only way complex roots can appear is as double real roots. But this can
only be in z = 0 where D(0) = 0 and D′(0) = 0 implies D′′(0) > 0, making
it impossible for the roots to become complex.

Thus the picture in the “linear” case is complete. It is only the size of
F ′(θ∗) which decides the stability and whether the solution curve moves to
the right.

5 Conclusions

We have presented a simple model for combustion and radiation and we
have shown that it captures surprisingly well the phenomena observed in the
combustion literature. Thus the results in this paper are a revealing first step
towards a full understanding of the complete problem, i.e. general α, β, Le,
and exponent 4 in (1.5). The limit problem discussed here seems to be the
first free boundary problem in which turning points are described in terms
of an Evans’ function derived for the FBP itself, which motivates further
study in this direction. The solution picture in this paper is reminiscent of
that of the FitzHugh-Nagumo system, see [Smo94], where in the bifurcation
diagram the slow and the fast pulse come together in a turning point.

We emphasise that our stability analysis and the relation with the role
of turning points in the travelling wave diagram is for Le = 1. Varying
Le the travelling wave analysis remains the same but stability properties
change. The limit problem studied in this paper, despite its simplicity, has
a surprisingly rich structure, with turning points, Hopf bifurcations and (in
more dimensions) cellular instabilities. The latter two are well established
in similar problems with a trivial travelling wave diagram diagram such as
the model without radiation, see also [BCM99], [BMM89], [AL92], [BL00],
[LL03]. In a future work we shall examine the nearly equidiffusional setting
where Le is coupled to the activation energy.

Finally we observe that in the transition from the full model with α and β
to our limit model, the outer layer on the left in front of the preheating zone
disappears. In fact the full model can also be linearised around a travelling
wave, but the spectral analysis is far more complicated. The Evans’ function
has to be constructed using exponents solving a quartic equation, one of
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which crosses zero as λ crosses zero. This will be work for the future.
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