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ABSTRACT. We show that the energy manifolds that are induced by second
order Lagrangians, i.e. Lagrangrians of the form L = L(u,u’,u”), are in
general not of contact type in (R%,w). We also comment on the more general
question whether there exist any contact forms on these energy manifolds for
which the associated Reeb vector field coincides with the Hamiltionian vector
field.

1. Prologue

The energy manifold M = H~1(0)' of a smooth Hamiltonian function H :
R2" — R is said to be of contact type in (R?™,w) if there exists a one-form § on M
such that

df = —j*(w),
and
ixg0#0
hold on M. Here w = Y dg; Adp; is the usual symplectic form on R2", j : M — R?"
is the inclusion map, and Xy = (H,, —H,) is the Hamiltonian vector field on M.?

Such a contact form 8 can always be written as 8 = 6y + 3, where §y = pdq =
> pidg; is the canonical form (or standard Liouville form), and B is any closed
one-form on M.

The contact type condition first appeared in the Weinstein conjecture: “Fvery
compact energy manifold M of contact type carries a closed orbit of the Hamiltonian
vector field Xg”, see [16]. This conjecture was later proved by Viterbo [15]. If M
is of contact type then the powerful techniques involving pseudoholomorphic curves
can be used to study the periodic orbits of Xz on M, and in more general settings,
see [9]. Without the contact type condition counterexamples of energy manifolds
in (R?",w) which contain no periodic orbits have been given by Ginzburg [4, 5]
and Hermann [7] for dimensions 2n > 6.

1Throughout this note we assume the energy manifolds to be regular, i.e. dH # 0 on M.
2The same definition can be given for arbitrary symplectic manifolds (M?",w).
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Although many Hamiltonian systems from differential geometry and classical
mechanics are known to have all their energy manifolds of contact type, there does
not seem to be a clear procedure for deciding if any given energy manifold M C R?"
is or is not of contact type. In this paper we address this issue for Hamiltonian
systems on R* which arise from second order variational problems of the type

(1) J/L(u,u',u")dt =0.

Given any vector field X on an odd dimensional manifold M (such as Xy on M),
one may also ask the more general question “is there a contact form A on M such
that the vector field X (after renormalization) is the Reeb vector field of A?” If M
is of contact type, then the answer is “yes,” and one can simply put A = 8. The
question “is M of contact type” is more restrictive since the symplectic form dA
corresponding to the contact form one looks for is prescribed (it should be j*w.)

1.1. Second order Lagrangians. A second order Lagrangian is a function
of the form L = L(u,u’,u"), where v = u(t) is a scalar function on R. Such a
Lagrangian is assumed to be convex in the u"-variable. The Euler-Poisson® equation
for the variational problem (1) is a fourth order ODE, and is given by

> 0L d 0L OL
2) e = E o =

dt? ou" dtou'  Ou
This ODE is equivalent to a Hamiltonian system on (R*,w) with Hamiltonian
function given by

(3) H =puU+L*(U;U;Pv)-

Here L*(u,v,py) = sup,cr Pow — L(u, v, w) is the Legendre transform of L(u,v,w)
with respect to third variable. The correspondence between the canonical coor-
dinates z = (u,v,py,py) and u and its derivatives is as follows: v = o/, p, =
—% 38;—7, + gf,, and p, = %. In §3.1 this procedure is explained in more detail for
general higher order Lagrangians. See also [1].

0.

Due to the p,v term in the definition of the Hamiltonian (3) the energy man-
ifolds M = H~'(0) are always non-compact.* The particular question we shall be
concerned with is whether or not the zero energy manifold M is of contact type in
general. The following result identifies a large class of second order Lagragians for
this is indeed the case.

THEOREM 1.1. If L(u,v,w) > 0 for all (u,v,w) € R®, then M is of contact
type and the canonical form 6y = p,du + pydv is a contact form on M.

This holds in much greater generality for Hamiltonian systems coming from
variational problems of the type & [ L(u, v/, ..., u(™)dt = 0, where the “Lagrangian”
L is strictly positive. See §3.1 for the proof.

3These are the equations obtained by requiring the first variation of the action to vanish along
all possible variations u — u + €. In [1] these equations are called the Euler-Poisson equations
rather than the Euler-Lagrange equations.

e may restrict to just the zero energy manifolds since all other energy manifolds may be
obtained by simply replacing L by L + E.
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We continue now with a special class of Lagrangians which are not necessarily
positive, and we show that among these there are Lagrangians for which M is not
of contact type.

1.2. The Swift-Hohenberg & eFK models. As a special case one considers
Lagrangians of the form

1
4) L(u,v,w) = §w2 + %v2 + F(u).

The associated Hamiltonian is then given by H(z) = pyv + $p? — 2v* — F(u), and
the Euler-Poisson equation for the variational problem is fourth order;
4 2
(cilTZ —aC;Tg + F'(u) = 0.

For various different choices of the “potential” F'(u) and parameter «, this equation
is known in the mathematical physics literature as extended Fisher Kolmogorov
(eFK) or Swift-Hohenberg equation. See [12], [14, introduction] and the references
given there.

Clearly, if the potential F' is positive and the parameter a > 0, then Theorem
1.1 implies that M is of contact type. However, for potentials that are not strictly
positive, or for negative values of the paramter a, the question becomes more
delicate, and the geometry and topology of M will come into play. The next three
theorems summarize cases where M is again of contact type, but L is not necessarily
strictly positive.

THEOREM 1.2. If a > 0 and F(u) only has simple zeroes, then M is of contact

type, with 6 = 09 + d(vp,) + B as contact form, and where 8 is a closed form which
can be chosen arbitrarily small in C°.

The proof is given in §4.

In §5 we recall that for certain choices of F' the flow on M admits a global
Poincaré section. This additional structure also allows one to contruct contact
forms compatible with w, and is useful for the study of periodic orbits of Xz on M.

THEOREM 1.3. ® If F(u) > 0 and F(u)/u? — oo as u — o0, then there exists
a diffeomorphism A : M — R? x (R/Z) which carries trajectories of X to solutions
of a nonautonomous planar Hamiltonian system.

If in addition a < 0 then the growth condition on F(u) is not needed, and one
can exhibit an explicit diffeomorphism A.

Here a nonautonomous planar Hamiltonian system refers to the case in which
M = R? x (R/Z) with coordinates (p,q) € R?, t € (R/Z) and X\ = pdg— H(p, q,t)dt.
Such a system is not necessarily of contact type as we show in an example in §5.3.
The following is therefore not an immediate corollary of Theorem 1.3.

THEOREM 1.4. If F(u) > 0 and if F'(u)/u — oo as u — *oo, then M is of
contact type.

5Poincaré sections can be found in much more general settings for second order Lagrangians.
In this theorem we chose to restrict the details to the Swift-Hohenberg & eFK models for simplicity.
See §5 and [13] for a more detailed account on this subject.
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1.3. Non-contact type energy manifolds. So far we have only given suffi-
cient conditions for M to be of contact type. These conditions do not cover all cases,
in particular the situation in which F'(u) changes sign and a < 0 is not covered. In
§8.4 we show that the energy manifold M is in fact not always of contact type in
(R, w).

THEOREM 1.5. There exists a potential F : R — R and an a, < 0 such that
for all o < e the energy manifold M is not of contact type.

In §8.4 we describe for which shapes of F' the above theorem holds. This leads
to a very large class of noncontact type energy manifolds. The problem of finding
energy manifold which are not of contact type has been approached from a different
perspective in [3].

All this leaves us with a few unanswered questions of which we mention two.

Q1. For the Swift-Hohenberg equation with F(u) = (1 — u?)*> + E (a usual
choice in physics models) for E < 0 and a < 0 we still do not know if M is of
contact type or not, i.e. is the hypersurface in R* defined by

a 5 1

1 2
puv+§p3—§v Z(l—uz) -E=0

of contact type?

Q2. If one chooses F(u) as in Theorem 1.5, then for sufficiently large negative
a the hypersurface M is not of contact type, while for a > 0 it is of contact type.
How does the transition from contact to noncontact type take place as a decreases
from +o00 to —o0?

Acknowledgements. The third author wishes to thank R.W. Ghrist for the
stimulating discussions and encouragement on this subject. The second author was
supported by an EPSRC fellowship. During the year 2000/2001 the first author was
visiting the University of Leiden and and greatfully acknowledges the hospitality he
received from his hosts, Sjoerd Verduijn Lunel and Bert Peletier. He was supported
by NWO through Verduijn Lunel’s NWO grant, NWO 600-61-410. We would also
like to thank H.Hofer and V.Ginzburg for telling us about the reference [3].

2. Representation of Xy by an arbitrary Reeb vectorfield

Any one-form 6 on a (2n—1) dimensional manifold defines a variational problem
for closed immersed curves v C M in which one requires the action

Am e [,

to be stationary. If X is any vector field along v then the variation of the action
by X is

1
dA(y) - X = / ixd = /0 dO(X (), + (1)) dt.

Hence the action will be stationary at  if and only if i.,(;ydf = 0 holds. See [2].
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We will call the one-form 8 nondegenerate if df has maximal rank everywhere.
If  is nondegenerate then

(5) L, =kerdd ¥ {Y € T,M | iydd =0},

is one dimensional for all p € M and thus defines a linebundle (direction field) on
M. In this case the stationary curves for A(y) are precisely the integral curves for
the line bundle L. The nondegeneracy condition for 6 is the analog for the varia-
tional problem § fw 6 = 0 to the Legendre-Hadamard condition from the calculus
of variations.

If the manifold M is oriented then £ has a nowhere vanishing section.® We will
call any positively oriented section of the line bundle L a pseudo Reeb vector field
for the one-form 6. Critical points of the action A(v) are then closed orbits of any
pseudo-Reeb vector field for 6.

If the form 6 is a contact form, i.e. if §A(df)"~! # 0 everywhere, then df clearly
has maximal rank everywhere, so contact forms are nondegenerate. For a contact
form @ there is a chosen section X of L, defined by ix6 = 1. This pseudo Reeb
vector field is called the Reeb vector field of 8. Conversely, if 8 is nondegenerate
and if there is a pseudo Reeb vector field X such that ix8 > 0, then 6 is a contact
form.

For Hamiltonian systems in R?", i.e. if M = H 1(0) with 0 a regular value of
H, the form 8y = p - dq is nondegenerate, and the Hamiltonian vector field Xp is
a pseudo-Reeb vector field for 6y on M.

The energy surface M will be of contact type if one can find a closed form g
on M such that 6y + 3 is a contact form. The Reeb vector field for 6y + 3 is then a
multiple of the Hamiltonian vector field Xy . The more general question that can
be asked is: “Does there exist any contact form 0, such that the Hamiltonian vector
field X g is a pseudo Reeb vector field for 82 This question leaves more freedom in
choosing 6 since the condition df = —j*(w) is omitted.

Although we do not give any positive or negative results on the more general
question the following observations seem to indicate that the situation in which
a Hamiltonian vector field Xg is a Reeb vectorfield for a contact form A with
d\ # ¢j*w, for any constant ¢ # 0, is unusual.

LEMMA 2.1. If X is a pseudo Reeb vector field for a contact form A on M, then
d\ = fj*w for some smooth nowhere vanishing function f : M — R. Furthermore,
this function f is a conserved quantity for Xg: Xg(f) = 0.

There is a unique vectorfield Y on M which satisfies iy (d\) = df, and iy A = 0.

Let X be the Reeb vectorfield of \ (i.e. X is a multiple of Xy which satisfies
A(X) =1). Then the vectorfields X andY commute: [X,Y] = 0.

Wherever Y # 0 the vector fields X and Y are linearly independent.
6Indeed, at each point p € M the quotient T,M/L,, is oriented by the volume form (df)”~1,

while the tangent space T M is assumed to have an orientation. These two orientations induce
an orientation on L.
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PRrROOF. Since both ix, j*w =0 and ix,d\ = 0 we have ker j*w = kerd\. Let
kerw = span(X), and write £ = & X + &Y + &7, and n = X +12Y +n3Z, where
{X,Y,Z} is a basis for TM, normalized by w(Y,Z) = 1. Write & = d\. Then
w(&m) = (§ams — &m2)w(Y, Z), and w(é,n) = (§ams — Em2)w (Y, Z) = Lamz — &3
Thus we find d\ = fj*w, with f =&(Y, Z).

Since fj*w = dA is closed it follows that df A j*w = 0, and thus
0= iXH (df A ]*(/J) = (ZXde)]*w - df A 2'XHj*W = (iXH df)J*w7

which implies that ix,df = 0. The function f is therefore an integral of the vector
field Xg.

Since kerdf = kerd), a vector Y exists such that df(Z) = d\(Y, Z) for all
Z € T,M. Two different choices of Y differ by an element of ker dA most one Y can
satisfy A(Y) =0.

If X is the Reeb vectorfield for A, then LxA = 0. Hence A(Lx(Y)) =
Lx(A(Y)) = 0so that [X,Y] = LxY belongs to ker A.

One also has, using Lx A =0 and iy d\ = df
in,ydA = Lx(iyd\) —iydox A =Lx(df) =dlx f=0.

Since LxY belongs both to ker A and to kerd), we have LxY = 0, and hence X
and Y commute.

IfY # 0 at some p € M then at that point one has iyd\ = df # 0 and
ixd\ = 0, so that X and Y cannot be linearly dependent at p. |

It is well known that a second integral of the motion can severly restrict the
possible dynamics of Xy on M. For instance, any periodic orbit of X on which
Y # 0 must appear in a family of periodic orbits of X. Also, forn =2if f: M — R
has a compact regular level surface S = f~1(c), then this must be a 2-torus, and
the flow of Xy will be the standard linear flow. By the implicit function theorem
the same will apply to S’ = f~1(c') for ¢’ close to ¢, so that an open subset of M
is foliated by invariant tori with linear flow.

A typical Poincaré plot (see Fig. 1) for the Swift-Hohenberg equation shows
none of these phenomena, suggesting that generally X g will only be a pseudo-Reeb
vectorfield for one particular form .

3. Generalities about finding contact forms

3.1. Positive Lagrangians. As explained in [1], the Euler-Lagrange-Poisson
equations of a general n*® order Lagrangian variational problem of the type

(6) J/L(u,u',u”, u™)dt =0

whose “Lagrangian” L = L(ug,u1,...,u,) is strictly convex in the highest deriva-
tive u,, can be transformed to a Hamiltonian system on the cotangent bundle of
the space J"~1 of (n — 1)-jets of functions u : R — R. Alternatively, one writes
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FIGURE 1. A Poincaré plot for parameter values « = —10 and
E = 10. Reproduced from [14]

ug, . ..,U, for the first n derivatives of u and introduces variables pog,...,Pn_1,
where the last is related to ug, ..., u, by
OL(ug, - .., un)
7 = 20 -- -5, 8n)
( ) pn 1 8Un ’
due to the assumption that 82 L > 0. One then defines the Legendre transform by
L*(ug,u1, ..., Un—1,Pn—1) = Sup {pp—1w — L(ug,u1,...,upn_1,w)}
wER

and “Hamiltonian” by
H(uo, - - sUn—1,P0,--+,Pn—1) = PoUs + -+ Pn_aln_1
+ L*(uo, U1, -+, Un—1,Pn—1)-
The Hamilton equations for H give the extremals for (6).

LEMMA 3.1. If one defines M to be the zero energy manifold H=(0) C R*™ of
H, and if the Lagrangian L is strictly positive, then M is of contact type with the
standard contact form 6y = poduo + - -+ + Pr—1dts, 1.

PROOF. Let p,—1 and u, be related by (7), then

— 6L*(u07 .- 7un*17pn71)
apnfl

n
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and L + L* = pp_1uy,. One has ix,0p = pou'o + -+ + pn_14'n—1, and from the
Euler-Lagrange-Poisson equations one finds that v'; = w;y; for i < n — 1 and

w1 = 82’“; = u,. Therefore
L*
ixgfo = pour + -+ -+ Pp_2Un_1 + Pn-1g —
Pn—1
=pou1 + -+ pp_sUp_1 + L+ L*
=H+ L.
Since H = 0 on M we find ix, (6g) = L > 0 on M, so that 6 is a contact form on
M, whose Reeb vector field coincides with Xg. O

This Lemma, when applied to second order Lagrangians, proves Theorem 1.1.

3.2. A criterion of Hofer and Zehnder. In [8] an example of a hypersurface
is given which is not of contact type. From this example we may distill the following
criterion. Let M = H~1(0) be an energy manifold of a Hamiltonian system on
(R?", w), with w the standard symplectic form.

LEMMA 3.2. Given two contractable periodic orbits v1,v2 C M of Xg for which
the standard contact form 6y yields actions of opposite signs. Then one may con-
clude that M is not of contact type.

PROOF. Any possible contact form 6 is of the form 6 = 6y + 3, with dS = 0.

Represent the curves 7; as boundaries of discs, v; = dA;, A; C M. Then by
Stokes’ theorem one has f%_ 6=-/ AW = f% 6y. If 6 were a contact form then
both actions fw 0 would have the same sign, and hence both integrals f% 6o would
also have the same sign, a contradiction. O

3.3. Fixing almost contact forms. In [8] Hofer and Zehnder show that
all energy manifolds of any classical mechanical system on R?>" with Hamiltonian
H(q,p) = 3|p|*> + V(g) are of contact type. They do this by first observing that
the canonical form satisfies ix8y > 0 and then perturbing the form 6y to achieve
strict inequality. If one replaces the explicit perturbation in [8] by something more
abstract one arrives at the following result.

LEMMA 3.3. Let M be a (2n — 1)-dimensional manifold with a nondegenerate
one-form A. Let X be a pseudo Reeb vector field for \. Assume thatixA >0, and
also that the set S = {p € M | ixA(p) = 0} satisfies

Vpe S It_ <0<ty : B (p) €5S.

Then there exists a smooth function f : M — R such that \* = XA+ edf is a
contact form on M for all € € (0,1), and for which X is a pseudo Reeb vector field
(ixd\* =0).

PrOOF. For any given p € S we choose a parametrized 2n — 2 ball a¢ :
B?"~2 — M which is transverse to the vector field X. Then o(zo,Z1,...,T2n_2) =
®*(gg(x1, ..., Tan—2)) is a local diffeomorphism which straightens the flow, i.e. it
maps lines parallel to the zy axis to flow lines of the vector field X, and it maps
52— to X. Tt is a diffeomorphism on BZ"~2 x [t_,¢,] if r > 0 is small enough.
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F1GURE 2. Proof of Lemma 3.3

Since ®%*(p) does not belong to the closed set S one can choose r > 0 so
small that o(zo, ..., Zan o) does not lie in S if 22 +--- + 23, _, < r? and z €
[t_,t— + r] U [ty — r,t4+]. We also choose r so small that t_ +r < 0 < t4 —r.
Now let 0 < n € C®(R) satisfy n(xo) = 0 for zg < t_ and zy > t4, as well as
n(zo) = 1 for zg € [t— + r,t; —r]. In addition we pick a 0 < ¢ € C®(R*"?),
which is supported in B2"~2, and with ¢(0) > 0. We then define f : M — R by
foo(zo,...,zan—2) = zon(z0){(21,...,Tan—2) on o(B>"~2 x [t_,t;]) and f =0
elsewhere.

Using
Ozon(xo)((x1,---,Tan—2)

6.’E0
one now easily verifies that ixdf > 0 on S, and ixdf > 0 at p and by continuity
in a neighborhood N, of p. One also sees that ixdf < 0 only in o([t_,t_ + 7] X
B2n=2)Uo([ty —r,ty] x B2"2) i.e. ixdf < 0 outside of some neighborhood of S.

ixdf =

Let {pr},cn be a sequence of points for which the neighborhoods N, cover
S. Denote the functions obtained by the above construction by fi. Then for each
k € N the quantity

—ixdf

Ay = sup XY
M\s  ixA

is finite, since ixdfy > 0 on a neighborhood of S. We define

27" fy
F= Z = JE
Ak | Fellon

This series converges in C'*°. Its sum satisfies ixdF > 0 on S and

—ixdF <) z—ki(_“;df DR
keN k
< Z 27kix)\ =ixA
keN

on M\ S. Hence ix (X +edF) > 0 on all of M for all 0 < € < 1, as claimed. O
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3.4. Fixing contact forms without recurrence. Our proof of Theorem 1.4
is based on the following general observation.

LEMMA 3.4. Let M be (2n—1)-dimensional manifold with a nondegenerate one-
form A, and let X be a pseudo Reeb vector field for A. If there is a largest compact
invariant set K C M for the flow of X, and if ixA > 0 on K, then a function
f € C°(M) exists for which A* = X\ + df is a contact form and for which X is a
pseudo Reeb vector field (ixd\* =0).

ProoF. Let K = Ky C Ky C K»--- be a sequence of compact subsets of M
such that K; is in the interior of K;; and U;enK; = M. By induction we will
construct a sequence of functions f; € C° (M) such that

(8) the one-forms A\g = A\, A\; = Aj—1 +df; (i > 1) are contact
forms on K;, and f; = 0 on a neighborhood of K; ;.

The functions f; with j > 4 4+ 1 then all vanish on Kj;, so that f = d¥;enf; is
well-defined, and Ax = A + df is a contact-form.

Let fo,. .., f; be constructed, so that \; is a contact form on K;, i.e. ix ()\;) > 0
on K;. By continuity there is an open set K; C U; C K;41 such that ix(\;) > 0 on
U;.

PROPOSITION 3.5. For each p € K;y1 \ U; a function g, € C°(M) exists such
that supp gp C M\ K, ixdgp > 0 everywhere, and ixdg, > 0 in p.

PROOF. Let p € K;11\U; be given. The orbit T'), = {®!(p) | t € R} cannot be
contained in K1, for if it were, then the closure of I';, would be a compact invariant
set containing points outside of K = Kj, thereby contradicting our assumption
that K is the largest compact invariant set. Hence for some ¢, # 0 one has
®i+(p) ¢ K1 Without loss of generality we assume that ¢, > 0. It is also
impossible for the half-orbit ' = &(=°0)(p) to be contained in K;}1 \ U;. If this
were to happen, then the a-limit of I')’ would be a compact invariant subset of the
flow outside of Ko. Thus a t_ < 0 exists with ®!-(p) € U; or ®!-(p) € M\ K; 1.
In either case we can choose t_ so that ®[*--0(p) is disjoint from K;.

We straighten the flow in a neighborhood of the orbit segment ®t-+*+1(p). To
this end choose a smooth immersion o : R?*=2 — M with ¢(0) = p and which
meets the orbit T, transversally at this point. Then let ¢ : [t_,¢1] x R"=? —» M
be given by

¢($0,.Z‘1, ey .’L'gn_g) = @To [U(.’El, ... ,.’Ezn_g)].
For sufficiently small 7 > 0 this map is a diffeomorphism from [t_,¢;] x B2"~? into
M.

Since ¢(ty,0,...,0) = ®*+(p) € K;11 we can choose €, > 0 so small that
d([ty — €,t4+] x B2=2?) is disjoint from K; ;.

Choose n € C=(t_,t;) and ¢ € C>°(B2"~?) and define g, by requiring

gp(‘b(an Z1y--- 7x2n72)) = ”7(330)4.(:1717 sy $2n72)5

on the tubular neighborhood ¢([t_,t,] x B2"~2), and g = 0 elsewhere. One then
has ixdg, = n'(20)¢(z1,-..,2Z2n—2). We now choose ¢ > 0 and n'(xz¢) > 0 for
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t_ < zp <ty —e¢ so0that ixdg, > 0 on K;y;. Finally we also choose ¢ and 7 so
that ¢(0,...,0) > 0 and 5'(0) > 0, i.e. so that ixdg, > 0 at p. O

We complete the proof of Lemma 3.4. For each p € K41 \U; a k, > 0
exists such that ix(\; +kpdgp) > 0 at p. By continuity this als holds on some small
neighborhood N, of p. A finite number of such neighbourhoods N, , - , N, cover
Kiy1\ U; and the function fiy1 = ¥;k,, g, satisfy our requirements in (8). O

4. Proof of Theorem 1.2

We try one-forms of the form
A = 6o + Brd(upy) + B2d(vpy)
= (f1 + 1)pudu + frudp, + (B2 + 1)pydv + Bavdp,
on M = H~1(0), where H = p,v + L*(u,v,py).
We then have
ixg A = (b1 + 1)pyu’ + Brupy, + (B2 + 1)pyv’ + Bavp,,

*

oL AL oL
= (B1 + 1)puv + ﬂlu% + (B2 + l)p”a_p,, + fov (—pu + %)

oL oL
= (f1 — P2+ 1)pyv + ﬂlu% + /3211% + (B2 + 1)711%
. oL oL oL
=—(B1 =P+ 1)L" + /Blu% + 52’11% + (B2 + l)wa—w
oL OL oL
=(pfr—P2+1)L+ ﬂlu% + 5211% + (=p1 + 2ﬂ2)w%-

If (B1—P24+1)L+ p1uLy+ favLy + (—P1+262)wL,, > 0, for some constants £, and
B2, then we see that ¢xA > 0 everywhere. This generalizes the calculation of §3.1,
where 1 = (2 = 0. Different choices of 3; lead to different “starshapedness-like”
conditions on L. For instance, if one puts 8, = f2 = 7~ ! > 0, then one finds that

YL + uLy, +vLy, +wL, >0
for all (u,v,w), implies that A is a contact form and that M is of contact type.

We will apply this more general criterion now to the Lagrangians defined by
(4). Taking f; = 0 and B2 = 1, it follows that 2wL, + vL, = 2w? + av? > 0
for all @« > 0. In order to find a contact form we need to examine the zero set
{peM | ix,A(p) =0} and apply Lemma 3.3.

When a > 0 we have that ix A = 0 on the set S = {(u, 0, py,0) | L(u,0,0) = 0}.
At any point on (u,0,p,,0) € S, with p, # 0, one has p}, = —p,, # 0 so that all
trajectories of the flow immediately leave S in forward and backward time. If p, = 0
then one has

Py = —py + v’ = —Fy(u) + apy = —Fy(u).

At (u,0,0,0) we have p)) = —F,(u) # 0 and it follows again that orbits of the flow
through (u,0,0,0) leave S immediately in both time directions. By Lemma 3.3 we
see that M is of contact type, and that one can take A+ edf to be the contact form,
for some f € C*°(M) and any € € (0,1).
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If @ =0, then the set S is larger,

S = {(u,v,pu,0) | pyv = F(u)}.

On S one has p), = —p,, so that all orbits through points on S with p, # 0 leave S
in forward and backward time. Points on S with p, = 0 are of the form (4, v,0,0)
with F(@) = 0. Since F only has simple zeroes, this implies p}, = F,, (@) # 0, so that
trajectories through (@,v,0,0) also leave S in forward and backward time. Again
we can apply Lemma 3.3 and conclude that M is of contact type, concluding the
proof of Theorem 1.2.

5. When there is a global Poincaré section

5.1. Poincaré sections and contact forms. A surface ¥ C M = H 1(0) C
(R*,wp) is called a global Poincaré section if (i) it is a closed subset of M, (ii) the
Hamiltonian vector field is transverse to X, and (iii) for every p € M there exist
t_ < 0 < t; such that ®**(p) € ¥ (here ® denotes the Hamiltonian flow on M as
defined before.)

Given a global Poincaré section one defines the return time 7' : ¥ — R, by
T(p) = inf {t > 0 | ®*(p) € ¥}, and the return map ¥ : ¥ — ¥ by ¥(p) = &7 (p).
Both T and ¥ are smooth. The suspension of the return map ¥ is the space
B = (¥ x R)/~, where the equivalence is given by (¥(p),t) ~ (p,t + 1). The
manifolds B and M are diffeomorphic. The map ¢ : (p,t) — TP (p) induces a
homeomorphism from B to M. To construct a diffeomorphism one must choose a
C*>-function 7 : [0,1] x (0,00) — R with % > 0 for all (¢,7), 8T(8"’£T) =1fort
close to 0 or 1, and 7(0,7) =0, 7(1,T) = T. The map ¢ : £ x [0,1] = M given by
Y(p,t) = ®7HT@)(p) then induces a diffeomorphism from B to M.

LEMMA 5.1. If M is compact and if M has a global section, then M is of contact
type.

PRrROOF. The form dt on B is closed (but not exact, since ¢ € R/Z is multi-
valued). Let 8 be the pushforward of dt under the diffeomorphism ¢ : B — M.
From 2¥ = 22 X (&7 (ET(®) (p)) it follows that ix, 8 = 7¢(t,T(p))~" > 0 holds at
®7(T(P)(p). Since M is compact, ix, 8o is bounded from below on M, where 6 is
the standard Liouville form with dfy = wy. For sufficiently large £ € R one then

has ix, (6o + kB) > 0 everywhere, so that 6y + k3 is a contact form for M. a

It is clear from the proof that one can get away with less than compactness. If
M is non-compact then one must verify that

7:(t, T(p)) - ixy (60) |<1>T<t,T(p))(p) > =0

for some positive constant § independent of (p,t) € £ x [0, 1].
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5.2. Representation by planar Hamiltonian systems. A planar Hamil-
tonian system is a system defined by a smooth Hamiltonian H (p, q,t) on R? x (R/Z).
Its orbits satisfy the variational problem & [ pdg — H(p, ¢, t)dt = 0, i.e. they satisfy
d [0 = 0, where 6 is the one-form 6 = pdg — Hdt. We continue the discussion of
§5.1, assuming from here on that the section ¥ is diffeomorphic to R2.

Any isotopy {¥°:0< s < 1} of the return map ¥ to the identity, induces a
diffeomorphism of B (and hence M) with ¥ x (R/Z). By reparametrizing the s

variable we may assume that ¥®(p) does not depend on s for 0 < s < L and

3
for % < s < 1. We can then extend the isotopy ¥* to all s € R by requiring
Y5+l = P8 o ¥, Themapn : ¥ xR — ¥ x R, n(p,t) = (¥!(p),t), which sends
(¥(p),t) to (¥1(p),t), and (p,t+1) to (¥*1(p),t+1), induces a diffeomorphism

from B to ¥ x (R/Z).

Since any orientation preserving diffeomorphism ¥ : R? — R? is isotopic to the
identity it follows that M is diffeomorphic with R? x (R/Z). (To find an isotopy of
¥ to the identity first translate so that the origin becomes a fixed point and then
consider ¥#(p) = s~1¥(sp); this is an isotopy of ¥ to a linear map, namely D¥(0);
finally, all orientation preserving linear maps are isotopic.)

Because the Hamiltonian vector field is transverse to X the two-form dfy re-
stricted to ¥ is nondegenerate.

PROPOSITION 5.2. If [5, dfy diverges then there exist coordinates (z,y,t) : M —
R? x (R/Z), a smooth function K : R? x (R/Z) — R and a closed one-form 3 such
that 0o = —ydz + K(x,y,t)dt + 8. In particular the trajectories of the Hamiltonian
flow on M are mapped to those of the planar Hamiltonian system & = K, y = —K,.

ProoF. Identify M with R? x (R/Z), and assume that we have chosen co-
ordinates (u,v) on R? so that dfy = f(u,v,t)du A dv with f(u,v,t) > 0. We
now construct “action angle variables.” Let I(u,v,t) be the area measured with
f(u,v,t)du A dv of the disc in R? centered at the origin and with radius vu? + v2.
Then I is a smooth function on R?> x (R/Z). For each fixed t € R/Z the orbits of
the Hamiltonian vector field of I(-, -, t) with respect to the symplectic form df, are
circles centered at the origin. With this choice of I all orbits have period 1.

Let ¢(u,v,t) be the time it takes to reach the point (u,v,t) along the Hamil-
tonian vector field of I(-, -, t) starting from the positive u axis. Then ¢(u,v,t) is
a smooth function on the universal cover of (R? \ 0) x (R/Z), and that ¢ mod Z
is smooth on (R? \ 0) x (R/Z) itself. By direct computation one verifies that in
the coordinates z = z(u,v,t) = V21 cos2m¢ and y = y(u,v,t) = v/2Isin 27¢, the
pullback of dfy to R? x {t} is dz A dy. On the entire manifold R?> x (R/Z) one
therefore has dfy = dz A dy + A(z,y,t)dz A dt + B(z,y,t)dy A dt.

From 0 = ddfy = (B, — Ay) dxzAdyAdt it follows that there is a smooth fuction
K(z,y,t) such that A = K, and B = K,. Hence dfy = dz Ady + dK A dt, and
B = 0y + ydxr — Kdt is closed, as claimed. a
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5.3. Example of a planar Hamiltonian system which is not of contact
type. As pointed out at the beginning of this section, for non-compact Poincaré
sections ¥, a contact form is not immediately found without certain additional
requirements.

Consider an autonomous Hamiltonian of the form H(p,q,t) = h(I) where I =
%(p2 + ¢?), and h(I) is some smooth increasing function of I.

The manifold M on which our flow is defined is M = R? x (R/Z) and the
Hamiltonian vector field is a pseudo Reeb vector field for the one-form 6 = pdq —
h(I)dt.

Then the periodic orbits in M of the Hamiltonian system are exactly those
periodic solutions of ¢ = Hp, p = —H,, whose minimal period is a fraction m/n
(after n oscillations the time variable increases by an integer m, and the (g,p)
variables return to their original positions). In this section we only consider periodic
solutions for which m = 1.

All solutions of the Hamiltonian system are given by
p(t) = V2Isin(¢ — ), q(t) = V21 cos(¢p — Q).

where the angular frequency is given by Q = h'(I). A solution has minimal period
1/nif B'(I) = 27n.

FIGURE 3. Symplectic polar coordinates

Introduce polar coordinates I = (¢* + p?)/2, ¢ = arctan(p/q). Then along our
periodic orbit the angle ¢ decreases by 2mn. Using that pdg = —Id¢ + d(pq/2), we
compute the action of such an orbit:

A(T) = /t pdq — h(I)dt

=0

- / " ld— n(Dat
t=0
= 2nwl — h(I)

=K (I)I — h(I).
If we choose h(I) = 4 (I — LsinT), then we get
A(I) =2n(—IcosI +sinl).
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A sequence of periodic solutions occurs at I = km, k € N and their action is
A(km) = 2kw?(—1)**+1. For large k the action attains arbitrarily large positive and
negative values. The Hamiltonian system with H(p,q,t) = I + asin[ is therefore
not of contact type (H'(M) is generated by dt).

Although the energy manifold is not of contact type, the Hamiltonian vector
field is a Reeb vector field (we are in the special situation that there is a (second)
conservation law on M). We now construct a contact form u whose Reeb vector
field is a multiple of the vector field Xg = 0y + Hpdqy — Hy0p. Our Hamiltonian
flow on R? x (R/Z) is determined by the one form A = Id¢ + h(I)dt. If there is
any other one-form g which determines the same foliation, then for some function
f(p,q,t) one has dA = f(p,q,t)dy (Lemma 2.1). This function f must be constant
on orbits of Xg, from which it is not hard to see that f must be a function of
alone. Thus we assume dp = f(I)d), i.e.

dp = F(I)dI A de + F(DR (I)dI A dt = d(Jde + g(J)dt)
where
I J
J(I) = / fhdi,  g(J) = / W(I()d] + C,

where I(J) is the inverse of J(I). We set p = Jd¢ + g(J)dt. The form p will be a
contact form provided p A du = —f(Jg'(J) — g(J))dI Adp A dt # 0, i.e. provided
Jg'(J) — g(J) #0 for all J € R. Using ¢'(J) = h'(I) we compute

Jg(J) = g(J) = —C + / JTg"(J)dJ
- —C+/J;l—§h”(1)dj
— 4+ / TR (D)dl
= _C+or / J(I)sin IdI.

Thus if we let J(I) = 1 —e~!, and if we choose the constant —C' sufficiently large,
then p will be a contact form with the same flow as Xy, up to reparametrization.

5.4. Additional remarks. The example we gave above has an additional
integral (namely, I) which allows us to write down a large class of one-forms with
the same flows. A small non-autonomous perturbation of the Hamiltonian H =
h(I) + eh1(I, ¢,t) will in general destroy the integral I and make it impossible
to find the form p. It thus seems reasonable to conjecture that an arbitrary small
pertubation of \ exists for whose flow is not that of a Reeb vectorfield on R? x (R/Z).

The example is also different from the other classes of Hamiltonian systems we
consider in that M is not embedded as a hypersurface of R*. However, it is easy to
produce such an embedding. Namely, given any strictly positive h(I), we consider
the Hamiltonian function

H(p,q,z,y) = nh (30 + ¢°)) — 7(a® + )
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on R* with symplectic form dq A dp+ dz Ady. This Hamiltonian truly has a second
integral, namely 7(z> + y2). Under the Hamiltonian vectorfield of H the x and y
variables undergo harmonic oscillations with period 1.

The zero energy surface M = H 1(0) is then diffeomorphic to R? x (R/Z)
via (p,q,t) = (p,q, Rcos2rt, Rsin2nt) with R = y/1h(p? +¢?). On M one has
L(ydx — zdy) = —R*dt, so that

pdq + 3 (ydz — zdy) = pdg — h(I)dt,

as required.

6. Poincaré sections for second order Lagrangians

Following [13] we can define a transverse slice to the flow on M provided the
Lagrangian L(u,v,w) is a strictly convex function of w which satisfies L(u,0,0) > 0
for all w € R, and limy 4+ w = fo0. Under this hypothesis the Legendre
transform L*(u, 0, p,) = sup,,cp Pyw—L(u,0,w) satisfies L*(u, 0,0) < —L(u,0,0) <
0. Since L*(u,0,p,) is a strictly convex and proper function of p, there are for each
u € R precisely two solutions p; (u) < 0 < pf (u) of L*(u, 0, p,) = 0. At the positive

. *
solution one has g% > 0.

On M the equation v = 0 implies L*(u,0,p,) = 0. Hence the set M N {v = 0}
consists of two smooth surfaces

SF = {(4,0,pu,p0) | Py € R,py = pys ()}
Both ©* are transverse slices for the flow since, e.g., on ©¥ one has © = ng* > 0.

To verify that ¥ is a Poincaré section we must show that all orbits return
to ©F in both time directions. We do this in the special case where L(u,v,w) =
tw? + 2v% = F(u).

6.1. A section when F(u) > 0. Assume that F(u) > 0. Then the section

¥ is given by
2 = {(w,0,pu, V2FW)) | u,p, € R} .

If we also assume that for large u the potential F'(u) grows superquadratically (to
be precise, F(u)/u? — oo as u — +o0) all solutions oscillate, i.e. for any solution
u(t) of the Euler-Lagrange-Poisson equations and any ¢ there exist t— < to < t4
at which the solution has local minima. Thus any orbit of the Hamiltonian flow on
M returns to X both in forward and backward time. This has been shown in [11]
for F(u) = (1 — 4?)? and with a minor modification the proof can be generalised
to superquadratic potentials.

So ¥ is a global Poincaré section for M and clearly ¥ is diffeomorphic with the
plane, while fz dfy = o0. Therefore the Hamiltonian flow on M is conjugate to a
planar Hamiltonian system, as was explained in Proposition 5.2.
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6.2. Proof of Theorem 1.4. We claim that for some M < oo any bounded
solution u(t) of the Euler-Poisson equations is actually bounded by |u(t)| < M. This
then immediately implies that |u"" — au"| < M', and hence, using an interpolation
inequality, that all derivatives u¥) of order j < 4 are also uniformly bounded. It
follows that the Hamiltonian flow on the level set M has a largest compact invariant
set K C M.

Although this may be well known to some, let us prove our claim. Multiply
the equation with u(t) and h(t) = m (a € R), and integrate by parts to get
/R[h(uF'(u) + (u")?) + (2h" — ah)uu" — $A""u?]dt = 0.

Use |h"],|h""| < Ch and also uu” < Lu? + €(u")? to obtain
/Rh[uF'(u) - C'u? + §(u")?]dt < 0.

Superlinearity of F’(u) implies uF'(u) — C'u® > u? — C". One gets [h(u? +
(u")?)dt < C"" independent of u and a. This leads to the asserted L*°-bound.

Using the Poincaré section for the flow we obtain a closed one-form 5 on M
with ¢x8 > 0 everywhere. Since K is compact ix6y is bounded from below on K
by some positive constant. We can therefore choose k¥ > 0 large enough so that
ix(6p + kB) > 0 on K. Lemma 3.4 then provides us with a smooth function f on
M for which 6y + k8 + df is a contact form.

Assuming also that a < 0, we write o = —a? and define
1
I= §(av2 +p2/a), ¢ =arctan Z—Z,

ie.
Dy =V2alsing, v=+/2I/acose.

Thus ¢ is a smooth function on the universal cover of M. A short calculation reveals
that

—Idyp = pydv —d (Ugv)

so that the canonical form on M is given by 6y = pydu — Idp + d(vp,/2). The
Hamiltonian as a function of (u,py, I, ) is H = al 4+ py+\/2I/acosy — F(u). On
its zeroset one therefore has

2
—J__Pu ﬁ 2 F(u)
9) I_{ \/ﬁcosg0+\/2a3 cos? p + . .

The trajectories of the Hamiltonian vector field on M are determined by the “prin-
ciple of least action” [2, section 45C] § [ 6y = 0, i.e. by & [ pydu—I(u,py,p)dy =0,
where we regard I as the smooth function of (u, p,, ¢) specified in (9). Consequently
they are integral curves of the Hamilton equations of I(u, py, ¢), i.e.

du _ 0I(u,pu, ) dpu _ _OI(w,pu, )

dy Op. = dp Ou
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Y

a1 b \ as bo u

FIGURE 4. The (u,Y) plane.

.

7. Topology of M

Instead of analysing the topology of energy manifolds of second order La-
grangians in general we restrict ourselves here to the Swift-Hohenberg and eFK
Lagrangians. In that case an energy manifold is given by the equation H =
P2 + puv — $v? — F(u) = 0. By rewriting this as

=)+ 1 {ut (1= a/20) ~ (pu— (1 4+ 0/20) } ~ Flw) =0

and introducing the new coordinates X = 1 {p, + (1 — a/2)v} and Y = 1 {p, — (1 + a/2)v},
we see that M is given by

1
(10) §p3 +X2=Y?+ F(u).
It is immediately clear that all hypersurfaces obtained by varying o € R are diffeo-
morphic.

If F(u) > ¢ > 0 for some constant ¢, then (10) also shows that M is diffeo-

morphic to S x R?, since one can parametrize M by p, = /2Y2 + 2F(u) cos#,
Y = /Y2 + F(u)sin6, where Y,u € R and 6 € R/27Z are the parameters.

We can also easily compute the homotopy type of M for general F. Let us
assume that F'(u) > 0 for large enough |u|, and that F' only has simple zeroes.
Then the set {u € R | F(u) < 0} is the union of a finite number of intervals, say
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[a1,b1] U~ - U[ag,bg]. The set in the (u,Y)-plane where Y2 + F(u) vanishes is the
union of k closed curves T';, given by Y = &/F(u), with v € [a;,b;], 1 < j < k.

Let 7 : R* — R? be the projection in (u, X,Y,p,) space onto the (u,Y) plane.
Then (M) is the region outside the curves I';, with the curves I'; included. Over
each (u,Y) in the interior of 7(M) the preimage 7—1(u,Y) is a circle whose radius
shrinks to zero as the point (u,Y’) approaches one of the curves I';.

One can deform the projection 7(M) onto the union of the circles I'; and the
k — 1 line segments I'; = {(u,0) | b; < aj11}. This deformation can be lifted to a
deformation retraction of M onto 7~ *(I'y U---UT, UT; U---UT}_,). Since each
7~ () is an S* and each 7~'(T}) is an S? one finds that M has the homotopy type
of a bouquet of k circles and k& — 1 two-spheres. The first singular homology group
is generated by the 7~ 'T';, the second homology group is generated by 7~*(T}).

For instance, when k& = 1, one finds that M the homotopy type of a circle. In
this case one actually finds that M is diffeomorphic with S! x R2.

If one applies a similar analysis to the case in which F'(u) > 0 in some bounded
interval (by,a2) and F(u) < 0 on (—o0,b1) U (az, 00), then one finds that M has the
homotopy type of S? and in particular is simply connected. One finds that M is
diffeomorphic with R x S2.

8. F(u) arbitrary, a < 0

8.1. A very singular perturbation problem. In this section we present
the example promised in Theorem 1.5. Consider the Swift-Hohenberg Lagrangian
L(u,v,w) = w?+ %v? 4+ F(u), a < 0. Rescale time by t — \/et, and set & = —1/e.
This yields a more convenient formulation. The Lagrangian now becomes

62

1
(11) L(u,v,w) = EwQ - 5112 + F(u)
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in which € is a small positive constant. The variational equation for this Lagrangian
is

(12) 62u/ul + ull + Fu(u) — 07

As e N\, 0 equation (12) formally reduces to a second order equation

(13) u" + Fy(u) = 0.

We will verify that for small enough € solutions of (12) are essentially solutions of
the second order equation (13), with a small rapid oscillation superimposed. This
will allow us to construct many periodic orbits on the corresponding zero-energy
manifold M and compute their actions.

We again pass to the Hamiltonian formulation of (12) and introduce new vari-
ables p, and p,,, where now

9L _ 2,
Po= 5w~ )

Thus w is a solution of (12) if and only if (u, v, py, py) is a solution of the Hamiltonian
2

system with Hamiltonian function H(u,v,pu,pv) = 2% + puv + 30> — F(u). We
rewrite this as

2
_ b 1 2 1,
H=Ls s oan) - {5+ P ),

and apply the following coordinate change
_ P
NG
It follows from pydU + pydV = pydu + pydv + d(pup,) that this is a symplectic
coordinate change.

(14) U=u+pv7 Pu = Pu, VZ\/E(U+pu) bv

The Hamiltonian in these new coordinates is

1 1
H=o (+V?) - {§p%+F(U— \/Epv)}-

The Hamiltonian equations are
U=-py, pv=F(U-=-epy),
V=e¢'py+VeF'(U—-epy), pv=—¢'V

We will consider solutions which lie on the zero energy manifold M = H~1(0). In
particular, we will assume € is small and that both sides in the identity

(15)

1 1
(16) % (bt +V?) = §P?J + F(U — Vepv)

which defines M are bounded. Then V' and py are of order /€, and the Hamiltonian
equations are approximately given by two uncoupled two-dimensional systems,

(17) U=-py pv=F(U)
and

(18) V=elpy py=—€'V
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The first of these is the Hamiltonian system corresponding to the second order ODE
(13). The second is a simple harmonic oscillator with angular frequency e~!. If we
assume that (V,py) is given by

V = V2Iesin(t/e — §), pv = V2Iecos(t/e — ¢)

then the zero total energy condition (16) forces (U, py) to be a solution of (17) with

(19) %p%} +FU)=1

Since v2I¢ is the amplitude of the (V,py) oscillation we must always have I > 0.
Formally one would expect solutions of the Swift-Hohenberg equation (12) to be
approximated by

(20) u(t) = U(t) — ev2I cos(t/e — ) + o(e)

where (U(t), py(t)) is a solution of (17) with energy I > 0, and ~ € [0,27) is some
phase angle.

8.2. Action angle variables. We replace (V,py) by new coordinates (I, @)
given by

1 bv
I= 3 (p} +V?), ¢:arctan7

and thus V = v2Icos¢, py = V2Ising. One has Idp = %(Vdpv —pydV) =
—pvdV + 3d(Vp,), so that

1
(21) pudl +pydV = pudU — Id$ + 5d(Vpv).

It follows that dU A dpy + dV Adpy = dU A dpy + dI Adé, so that (U, py, I, $) are
symplectic coordinates. The Hamiltonian H appears in these variables as

Hzé— {%p%%—F(U—\/ﬁcosd))}.

Define
1 _
0= {U.00) € B | < 3o + FO) < €101+ ] < €}

for certain 0 < ¢ < C,C < oo with ¢ small and C and C large. We also define M,
to be the portion of M for which (U, py) lies in Q.. After rewriting the equation

H =0 as
I 1, [T
I_ - F(U — ex /2=
; 5Pu + (U-—-e€ 6cos¢)

one concludes from the implicit function theorem that for small enough e there is
a unique solution I = J(U, py, ¢, €) which is smooth in € and whose Taylor series
begins with

(22) j(UapUa ¢7 6) = GIO(UapU) + 62Il (U7pU7 ¢) + 0(63)

where Iy = $p}, + F(U), Iy = —F'(U)+\/p}; + 2F(U) cos ¢. In particular we see
that for small € the portion M, of the zero energy manifold is diffeomorphic with
the product space . x S?'.
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On M, we have
do OH 1 €
X . L _PWU-VaI =
o i . U €COS @) 5] cos ¢
while for small enough € one has ¢/ < I/e < C' forany 0 < ¢ < ¢ < C < C' < 0.
Therefore, for small € one has

do 1

E__E+O(1)<O’
SO we may parametrize orbits of Xy by the angle variable ¢ instead of time t.
Orbits are then determined by specifying (U, py) as functions of ¢; given the (U, py)
component of an orbit, one recovers the action from I = J(U, py, ¢; €).

On M, orbits satisfy the least action principle, i.e.
(s/pUdU +pydV =0, i.e. 5/pUdU —I(U,py,p,e)dp =0

where we have used (21). Hence (U, py) as function of ¢ satisfies the Hamilton-
ian equations with Hamiltonian J(U, py, ¢,€). Moreover, (21) shows us that if
(U(¢),pu(¢)) is a 2N= periodic solution of

U 81 dpy 0T

% o g o0

then the corresponding periodic solution of (15) has action

(23)

2N«
A= 7( pudU + pydV = / pudU — (U, pu, 6,¢) dg.
0

We write (23) out to get
1dU 94U, pu, 9)

-2 2
l de _ 7 ol (U; bu, d)) 2
cdo F'(U) “—ou + O(€”).
Introducing a new time variable 7 = e¢ we get
du oL(U,py, < .
W _ o+ 28GP0 D) | g2
(24) dr BpU
de _ ' aIl(UapUa E) 2
e F'(U) -« i + 0(€%)

where the O(e?) terms are smooth functions of (U, py, Z) and all terms are 27-
periodic in 7/€ = ¢.

Denote the flow determined by these ODEs by ®7. Since the perturbation
terms in (24) are uniformly smooth in (U, py) the flow ®7 is an O(e) perturbation
of 7 in the C™ topology. ” Here ®] is the flow corresponding to the autonomous
equations

dUu de
'
— =py — = —F'(U).
ar PV Tgr )
"In fact, by the method of single frequency averaging [2, section 52] the returnmap ®7 with
7 =2N7e, N € N, is an O(€?) perturbation of the return map of the averaged Hamiltonian. Since
first order term in (22) has zero time average, ®7 is O(€2) close to ®§ in the C™ topology.

(25)
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These are the Hamiltonian equations for Hy = 1p?, + F(U), and thus periodic
orbits of (25) come in families parametrized by their energy E = Ho(U,py). On
any such family the period T depends smoothly on the energy E. We shall call a
periodic orbit nondegenerate if at this orbit one has g—g # 0.

Assume that (U(7),pu(7)) is a T periodic nondegenerate solution of (25). It
traces out a closed curve v in the (U, py) plane. This curve consists of fixed points
for the map ®1'. The nondegeneracy condition implies that for small € > 0 the map
®T will have at least one fixed point in an € neighborhood of 7. In general there
will be many fixed points. If T = 2N e for some N € N then these fixed points
correspond to periodic solutions of (24) which are € close to (U(r — 10), pu (T — 70))
for some phase 79. The action of this solution is

A= /pUdU = JI(U,py, ¢ €)de

= /pUdU - ng.

Now use (24) and (22) to replace dU/dr and J/e respectively. One obtains

A= / { )+O()}dr

:/0 {3t - F@}ar+ 000

Thus we have proved: near any nondegenerate T' = 2w Ne periodic orbit (U , ﬁU) of
(25) there is a T periodic solution of (24) whose action is within O(e) equal to the
Lagrangian action of (U,py).

8.3. Simple mechanical systems. Consider the mechnical system with La-
grangian L(u, %) = 14 — F(u). The energy of a periodic orbit is E = 142 + F(u).
Using dt = du/4 one finds that the action of such an orbit is

102 -
S = f Lat= ¢ 2% 2P0 4 _ f E-2FW g,
\/W 2(E — F(u))
For the special case of the harmonic oscillator, L = (u —a?u?) all periodic orbits

are of the form u(t) = Asina(t — tp), and by direct substltutlon one finds
27 /a 1
S = / 2 (A%a® cos® a(t — tg) — A%a’® sin® a(t — to)) dt = 0.
0

In other words the action of any orbit of the harmonic oscillator vanishes.

LEMMA 8.1. There exists a potential F : R — R with F(u) >0 on —L<u <L
and F(u) < 0 when |u| > L such that i + F,(u) = 0 has one periodic orbit with
positive Lagrangian action, and one with negative Lagrangian action.

PROOF. We construct the potential by perturbing F(u) = $u®. Let 0 < f
C*(R) be supported in 1 < u < 2. Then for small X\ the potentlal Fy(q)

I m
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F(u) — Af(u) has a periodic orbit uy(t) which oscillates between —2 and 2, and
hence has energy E = 2. The action Sy of this orbit satisfies

2 3 2 2
ds =\/§/ 3E - F(u) f(u)du=2/ 6 —u Flu)du > 0.
A |5—o 2 (B — F(u))*” —2 (4—u2)*?

For sufficiently small A > 0 the amplitude 2 orbit of the potential F will have
positive action. Since F) coincides with the quadratic potential 4?/2 in the interval
|lu| < 1, the potential F) still has an amplitude 1 orbit (u(t) = cost) with zero
action. We now perturb F)\ to F\, = Fx + pg(q), where 0 < g € C*(R) is
supported in |u| < 1. Reasoning as above we find that for sufficiently small g > 0
the amplitude 1 orbit of the potential F , will have negative action. By first
choosing A > 0 small but fixed, so that the amplitude 2 orbit has positive action
and then choosing p > 0 small enough we can guarantee that the amplitude 2 orbit
of Fy , still has positive action, while the amplitude 1 orbit has negative action.

F(u)

__(________________________
L e LTSS -—----

4

B

FIGURE 5. The potential F(u)

Since the amplitude 1 and 2 orbits are unaffected by changes in the potential
outside the interval |u| < 2, we may define F(u) as we like for |u| > 2, and in
particular we could make it vanish at u = £3, and also be negative for |u| > 3. O

8.4. The example. We choose F'(u) as in Lemma 8.1. Then for sufficiently
small € > 0 the zero-energy manifold M = H~1(0), H = é + puv + 0% — F(u)
contains two periodic orbits with actions of opposite signs. Furthermore, since
F(u) is negative outside of the interval |u| < 3, the manifold M is homeomorphic
to S2 x R, i.e. M is simply connected. By the Hofer-Zehnder criterion, Lemma 3.2,
M cannot be of contact type.

A different example for a potential of globally the same shape could be found
via the methods used in [13], where simple closed periodic orbits are found with



CONTACT AND NONCONTACT TYPE HAMILTONIAN SYSTEMS 25

estimates on their actions. This also yields periodic solutions with both negative
and positive action, but with an explicit estimate for the range of the parameter «
for which M,, is not of contact type.

8.5. More examples. It is very easy to extend the example in §8.4 to other
examples. Namely, one can modify the potential F'(u) outside the interval —3 <
u < 3 any way one likes, and the resulting hypersurface M will still not be of
contact type. Indeed, the new M contains the two periodic orbits with opposite
actions, and they are still contractible (since the contraction takes place in the
region M N {|u| < 3}.)

IS

/N
VARERN. VARV

FIGURE 6. Swift-Hohenberg and Modified Swift-Hohenberg potentials

Thus the potential on the right in figure 6 contains our previous example and
hence yields an energy manifold M which is not of contact type. It can be deformed
into the potential F'(u) = 1(1—u?)?+F (with —1 < E < 0) of the Swift-Hohenberg
equation without changing the number of zeros of the potential ', and without
changing the topology of the hypersurface M. As we observed in the introduction,
we do not know if M with the Swift-Hohenberg potential is of contact type or not.
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