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Abstract

In this paper we present a rigorous numerical method for validating analytic solutions of
nonlinear ODEs by using Chebyshev-series and domain decomposition. The idea is to define
a Newton-like operator, whose fixed points correspond to solutions of the ODE, on the space
of geometrically decaying Chebyshev coefficients, and to use the so-called radii-polynomial
approach to prove that the operator has an isolated fixed point in a small neighborhood of
a numerical approximation. The novelty of the proposed method is the use of Chebyshev
series in combination with domain decomposition. In particular, a heuristic procedure based
on the theory of Chebyshev approximations for analytic functions is presented to construct
efficient grids for validating solutions of boundary value problems. The effectiveness of the
proposed method is demonstrated by validating long periodic and connecting orbits in the
Lorenz system for which validation without domain decomposition is not feasible.

1 Introduction

In dynamical system theory one is often interested in the existence of invariant objects such as
equilibria, periodic orbits, heteroclinic orbits, invariant manifolds, etc. The existence of such special
orbits can reveal global information about the behavior of the dynamical system, for example
through forcing theorems. The analysis of these special solutions, however, is in general difficult
because of the nonlinearities in the system. Hence one usually resorts to numerical simulations.
The information obtained through numerical simulation gives a lot of insight, but, unfortunately,
it does not yield mathematical proofs.

The field of rigorous numerics is concerned with bridging the gap between numerical simula-
tion and mathematically sound results. The main idea is to combine numerical simulation with
analysis to establish mathematically rigorous statements. Examples of such methods can be found
for instance in the CAPD software-package [1], which consists of a comprehensive C++-library for
validated numerical computations of a variety of dynamically interesting objects for both discrete
and continuous-time dynamical systems, using interval arithmetic Lohner-type algorithms. An-
other well-known software package is COSY, which is capable of rigorously integrating flows of
vector fields using Taylor models [2, 7].

Yet another approach is based on a parameterized Newton-Kantorovich argument, sometimes
called the radii-polynomial approach. We will describe this method in full detail later in the
paper. For the moment, it suffices to say that it consists of restating the problem in a fixed
point formulation T (x) = x, and contractivity of the map T (on a ball centered at the numerical
approximation of the solution) is reduced to checking a finite set of inequalities that depend on
the radius of the ball (i.e. the radius is a parameter), see e.g. [14, 19,20,22,23,31].

Of particular interest for the present paper is the implementation of these ideas based on
Chebyshev series introduced in [23]. Chebyshev series have, of course, long been a well-known tool
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in numerical analysis (see e.g. [8,25,29] and the references therein). Their successful applicability
to rigorous numerics is largely due to the analogy between Chebyshev series and Fourier series,
allowing for manageable analytic estimates. The idea in [23] is to expand the unknown solution u
to a boundary value problem in the Chebyshev-basis on the interval [0, L], and to work, for the
functional analytic arguments, on the space of algebraically decaying Chebyshev-coefficients.

The fundamental restriction of the setup in [23] is that only “short” pieces of orbit may be
verified this way, since for longer orbits the coefficients in the Chebyshev series decay too slowly.
Hence, although the Chebyshev series, due to their similarity to Fourier series, promise to vastly
improve the efficiency of rigorous numerical algorithms (compared to, for example, spline approx-
imations) for systems of ODEs, they thus far had the major restriction of only succeeding for
short time intervals. In the current paper we solve this problem by adding domain decomposi-
tion concepts to the picture. In particular, we describe how a combination of ideas from domain
decomposition and Chebyshev expansions can be united into an integrated approach for rigorous
numerical computations of solutions to boundary value problems on large intervals.

To be precise, we present a rigorous numerical procedure for solving boundary value problems
(BVPs) 

du

dt
= g(u, λ0), t ∈ [0, L],

G
(
u(0), u(L), λ1

)
= 0,

(1.1)

using Chebyshev series and domain decomposition. Here g : Rn×Rn0 → Rn is a polynomial vector
field in an n-dimensional phase space, which may depend on a parameter λ0 ∈ Rn0 . We restrict
our attention to polynomial vector fields for technical reasons: they allow for a relatively simple
functional analytic setup, see Section 2, so that we can focus on the novel domain decomposition
aspects. We note that many non-polynomial (but analytic) problems may be reformulated as a
polynomial problem via change of variables and automatic differentiation techniques, see e.g. [20]
and the references therein. Furthermore, for the sake of presentation, the estimates in Section 6,
which are needed to validate numerical approximations of (1.1), are only developed in detail for
quadratic polynomials. We remark that the estimates for higher-order polynomials are similar and
straightforward generalizations of the quadratic bounds. The function G : Rn × Rn × Rn1 → Rnb
represents a collection of nb boundary conditions, which may depend on a parameter λ1 ∈ Rn1 .

In the BVP (1.1) parameters may either be fixed or determining their value may be part of
the problem. This also holds for the length of the interval L, which can be predetermined or
a priori unknown (as in the case of a periodic orbit). In any case, to have a locally unique solution
one needs that the number np of free parameters (in λ0, λ1 and possibly L) is such that the
number of boundary conditions balances the degrees of freedom: nb = n+np. In the current paper
we restrict our attention to such problems with locally unique solutions. We note that it is well
understood how to extend the method to families of solutions via rigorous continuation techniques,
see [9, 14,18,32].

As explained above, the first step in the strategy extends the one presented in [23]. We recast
(1.1) into an equivalent zero-finding problem in terms of the Chebyshev coefficients, where we
incorporate a flexible domain decomposition component in the formulation. We then compute an
approximate zero by truncation, and use a Newton-like scheme to establish the existence of the
orbit of interest via a contraction argument.

The proposed method differs in one additional seminal aspect from the approach presented in
[23]. The approach in [23] is based on recasting (1.1) into an equivalent fixed-point problem on
the space of algebraically decaying sequences. However, integral curves of analytic vector fields are
itself analytic. Hence the associated Chebyshev coefficients decay to zero at a geometric rate rather
than merely at an algebraic rate. From that perspective it is more natural to pose the equivalent
fixed point problem on the space of geometrically decaying sequences, i.e., on an exponentially
weighted `1-space, see Section 2. This has several advantages. The estimates for bounded linear
functionals and discrete convolutions, which constitute a fundamental part of the method in this
paper, are more easily derived in the geometric setting; see [19] for a detailed discussion of these
issues. Hence, the more transparent expressions allow us to concentrate on the core matter of
domain decomposition.

Exploiting the geometric decay of the coefficients has consequences that go beyond cosmetic
aspects, since the rate of decay links directly into the way the domains in the domain decomposition
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are chosen. We here give a brief overview of the ideas, while all details can be found in Section 4.
We split the interval [0, L] into subintervals and on each of these we write u as a Chebyshev series.
The main issue is how to (optimally or naturally) choose the splitting into subintervals. The
theory of Chebyshev approximations explains how the decay rate of the Chebyshev coefficients of
a function is related to the location of its complex singularities in the complex plane, see e.g. [29].
Crudely stated, complex singularities which are located close to the real axis are the main cause
for low decay rates. A rescaling in time, or partitioning of the domain, can be used to push the
complex singularities away from the real axis thereby obtaining higher decay rates (and hence
fewer Chebyshev modes are needed per domain).

The goal of domain decomposition in this context is to overcome the issue of low decay rates by
partitioning the domain [0, L] into a finite number m of subdomains, and to rigorously solve for the
Chebyshev coefficients of

{
u|[ti−1,ti] : 1 ≤ i ≤ m

}
simultaneously. The idea is to determine a grid

{0 = t0 < t1 . . . < tm = L} such that each piece u|[ti−1,ti] of the orbit can be accurately approxi-
mated with a relatively small number of modes. In Section 4 we present a heuristic procedure for
determining a grid for which the decay rates of the Chebyshev coefficients on each subdomain are
(approximately) uniform over the subdomains. By choosing m appropriately, this (uniform) decay
is sufficiently rapid to obtain accurate approximations with a relatively small number of Chebyshev
modes on each subinterval, so that a succesfull rigorously verified computation may ensue. The
procedure is based on examining the complex singularities of the orbit to be validated by using a
robust rational interpolation scheme developed in [26,27]. In Section 5.2 we illustrate that domain
decomposition based on the location of the complex singularities significantly enhances the global
improvement of the decay rates in a way that cannot be achieved by merely using uniform grids.

Before proceeding with a short description of some concrete results that illustrate how domain
decomposition significantly enhances the applicability of Chebyshev series in computer-assisted
proofs, a few remarks concerning the literature are in order. The literature on solving boundary
value problems is vast, and an overview, even when restricting to rigorous computer-assisted ap-
proaches, is far beyond the scope of this paper. Let us, however, mention a few key papers to
briefly sketch what kind of methods have been developed by the rigorous numerics community.

In [3, 4, 10, 16, 37] functional analytic methods, similar in spirit to ours, are used to solve
BVPs: the differential equation is reformulated into an equivalent fixed-point problem and is
solved by verifying the conditions of the Contraction Mapping Principle with the aid of a computer.
Fundamentally different approaches based on topological rather than functional analytic methods,
such as the Conley-index and covering relations, have been proven to be very effective as well (see
e.g. [5, 13, 17, 36]), especially when combined with high-accuracy interval-arithmetic integration
techniques (see e.g. [6, 24]). Finally, let us also mention the method in [12] based on shadowing
and fixed point arguments.

To demonstrate the effectiveness of our method we have validated “long” connecting and peri-
odic orbits in the Lorenz system

du

dt
=

 σ(u2 − u1)
u1 (ρ− u3)− u2

u1u2 − βu3

 ,

where σ, β, ρ ∈ R are parameters. We set β = 8
3 , σ = 10, and let ρ > 1. The parameter values are

referred to as classical if ρ = 28. All the computations presented below have been implemented in
matlab, using the intlab package [28] for the necessary interval arithmetic, and the Chebfun
package [15] to construct the required Chebyshev approximations. The code is available at [34].

Application 1. We have proven the existence of a transverse heteroclinic orbit between hyperbolic
equilibria in the classical Lorenz system. The implementation in [22], which in spirit is very similar
to the one discussed in the present paper, except that splines are used instead of Chebyshev
polynomials, was not powerful enough to verify the heteroclinic orbit for the classical parameter
values. For these parameter values it turns out that the connecting orbit cannot be verified by using
a Chebyshev series on a single domain, hence domain decomposition is essential. The Lorenz system
has three hyperbolic equilibria, namely the origin and q± := (±

√
β (ρ− 1),±

√
β (ρ− 1), ρ − 1),

which are commonly referred to as the positive and negative eye. A connecting orbit from q+ to
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Figure 1.1: The connecting orbit from the positive eye to the origin in the Lorenz equation with
classical parameters. The time of flight between the local (un)stable manifolds is L = 30. The geo-
metric objects colored in red and green are representations of W s

loc (q+) and Wu
loc (0), respectively.

the origin is characterized by 
du

dt
= g(u), t ∈ [0, L],

u(0) ∈Wu
loc (q+) ,

u(L) ∈W s
loc (0) ,

(1.2)

where L > 0 is the integration time required to travel from the local unstable manifold Wu
loc (q+)

of q+ to the local stable manifold W s
loc (0) of the origin. The local invariant manifolds can be

parameterized using the method in [22, 33] to obtain rigorously validated descriptions of explicit
boundary conditions that supplant the statements u(0) ∈ Wu

loc (q+) and u(L) ∈ W s
loc (0), see

Section 5.4. The system (1.2) is thus reduced to a BVP of the type (1.1).
We established the existence of an isolated solution of (1.2) for L = 30 time units by using a

grid consisting of m = 55 subdomains. The orbit is shown in Figure 1.1. The C0-bound for the
error between the exact and numerical approximation was of order 10−9. The reader is referred to
Section 5.4 for the details.

Application 2. We have validated a periodic orbit of period L ≈ 25.03 on the Lorenz attractor for
the classical parameter values. We note that L is a parameter and G consists of u(0)−u(L) = 0 ∈ R3

plus a phase condition (u(0) lies in a certain Poincaré section, see Section 5.2). The orbit is shown
in Figure 1.2(a). The C0-bound for the error between the numerical approximation and the exact
solution was of order 10−10. Rather than pushing for extremely long orbits (which have already
successfully been obtained via high-precision arithmetic [6]), this periodic orbit is primarily meant
as an illustration of the typical behavior of the domain decomposition algorithm. In Figure 1.2(b)
the size of the Chebyshev coefficients on all domains (as determined by the algorithm described in
Section 4) is shown simultaneously. This showcases the fact that the algorithm determines a grid
such that the decay rate is uniform.

Application 3. As a third application we considered a family of periodic orbits parameterized
by ρ, accumulating to a homoclinic orbit to the origin at ρhom ≈ 13.93. In particular, the periods
of the periodic orbits tend to infinity as ρ ↓ ρhom, and it becomes increasingly hard to validate
the solution. Indeed, the goal of this example is to push our method to the edge of its current
applicability. With the orbits spending a lot of time near the equilibrium, the algorithm for
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Figure 1.2: (a) A periodic orbit on the Lorenz attractor of period L ≈ 25.03 validated with
m = 35 subdomains. (b) A semi-logarithmic plot of the coefficients in the Chebyshev series on all
subdomains for the three components of the solution.
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Figure 1.3: (a) A typical periodic orbit near the homoclinic connection. The period of the orbit
is L ≈ 100.25. Notice the sharp turn of the orbit near the origin. (b) The x, y and z components
of the orbit. The three components are fairly flat for a relatively long time. These flat parts
correspond to the part of the orbit near the equilibrium where the dynamics are slow.

determining the domain decomposition based on the estimated location of the poles turns out
to still work well for the part of the orbit that describes the near-homoclinic excursion, but not
so well in the neighborhood of the equilibrium, see Section 5.3.1 for a more detailed discussion.
Furthermore, the problem becomes increasingly ill-conditioned as ρ approaches ρhom. This is
remedied by considering ρ as a free parameter rather than a fixed one, and adding a pseudo-
arclength continuation type equation, see Section 5.3.1.

A typical validated periodic orbit near the homoclinic orbit for ρ close to ρhom is shown in Figure
1.3(a). It has two geometrically distinct parts: it spends a long time close to the equilibrium where
the components are near-constant, see Figure 1.3(b), while the peak corresponds to the relatively
short excursion into phase space. The grid is uniform on the flat part of the solution (where very
few modes are used per domain), and the grid is non-uniform in the peak (where many modes are
used per domain), see Section 5.3.1 for details.

This paper is organized as follows. We begin by briefly introducing the necessary background on
Chebyshev series in Section 2. The setup for the rigorous verification of the numerical computations
in the domain decomposition context is described in Section 3. The accompanying estimates
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are postponed to Section 6 as not to break the flow of the arguments. In Section 4 we discuss
the algorithm for finding a domain decomposition that leads to uniform decay of the Chebyshev
coefficients. Section 5 deals with the three applications summarized above. Finally, in Section 6 we
first develop the full details of the estimates for the case of periodic boundary conditions, and then
give the modifications required for the non-periodic boundary conditions that are used in some of
the presented applications.

2 Preliminaries

2.1 Chebyshev series

The reader is referred to [29] for all proofs and a more comprehensive introduction into the theory
of Chebyshev approximations. Here we summarize the properties needed for our method.

The Chebyshev-polynomials Tk : [−1, 1] → R of the first kind can be defined by the relation
Tk (cos θ) = cos (kθ), where k ∈ N0 and θ ∈ [0, π]. As suggested by this definition, the Cheby-
shev series associated to the Chebyshev polynomials (Tk)

∞
k=0 constitute a non-periodic analog of

Fourier-cosine series. In particular, Chebyshev and Fourier-cosine series have similar convergence
properties. For instance, any Lipschitz continuous function admits a unique Chebyshev expansion.
The following proposition describes the decay of the Chebyshev coefficients of an analytic function.

Proposition 1. Suppose u : [−1, 1]→ R is analytic and let

u = a0 + 2

∞∑
k=1

akTk

be its Chebyshev expansion. Let Eν ⊂ C denote an open ellipse with foci ±1 to which u can be
analytically extended, where ν > 1 is the sum of the semi-major and semi-minor axis. If u is
bounded on Eν , then |ak| ≤Mν−k for all k ∈ N0, where M = supz∈Eν |u(z)|.

Remark 1. The largest such ellipse Eν is referred to as the Bernstein ellipse associated to u.

The product of two Chebyshev series is (in direct analogy with Fourier series) described by a
discrete convolution, as expressed by the next proposition.

Proposition 2. Suppose u, v : [−1, 1]→ R are Lipschitz continuous and let

u = a0 + 2

∞∑
k=1

akTk, v = b0 + 2

∞∑
k=1

bkTk,

be the associated Chebyshev expansions. Then

u · v = c0 + 2

∞∑
k=1

ckTk, where c = a ∗ b :=
∑

k1+k2=k
k1,k2∈Z

a|k1|b|k2|.

Furthermore, we state an identity which will be useful for computing the derivative of a
Chebyshev-series:

dTk
dx

(x) =
k

1− T2 (x)
(Tk−1 (x)− Tk+1 (x)) , k ∈ N. (2.1)

Finally, we have the product formula

Tk1Tk2 =
1

2
(Tk1+k2 + T|k1−k2|). (2.2)

As we will be solving boundary value problems, we observe that Tk(1) = 1 and Tk(−1) = (−1)k.
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2.2 Sequence spaces

The functional analytic reformulation of (1.1) in terms of the Chebyshev coefficients is posed on a
weighted `1 space. More precisely, in light of Proposition 1, we define the space

`1(ν,n) :=

{
(ak)k∈N0

: ak ∈ Rn,
∣∣∣[a0]j

∣∣∣+ 2

∞∑
k=1

∣∣∣[ak]j

∣∣∣ νk <∞, 1 ≤ j ≤ n

}
,

where [ak]j denotes the j-th component of ak ∈ Rn and ν > 1 is a given weight, endowed with the
norm

‖a‖(ν,n) := max
1≤j≤n

{∣∣∣[a0]j

∣∣∣+ 2

∞∑
k=1

∣∣∣[ak]j

∣∣∣ νk} .
We shall write `1ν := `1(ν,1) and ‖·‖ν = ‖·‖(ν,1). The convolution a∗b of two vector-valued sequences

a, b ∈ `1(ν,n) is defined component-wise.
A particularly important reason for choosing the above norm is that it induces a natural Banach

algebra structure on `1(ν,n) with respect to the discrete convolution:

Proposition 3. The space
(
`1(ν,n), ∗

)
is a Banach algebra. In particular

‖a ∗ b‖(ν,n) ≤ ‖a‖(ν,n) ‖b‖(ν,n)

for any a, b ∈ `1(ν,n).

Finally, we state an elementary result about the dual of `1ν which will be used extensively
throughout this paper. Let {εl}∞l=0 be the set of “corner points” of the unit one ball in `1ν :

(ε0)k :=

{
1 k = 0

0 k > 0,
and (εl)k :=

{
1

2νl
k = l

0 k 6= l,
for l ∈ N. (2.3)

Then we have the following characterization of the dual of `1ν .

Lemma 1. Let ψ ∈
(
`1ν
)∗

, then

‖ψ‖∗ν = sup
l∈N0

|ψ(εl)|.

3 Rigorous numerics for periodic orbits

In this section we introduce a rigorous numerical method for solving a special case of (1.1), namely
we consider the problem of validating a periodic orbit. The reason why we have chosen to present
the details of the method for periodic orbits is only for the sake of clarity, and it will be shown in
Section 5 how one can adapt the procedure to deal with other types of BVPs.

Since periodic orbits are invariant under translations in time, we need to introduce an additional
phase condition in order to isolate the periodic orbit of interest. Note that a periodic orbit can be
characterized by the following BVP:

du

dt
=

1

ω
g (u) , t ∈ [0, 1],

u (0) = u (1) ,

〈v0, u0 − u (0)〉 = 0,

(3.1)

where ω > 0 is the frequency of u, and u0, v0 ∈ Rn are fixed. The vectors u0 and v0 define a
Poincaré section through which the periodic orbit u is required to pass at time t = 0 (i.e. the phase
condition). Note that the frequency ω is a-priori unknown and must be included as an additional
variable to solve for.
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We start by recasting the problem into an equivalent zero finding problem of the form F (x) = 0
in terms of the Chebyshev coefficients. Next, we construct a Newton-like operator T for F based
at an approximate zero x̂ obtained via numerical simulation. Finally, we use a parameterized
Newton-Kantorovich method to determine a finite number of explicit inequalities, which can be
rigorously verified with the aid of a computer, in order to establish that T is a contraction on a
neighborhood of the approximate solution x̂.

3.1 Chebyshev operator for periodic orbits

In this section we reformulate (3.1) as an equivalent equation of the form F (x) = 0 by performing
domain decomposition and using a Chebyshev expansion on each subdomain. Let

Pm := {t0 = 0 < t1 < . . . < tm = 1}

be any partition of [0, 1], where m ∈ N is the mesh size. Then (3.1) is equivalent to

(P1)


du1

dt
=

1

ω
g (u1) , t ∈ [0, t1] ,

u1 (0)− um (1) = 0,

〈v0, u0 − u1 (0)〉 = 0,

(Pi)


dui
dt

=
1

ω
g (ui) , t ∈ [ti−1, ti] ,

ui (ti−1) = ui−1 (ti−1) ,
for 2 ≤ i ≤ m.

Note that each ui (if it exists) is analytic, since g is assumed to be polynomial (say of degree Ng):

g(u) =

Ng∑
|α|=0

gαu
α,

where gα ∈ Rn. Here α = (α1, . . . , αn) is the usual multi-index, with |α| = α1+· · ·+αn. Therefore,
the Chebyshev expansion

ui = ai0 + 2

∞∑
k=1

aikT
i
k, aik ∈ Rn, (3.2)

is unique and converges uniformly to ui on [ti−1, ti]. Furthermore, the coefficients
([
aik
]
j

)
k∈N0

,

where 1 ≤ j ≤ n, decay geometrically to 0 as k → ∞ by Proposition 1. In particular, there exist
numbers (νi)

m
i=1, where each νi > 1, such that

[
ai
]
j
∈ `1νi for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. In the

remainder of this section the weights ν = (νi)
m
i=1 are assumed to be fixed.

To obtain a reformulation of (Pi)
m
i=1 in terms of the coefficients ai, first observe that

g ◦ ui = ci0 + 2

∞∑
k=1

cikT
i
k,

where

ci =

Ng∑
|α|=0

gα
[
ai
]α1

1
∗ . . . ∗

[
ai
]αn
n
, (3.3)

1 ≤ i ≤ m, 1 ≤ j ≤ n, by Proposition 2. Note that ci is a function of ai. In particular,
ci : `1(νi,n) → `1(νi,n), since

∥∥∥[ci]
j

∥∥∥
νi
≤

Ng∑
|α|=0

∣∣∣[gα]j

∣∣∣ n∏
l=1

∥∥[ai]
l

∥∥αl
νi
<∞, (3.4)

8



for all 1 ≤ j ≤ n, by Proposition 3. We shall write ci = ci(ai) whenever we need to emphasize this
dependency in a more explicit way.

Substitution of the Chebyshev expansion of ui into the differential equation in Pi yields

dui
dt

= 2

∞∑
k=1

aik
dT ik
dt

= g ◦ ui = ci0 + 2

∞∑
k=1

cikT
i
k. (3.5)

By differentiating the Chebyshev polynomials, equating coefficients of the same order on the left-
and right-hand side of (3.5), and using (2.1) and (2.2), or more directly using Tk(cos θ) = cos(kθ),
one obtains an equivalent formulation of the differential equation in terms of the coefficients(
aik
)
k∈N0

:

ωkaik =
ti+1 − ti

4
(cik−1 − cik+1).

The equivalent equations for the boundary conditions are obtained in a similar fashion. In
particular, substitution of the Chebyshev expansion of ui into the phase condition yields

〈v0, u0〉 −
〈
v0, a

1
0

〉
− 2

N1∑
k=1

(−1)
k 〈
v0, a

1
k

〉
= 0,

where we have, without loss of generality, adapted it to depend only on finitely many coefficients
(this simplifies the estimates). In practice, N1 will be the number of modes up to which a1 is
computed numerically.

We are now ready to define the desired map F :

Definition 1 (Chebyshev operator for periodic orbits). Let ν = (νi)
m
i=1 and ν̃ = (ν̃i)

m
i=1 be

collections of weights such that 1 < ν̃i < νi for all 1 ≤ i ≤ m. The Chebyshev operator for periodic
orbits is the map F : R×

∏m
i=1 `

1
(νi,n) → R×

∏m
i=1 `

1
(ν̃i,n) defined by

F (x) :=
(
f0

(
a1
)
, f1

(
ω, a1, am

)
, f2

(
ω, a1, a2

)
, . . . , fm

(
ω, am−1, am

))
,

where x =
(
ω, a1, . . . , am

)
, f0 : `1(ν1,n) → R, and fi : R× `1(νi−1,n) × `

1
(νi,n) → `1(ν̃i,n), are given by

f0

(
a1
)

:= 〈v0, u0〉 −
〈
v0, a

1
0

〉
− 2

N1∑
k=1

(−1)
k 〈
v0, a

1
k

〉
,

fi
(
ω, ai−1, ai

)
:=


ai0 − ai−1

0 + 2
∑∞
k=1

(
(−1)

k
aik − a

i−1
k

)
, k = 0,

ωkaik −
ti − ti−1

4

(
cik−1 − cik+1

)
, k ∈ N,

for i = 1, . . . ,m, where we set a0 = am.

Remark 2. If ai ∈ `1(νi,n), then
(
kaik
)
k∈N0

∈ `1(ν̃i,n) for any 1 < ν̃i < νi.

By construction, we now have the following:

Proposition 4. F (x) = 0 if and only if the functions
{
ui = ai0 + 2

∑∞
k=1 a

i
kT

i
k : 1 ≤ i ≤ m

}
con-

stitute a periodic orbit of g.

3.2 Finite Dimensional Reduction

In this section we explain how to discretize the equation F (x) = 0 in order to compute a finite-
dimensional approximate solution of (3.1). We start by introducing some notation: define the
space Xν := R×

∏m
i=1 `

1
(νi,n) endowed with the norm∥∥(ω, a1, . . . , am

)∥∥
Xν

:= max
{
|ω|,max{‖ai‖(νi,n) : 1 ≤ i ≤ m}

}
.

Define projections Π0 : Xν → R, Πi : Xν → `1(νi,n), and Πi,j : Xν → `1νi by

Π0

(
ω, a1, . . . , am

)
:= ω, Πi

(
ω, a1, . . . , am

)
:= ai, Πi,j

(
ω, a1, . . . , am

)
:=
[
ai
]
j
,

9



where 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Let N = (N1, . . . , Nm) ∈ Nm be a given collection of truncation parameters and define ΠNi :

`1(νi,n) → `1(νi,n), where 1 ≤ i ≤ m, by

ΠNi

(
ai
)

:=

a
i
k, 0 ≤ k ≤ Ni − 1,

0n, k ≥ Ni,

and the Galerkin projection ΠN : Xν → Xν by

ΠN

(
ω, a1, . . . , am

)
:=
(
ω,ΠN1

(
a1
)
, . . . ,ΠNm (am)

)
.

Henceforth we shall identify ΠN

(
ω, a1, . . . , am

)
and ΠNi

(
ai
)

with[
ω, (a1

k)N1−1
k=0 , . . . , (amk )Nm−1

k=0

]
∈ R1+n

∑m
i=1Ni and

[
ai0, . . . a

i
Ni−1

]
∈ RnNi ,

respectively. This is a slight abuse of notation, but it reduces clutter. It should be clear from the
context when to interpret a variable in the finite dimensional space and when to interpret it as
an element of an infinite dimensional space with zeros in the tail. Finally, set XNν := ΠN (Xν) '
R1+n

∑m
i=1Ni .

Definition 2 (Finite dimensional reduction of F ). The finite dimensional reduction of F is the
map FN : XNν → XNν defined by

FN

([
ω, (a1

k)N1−1
k=0 , . . . , (amk )Nm−1

k=0

])
:= ΠN

(
F
(
ω, a1, . . . , am

))
.

3.3 A Newton-like scheme

In this section we introduce a method for proving the existence of an exact zero of F by using
an approximate zero of FN . The main idea is to build a Newton-like scheme in the infinite
dimensional setting by using approximate data obtained via numerical simulation. Assume that
we have computed the following:

• (C1): An approximate zero x̂ ∈ R1+n
∑m
i=1Ni of FN , and x̂ =

(
ω̂, â1, . . . , âm

)
, where ω̂ > 0.

• (C2): An approximate injective inverse AN of DFN (x̂).

The finite dimensional data will be used to construct a Newton-like operator T for F such that
the zeros of F will correspond to fixed points of T and vice versa.

We start by constructing approximations of DF (x̂) and its inverse by extending DFN (x̂) and
AN to Xν and Xν̃ , respectively. Recall that ci

(
ai
)

decays geometrically to 0 as k → ∞ by (3.4),

for any ai ∈ `1(νi,n). Moreover, cik
(
âi
)

= 0n for all k > Ng (Ni − 1) by (3.3), since âik = 0n for all

k ≥ Ni. Therefore, if the truncation sizes Ni are sufficiently large, and max {ti − ti−1 : 1 ≤ i ≤ m}
is sufficiently small, the linear part of F corresponding to ωkaik, where k ≥ Ni, will be dominant
at x̂. Consequently, one can construct approximations of DF (x̂) and its inverse by using DFN (x̂)
and AN for the finite dimensional part, respectively, and the linear part of the tail of F for the
remainder:

Definition 3 (Approximation of DF (x̂)). The approximate derivative Â : Xν → Xν̃ of F at x̂ is
defined by

Π0Â (x) : = Π0DFN (x̂) ΠN (x) ,

(ΠiÂ (x))k : =

{
(ΠiDFN (x̂) ΠN (x))k , 0 ≤ k ≤ Ni − 1,

ω̂k (Πi (x))k , k ≥ Ni,
,

where 1 ≤ i ≤ m.
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Definition 4 (Approximate inverse of DF (x̂)). The approximate inverse A of DF (x̂) on Xν̃ is
defined by

Π0A (x) : = Π0ANΠN (x) ,

(ΠiA (x))k : =

(ΠiANΠN (x))k , 0 ≤ k ≤ Ni − 1,

1

ω̂k
(Πi (x))k , k ≥ Ni.

,

where 1 ≤ i ≤ m.

Remark 3. The operator A is injective: suppose Ax = 0, then ΠN (x) = 0, since AN is assumed,
see (C2) above, to be injective, and (Πi (x))k = 0 ∈ Rn for all 1 ≤ i ≤ m and k ≥ Ni, i.e. x = 0.

In analogy to the classical notion of a Newton-operator for a finite dimensional map, we now
define an infinite dimensional Newton-like operator for F , based at x̂, as follows:

Definition 5 (Newton-like operator for F ). The Newton-like operator T : Xν → Xν for F , based
at x̂, is defined by

T (x) := x−AF (x).

An immediate consequence of the fact that A is injective is the following:

Proposition 5. T (x) = x if and only if F (x) = 0.

If x̂ is a sufficiently accurate approximate zero of F , we expect to find an exact zero x∗ of F ,
i.e., a fixed point of T , in a small neighborhood of x̂. Moreover, if r > 0 is sufficiently small (not
too small), we anticipate T to be a contraction on Br (x̂). To see why, let x1, x2 ∈ Br (0), r > 0
be arbitrary and consider the following factorization:

DT (x̂+ x1)x2 = (I −ADF (x̂+ x1))x2

=
(
I −AÂ

)
x2 −A

(
DF (x̂+ x1)− Â

)
x2. (3.6)

The first term in (3.6) is related to the numerical part of the problem and measures the quality

of the approximate inverse AN , since I−AÂ vanishes in the tail while the finite dimensional part is
the matrix IN −ANDFN (x̂). In particular, it is expected to be small by construction. The second
term is of a more fundamental nature and involves the analysis of the infinite dimensional operator
DF in a neighborhood of the numerical approximation x̂. Intuitively, we expect the difference(
DF (x̂+ x1)− Â

)
x2 to be small for small x1 if Â is an accurate approximation of DF near x̂.

As mentioned before, this is likely to be true if the truncation sizes Ni are sufficiently large, and
the mesh-size and radius r are sufficiently small. Altogether, these observations explain why it is
plausible for T to be contracting near x̂.

The following theorem quantifies the above assertions and is amenable to rigorous numerical
analysis. The proof is the same as for the case of a single domain, see [14].

Theorem 1 (Contraction mapping principle with variable radius). Assume that the following
conditions are satisfied:

(i) There exist bounds Yi,j , Zi,j(r) ≥ 0 such that

‖Πi,j (T (x̂)− x̂)‖νi ≤ Yi,j , (3.7)

sup
x1,x2∈Br(0)

‖Πi,jDT (x̂+ x1)x2‖νi ≤ Zi,j(r), (3.8)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and bounds Y0, Z0 (r) ≥ 0 such that

|Π0 (T (x̂)− x̂)| ≤ Y0, (3.9)

sup
x1,x2∈Br(0)

|Π0DT (x̂+ x1)x2| ≤ Z0(r), (3.10)

where r > 0.
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(ii) There exists a radius r̂ > 0 such that

max

{
max

1≤i≤m,1≤j≤n
{Zi,j (r̂) + Yi,j} , Z0 (r̂) + Y0

}
< r̂.

Then T : Br̂ (x̂)→ Br̂ (x̂) is a contraction.

Remark 4. The Y -bounds measure the accuracy of the approximate solution x̂, while the Z-bounds
measure the contraction rate of the Newton-like operator T .

The Z-bounds are polynomials in r, as will be shown in section 6.2, which motivates the
following terminology:

Definition 6 (Radii-polynomials). The radii-polynomials for T are defined by

pi,j (r) := Zi,j (r) + Yi,j − r, p0 (r) := Z0 (r) + Y0 − r,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Corollary 1. If p0 (r̂) , pi,j (r̂) < 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where r̂ > 0, then
T : Br̂ (x̂)→ Br̂ (x̂) is a contraction.

Note that Corollary 1 also provides a rigorous error-bound for the approximate solution:

Proposition 6. Suppose x∗ is the fixed point of T in Br̂ (x̂), then

‖u∗ − û‖∞ ≤ r̂, |ω∗ − ω̂| ≤ r̂,

where u∗, û : [0, 1] → Rn are the exact and approximate periodic orbit with frequency ω∗ and ω̂
defined by x∗ and x̂, respectively.

4 Domain decomposition

In this section we present a procedure, partially based on heuristics, for computing an efficient
grid Pm which facilitates the rigorous validation process. The main idea is to compute a grid
for which the decay rates of the coefficients âi are sufficiently high and uniformly distributed over
the subdomains. The motivation for this choice is based on the observation that a combination
of high-decay rates (uniformly distributed) and a relatively small number of modes will help to
control the tail estimates in Lemma 6 on each subdomain in a uniform way. In turn, this will aid
in verifying that T is a contraction.

4.1 A heuristic procedure for computing Pm

In this section we introduce a heuristic procedure for computing a grid Pm such that the decay
rate of the Chebyshev coefficients

[
âi
]
j
, where 1 ≤ j ≤ n, is the same on each subdomain.

The main idea is to construct Pm by using the Bernstein ellipses introduced in Proposition 1.
Suppose u∗ : [0, 1]→ Rn is the exact solution of the ODE under consideration (assuming it exists).
Furthermore, assume that the obstructions for analytically extending the components [u∗]j to the

entire complex plane are the presence of poles {zk,j}
Np,j
k=1 .

Write u∗i := u∗|[ti−1,ti] and observe that the Bernstein ellipse associated to the map

t 7→
[
u∗i

(
ti − ti−1

2
(t+ 1) + ti−1

)]
j

, (4.1)

where t ∈ [−1, 1], i.e., the largest ellipse with foci −1 and 1 to which the latter map can be
analytically extended, has the following measurements: its linear eccentricity is equal to 1, the
length of the semi-major axis is equal to

Pj (ti−1, ti) := min
1≤k≤Np,j

|zk,j − ti−1|+ |zk,j − ti|
ti − ti−1

, (4.2)
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and the length of the semi-minor axis is equal to
√
Pj (ti−1, ti)

2 − 1. Therefore, the decay rate of

the Chebyshev coefficients of [u∗i ]j is given by

Pj (ti−1, ti) +

√
Pj (ti−1, ti)

2 − 1, (4.3)

due to Proposition 1. We shall refer to the latter quantity as the size of the Bernstein ellipse
of [u∗i ]j . Note that if the components of the vector field are all coupled, the components of u∗

will (generically) have the same poles. In this case the decay rate (4.3) will be the same for all
1 ≤ j ≤ n.

Set P (ti, ti−1) := min1≤j≤n Pj (ti−1, ti) and note that the smallest Bernstein ellipse of the
components of u∗i has size

νe := P (ti−1, ti) +

√
P (ti−1, ti)

2 − 1. (4.4)

Hence, equidistributing decay rates of âi corresponds to equidistributing P (ti−1, ti). Next, define
Φm : Gm ⊂ Rm−1 → Rm−1 by

Φm (t1, . . . , tm−1) :=


P (t0, t1)− P (t1, t2)

...

P (tm−2, tm−1)− P (tm−1, tm)

 ,

where Gm :=
{

(t1, . . . , tm−1) ∈ Rm−1 : 0 < t1 < . . . < tm−1 < 1
}

, and observe that the zeros of
Φm characterize the grids which equidistribute (4.4) over the subdomains [ti−1, ti]. Therefore, the
desired grid can be obtained by computing a zero of Φm.

We shall approximate a zero of Φm by using Newton’s method. In order for Newton’s method
to be successful, however, we need to supply a sufficiently accurate initial guess for a zero of
Φm. To find such an initial guess, we interpret Φm as a smooth vector field on Gm, and the
desired grid as a steady state of the associated dynamical system. This interpretation makes
sense, since Gm is invariant under the flow induced by Φm, i.e., the ordering of the grid points
0 < t1 < . . . < tm−1 < 1 is preserved under the flow. The reason for this is that successive grid
points ti−1, ti repel each other whenever their mutual distance is sufficiently small due to the
factors ±1

ti−ti−1
in [Φm (t1, . . . , tm−1)]i−1 and [Φm (t1, . . . , tm−1)]i, see (4.2).

If Gm contains a stable equilibrium of Φm, one can approximate its location, i.e., compute an
initial guess for the desired grid, by integrating the ODE

dt

dτ
= Φm (t) , τ ∈ [0, τ0] , (4.5)

for sufficiently large τ0 > 0. In practice, we start with a uniformly distributed grid and follow the
flow of (4.5) for some time. In all our numerical experiments this process appeared to converge to
an equilibrium state and yielded a sufficiently accurate initial guess for initiating Newton’s method.

4.2 Approximation of the complex singularities

In the previous section we explained how to compute grids by computing zeros of Φm. In order
to construct the map Φm, however, one needs to determine the complex singularities of the exact
solution u∗. In this section we outline some of the algorithmic aspects for approximating the
relevant complex singularities of u∗, i.e., the ones which determine the sizes of the Bernstein ellipses,
by using an approximate solution of the ODE and the rational interpolation scheme developed in
[26,27].

The main idea in [26, 27] is as follows: given an analytic function f : [a, b] → R approximate
its analytic extension into the complex plane by constructing a rational interpolant p

q . This is

accomplished by sampling f at the Chebyshev points in [a, b] and solving (if necessary in a least
square sense) the problem

p (yj)− f (yj) q (yj) = 0, 0 ≤ j ≤ K, (4.6)
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where (yj)
K
j=0 are the Chebyshev points on [a, b], K ∈ N, and p, q are polynomials of degree Np,

Nq, respectively. This will yield a rational interpolant p
q , provided q (yj) 6= 0 for all 0 ≤ j ≤ K.

The associated rational interpolant is referred to as a rational interpolant of type (Np, Nq). The
complex singularities of f can be approximated by computing the roots of q. The degrees of p and
q, however, should be chosen carefully in order to avoid spurious poles. To reduce the number of
spurious poles, the algorithm in [26,27] uses heuristics to determine whether the prescribed degree
for q was not too large and lowers it if necessary.

Let ũ =
∑m̃
i=1 1[t̃i−1,t̃i]ũi be an approximate solution of the ODE, where ũi = ãi0+2

∑Ñi−1
k=1 ãikT

i
k

and
(
t̃i
)m̃
i=0

is a partition of [0, 1]. The idea is to use ũ to approximate the complex singularities of
the (true) solution u∗, namely by constructing rational interpolants for each [ũi]j . Consider any
1 ≤ i ≤ m, 1 ≤ j ≤ n, and initialize Nq = 1. Then follow the procedure as described below:

1. Compute an approximate rational interpolant for [u∗i ]j of type
(⌊

2Ñi
3

⌋
, Nq

)
with K =⌊

2Ñi
3

⌋
+ Nq by using the approximate solution [ũi]j . The specific choices for the param-

eters are motivated in Remark 5.

2. Compute the absolute value, denoted by ∆, of the difference of the approximate size of the
Bernstein ellipse of [u∗i ]j and the decay rate of

[
ãi
]
j
. The decay rate of

[
ãi
]
j

is estimated by

using the least-square method to find the best line through the data points{(
k, log

∣∣∣[ãik]j∣∣∣) : 1 ≤ k ≤ Ñi − 1,
∣∣∣[ãik]j∣∣∣ > 10−16

}
.

The decay rate is then approximated by e−s, where s is the slope of this line. In particular,
∆ = |νe − e−s|, where νe is defined in (4.4).

3. If ∆ < 0.05, then the approximation of the relevant singularities is deemed sufficiently accu-

rate and we terminate the procedure. Otherwise, if Nq <
⌊
Ñi
3

⌋
, we increase Nq by one and

return to step 1. If Nq =
⌊
Ñi
3

⌋
, the approximation of the singularities was unsuccessful and

the program is terminated. The significance of ∆ and the specific choice for the tolerance
and stopping criteria are explained in Remark 6.

Remark 5. The value for K in step 1 is the smallest value for which (4.6) is guaranteed to admit

an exact solution. The motivation for choosing Np =
⌊

2Ñi
3

⌋
is that if one expects the existence of

complex singularities (which we generally do) one should choose Np < Ñi − 1, since the rational

interpolation scheme would yield p = [ũi]j and q ≡ 1 for Np ≥ Ñi−1. At the same time, Np should
be chosen sufficiently large in order for the rational interpolant to be an accurate approximation

of [u∗i ]j . The specific choice Np =
⌊

2Ñi
3

⌋
is based on experimentation and the suggestions in [35].

Remark 6. The quantity ∆ defined in step 2 is used to asses the accuracy of the approximation
of the relevant singularities. Indeed, if the approximation of the relevant singularities is accurate,
then ∆ should be relatively small by Proposition 1. In practice, ∆ varied at best between 0.01 and
0.05 which motivated the choice for the tolerance in step 3. Furthermore, the rational interpolants
were constructed by using approximate solutions ũ defined on relatively fine grids with high decay
on each subdomain. Hence we expected a relatively small number of complex singularities per

subdomain. This motivated the choice for the stopping criterion Nq =
⌊
Ñi
3

⌋
.

5 Applications: periodic and heteroclinic orbits in the Lorenz
system

In this section we demonstrate the effectiveness of domain decomposition by using the proposed
method to validate periodic and heteroclinic orbits in the Lorenz system which we were not able
to validate without decomposition of the domain. In Section 5.2 we consider the validation of a
periodic orbit on the Lorenz attractor for which the procedure in Section 3 is directly applicable.
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In Section 5.3 we consider a family of periodic orbits near a homoclinic orbit and in Section 5.4
we validate a heteroclinic orbit. In the the latter two cases the procedure in Section 3 cannot be
applied directly and needs some modifications, illustrating both the limitations and the flexibility
of the method.

5.1 Main algorithm

First we describe the main procedure used for validating solutions of (1.1):

1. Compute an approximate zero x̃ of F with respect to some grid
(
t̃i
)m̃
i=0

and approximate the
complex singularities of u∗ (the exact solution of the ODE) as described in Section 4.2.

2. Choose the number of domains m and use the procedure in Section 4.1 to determine a grid
(ti)

m
i=0 with uniform decay on each subdomain. The number of domains m needs to be chosen

in such a way that max {ti − ti−1 : 1 ≤ i ≤ m} is sufficiently small and the number of modes
Ni, as determined below, is sufficiently large. In practice, we chose m by experimentation
(see Section 5.2 for an example in which we validated a periodic orbit for different m).

3. Construct an approximate solution x̂ on the new grid (ti)
m
i=0. The number of modes Ni on

each subdomain [ti−1, ti] is chosen in such a way that
∣∣âik∣∣∞ < 10−16 for k ≥ Ni.

4. Determine weights (νi)
m
i=1 for which validation is feasible. We have chosen to fix one weight

ν > 1 and set νi = ν for all 1 ≤ i ≤ m, since by construction the decay-rates are the same
on all subdomains. Furthermore, ν is determined by first computing an initial guess ν0, as
explained in Remark 7 below, and checking whether validation is feasible with ν = ν0. This
is accomplished by computing the Y and Z-bounds as defined in Section 6 and constructing
the radii-polynomials (without interval arithmetic). Subsequently, we try to determine an
interval on which all the radii-polynomials are negative. If we do not find such an interval
(i.e. validation is not feasible), then we keep decreasing ν (as long as ν > 1) until validation
is feasible.

5. Construct the radii-polynomials with interval arithmetic and determine an interval Im,ν at
which they are all negative.

Remark 7. The initial guess ν0 in step 3 is determined by a heuristic procedure that is based on
analyzing the bounds Yi,j as stated in Proposition 7 in Section 6. The idea is to choose ν0 > 1
such that

ti − ti−1

2ω̂

Ng(Ni−1)+1∑
k=Ni

∣∣∣[cik−1(â)− cik+1(â)
]
j

∣∣∣ νk0
k
≤ ε, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where ε > 0 is a prescribed tolerance which we set equal to 10−14 in our algorithm. A rather rough
estimation yields

ti − ti−1

2ω̂

Ng(Ni−1)+1∑
k=Ni

∣∣∣[cik−1(â)− cik+1(â)
]
j

∣∣∣ νk0
k
<

hν0

ω̂Ni

Ng(Ni−1)+2∑
k=Ni−1

∣∣∣[cik (â)
]
j

∣∣∣ νk0 , (5.1)

where h := max {ti − ti−1 : 1 ≤ i ≤ m}. Note that
[
âik
]
j

and
[
cik (â)

]
j

are both of order O
(
ν−ke

)
,

where νe, see (4.4), is known by construction of the grid. Therefore, assuming that
∣∣âi0∣∣∞ is roughly

of the same order on all subdomains, we anticipate that the number of modes per subdomain will
be fairly uniformly distributed, say Ni ≈ N̄ , where N̄ is the (rounded) average number of modes
per subdomain. Altogether, we expect the quantity

hνe
ω̂N̄

Ng(N̄−1)+2∑
k=N̄−1

(
ν0

νe

)k
=

hνe

ω̂N̄
(

1− ν0
νe

) ((ν0

νe

)N̄
−
(
ν0

νe

)Ng(N̄−1)+3
)

(5.2)
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to provide a reasonable estimate for the order of magnitude of (5.1). Moreover, since we need to
choose ν0 < νe and N̄ is relatively small compared to Ng

(
N̄ − 1

)
+ 3, one can approximate (5.2)

by

hνe

ω̂N̄
(

1− ν0
νe

) (ν0

νe

)N̄
.

Hence we have chosen to determine ν0 by setting the latter quantity equal to ε.

5.2 Periodic orbit on the Lorenz-attractor

We have successfully applied our method to validate a periodic orbit of period L ≈ 25.0271 in
the Lorenz system for the classical parameter values. We remark that validation was not feasible
without decomposition of the domain. More precisely, the procedure described in Section 5.1 failed
for m = 1, i.e., with a single domain. The main obstruction to using just one domain was the need
for a large number of modes to accurately approximate the orbit, which caused the bounds related
to the tail of the Chebyshev approximation to be (too) large. We should mention that it is feasible
to validate this periodic orbit using a Fourier basis (and hence a single domain) via the method
in [19]. However, Fourier series can be used for problems with periodic boundary conditions only.
Furthermore, the number of Fourier modes needed is comparable to the total number of modes in
our domain decomposition method, and the latter is readily amenable to general (non-periodic)
boundary conditions.

We have reported the computational results in Table 5.1. As expected, the size of the Bernstein-
ellipses νe (as defined in (4.4)) increases and the (rounded) average number of modes N̄ decreases,
whenever the number of subdomains m is increased. Moreover, as long as the decrease of N̄
outweighs the increase of m, the dimension of XN

ν decreases, thereby making the proof computa-
tionally more efficient. In particular, m = 34 was the computationally most efficient choice. We
remark, however, that no attempt was made to optimize dimXNν for fixed m. It may be possible
to validate the orbit by using a significantly smaller number of modes Ni per subdomain, i.e., by
relaxing the requirement that

∣∣aik∣∣∞ < 10−16 for k ≥ Ni. Finally, for each m the initial guess ν0

for ν was slightly too large and was lowered by 0.01 in order to make validation feasible.
The approximations of the complex singularities of the orbit are shown in Figure 5.1. Note that

the relevant singularities, i.e., the ones which determine the size of the smallest Bernstein ellipse,
were fairly uniformly distributed. As a consequence, the resulting grids look close to uniform at first
glance, as can be seen in Figure 5.2a. However, we stress that our method for distributing the grid
points based on the location of the complex singularities significantly improves the computational
efficiency compared to choosing a uniform grid. To illustrate this, notice the dramatic decrease in
the dimension of XN

ν as we proceed from m = 33 to m = 34, i.e., we add one grid point. This is
caused by a very subtle redistribution of the grid-points, as shown in Figure 5.2a, which resulted
in a relatively large increase in the decay-rates from 1.68 to 1.87, see Table 5.1.

Indeed, at first sight the grids appear to be very similar and it is unclear how the decay-rates
could have increased that much. To get some insight, we have depicted two seemingly similar
subdomains [t32, 1] and [τ33, 1] in Figure 5.2b, where (ti)

33
i=0 and (τi)

34
i=0 denote the grid-points for

m = 33 and m = 34, respectively. The grid-points t32 and τ33 are so close to each other that
the sizes of the Bernstein ellipses associated to [t32, 1] and [τ33, 1] are determined by the same
pair of complex singularities. Nevertheless, the subtle movement of τ33 to the right was sufficient
to cause the observed increase in the decay-rates. To see this, recall that the computation of
the size of the Bernstein ellipses involves a rescaling to [−1, 1], as explained in Section 4.1. This
rescaling contributes to the increase in the decay-rates. We note that in other regions in the grid,
the redistribution of the grid points (when adding a grid point) leads to a change in which pole
determines the size of the Bernstein-ellipse (for some domain). The combination of delicate shifts
of all the grid points together leads to the major improvement in the (uniform) decay rate.

The results highlight the effectiveness of the proposed method for performing domain decompo-
sition: the global improvement of the decay-rates due to the subtle repositioning of the grid-points
could not have been achieved by merely using uniform grids.
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m N̄ dimXNν ν νe Im,ν

32 79 7618 1.1148 1.6413
[
4.5581 · 10−10, 1.0217 · 10−7

]
33 76 7498 1.1278 1.6837

[
3.1192 · 10−10, 1.5371 · 10−7

]
34 63 6433 1.1432 1.8749

[
3.8158 · 10−10, 1.1950 · 10−7

]
35 61 6457 1.1529 1.9056

[
3.3529 · 10−10, 1.0320 · 10−7

]
36 61 6610 1.1564 1.9115

[
3.1282 · 10−10, 1.1097 · 10−7

]
Table 5.1: Numerical results for a validated periodic orbit of period L ≈ 25.0271 in the classical
Lorenz system. In each case the number of modes Ni per domain was approximately the same.
The number N̄ denotes the (rounded) average number of modes per domain.

Re

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im

×10
-3

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 5.1: The approximate complex singularities of the validated periodic orbit. The complex
singularities were computed with the procedure described in Section 4.2.

5.3 Family of periodic orbits near a homoclinic connection

In this section we will validate periodic orbits close to the homoclinic orbit to the origin as ρ ↓
ρhom ≈ 13.926557407. The map F as defined in definition 1, however, has to be slightly adapted to
accomplish this goal. The reason F has to be adapted can be seen in Figure 5.3, which depicts the
dependency of L on ρ. In particular, note that the bifurcation curve is almost vertical near ρhom.
Therefore, DFN (x̂) is close to singular near the critical parameter value ρhom. Consequently, the
approximate inverse AN of DFN (x̂) is badly conditioned near ρhom, which causes the estimates in
Proposition 8 to blow up, which in turn will obstruct the validation process.

The latter problem can be solved by adding an additional equation to F and including the
parameter ρ as an additional variable to solve for. We adapt the method in Section 3 as follows:

• Include ρ as an additional variable in Xν , i.e., set Xν := R × R ×
∏m
i=1 `

1
(νi,n) and write

x =
(
ρ, ω, a1, . . . , am

)
∈ Xν .

• Define the norm and projections on Xν in the same way as before by including an additional
projection Π−1 : Xν → R onto the parameter space defined by Π−1

(
ρ, ω, a1, . . . , am

)
:= ρ.

• Define F̃ : Xν → Xν̃ by

F̃ (x) :=
(
f−1(ρ, ω, a1, . . . , am), f0(a1), f1(ρ, ω, a1, am), f2(ρ, ω, a1, a2), . . . fm(ρ, ω, am−1, am)

)
,

where f0, . . . , fm are defined as before, and we choose

f−1 := 〈V0,ΠN (x)− U0〉

where V0 is approximately tangent to the solution curve (ρ, φ(ρ)) of FN , and U0 is a “pre-
dictor” for the next point on the solution curve.

The corresponding modifications to the bounds Y and Z are described in Section 6.3.1.

17



i

0 5 10 15 20 25 30

t
i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 33

m = 34

(a)

ReI
m

×10
-3

-8

-6

-4

-2

0

2

4

6

8

t32 τ33
1

(b)

Figure 5.2: (a) A plot of the two grids (i, ti)
33
i=0 and (i, τi)

34
i=0 corresponding to m = 33 and m = 34,

respectively. (b) A plot of the grid-points t32, τ33 and the complex singularities (colored in red)
which determine the size of the Bernstein ellipses associated to [t32, 1] and [τ33, 1].

5.3.1 Results

To examine the performance of the proposed method we first determined how far we could push the
period by using only one domain. Next, we extended the result by using domain decomposition.
In particular, we validated a long periodic orbit of period L ≈ 100.2254 which revealed a limitation
of the proposed method. In fact, there the standard algorithm breaks down in two spots.

First, it was not feasible to determine a grid by using the procedure in Section 4, since in the
region where the orbit is flat (i.e. near the equilibrium at the origin in phase space, see Figure 1.3)
we were not able to compute accurate approximations of the complex singularities. A likely reason
for this is that the complex singularities in this region are located too far away from the real axis
(i.e. there are no “nearby” poles).

Second, after fixing the grid in the flat part of the solution in an ad-hoc manner (discussed
below), the number of modes Ni in this part of the grid, as determined via the procedure in Section
5.1, was very small. To see why the use of such a small number of modes is an obstruction, recall
that the approximate inverse A, as defined in definition 4, was constructed under the assump-
tion that ωkaik is the dominant term in

(
fi
(
ω, ai−1, ai

))
k

for k ≥ Ni in a small neighborhood of
the numerical approximation. The latter assumption, however, is only satisfied if the truncation
dimensions Ni are sufficiently large and max {ti − ti−1 : 1 ≤ i ≤ m} is sufficiently small (see defi-
nition 1). Consequently, in order to validate the flat part of the orbit (where a small number of
modes per subdomain is used), one needs to ensure that the grid is sufficiently fine there.

To validate the long periodic orbit we constructed a grid which was uniform in the region where
the orbit is flat, and outside this region (where the number of modes per subdomain were relatively
large) the grid-points were placed by using the complex singularities as described in Section 4. We
remark that another strategy for resolving the above issue is to use only one domain for the flat
part of the orbit, and to artificially increase the number of modes on this subdomain by padding
with zeros. We have succeeded in validating the orbit in this way as well. The results are reported
in Table 5.2. In particular, in the case m = 7 we used one subdomain with 1800 modes (of which
only the first 136 were nonzero) to approximate the flat part of the orbit. In the case m = 506
we used 500 equally spaced subdomains each using (on average) about five modes to represent the
flat part of the orbit.

By adapting the algorithm, we are thus able to validate very long orbits near the homoclinic
connection. We conclude this section by remarking on two possible improvements to the domain
decomposition technique.

Remark 8. The results show that the proposed method is not directly applicable for validating
orbits which exhibit slow-fast behavior on different time-scales. In this particular case, a more
effective approach for validating the long periodic orbit would be to avoid “numerical integration”
of the slow passage and to analyze the (relatively simple) dynamics near the equilibrium by other
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Figure 5.3: The dependence of the period L as a function of ρ obtained via non-rigorous pseudo-
arclength continuation.

L m dimXNν Im,ν

4.5473 1 566
[
4.4568 · 10−11, 8.4403 · 10−6

]
100.2554 7 5894

[
1.5186 · 10−11, 7.4915 · 10−8

]
100.2554 506 8441

[
1.5174 · 10−11, 4.2914 · 10−6

]
Table 5.2: Numerical results for two periodic orbits near the homoclinic connection. The periodic
orbit of period L ≈ 100.2554 was in both cases validated on a grid for which (the same) six
subdomains were used to approximate the non-flat part of the orbit.

means (normal forms, lambda lemma, etc.).

Remark 9. For this particular problem, distribution of the grid-points based on the location of
the complex singularities is not an efficient choice, since our domain decomposition algorithm will
concentrate most of the grid-points outside the region where the orbit is flat. Indeed, (in general)
our domain decomposition algorithm will yield relatively large subdomains in regions where the
complex singularities are located far away from the real-axis. This can obstruct the validation
process as max {ti − ti−1 : 1 ≤ i ≤ m} might be too large. To resolve this issue, one can try to
improve the domain decomposition algorithm by incorporating constraints on the maximal distance
between successive grid-points.

5.4 Heteroclinic orbit

To show that our method is applicable to more general BVPs than just periodic boundary con-
ditions, we consider the validation of a transverse heteroclinic orbit from q+ = (

√
β (ρ− 1),√

β (ρ− 1), ρ − 1) to the origin for the classical parameter values in the Lorenz system. Both
the origin and q+ are hyperbolic, and dim (W s (0)) = dim (Wu (q+)) = 2. In particular, the
transversality condition nu + ns = n + 1, where nu = dim (Wu (q+)), ns = dim (W s (0)), is
satisfied.

The idea is to set up a suitable BVP which characterizes the heteroclinic orbit, and to adjust
the method in Section 3 accordingly in order to solve the BVP. A heteroclinic orbit from q+ to the
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origin is characterized by 
du

dt
= Lg (u) , t ∈ [0, 1] ,

u(0) = P (α) , α ∈ Vu,

u(1) = Q (φ) , φ ∈ Vs,

(5.3)

where L > 0 is a fixed integration time and P : Vu ⊂ R2 →Wu
loc (q+), Q : Vs ⊂ R2 →W s

loc (0) are
local parameterizations of Wu

loc (q+) and W s
loc (0), respectively. We have used the parameterization

method developed in [11,22,33] to explicitly compute P and Q.
The idea of the computational method developed in [11,22,33] is to construct P by expanding

it as a power series, and by requiring that it conjugates the unstable part of the linearized dynamics
around the origin with the dynamics on Wu

loc (q+). The parameterization Q is obtained similarly.
The method yields approximate parameterizations PNu and QNs , where Ns, Nu ∈ N are the degrees
up to which the power series are computed, and establishes the existence of exact parameterizations
P and Q via a rigorous numerical scheme. In particular, the procedure provides rigorous error
bounds δu, δs > 0 such that

‖P − PNu‖∞ ≤ δu, ‖Q−QNs‖∞ ≤ δs.

Since heteroclinic orbits are invariant under translations in time, we need to introduce a phase
condition to remove this extra degree of freedom. This can be accomplished by, roughly speaking,
restricting P or Q to a domain of one dimension less. We have used the same phase condition as
in [22]: let Θµ : S1 → Vs be the embedding of the unit circle into Vs defined by

Θµ (φ) := µ (cosφ, sinφ) ,

where µ > 0 is sufficiently small, and consider the following equivalent formulation of (5.3):
du

dt
= Lg (u) , t ∈ [0, 1] ,

u(0) = P (α) , α ∈ Vu,

u(1) = Q ◦Θµ (φ) , φ ∈ Vs.

(5.4)

The procedure in Section 3, however, needs to be modified before it can be applied to (5.4).
First, note that we fix the integration time L. Furthermore, the parameterization variables φ
and α have to be treated as unknown variables. Therefore, in order to solve (5.4) we modify the
procedure in Section 3 as follows:

• Set Xν := S1 × Vu ×
∏m
i=1 `

1
(νi,n) and write x =

(
φ, α, a1, . . . , am

)
.

• Adapt the set-up described in Section 3.2 by replacing Π0 with projections Π0,j : Xν → R,
where 1 ≤ j ≤ 3, defined by

Π0,1

(
φ, α, a1, . . . , am

)
:= φ, Π0,j

(
φ, α, a1, . . . , am

)
= [α]j−1 ,

for j ∈ {2, 3}.

• Define F : Xν → R3×
∏m
i=1 `

1
(ν̃i,n) analogously as in definition 1 by incorporating the modified

boundary conditions into f0 and (f1)0:

F (x) :=
(
f0 (φ, am) , f1

(
α, a1

)
, f2

(
a1, a2

)
, . . . , fm

(
am−1, am

))
,

where

f0 (φ, am) := am0 + 2

∞∑
k=1

amk −Q ◦Θµ (φ) ,

(Π1F (x))0 = a1
0 + 2

∞∑
k=1

(−1)
k
a1
k − P (α) ,

(ΠiF (x))k = kaik −
L (ti − ti−1)

4

(
cik−1 − cik+1

)
, k ∈ N, 1 ≤ i ≤ m.
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m N̄ dim ΠN (Xν) ν Im,ν

55 42 6864 1.3710
[
6.4412 · 10−9, r∗

]
Table 5.3: Numerical results for the connecting orbit from q+ to the origin. The interval Im,ν is
the set of admissible radii on which the radii-polynomials were proven to be strictly negative.
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Figure 5.4: (a) The complex singularities of the connecting orbit. (b) The grid, determined by the
algorithm in Section 4, on which the connecting orbit was validated.

• Define the finite dimensional reduction FN : Rn(1+
∑m
i=1Ni) → Rn(1+

∑m
i=1Ni) of F by FN (x) :=

ΠNF (x), and by replacing P,Q with PNu , QNs , respectively.

• Define A and Â as before without the factors
1

ω̂
and ω̂, respectively.

The corresponding modifications to the estimates Y and Z are described in Section 6.3.2.

5.4.1 Results

We have successfully validated a connecting orbit from q+ to the origin by using the procedure
described in Section 5.1. The integration time was L = 30. The parameters used for approximating
the stable and unstable manifolds were Nu = 15, Ns = 25, µ = 0.4, and r∗ = 10−6. The meaning
of r∗ is explained in Section 6.3.2. The corresponding error-bounds for the parameterizations were
δu ≤ 4.6847 · 10−12 and δs ≤ 5.9717 · 10−15. We have kept the size of Wu

loc (q+) small so that the
orbit was relatively “long” and sufficiently complicated to test the domain decomposition method.
The computational results are reported in Table 5.3.

The complex singularities and the corresponding grid are shown in Figures 5.4a and 5.4b,
respectively. Figure 5.4a shows that the complex singularities move closer to the real axis as the
orbit spirals away from q+ up until the point at which the orbit travels to the origin in (roughly)
a straight line in phase space (see Figure 1.1). In this last part of the orbit there appear to be no
complex singularities close to the real-axis. These observations are reflected in the distribution of
the grid-points as shown in Figure 5.4b: the distance between successive grid-points decreases as
the orbit spirals away from q+, except for the distance between the second to last grid point and
the last one, which is substantially larger.

6 The estimates need to prove contraction

In this section we give explicit expression for the bounds Y and Z in Theorem 1. We focus primarily
on periodic boundary conditions. Additionally, we indicate where (and which) changes are in
order for more general types of boundary conditions. Explicit examples of such generalizations
are discussed in Section 6.3, which deals with the modifications of the estimates that arise in the
applications in Sections 5.3 and 5.4.
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6.1 Computation of the Y -bounds

Proposition 7. The bounds

Y0 : = |Π0ANFN (x̂)| ,

Yi,j : =
ti − ti−1

2ω̂

Ng(Ni−1)+1∑
k=Ni

∣∣∣[cik−1(â)− cik+1(â)
]
j

∣∣∣ νki
k

+ ‖Πi,jANFN (x̂)‖νi ,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, satisfy (3.7).

Proof. Let 1 ≤ i ≤ m, 1 ≤ j ≤ n be arbitrary and note that

|Π0 (T (x̂)− x̂)| ≤ |Π0A (F (x̂)− FN (x̂))|+ |Π0AFN (x̂)| , (6.1)

‖Πi,j (T (x̂)− x̂)‖νi ≤ ‖Πi,jA (F (x̂)− FN (x̂))‖νi + ‖Πi,jAFN (x̂)‖νi . (6.2)

Next, observe that the only nonzero components of F (x̂)− FN (x̂) are

(
Πi,j(F (x̂)− FN (x̂))

)
k

= − (ti − ti−1)

4

[
cik−1(â)− cik+1(â)

]
j
, for Ni ≤ k ≤ Ng (Ni − 1) + 1.

Hence the result follows from (6.1) and (6.2).

6.2 Computation of the Z-bounds

Let x1, x2 ∈ Br (0), r > 0 be arbitrary and recall the factorization in (3.6). We shall com-
pute bounds Zi,j (r) and Z0 (r) satisfying (3.8) and (3.10), respectively, by estimating the two
terms in (3.6) separately. Throughout this section we write x1 = rv and x2 = rw, where
v =

(
ωv, v

1, . . . , vm
)
, w =

(
ωw, w

1, . . . , wm
)
∈ B1(0).

We start by computing a bound for
(
I −AÂ

)
x2. To accomplish this we first state a result

about the norm of linear operators C on XNν , for which we introduce the notation

Π0C(ω, 0) = C0
0ω Π0C(0, a) =

∑
ı̃̃k̃

(Ca0 )ı̃̃k̃aı̃̃k̃

(ΠaC(ω, 0))ijk = (C0
a)ijk ω (ΠaC(0, a))ijk =

∑
ı̃̃k̃

(Caa )ı̃̃k̃ijkaı̃̃k̃

where i, ı̃ = 1, . . . ,m and j, ̃ = 1, . . . , n and k, k̃ = 0, . . . , Ni−1 refer to the notation aijk = ([aik])j
for the Chebyshev coefficients introduced in Section 3.1.

Lemma 2. Suppose C : XNν → XNν is a linear operator. Using the above notation, we define

ηij := ‖(C0
a)ij·‖νi µı̃̃ := ‖(Ca0 )ı̃̃·‖∗νı̃

ξ̃ ı̃̃k̃ij := ‖(Caa )ı̃̃k̃ij· ‖νi ξ ı̃̃ij := ‖ξ̃ ı̃̃·ij ‖
∗
νı̃ .

Then

‖Π0C‖B(XNν ,R) ≤ |C
0
0 |+

m∑
ı̃=1

n∑
̃=1

µı̃̃,

‖Πi,jC‖B(XNν ,`1νi)
≤ ηij +

m∑
ı̃=1

n∑
̃=1

ξ ı̃̃ij .

Proof. This follows from writing out the definitions of the norms.

Remark 10. Explicit expressions for µı̃̃ and ξ ı̃̃ij can be obtained by using Lemma 1.

We can now compute a bound for
(
I −AÂ

)
x2:
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Lemma 3. Let 1 ≤ i ≤ m, 1 ≤ j ≤ n, and let h0 and hi,j > 0 denote the bounds

‖Π0 (IN −ANDFN (x̂))‖B(XNν ,R) ≤ h0, ‖Πi,j (IN −ANDFN (x̂))‖B(XNν ,`1νi)
≤ hi,j ,

provided by Lemma 2, where IN is the identity on XNν . Then∣∣∣Π0

(
I −AÂ

)
x2

∣∣∣ ≤ h0r,
∥∥∥Πi,j

(
I −AÂ

)
x2

∥∥∥
νi
≤ hi,jr,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. It suffices to observe that

I −AÂ = ΠN

(
I −AÂ

)
= IN −ANDFN (x̂) ,

since the tails of A and Â are exact inverses of each other.

The analysis of the second term in (3.6) is more complicated and requires one to analyze the
infinite dimensional map F in more detail. Note that(

DF (x̂+ rv)− Â
)
w =

d

dτ

∣∣∣∣
τ=0

(
F (x̂+ rv + τw)− FN (x̂+ τw)

)
− Â∞w, (6.3)

where Â∞ = (I −ΠN ) Â, since ΠN Â = DFN (x̂). Furthermore, a straightforward computation
shows that(

d

dτ

∣∣∣∣
τ=0

Πi (F (x̂+ rv + τw)− FN (x̂+ τw))

)
0

= 2

 ∞∑
k=Ni

(−1)
k
wik −

∞∑
k=Ni−1

wi−1
k

 , (6.4)

for 1 < i ≤ m, and(
d

dτ

∣∣∣∣
τ=0

Πi (F (x̂+ rv + τw)− FN (x̂+ τw))

)
k

= k
(
ωwv

i
k + ωvw

i
k

)
r

− ti − ti−1

4

d

dτ

∣∣∣∣
τ=0

(
cik−1

(
âi + rvi + τwi

)
− cik−1

(
âi + τΠNi

(
wi
))

−cik+1

(
âi + rvi + τwi

)
+ cik+1

(
âi + τΠNi

(
wi
)))

, (6.5)

for 1 ≤ i ≤ m, 1 ≤ k ≤ Ni − 1, while(
d

dτ

∣∣∣∣
τ=0

Πi (F (x̂+ rv + τw)− FN (x̂+ τw))−ΠiÂ∞w

)
k

=

k
(
ωwv

i
k + ωvw

i
k

)
r − ti − ti−1

4

d

dτ

∣∣∣∣
τ=0

(
cik−1

(
âi + rvi + τwi

)
− cik+1

(
âi + rvi + τwi

))
, (6.6)

for 1 ≤ i ≤ m, k ≥ Ni.
We start by computing a bound for (6.4):

Lemma 4. Let 1 < i ≤ m, 1 ≤ j ≤ m, then∣∣∣∣( d

dτ

∣∣∣∣
τ=0

Πi,j (F (x̂+ rv + τw)− FN (x̂+ τw))

)
0

∣∣∣∣ ≤ ν−Nii + ν
−Ni−1

i−1 .

Proof. Define ψi : `1νi → R by ψi(x) := 2
∑∞
k=Ni

xk, and note that ψi ∈
(
`1νi
)∗

for any 1 ≤ i ≤ m,

since νi > 1. Furthermore, ‖ψi‖νi = ν−Nii by Lemma 1. Therefore, one can bound the components

of (6.4) by ν−Nii + ν
−Ni−1

i−1 .
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Next, we compute component-wise bounds for the convolution terms in (6.5) for an arbitrary
subdomain. Since the construction of these bounds is the same for each subdomain, we will fix and
omit the superscript i whenever possible. Furthermore, to avoid additional clutter we shall denote
the j-th component of a sequence a by aj instead of [a]j whenever there is no chance of confusion.

Recall that the convolution terms are defined by

c (a) =
∑
|α|≤Ng

gαa
α,

where aα = aα1
1 ∗ . . . ∗ aαnn , a ∈ `1(νi,n) and Ng ∈ N is the degree of the (polynomial) vector field.

As mentioned before in the introduction, for the sake of simplicity, we shall restrict our attention
to the case in which Ng = 2. In particular, note that∑

|α|=2

gαa
α =

∑
1≤l≤s≤n

glsal ∗ as,

where gls = gel+es and (ej)
n
j=1 are the unit vectors in Rn.

A straightforward computation shows that

d

dτ

∣∣∣∣
τ=0

(c (â+ rv + τw)− c (â+ τΠNi (w)))

=

n∑
j=1

gej [w̃]j +
∑

1≤l≤s≤n

gls (w̃l ∗ âs + w̃s ∗ âl + r (wl ∗ vs + ws ∗ vl)) , (6.7)

where

w̃ =

{
0n, 0 ≤ k ≤ Ni − 1,

wk, k ≥ Ni.

The following lemma is key in computing bounds for the linear terms in (6.7):

Lemma 5. Let a ∈ `1νi be such that ak = 0 for k ≥ Ni. Define Ψa,k : `1νi → R by

Ψa,k (x) := (x̃ ∗ a)k−1 − (x̃ ∗ a)k+1 , for 1 ≤ k ≤ Ni − 1,

where x̃ is defined by

x̃ =

{
0, 0 ≤ k ≤ Ni − 1,

xk, k ≥ Ni.

Then Ψa,k ∈
(
`1νi
)∗

for 1 ≤ k ≤ Ni − 1, and

‖Ψa,k‖∗νi =
1

2
max

({
ν−li

∣∣a|k−1−l| − a|k+1−l|
∣∣}l=k+Ni−2

l=Ni
, ν
−(k+Ni−1)
i

∣∣a|Ni−2|
∣∣ , ν−(k+Ni)

i |aNi−1|
)
.

Proof. Let x ∈ `1νi , k ∈ N0 be arbitrary and observe that

(x̃ ∗ a)k =

k+Ni−1∑
k1=Ni

xk1a|k−k1|, (6.8)

since x̃k1 = 0, ak2 = 0, for 0 ≤ k1 ≤ Ni−1 and k2 ≥ Ni, respectively. Next, note that Ψa,k ∈
(
`1νi
)∗

by Proposition 3, and

Ψa,k(εl) =


ν−l
i

2

(
a|k−1−l| − a|k+1−l|

)
, Ni ≤ l ≤ k +Ni − 2,

−ν
−l
i

2 a|k+1−l|, l = k +Ni − 1, k +Ni

0, otherwise.

Now use Lemma 1 to obtain the stated formula for ‖Ψa,k‖∗νi .
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Corollary 2. Let 1 ≤ i ≤ m and 1 ≤ k ≤ Ni − 1, then∣∣∣∣∣∣
 n∑
j=1

gej [w̃]j +
∑

1≤l≤s≤n

gls (w̃l ∗ âs + w̃s ∗ âl)


k−1

−

 n∑
j=1

gej [w̃]j +
∑

1≤l≤s≤n

gls (w̃l ∗ âs + w̃s ∗ âl)


k+1

∣∣∣∣∣∣
is bounded by (using the Kronecker δ)

Bik := δk,Ni−1
1

2
ν−Nii

n∑
j=1

∣∣gej ∣∣+
∑

1≤l≤s≤n

|gls|
(∥∥Ψâil ,k

∥∥∗
νi

+
∥∥Ψâis,k

∥∥∗
νi

)
. (6.9)

We are now ready to construct bounds for∥∥∥Πi,jΠNA
(
DF (x̂+ x1)− Â

)
x2

∥∥∥
νi
. (6.10)

There are two boundary conditions that we need to deal with separately, namely the phase condition
and the periodicity condition (the “internal” boundary conditions between successive domains will
be dealt with uniformly). We deal with these two bounds in such a way that the method can be
easily adapted to deal with other boundary conditions. Hence, for the moment, assume that there
exist bounds Λ0,1, Λ0,2 > 0, and Λ1,1, Λ1,2 ∈ Rn≥0, such that∣∣∣∣ d

dτ

∣∣∣∣
τ=0

Π0 (F (x̂+ rv + τw)− FN (x̂+ τw))

∣∣∣∣ ≤ Λ0,1 + rΛ0,2, (6.11)∣∣∣∣ d

dτ

∣∣∣∣
τ=0

(Π1 (F (x̂+ rv + τw)− FN (x̂+ τw)))0

∣∣∣∣ ≤ Λ1,1 + rΛ1,2, (6.12)

for any v, w ∈ B1(0). Explicit expressions for these bounds are given explicitly in Remark 11 for
periodic boundary conditions.

We define Z̃1 ∈ R1+n
∑m
i=1Ni by

Π0Z̃1 := Λ0,1, ΠN1Z̃1 :=

[
Λ1,1

t1−t0
4

[
B1
k

]N1−1

k=1

]
, ΠNiZ̃1 :=

[ (
ν−Nii + ν

−Ni−1

i−1

)
· 1n

ti−ti−1

4

[
Bik
]Ni−1

k=1

]
,

with Bik defined in (6.9), and we set Z1 = |AN | Z̃1.

Proposition 8. Let 1 ≤ i ≤ m, 1 ≤ j ≤ n, then∣∣∣Π0A
(
DF (x̂+ x1)− Â

)
x2

∣∣∣ ≤ Π0Z1r + γ ‖Π0AN‖B(XNν ,R) r
2,∥∥∥Πi,jΠNA

(
DF (x̂+ x1)− Â

)
x2

∥∥∥
νi
≤ ‖Πi,jZ1‖νi r + γ ‖Πi,jAN‖B(XNν ,`1νi)

r2,

where the operator norms can be evaluated using Lemma 2, and

γ := max

{Λ0,2} ∪


∣∣∣∣∣∣Λ1,2 + 2 (N1 − 1) +

(t1 − t0)
(
2ν2

1 + 1
)

2ν1

∑
|α|=2

|gα|

∣∣∣∣∣∣
∞

∪
∣∣∣∣∣∣2 (Ni − 1) +

(ti − ti−1)
(
2ν2
i + 1

)
2νi

∑
|α|=2

|gα|

∣∣∣∣∣∣
∞

: 2 ≤ i ≤ m


 .

Proof. First observe that ∣∣∣Π0

(
DF (x̂+ x1)− Â

)
x2

∣∣∣ ≤ Λ0,1r + Λ0,2r
2
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by (6.11) and ∣∣∣ΠN1

(
DF (x̂+ x1)− Â

)
x2

∣∣∣ ≤ ΠN1

(
Z̃1

)
r + Z̃2,1r

2, (6.13)

where

(Z̃2,1)k :=



Λ1,2, k = 0,

k (|vk|+ |wk|) +
t1 − t0

4

∑
1≤l≤s≤n

|gls|
(∣∣(wl ∗ vs)k−1

∣∣
+
∣∣(ws ∗ vl)k−1

∣∣+
∣∣(wl ∗ vs)k+1

∣∣+
∣∣(ws ∗ vl)k+1

∣∣), 1 ≤ k ≤ N1 − 1,

by (6.12) and Corollary 2. Furthermore, the quadratic part of (6.13) is estimated by

‖[Z̃2,1]‖(ν1,n) ≤ max
1≤j≤n

[Λ1,2]j + 2 (N1 − 1) +
(t1 − t0)

(
2ν2

1 + 1
)

2ν1

∑
|α|=2

∣∣∣[gα]j

∣∣∣
 .

Similarly, ∣∣∣ΠNi

(
DF (x̂+ x1)− Â

)
x2

∣∣∣ ≤ ΠNi

(
Z̃1

)
r + Z̃2,ir

2,

where

(Z̃2,i)k =



0n, k = 0,

k (|vk|+ |wk|) +
ti − ti−1

4

∑
1≤l≤s≤n

|gls|
(∣∣(wl ∗ vs)k−1

∣∣
+
∣∣(ws ∗ vl)k−1

∣∣+
∣∣(wl ∗ vs)k+1

∣∣+
∣∣(ws ∗ vl)k+1

∣∣), 1 ≤ k ≤ Ni − 1,

and the quadratic part is estimated by

‖[Z̃2,i]‖(νi,n) ≤ max
1≤j≤n

2 (Ni − 1) +
(ti − ti−1)

(
2ν2
i + 1

)
2νi

∑
|α|=2

∣∣∣[gα]j

∣∣∣
 .

Combining these estimates, we can now bound A
(
DF (x̂+ x1)− Â

)
x2 as asserted.

Remark 11. In the current setting for periodic orbits we have that

d

dτ

∣∣∣∣
τ=0

Π0 (F (x̂+ rv + τw)− FN (x̂+ τw)) = 0,(
d

dτ

∣∣∣∣
τ=0

Π1 (F (x̂+ rv + τw)− FN (x̂+ τw))

)
0

= 2

( ∞∑
k=N1

(−1)
k
w1
k −

∞∑
k=Nm

wmk

)
.

Therefore, by the same computation as in Lemma 4, it suffices to set

Λ1,1 =
(
ν−N1

1 + ν−Nmm

)
· 1n, Λ1,2 = 0n, Λ0,1 = Λ0,2 = 0.

It remains to bound the `1νi-norm of (6.6) for k ≥ Ni. Observe that

d

dτ

∣∣∣∣
τ=0

c (â+ rv + τw) =

n∑
j=1

gj [w]j +
∑

1≤l≤s≤n

gls (wl ∗ âs + ws ∗ âl + r (wl ∗ vs + ws ∗ vl)) .

(6.14)
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Lemma 6. Let a ∈ `1νi be such that ak = 0 for k ≥ Ni. Define ϕ−a , ϕ
+
a : `1νi → R by

ϕ−a (x) :=

∞∑
k=Ni−1

(x ∗ |a|)k
νki
k + 1

, ϕ+
a (x) :=

∞∑
k=Ni+1

(x ∗ |a|)k
νki
k − 1

.

Then ϕ−a , ϕ
+
a ∈

(
`1νi
)∗

, and ‖ϕ−a ‖
∗
νi

= 1
2Γ−a , ‖ϕ+

a ‖
∗
νi

= 1
2Γ+

a , where

Γ−a : = max

({
2 |aNi−1|

νNi−1
i

Ni

}
∪

{
Ni−1∑

k=Ni−1−l

∣∣a|k|∣∣ νki
k + l + 1

: 1 ≤ l ≤ 2 (Ni − 1)

})
,

Γ+
a : = max

{
Ni−1∑

k=Ni+1−l

∣∣a|k|∣∣ νki
k + l − 1

: 2 ≤ l ≤ 2Ni

}
.

Proof. It follows directly from Proposition 3 that ϕ−a , ϕ
+
a ∈

(
`1νi
)∗

. Next, we consider the compu-
tation of ‖ϕ−a ‖νi (the computation of ‖ϕ+

a ‖νi is similar). Let k ≥ Ni − 1 be arbitrary and observe
that

(x ∗ |a|)k =

k+Ni−1∑
k1=k−Ni+1

xk1
∣∣a|k−k1|∣∣ ,

since ak2 = 0 for k2 ≥ Ni. Therefore,

ϕ−a (εl) =



|aNi−1|
νNi−1
i

Ni
, l = 0,

1

2

Ni−1∑
k=Ni−1−l

∣∣a|k|∣∣ νki
k + l + 1

, 1 ≤ l ≤ 2 (Ni − 1) ,

1

2

Ni−1∑
k=1−Ni

∣∣a|k|∣∣ νki
k + l + 1

, l ≥ 2 (Ni − 1) .

In particular, note that ϕ−a (εl) is decreasing for l ≥ 2 (Ni − 1). Hence∥∥ϕ−a ∥∥∗νi = sup
l∈N0

∣∣ϕ−a (εl)
∣∣ =

1

2
Γ−a

by Lemma 1.
An analogous computation yields ‖ϕ+

a ‖
∗
νi

= 1
2Γ+

a .

Corollary 3 (Estimates for the tail). Define

di1 : =
ν2
i + 1

νiNi

n∑
j=1

∣∣gej ∣∣+
∑

1≤l≤s≤n

|gls|
(
νi

(
Γ−
âil

+ Γ−âis

)
+

1

νi

(
Γ+
âil

+ Γ+
âis

))
,

di2 : =
2
(
ν2
i + 1

)
νiNi

∑
|α|=2

|gα| ,

then

2

∞∑
k=Ni

∣∣∣∣ d

dτ

∣∣∣∣
τ=0

(
ck−1

(
âi + rv + τw

)
− ck+1

(
âi + rv + τw

))∣∣∣∣ νkik ≤ di1 + rdi2.

Proof. First note that

2

∞∑
k=Ni

∣∣∣∣ d

dτ

∣∣∣∣
τ=0

ck−1

(
âi + rv + τw

)∣∣∣∣ νkik = 2νi

∞∑
k=Ni−1

∣∣∣∣ d

dτ

∣∣∣∣
τ=0

ck
(
âi + rv + τw

)∣∣∣∣ νki
k + 1

.
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Next, observe that

2

∞∑
k=Ni−1

∣∣∣∣∣∣
n∑
j=1

gej [wk]j

∣∣∣∣∣∣ νki
k + 1

≤ 1

Ni

n∑
j=1

∣∣gej ∣∣ ∥∥∥[w]j

∥∥∥
νi
≤ 1

Ni

n∑
j=1

∣∣gej ∣∣ ,
while

2

∞∑
k=Ni−1

∣∣(wl ∗ âis)k∣∣ νki
k + 1

≤ 2ϕ−âis
(|wl|) ≤ Γ−âis

,

and

2

∞∑
k=Ni−1

|(wl ∗ rvs)k|
νki
k + 1

≤ r

Ni
‖wl ∗ vs‖νi ≤

r

Ni
,

for any l, s ∈ {1, . . . , n} by Proposition 3, Lemma 6, and since v, w ∈ B1(0). Therefore,

2

∞∑
k=Ni

∣∣∣∣ d

dτ

∣∣∣∣
τ=0

ck−1

(
âi + rv + τw

)∣∣∣∣ νkik ≤ νi
 1

Ni

n∑
j=1

∣∣gej ∣∣+
∑

1≤l≤s≤n

|gls|
(

Γ−
âil

+ Γ−âis
+

2r

Ni

) ,

by (6.14). An analogous computation shows that

2

∞∑
k=Ni

∣∣∣∣ d

dτ

∣∣∣∣
τ=0

ck+1

(
âi + rv + τw

)∣∣∣∣ νkik ≤ 1

νi

 1

Ni

n∑
j=1

∣∣gej ∣∣+
∑

1≤l≤s≤n

|gls|
(

Γ+
âil

+ Γ+
âis

+
2r

Ni

) ,

which completes the proof of the lemma.

We are now ready to define the Z-bounds:

Proposition 9. The bounds

Zi,j (r) : =

[
γ ‖Πi,jAN‖B(XNν ,`1νi)

+
1

ω̂

(
ti − ti−1

4

[
di2
]
j

+ 2

)]
r2

+

[
hi,j + ‖Πi,j (Z1)‖νi +

ti − ti−1

4ω̂

[
di1
]
j

]
r,

Z0 (r) : = γ ‖Π0AN‖B(XNν ,R) r
2 + (h0 + Π0 (Z1)) r,

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, satisfy (3.8) and (3.10), respectively.

Proof. First observe that (
ΠiA

(
DF (x̂+ w1)− Â

)
w
)
k

=

ωwv
i
k + ωvw

i
k

ω̂
r − ti − ti−1

4ω̂k

d

dτ

∣∣∣∣
τ=0

(
ck−1 (â+ rv + τw)− ck+1 (â+ rv + τw)

)
for all k ≥ Ni by (6.3) and (6.6), and

∞∑
k=Ni

∣∣ωwvik + ωvw
i
k

∣∣ νki ≤ 1n, (6.15)

since v, w ∈ B1(0). Now recall the decomposition in (3.6) and combine (6.15), Lemma 3, Proposi-
tion 8, and Corollary 3 to obtain the result.
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6.3 Modifications for non-periodic boundary conditions

In Section 5.3 an equation representing arc-length continuation is added to the system, accompanied
by an extra a priori unknown parameter. In Section 5.4 the periodic boundary conditions are
replaced by boundary conditions that guarantee that the solution ends up in the local stable and
unstable manifolds. The adaptations of the estimates to these modified problems are presented in
Sections 6.3.1 and 6.3.2, respectively.

6.3.1 Periodic solutions near the homoclinic orbit

In this section we incorporate the necessary adjustments for the modified problem introduced in
section 5.3. First, observe that we will have an additional radii-polynomial p−1 which corresponds
to the equation for ρ. In particular, the additional bound Y−1 is given by

Y−1 := |Π−1ANFN (x̂)| ,

and the formulae for the other Y -bounds remain the same.
Recall that the Z-bounds were derived by estimating the two terms in (3.6). In particular,

one can derive bounds for the norm of linear operators on XNν in exactly the same way as before

as in Lemma 2, and then use Lemma 3 to compute a bound for
(
I −AÂ

)
x2. The changes in

the bounds for the second term, A
(
DF (x̂+ x1)− Â

)
x2, are more subtle, since ρ is now to be

interpreted as an unknown variable as well.
To identify the differences, denote the approximate solution by x̂ =

(
ρ̂, ω̂, â1, . . . , âm

)
, write

x1 = rv, x2 = rw, where v =
(
ρ1, ω1, v

1, . . . , vm
)
, w =

(
ρ2, ω2, w

1, . . . , wm
)
∈ B1(0), and recall

that the bounds for A
(
DF (x̂+ x1)− Â

)
x2 were obtained by computing estimates for (6.5) and

(6.6). Furthermore, observe that the additional equation for ρ has no contribution to this part of
the analysis, since the equation is linear and therefore

d

dτ

∣∣∣∣
τ=0

Π−1 (F (x̂+ rv + τw)− FN (x̂+ τw)) = 0.

Next, note that the convolution terms ci are the only functions in the definition of F which de-
pend on ρ, since ge1 is the only coefficient in the Lorenz-system which depends on ρ. Consequently,
a straightforward computation shows that the term 0

r
(
ρ1

[
wi
]
1

+ ρ2

[
vi
]
1

)
0

 ,
needs to be added to the right-hand side of (6.7), and ge1

[
w̃i
]
1

= ge1 (ρ̂)
[
w̃i
]
1
. To incorporate

this extra term in the estimates for (6.10) one needs to modify Proposition 8 by setting

γ := max


∣∣∣∣∣∣2 (Ni − 1) +

(ti − ti−1)
(
2ν2
i + 1

)
2νi

∑
|α|=2

|gα|+

 0
1
0

∣∣∣∣∣∣
∞

: 1 ≤ i ≤ m

 .

Similarly, terms  0

ρ2

[
âi
]
1

0

+

 0

ρ2

[
vi
]
1

+ ρ1

[
wi
]
1

0

 r.

need to be added to the right-hand side of (6.14).
Therefore, by analogous computations as in the proof of Corollary 3, the tail-estimates in

Corollary 3 remain valid if we add the terms

2νNii

∣∣∣[âiNi−1

]
1

∣∣∣
Ni

and
2
(
ν2
i + 1

)
Niνi

,
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to the expressions for
[
di1
]
2

and
[
di2
]
2
, respectively.

The above modifications account for all the necessary changes in the estimates, and the extra
formula for the additional bound Z−1 is given by

Z−1(r) := γ ‖Π−1AN‖B(XNν ,R) r
2 + (h−1 + Π−1 (Z1)) r.

6.3.2 Heteroclinic orbit

In this section we identify the differences in the construction of the bounds for the connecting
orbit discussed in section 5.4. We start by identifying the differences in the Y -bounds. We write

x̂ =
(
φ̂, α̂, â1, . . . , âm

)
and observe that the main difference in the computation of the Y -bounds,

as performed in Proposition 7, is caused by the following two terms being nonzero:

[Π0,j (F (x̂)− FN (x̂))]
3
j=1 = (Q−QNs) ◦Θµ(φ̂),

and

(Π1 (F (x̂)− FN (x̂)))0 = (P − PNu) (α̂) .

Consequently, we have additional bounds corresponding to the finite dimensional part of A(F (x̂)
−FN (x̂)), which previously had no contribution at all.

The required modifications are as follows: set

δ := |AN |


δs · 1n
δu · 1n

0n(−1+
∑m
i=1Ni)

 ,

add the bounds ‖Πi,j (δ)‖νi to Yi,j in Proposition 7, define (instead of Y0) the bounds

Y0,j := |Π0,jANFN (x̂)|+ Π0,j (δ) ,

where 1 ≤ j ≤ n, and change the factor
1

ω̂
into L.

Next, we consider the computation of the Z-bounds by considering the decomposition in (3.6)

again. As before, the main differences occur in the bounds for A
(
DF (x̂+ x1)− Â

)
x2, which

stem from the fact that there is no dependence on ω anymore, whereas dependencies on φ and
α need to be incorporated. To identify the differences, write x1 = rv and x2 = rw, where
v =

(
φ1, α1, v

1, . . . , vm
)
, w =

(
φ2, α2, w

1, . . . , wm
)
∈ B1(0).

The main differences in the right-hand sides of (6.5) and (6.6) in the current setting are that
the term k

(
ω2v

i
k + ω1w

i
k

)
r is not present, and the factors ti−ti−1

4 need to be multiplied by L.
To incorporate these changes into the bounds for (6.10) we only need to modify Proposition 8 by
setting

γ := max

{|Λ0,2|∞
}
∪


∣∣∣∣∣∣Λ1,2 +

L (t1 − t0)
(
2ν2

1 + 1
)

2ν1

∑
|α|=2

|gα|

∣∣∣∣∣∣
∞

∪
∣∣∣∣∣∣L (ti − ti−1)

(
2ν2
i + 1

)
2νi

∑
|α|=2

|gα|

∣∣∣∣∣∣
∞

: 2 ≤ i ≤ m


 .

Here the extra bounds Λ0,1, Λ0,2 ∈ R3
+ and Λ1,1, Λ1,2 ∈ R3

+, defined analogously as in (6.11) and
(6.12), respectively, can be obtained by computing estimates for

d

dτ

∣∣∣∣
τ=0

Π0,j (F (x̂+ rv + τw)− FN (x̂+ τw)) = 2

∞∑
k=Nm

[wmk ]j

− d

dτ

∣∣∣∣
τ=0

(
QNs ◦Θµ

(
φ̂+ rφ1 + τφ2

)
−QNs ◦Θµ

(
φ̂+ τφ2

)
+ hs ◦Θµ

(
φ̂+ rφ1 + τφ2

))
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for 1 ≤ j ≤ 3, and

d

dτ

∣∣∣∣
τ=0

(
Π1

(
F (x̂+ rv + τw)− FN (x̂+ τw)

))
0

= 2

∞∑
k=N1

(−1)
k
w1
k

− d

dτ

∣∣∣∣
τ=0

(
PNu (α̂+ rα1 + τα2)− PNu (α̂+ τα2) + hu (α̂+ rα1 + τα2)

)
,

respectively, where hu = P − PNu and hs = Q − QNs . The series involving wm and w1 in the
latter two expressions can be bounded in the same way as in Lemma 4. The terms associated to
the parameterizations P and Q can be bounded by using a combination of analysis and interval
arithmetic. In particular, this involves the choice of an a priori radius r∗ > 0 in order to compute
uniform bounds for |DPNu (α∗ + rα1)| and |D (QNs ◦Θµ) (φ∗ + rφ1)| for 0 < r < r∗, where |φ1|,
|α1|2 ≤ 1. The reader is referred to [22] for the details.

The final changes to be made are in Proposition 9: the Z-bounds are now defined by

Zi,j (r) : =

[
γ ‖Πi,jAN‖B(XNν ,`1νi)

+
L (ti − ti−1)

4

[
di2
]
j

]
r2

+

[
hi,j + ‖Πi,j (Z1)‖νi +

L (ti − ti−1)

4

[
di1
]
j

]
r,

Z0,j (r) : = γ ‖Π0,jAN‖B(XNν ,R) r
2 + (h0,j + Π0,j (Z1)) r,

where 1 ≤ i ≤ m and 1 ≤ j ≤ 3.
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