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Preface

The subject of this thesis is the mathematical study of a class of fourth order differential
equations. In the introductory Chapter 1 a summary is presented of the results which
are proved in the subsequent chapters. The mathematical results collected here originate
from several papers, and they have been obtained in cooperation with a number of highly
appreciated co-authors. In order of appearance: Chapter 2 is a minor modification of [21].
The content of Chapter 3 is joint work with Bill Kalies, Jarek Kwapisz and Rob van der
Vorst, and is published in [88]. Chapter 4 is largely based on [25] and is joint work with
Rob van der Vorst. The joy of Chapter 5 was shared with Joost Hulshof and Rob van der
Vorst, and the contents are published in [22]. The results in Chapter 6 were obtained in
collaboration with Bert Peletier and Bill Troy, and it appears in [23]. Chapter 7 differs only
slightly from [24], and is again a fruit of the collaboration with Rob van der Vorst. Finally,
Chapter 8 is based on [73] and also contains parts of [74], which are both joint work with
Robert Ghrist and Rob van der Vorst.
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Chapter 1

Introduction to fourth order equations

1.1 Prologue
The laws of nature are stated in the language of mathematics. Since physical laws describe
changing quantities it is natural that they are expressed in the form of differential(-delay)
equations. A well-known illustration is Newton’s law in classical mechanics. Newton’s
law is a second order differential equation since it relates the acceleration of an object, the
second derivative of its position, to the force exerted on it.

Apart from the fundamental laws of physics, many physical phenomena are model-
led by differential equations. A simple example is the heat equation, which describes the
changes of temperature as a function of time and place. This is another second order
differential equation, although of a nature that is very different from Newton’s law. The
latter is an ordinary differential equation (the position depends on one variable: time),
whereas the heat equation is a partial differential equation (the temperature varies in both
time and space).

Notwithstanding their differences, these two examples of differential equations have
a common ground: given the initial state (and possibly boundary conditions) the differ-
ential equation completely determines the evolution of the system. This is what char-
acterises these differential equations as so-called dynamical systems. Physics is not the
only science in which differential equations play a prominent role. There are many areas
where differential equations are used as a model for the problem at hand. To name a
few examples: the reaction and diffusion of chemicals, the dynamics of populations in
biology, the development and treatment of diseases in medicine, or the flow of a fluid
or gas, which has applications ranging from fundamental astronomy to meteorology to
industrial engineering.

Besides the applicability there is another motivation to study differential equations:
the mathematical challenge. The theory of differential equations has connections with
many different branches of mathematics. A further development of the theory of differ-
ential equations both facilitates applications and provides new insights in mathematics.
And the penultimate reason for the research presented in this thesis is to understand the
underlying structure of a mathematical problem, which we shall now begin to describe.

This thesis revolves about the fourth order parabolic differential equation

∂u
∂t

� � γ ∂4u
∂x4
�
β

∂2u
∂x2

�
u � u3 γ � 0, β ��� , (1.1)

and its generalisations. Here u � u(t, x) is a function of the time t and the space vari-
able x. The name Extended Fisher-Kolmogorov is usually attached to equations of type (1.1)
when β � 0 [53, 117], while for β � 0 the name Swift-Hohenberg equation is more ap-
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propriate [137]. We restrict our attention to one spatial dimension because some of the
application are truly one dimensional, but also because more spatial dimensions make
the analysis much harder and of a different nature.

Substantial attention is given to stationary (i.e. time-independent) solutions of this
equation. While Equation (1.1) is a partial differential equation, such equilibria satisfy the
ordinary differential equation

� γu
������� �

βu
��� �

f (u) � 0, with f (u) � u � u3. (1.2)

The nonlinearity f (u) � u � u3 is the prototypical example which leads to a bi-stable sys-
tem (the states u ��� 1 are stable for the homogenised equation du

dt
� u � u3), and in the

introduction we will focus on this particular nonlinearity. This being said, it should be
stressed that many of the results are obtained for broad classes of nonlinear functions f (u),
and often a wider class of fourth order equations is considered.

Casually we have already introduced one of the most important properties of Equa-
tions (1.1) and (1.2), namely that they are nonlinear equations. This, of course, is the main
reason that the problem is mathematically interesting. The other reason is that the equa-
tions are fourth order. Before we turn our attention to the origin of these equations in
applications, let us briefly discuss the mathematical viewpoint.

Equations (1.1) and (1.2) can be regarded as fourth order extension of the heat equation
and Newton’s law respectively. Concerning the partial differential equation (1.1), when
we set γ � 0 and β � 0, then we obtain a nonlinear heat equation. The reason that we
require γ to be positive is precisely that we want the equation to have a character which
is similar to the second order equation, namely to be of parabolic (diffusive) type.

The second order equation has an important property which the fourth order equation
in general does not possess: a comparison or maximum principle. Let us explain the
main point of this principle: when the initial state for the second order equation (γ � 0)
is positive, then the solution will stay positive for all time. This property is an essential
feature of the model in case the variable u represents a temperature or a concentration
of some chemical. The fourth order equation (γ � 0) does not obey this conservation of
positivity. This, on the one hand, allows for a wide range of dynamics which second order
equations do not and cannot possess, while on the other hand it means the loss of one of
our main analytic tools in studying the dynamics.

For the ordinary differential equation (1.2) the fourth order character provides the pos-
sibility of chaotic behaviour. Second order (autonomous) equations cannot have chaotic
behaviour, basically because such a system does not have enough degrees of freedom.
Thus the variety of patterns that evolve in the fourth order equations is much larger than
in the second order equation. And again, because these types of dynamics occur in a
higher dimensional space, they are also more difficult to analyse.

The fourth order equations (1.1) and (1.2) are part of an immense collection of higher
order differential equations. One of the reasons to study fourth order equations, and in
particular those of the form (1.1) and (1.2), is that they lie on the edge of what presently
can be analysed rigorously. They are comparable to a set of two coupled (second or-
der) reaction-diffusion equations, which are extensively studied (see e.g. [75, 76, 58, 108]).
Although in general no form of a comparison principle holds for the fourth order equa-
tions (in some cases such a principle holds for coupled second order equations), this is
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outweighed, or at least balanced, by the benefit of dealing with a single equation. On a
different level, an advantage of the fourth order equations (1.1) and (1.2) over third order
equations is that they have a variational structure (the equivalent of the Lagrangian and
Hamiltonian formulation in classical mechanics)1. This structure acts as a handle for the
mathematical analysis.

A final reason to investigate Equations (1.1) and (1.2) is that, with various nonlinear-
ities f (u), they serve as a model in an abundance of applications:

� the behaviour close to a so-called Lifshitz point in phase transition physics (e.g.
nematic liquid crystals, ferroelectric crystals) [85].

� the rolls in a Rayleigh-Bénard convection cell (two parallel plates of different temper-
ature with a liquid in between) [52].

� spontaneous pattern formation in second order materials (e.g. polymeric fibres) [99].
� the waves on a suspension bridge [97, 44].
� geological folding of rock layers [31].
� the buckling of a strut on a nonlinear elastic foundation [3].
� travelling water waves in a shallow channel [35].
� pulse propagation in optical fibres [1].
� the patterns near a degeneracy of co-dimension 2 in a system of two reaction-dif-

fusion equations [59].
� the propagation of a front into an unstable state leading to pattern formation behind

the front [53, 49].

In general, any system described by a second order Lagrangian leads to a fourth order
equation (we will come back to this in Section 1.3). The interpretation of the quantity u
depends on the application (e.g. it may indicate the temperature, vertical position, in-
tensity or order parameter), but in all cases it signifies the deviation from an underlying
average value (and hence u may be negative as well as positive).

Having stressed and illustrated the significance of the fourth order differential equa-
tions which are the subject of this thesis, it is by no means intended to give the impression
as if this is the most important topic in the universe or, for that matter, in mathematics.

Let us briefly give an outline of the sort of questions that we deal with. As already
mentioned, a differential equation is often accompanied by boundary and/or initial con-
ditions. In this thesis various cases are studied. For example, we examine the large time
behaviour of solutions of the initial value problem associated to (1.1) on a finite interval�
0, L � , where we take Neumann boundary conditions at x � 0 and x � L. But we also study

different boundary conditions, and we consider unbounded intervals as well. Regarding
Equation (1.2) we consider both special solutions such as periodic and heteroclinic solu-
tions, as well as the properties of the set of all bounded solutions (and even unbounded
ones).

The behaviour of solutions of (1.1) and (1.2) depends critically on the values of the
parameters γ and β. We note that these two parameters can be combined into a single

1Some differential equations of odd order (for example the Korteweg-de Vries equation) have a variational
structure of a very different nature, where the Lagrangian action acts as the Hamiltonian in an infinite
dimensional setting, see e.g. [109].
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parameter via a scaling of the spatial coordinate. For example, without loss of generality
one may set γ � 1. However, since we are also interested in the limiting behaviour as γ �

0, we will retain both parameters for the moment. Three significant parameter regions can
be identified, which correspond to the three different natures of the equilibrium points
u � � 1 of Equation (1.2). These are: real saddle for β�

γ
�

�
8, saddle-focus for � �

8 �
β�
γ

�
�

8, and center for β�
γ

� � �
8. We will come back to this in much more detail in

Section 1.3.
The techniques used to study Equations (1.1) and (1.2) have to be chosen suitably for

each parameter region. To summarise, there are roughly two ways to investigate the solu-
tions of (1.2): the shooting method and the variational method. With the shooting method
one tries to make a fairly detailed study of the flow (associated to (1.2)) in the (four dimen-
sional) phase space. The variational approach is set in an (infinite dimensional) function
space, where critical points of an appropriate functional are sought. Variational methods
can often unveil general phenomena in a large class of systems, while more detailed in-
formation for specific examples may be obtained via a shooting procedure. In this thesis
both methods are employed, and we also present a variational approach to the shooting
method. We remark that the mathematical techniques are the source of an additional par-
tition in the range of parameter values: most techniques are applicable either for positive
or for negative values of β.

Finally, let us make some comments about the symmetries of Equation (1.1). The
equation is invariant under the transformations x � � x as well as u � � u. The first
invariance signifies the equivalence of left and right. This symmetry is exploited in many
(though not all) of the results presented in this thesis. On the other hand, the second sym-
metry is rather less essential, although it is sometimes very useful to be able to simplify
the presentation. Hence, the majority of the results is obtained for general nonlinear-
ities f (u), not necessarily having the symmetry f ( � u) � � f (u), and sometimes even for a
more general class of fourth order equations. Some of the more detailed results are only
valid under the assumption of this additional symmetry.

Before we give an outline of the results about the fourth order equations (1.1) and (1.2),
we first review the second order analogues.

1.2 The second order equation
Second order equations have long been a workhorse of applied mathematics, the most
wide-spread example being the Fisher-Kolmogorov or Allen-Cahn equation

∂u
∂t

� ∂2u
∂x2

�
u � u3. (1.3)

This partial differential equation is often referred to as a nonlinear reaction-diffusion
equation (different nonlinearities have been considered as well). It has been used to
model, among others, phase transitions, chemical reactions and populations genetics [94,
12, 68]. The study of (1.3) has been extensive and we can only give a brief summary of the
relevant results. As a general reference we refer to [81, chapter 5] for a thorough analysis
of (1.3) and to [79, 80] for an overview of results on scalar parabolic equations.

Note that (1.3) can be obtained as the second order analogue of (1.1) when β is posi-
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� � �
1� 1 0

u

u
�

Figure 1.1: The phase-plane for Equation (1.4). The bounded orbits/solutions are indic-
ated in black.

tive by setting γ � 0 and rescaling x. The time-independent solutions of (1.3) satisfy the
ordinary differential equation

u
��� � � u

�
u3. (1.4)

In the analysis of (1.4) it is often useful to view it as the equation of motion of a particle
in the potential F(u) � � 1

4 (u2 � 1)2.
Of special interest are the bounded solutions of (1.4). By bounded solutions we mean

functions which satisfy (1.4) for all x � � and which are uniformly bounded. These
bounded solution can easily be gathered from the phase-plane depicted in Figure 1.1:

� The homogeneous/constant states u � 0, u � � 1 and u � 1. The states u � � 1 are
saddle point for the flow of Equation (1.4), and they are stable equilibria of (1.3),
whereas u � 0 is an unstable equilibrium of (1.3) (and a center of (1.4)).

� Two kinks or heteroclinic solutions. These solutions describe monotone transition
layers connecting the stable homogeneous states u � � 1. They are antisymmetric
and are accidentally given explicitly by u � � tanh

� x�
2 � .

� A family of periodic solutions filling up the space between u � 0 and the cycle of
heteroclinic solutions. These periodic solutions oscillate around 0 and have an amp-
litude between 0 and 1. They are symmetric with respect to their extrema and anti-
symmetric with respect to their zeros.

For the classification of the periodic solutions it is important to introduce the energy or
Hamiltonian:

E
�
u � � 1

2
u
� 2 � 1

4
(u2 � 1)2, (1.5)

which is constant along solutions of (1.4). This just corresponds to the classical energy of
a particle in a potential. The notation is somewhat ambiguous: depending on the context
E

�
u � either signifies the energy of a solution or the energy level (manifold) in phase space.
The constant states u � � 1 as well as the heteroclinic solutions have energy E

�
u � � 0,

while the other constant state u � 0 has energy E
�
u � � � 1

4 . For all intermediate values of
the energy there is precisely one (modulo translation) periodic solution. In other words,
in each of the energy levels E

�
u � � E � ( � 1

4 , 0) lies a unique periodic orbit. The period
of the periodic solutions can be expressed in terms of an elliptic integral, and it can be
shown that the period L strictly increases with increasing amplitude. The period ranges
from L � 2π in the limit of zero amplitude to infinity as the amplitude tends to 1. The
periodic solutions can thus be parametrised by their amplitude, period or energy.
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In connection with the Hamiltonian (1.5) there is a Lagrangian action associated with
Equation (1.4):

J
�
u � �

���
1
2 u
�
(x)2 � 1

4

�
1 � u(x)2 � 2 � dx. (1.6)

Solutions of (1.4) correspond to critical points of the action functional (1.6) in an ap-
propriate function space. For example, the kink can be characterised as the minimiser
of (1.6), with � as the domain of integration, in the affine function space ζ � H1( � ), where
e.g. ζ � tanh x.

The Lagrangian action has an additional, related property: J
�
u � (t) it is a Lyapunov

function for the flow of (1.3), i.e., it is non-increasing in time (again in an appropriate func-
tion space). To be precise, Equation (1.3) is the L2-gradient flow of (1.6). The existence of a
Lyapunov functional has important consequences for the attractor of (1.3). The attractor
is, roughly speaking, theω-limit set of all possible initial values, and it describes the long-
time behaviour of all solutions. For Equation (1.3) on a finite interval

�
0, L � the attractor

consists of the equilibrium solutions and all connecting orbits between these equilibria.
Here one may take, for example, Neumann boundary conditions ∂u

∂x (t, 0) � ∂u
∂x (t, L) � 0, or

Dirichlet boundary conditions u(t, 0) � u(t, L) � 0. We remark that equilibrium solutions
which obey Neumann or Dirichlet boundary conditions, can be extended to periodic solu-
tions of (1.4) and are thus part of the family of periodic solutions described previously.

Equation (1.3) possesses another important property, which is intimately connected to
a broad class to second order parabolic equations, namely the comparison principle: when
u1 and u2 are solutions of (1.3) with u1(0, x) � u2(0, x) for all x, then u1(t, x) � u2(t, x) for
all t � 0. Second order parabolic equations in one space dimension, such as (1.3) have a
stronger property: the number of intersections of two solutions, the zero number, is a non-
increasing function of the time t [101]. This principle has been used to give a complete
characterisation of the attractor of (1.3) on finite intervals [4].

We now turn our attention from a finite interval to the problem on the entire real
line. The existence of a pair of heteroclinic solutions has already been mentioned, and
we now discuss a different type of special solutions: uniformly translating profiles, or
travelling waves (heteroclinic solutions can be interpreted as standing waves). Consider
the following generalisation of (1.3):

∂u
∂t

� ∂2u
∂x2

� (1 � u2)(u � a), a �
�
0, 1). (1.7)

Substituting the travelling wave Ansatz u(t, x) � U(x � ct), where c is the (a priori
unknown) wave speed, one obtains the ordinary differential equation (where we have
switched to lower case again)

u
��� � � cu

� � (1 � u2)(u � a). (1.8)

As before it is sometimes useful to view this as the equation of motion of a particle in a
potential of the form depicted in Figure 1.2 under the influence of friction. We now see
that the energy E

�
u � is no longer a conserved quantity, but instead E

� �
u � � � cu

� 2.
There are two types of travelling waves: those connecting the two stable states u � � 1,

and those connecting the unstable state to one of the stable states. For all a � (0, 1) we have
E

�
1 � � E

� � 1 � � E
� � a � , hence we may assume that c � 0 (i.e., waves travelling from left

to right) and restrict our attention to heteroclinic solutions of (1.8) from 1 to � 1, and from
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F(u)

u
� 1 � a 1

Figure 1.2: The potential associated to (1.8) for a � 0.25.

� � � u

u
�(a)

� � � u

u
�(b)

� � � u

u
�(c)

Figure 1.3: The phase-plane for Equation (1.8): (a) for 0 � c � a
�

2; (b) for c � a
�

2;
(c) for c � a

�
2.

� 1 to � a. The phase-planes for three distinctive values of c are shown in Figure 1.3. We
notice the following:

� A travelling wave connecting � 1 to � a exists for all wave speeds c � 0.
� A travelling wave connecting 1 to � 1 exists only for c � a

�
2.

� A travelling wave connecting 1 to � a exists for c � a
�

2, but not for c � a
�

2.

The stability of these travelling waves has been determined in [68]. The travelling wave
connecting the two stable states is the limiting profile of solutions of (1.7) for a large class
of initial conditions. The waves connecting the stable to the unstable state (the stable
state invades the unstable state) are far less stable, as the existence of a continuum of such
travelling waves already indicates.

Let us finally recall that the two major tools in examining the second order equation
are on the one hand an analysis of the phase-plane, and on the other hand applications
of a comparison/maximum/lap-number principle. Both these techniques are not readily
available for fourth order equations, since a four dimensional phase space is much harder
to analyse (there are more degrees of freedom), and a comparison principle is just non-
existent for fourth order equations (it is violated in very simple examples such as the
linear equation).

1.3 The fourth order equation
A natural extension of Equation (1.3) is the Extended Fisher-Kolmogorov (EFK) equation

∂u
∂t

� � γ ∂4u
∂x4
� ∂2u

∂x2
�

u � u3, γ � 0. (1.9)
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It has been proposed in [49, 53] as a pattern generating generalisation of the classical
Fisher-Kolmogorov equation. In this section we give an overview of the results obtained
in this thesis concerning Equation (1.9), or more generally on equations of the form

∂u
∂t

� � γ ∂4u
∂x4
�
β

∂2u
∂x2

�
f (u) γ � 0, β ��� , (1.10)

where f (u) is a nonlinear function. A second example which falls in this category is the
Swift-Hohenberg (SH) equation

∂u
∂t

� �
�

1 � ∂2

∂x2 � 2

u
�
αu � u3, α ��� . (1.11)

Note that this is an equation of the form (1.10). One may perform a rescaling to obtain
the equation ut

� � uxxxx
�
βuxx

�
u � u3 where β � � 2�

α � 1
, i.e., β has the opposite sign

as compared to the EFK equation (1.9). The SH equation was first introduced as a model
equation in the study of Rayleigh-Bénard convection cells [137]. It serves as a model equa-
tion for the behaviour of a system near the onset of a finite wavelength instability [126, 50].

There are many more examples of physical systems where Equation (1.10) or similar
equations play a role (see also Section 1.1). We do not attempt to give a complete account,
but instead refer to [38, 39] and [123].

To understand the behaviour of solutions of the evolution equations (1.9), (1.10) and
(1.11), it is essential to understand the stationary (time-independent) solutions. A major
part of the results are therefore concerned with solutions of the equation

� γu
������� �

βu
��� �

f (u) � 0. (1.12)

This equation describes the stationary solutions of (1.10), but is also interesting in its
own right. As should be clear from the above examples, we are especially interested in
the case where f (u) � u � u3. This is the typical example of a bi-stable nonlinearity. In
the description of the results we will for simplicity concentrate on this particular choice
of f (u):

� γu
������� �

βu
��� �

u � u3 � 0. (1.13)

It should be stressed that most of the results are valid for a broad class of nonlinearities.

There are two important functionals associated to (1.12). First, when we multiply the
equation by u

�
and integrate, we obtain the energy or Hamiltonian

E
�
u � def� � γu

�
u
����� � γ

2
u
��� 2 � β

2
u
� 2 � F(u),

where
F(u) def�

� u

1
f (s) ds (1.14)

is the potential. The energy is a conserved quantity along orbits of (1.12). Second, the
Lagrangian action associated with this Hamiltonian is

J
�
u � def�

� �
γ

2
u
���
(x)2 � β

2
u
�
(x)2 � F(u(x)) � dx. (1.15)

The solutions of (1.12) correspond to critical points of the action J
�
u � and vice versa. The

domain of integration depends on the kind of solution under investigation. We will go
into more details of this variational structure in Section 1.3.3.
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Figure 1.4: Eigenvalues (in the complex plane) of the linearised problem around
�

1:
(a) β�

γ

� �
8, a real saddle; (b) � �

8 � β�
γ

� �
8, a saddle-focus; (c) β�

γ � �
�

8, a center.

Let us remark here that Equation (1.12) can be formulated as a Hamiltonian system.
Define v � u

�
, pu

� βu
� � γu

�����
and pv

� γu
���
. The Hamiltonian in these new variables is

H(u, v, pu, pv) def� 1
2γ

p2
v
�

vpu
� β

2
v2 � F(u) � E

�
u � , (1.16a)

and (1.12) is equivalent to the Hamiltonian system

u
� � ∂H

∂pu
, p

�
u

� � ∂H
∂u ,

v
� � ∂H

∂pv
, p

�
v

� � ∂H
∂v .

(1.16b)

Although only limited direct use of this formulation is made in this thesis, the Hamilto-
nian always plays an important role in the background.

For the special nonlinearity f (u) � u � u3 one has F(u) � � 1
4 (u2 � 1)2, and for γ,β � 0

the integrand in (1.15) is positive. From a variational point of view it makes sense to
define F(u) � �
	 u

1 f (s) ds instead of (1.14), i.e. with opposite sign. This will lead to a
change of notation in some chapters of this thesis. Although it might cause some con-
fusion, this seems inevitable. The definition in (1.14) is the natural one when one draws
upon the analogy with a classical mechanical system, whereas when the variational struc-
ture is prevalent, the definition with the opposite sign is more sensible. In this introduc-
tion we will stick to the definition as given in (1.14). There is another notational issue: the
two parameters in (1.12) can be replaced by just one (through a scaling). In some chapters
the equation will be rewritten as (with q � � β�

γ
)

u
������� �

qu
��� � f (u) � 0, q ��� .

Equation (1.13) has three equilibrium points: u � 0 and u � � 1. The eigenvalues
of the linearised problem around � 1 are depicted in Figure 1.4. While for β�

γ
�

�
8 the

eigenvalues are real, they are complex for � β�
γ
� �

�
8, and purely imaginary for β�

γ
� � �

8,
with the corresponding nature of the equilibrium points u � � 1 being real saddle, saddle-
focus and center respectively. As we will see later on, the dynamics of (1.13) in these
parameter regions differs quite drastically. Note that the third equilibrium point u � 0 is
a saddle-center for all parameter values.

We will in particular investigate bounded solutions of (1.12). These include periodic
solutions, homoclinic solutions (pulses) and heteroclinic solutions (kinks), but other types
of bounded solutions (among others so-called chaotic profiles) can also be present (in con-
trast to the second order equation). These different types of solutions appear in different
situations in applications, and the mathematical treatment often varies as well.
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1.3.1 Uniqueness
In the study of differential equations the second question is always about uniqueness
(multiplicity); the first question, that of existence, will be discussed in the next sections.
The problem that we address here is what happens to the bounded solutions of the second
order equation (1.3) when we add a fourth order term with a small coefficient γ (Equa-
tion (1.13)). Without loss of generality (by a scaling of x) we may put β � 1.

One way of proceeding is via singular perturbation theory [87, 67]. This leads to res-
ults for γ � ε, where ε is some unknown small positive constant. This is a very general
and fruitful method and often information about the stability of solutions can be found
as well [72, 2, 130].

Here we pursue a different method which covers a well-defined and rather large range
of parameter values, and is specific to equations of the form (1.12). Let us first illustrate
the power of this method by considering the results that are obtained for Equation (1.13).
We find that for all γ � 1

8 the bounded solutions of the fourth order equation (1.13) cor-
respond exactly to those of the second order equation (γ � 0). Moreover, the projections
of two bounded orbits onto the (u, u

�
)-plane do not intersect. Hence we may refer to

Figure 1.1 again.

Theorem 1.1 The only bounded solutions of (1.13) with β � 1 and γ � (0, 1
8 � are the three

equilibrium points, two monotone antisymmetric kinks and a one-parameter family of
periodic solutions, parametrised by the energy E � ( � 1

4 , 0).

Additionally, one finds that the periodic solutions are antisymmetric with respect to their
zeros, that they form a continuous family, and that the period strictly increases with in-
creasing amplitude. Furthermore, the monotonically increasing heteroclinic orbit is the
transverse intersection of the unstable manifold Wu( � 1) and the stable manifold W s( � 1)
in the energy level E � 0.

These results show that the picture which can be obtained for the EFK equation via
perturbation methods actually extends all the way to γ � 1

8 . This is already interesting in
its own right, but part of this analysis will also be used later on to derive further results.

We now turn to a more general setting. Consider functions f (u) � C1( � ) and define,
for � � � a � b � � ,

ω(a, b) def� max
�
0, max

u ��� a,b �
� f

�
(u) � .

Introduce sets of bounded functions

B(a, b) def� �
u � C4( � ) � u(x) �

�
a, b � for all x � � � .

One can often find an a priori bound on the set of all bounded solutions, i.e., for some
� � � a � b � � all bounded solutions of (1.12) are in B(a, b). It is important to keep
in mind that these a priori bounds are usually valid for a range of values of γ. As will
be clear from the statement of the theorems below, a better bound leads to a lower value
ofω, which in turn leads to a stronger result. These definitions may seem a bit technical
at first sight, but we will see shortly that they lead to powerful results (see also Chapter 2).

An essential property of smooth second order autonomous ordinary differential equa-
tions is that there is exactly one solution through every point in the phase-plane. The
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following theorem states that the (u, u
�
)-plane preserves this uniqueness property for

bounded solutions of the fourth order equation as long as γ is not too large.

Theorem 1.2 Let u1 and u2 be bounded solutions of (1.12) with β � 1, i.e., u1 and u2 are
in B(a, b) for some � � � a � b � � . Suppose that γ �

�
0, 1

4ω(a,b)

�
. Then the paths of u1

and u2 in the (u, u
�
)-plane do not cross.

Let us give some examples: for the double-well potential F(u) � 1
4 (u2 � 1)2 (note that

this is not the EFK potential) and for the periodic potential F(u) � cos u, we have that
ω( � � , � ) � 1. So we do not need an a priori bound, and Theorem 1.2 applies for γ � 1

4 .
For the EFK equation, F(u) � � 1

4 (u2 � 1)2, it turns out (we come back to this later) that for
0 � γ � 1

8 all bounded solutions satisfy � u ��� � 1, andω( � 1, 1) � 2. Hence Theorem 1.2
applies for γ � 1

8 . We note that in all three cases Theorem 1.2 holds exactly up to the
value of γ where the nature of some of the equilibrium points changes from real saddle
to saddle-focus.

Now assume that for some γ � 0 we have an a priori bound on the set of bounded
solutions, i.e., all bounded solutions of (1.12) are in B(a, b) for some � � � a � b � � , and
let us assume thatω � ω(a, b) � � and that γ � 1

4ω . Then if γ �
�
0, 1

4ω � bounded solutions
of (1.12) do not cross by Theorem 1.2. An immediate consequence of Theorem 1.2 and the
reversibility of (1.12), is that when γ �

�
0, 1

4ω � any bounded solution of (1.12) is symmetric
with respect to its extrema. This implies that the only possible bounded solutions are

� equilibrium points,
� homoclinic solutions with one extremum,
� monotone heteroclinic solutions,
� periodic solutions with a unique maximum and minimum value.

It turns out that, as for the second order equation, the energy E
�
u � orders the bounded

solutions in the phase-plane, i.e., the energy increases when walking in the � u
�
direction

away from the u-axis. The results for Equation (1.13) in Theorem 1.1 (and those just below
the theorem) are direct consequences of the above considerations.

Let us now briefly discuss the idea behind these results. The method used to prove the
above theorems is based on a splitting of Equation (1.12) into two second order equations.
Define (setting β � 1)

λ � 1
γ

�
1
2

��� 1
4

� ωγ � and µ � 1
γ

�
1
2
� � 1

4
� ωγ � .

It is easily seen that λ andµ are positive real numbers if and only ifγ � 1
4ω . Equation (1.12)

can then be factorised as � �
γ (u

��� � λu) � v
�
γ (v

��� � µv) � f (u) � ωu,
(1.17)

and the definition of ω ensures that f (u) � ωu is a non-decreasing function of u for
u �

�
a, b � . The fact that the right-hand sides of the two equations in (1.17) are increas-

ing functions can now be used to apply arguments which bear some resemblance to the
maximum principle.

The observation that this factorisation could be used for uniqueness proofs was first
made in [3, 35]. There it was applied to prove uniqueness of the homoclinic solution
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(to 0) for (1.12) with f (u) � � u
�

u2. In the above arguments, which are a summary of
Chapter 2, it is shown how a global picture of all bounded solutions can be obtained.

We note that the uniqueness of the heteroclinic solution of (1.13) for γ � 1
8 is also

proved in [96] via the use of a Twist map (see also Section 1.3.4). Although the method
used there in many ways resembles part of the analysis presented here, it highlights a
totally different way of looking at the problem. Recently it has been shown in [15] that
uniqueness of the monotone kink for γ � 1

8 can also be proved using a reformulation
in terms of a convolution equation. This approach allows extensions to higher order
equations.

Theorems 1.1 and 1.2 provide statements about all energy levels at once. When the
attention is restricted to a specific energy level, results on uniqueness and non-existence
of bounded solutions can often be extended to larger values of γ. In [112] the above
techniques are combined with a geometric analysis of the flow in the (u, u

���
)-plane to do

just that.
Finally, let us come back to the a priori bounds on bounded solutions of (1.13). The

fact that � u ��� � 1 for all bounded solutions if γ � 1
8 follows from a repeated application

of the maximum principle to (1.17). However, to be able to do this one needs another,
less sharp, a priori bound. Such a bound can be obtained for all γ � 0 and β � 0: any
bounded solution of (1.13) for γ � 0 satisfies � u � � �

�
2. This bound and analogous ones

for other nonlinearities are obtained as a generalisation of a result in [119].

1.3.2 Shooting methods
One of the basic tools in analysing the solutions of (1.12) is a topological shooting method
which is designed to handle oscillatory solution graphs. It is based on a careful analysis
of the location and height of the successive local maxima and minima of the graph. This
method has been developed to study Equation (1.13) in a series of papers [117, 118, 119,
120, 121]. In this section we fixγ � 1 without loss of generality. Searching for odd solutions
of (1.13) in some energy level E

�
u � � E, one takes initial values

u(0) � 0, u
�
(0) � α, u

���
(0) � 0, u

�����
(0) � η(α), (1.18)

where η(α) � β

2 u
� � (E

� 1
4 ) 1

u
� . One tries to find values of the slopeα such that the solution

of the initial value problem has certain properties. For example, one looks for solutions
which tend to 1 as x � � to find heteroclinic solutions, or one proves the existence of one
or more values of α such that for some ξ � 0 it holds that u

�
(ξ) � 0 and u

�����
(ξ) � 0, which

leads to a periodic solution. The invariance of Equation (1.13) under the transformations
u(x) � � u(x) and u(x) � � u( � x) is used to extend the solutions to all x � � . Note that
such solutions may also be even about some point ξ � � , but we will nevertheless refer
to them as odd, to distinguish them from the genuinely even solutions, which will be
discussed next.

A similar shooting procedure can be set up for even solutions by taking as initial values

u(0) � α, u
�
(0) � 0, u

���
(0) � � �

2(E � F(α)), u
�����

(0) � 0. (1.19)

In this case one can study the existence of homoclinic and (again) periodic solutions.
Note that in this latter approach only the reversibility of Equation (1.12) is used. When no
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Figure 1.5: Two simple periodic solutions for E � 0, β � � 1, γ � 1.

0

1

k � 1 2 3 4 5 6 7

�����

�

Figure 1.6: Building blocks with their corresponding numbers.

symmetry is present in the system then a two dimensional shooting method would have
to be used.

We now describe some of the results. Taking initial conditions (1.18) with α � 0 and
monitoring the first maximum of the solutions, it was found in [120] that for any E �
( � 1

4 , 0) and any β � � (γ � 1 fixed) there exists a periodic solution of (1.13), odd with
respect to its zeros and even with respect to its extrema. For E � 0 such a periodic solution
is found for β �

�
8 [120, 106]. In fact, two such solutions are found in that case, one

with � u ��� � 1 and one with � u ��� � 1 (see Figure 1.5). For β �
�

8 no periodic solution
exists in the energy level E � 0, but instead there are monotone heteroclinic solutions
connecting � 1 to � 1 [117]. For β �

�
8 monotone heteroclinics do not exist, since then the

equilibrium points � 1 are saddle-foci or centers. The existence of symmetric homoclinic
solutions which have a unique critical point is discussed in [116]. Such solutions do not
exist for Equation (1.13), but they do exist for other nonlinearities f (u).

For β �
�

8 the fact that � 1 are saddle-foci or centers can be used to obtain periodic,
heteroclinic, homoclinic and even chaotic solutions which have oscillations around � 1.
We fix the energy level E � 0 (containing the equilibria u � � 1). Instead of giving defin-
itions we will try to explain what kind of solutions are found. In Figure 1.6 the building
blocks of solution shapes are shown, with a number attached to each building block. By
symmetry, there are similar building blocks for negative u, and we thus distinguish posi-
tive and negative building blocks. There are also building blocks of type � ; they consist
of solutions which tend to � 1 as x � � � , see Figure 1.6. These building blocks are not
exact solutions, but they show the approximate shape. The important features are the
positions of the extrema with respect to the lines u � � 1 and u � 0.

By alternating positive and negative building blocks one may build solutions and one
obtains a corresponding sequence of positive integers. We will say that a solution is of
type (. . . , k1, k2, k3, . . . ) if its shape corresponds to this sequence of building blocks. Since
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Figure 1.7: Schematic examples of solutions for β ��� 0,
�

8) corresponding to sequences
(a) (. . . , 2, 4, 2, 4, 2, . . . ), (even) periodic; (b) (. . . , 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, . . .), (odd) periodic;
(c) ( � , 4, � ), homoclinic; (d) ( � , � ), heteroclinic; (e) (. . . , 2, 2, 1, 2, 2, 2, 1, 2, 2, . . .), peri-
odic; (f) (. . . , 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, . . .), periodic.

we deal with odd or even solutions we restrict our attention to symmetric types. The
techniques developed in [118, 119] can be used to show that for β �

�
0,

�
8) there are

solutions of (1.12) with energy E
�
u � � 0 whose shape corresponds to any of the following

sequences (types):
� (. . . , k2, k1, k1, k2, . . . , kn � 1, kn, kn � 1, . . . , k2, k1, k1, k2 . . . ) or

(. . . , k2, k1, k2, . . . , kn � 1, kn, kn � 1, . . . , k2, k1, k2, . . . ) for some n ��� with ki ��� .
These sequence are periodic and correspond to an odd or even periodic solution
respectively (see Figures 1.7a,b).

� (. . . , k3, k2, k1, k2, k3, . . . ) or (. . . , k2, k1, k1, k2, . . . ) with ki ��� .
If there is no ‘regularity’ in the sequence then the solution is sometimes called chaotic.

� ( � , kn, . . . , k2, k1, k2, . . . , kn, � ) for some n ��� and ki ��� .
This corresponds to an even homoclinic solution (see Figure 1.7c).

� ( � , kn, . . . , k2, k1, k1, k2, . . . , kn, � ) for some n ��� and ki ��� .
This corresponds to an odd heteroclinic solution. There is also a simple heteroclinic
solutions of type ( � , � ), see Figure 1.7d.

Notice that both u and � u correspond to the same sequence unless we specify a certain
building block to be positive. A few examples are given in Figure 1.7. The restriction to
even and odd solutions does not seem to be crucial. A limit procedure could be used to
prove the existence of solutions corresponding to non-symmetric sequences2. These res-
ults can be generalised to nonlinearities with a shape similar to f (u) � u � u3, i.e., having

2Periodicity of solutions corresponding to non-symmetric periodic types seems more difficult to prove (it
becomes a truly two dimensional problem). In a variational setting one can make the periodicity an intrinsic
part of the problem by choosing suitable function spaces, see Chapter 3.
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Figure 1.8: The simple kink is continued numerically in the parameter β. The value of
the action J � u � is shown as a function of β. The cusp is solely due to the choice of the
action J as the quantity on the vertical axis; the L � -norm displays smooth behaviour
near the turning point (cf. Figure 1.9b). Solutions (indicated by small squares) on the
lower and upper branch are shown in (b) and (c) respectively.

three zeros u1 � u2 � u3 such that u1 and u3 lie in the same energy level. In particular,
f (u) does not need to be anti-symmetric (one can use the shooting setup in (1.19)).

For β � ( � �
8, 0) the equilibria u � � 1 are still saddle-foci, so one might expect the

above solutions to continue to exist. And to some extent this is indeed true. Although
the shape of the solutions starts to change somewhat (sometimes even (almost) bey-
ond recognition), one can (numerically) follow continuous branches of solutions into
the parameter region β � 0 (using the program AUTO [57]). However, some types of
solutions cease to exist while the equilibrium points are still saddle-foci. The critical
value β � � 0 after which the solution no longer exists, is different for each type of solu-
tion. The example of the simple kink ( � , � ) is shown in Figure 1.8. At a critical value
of about β ��� � 2.3 this solution coalesces with another heteroclinic solution (with se-
quence ( � , 1, 2, 2, 1, � )). This phenomenon has been extensively studied in [35] for Equa-
tion (1.12) with f (u) � � u

�
u2.

In Chapter 6 we use the shooting method to study what happens to certain types of
periodic solutions when β becomes negative. We find three different kinds of behaviour:

1. We obtain a family of periodic solutions bifurcating from the unique kink at β � �
8

and extending to � � , i.e., these solutions exist for all β �
�

8 (see Figure 1.9a). The
family consists of a countable infinity of distinct periodic solutions of type (. . . , 2, 2, 3,
2, 2, . . . , 2, 2, 3, 2, 2, . . . ), where the number of 2’s between two 3’s is arbitrary (for an
example see Figure 1.7b).

2. As already explained above, there are (infinitely) many pairs of families, which exist
at least forβ �

�
0,

�
8). These solutions continue to exist for some, but not all, negative

values of β. Numerical evidence shows that these solutions pairwise lie on loops in
the (β, � u ��� )-plane (see Figure 1.9b) of which the projection on the β-axis is of the
form

�
β � ,

�
8).

3. Finally, we find a third kind of (even) periodic solutions. These again come as a
family of countable many distinct periodic solutions which bifurcate from the kink
at β � �

8. However, this family does not extend to infinity nor do they lie on loops.
Instead, the numerical results indicate that these periodic solutions bifurcate from
the constant solution u � 1 as β tends to a critical value βn

� � �
2(n � 1

n ), n ��� (see
Figure 1.9c). For n � 2 these solutions come in pairs. The critical valuesβn arise when
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Figure 1.9: The three types of branches: (a) extending to � � ; (b) loop-shaped; (c) bi-
furcating from u � 1.

the moduli of the eigenvalues of the linearisation around u � 1 are a multiple of one
another. The sequences corresponding to these solutions, at least for β � 0, are of
the form (. . . , 1, 1, 2, 1, 1, . . . , 1, 1, 2, 1, 1, . . . ) and (. . . , 1, 1, 3, 1, 1, . . . , 1, 1, 3, 1, 1, . . . ). The
number j of 1’s between two 2’s or 3’s is odd (which means that u(x) � � 1 for all
x ��� ) and j � 2n � 1 or j � 2n � 3 respectively. See Figure 1.7f for an example.

We emphasise that these branches of solutions illustrate that the structure of the solutions
set does not immediately change when β changes sign.

In addition to the branches of solutions extending over (βn,
�

8), it is also possible to
construct branches of even solutions which bifurcate from u � 1 at βn,m

� � �
2( n

m
� m

n ),
n, m � � . We refer to Chapter 6 for a more detailed discussion and examples. Besides, in
Chapter 8 (see also Section 1.3.4.2) a variational setting of the shooting method is presen-
ted, involving the calculation of the Conley index of certain types of solutions. Most
of the solutions described above are recovered, as well as many additional branches of
solutions. This approach also sheds light on the matter of coalescence of solutions. A
non-trivial Conley index implies the existence of at least one solution of the correspond-
ing type for any parameter value. A trivial Conley index allows for the possibility of two
coalescing solutions, so that a solution of the corresponding type may exists in only part
of the parameter regime.

We want to make some comments about quantities which are conserved along con-
tinuous branches of solutions in the energy level E � 0. It turns out that for all β �

�
8

the number of extrema (counted with multiplicity) cannot change and that the number
of intersections with u � 1 and u � � 1 is also conserved. This already puts quite a few
restrictions on the behaviour of branches of solutions, and combined with numerical ex-
periments this gives a lot of intuition. The following prediction can be made. We recall
that the use of the sequences to label solutions is only valid for β � 0. A solution whose
sequence contains at least one ki � 4 lies on a loop-shaped branch. A solution whose se-
quence consists of 2’s and 3’s lies on an unbounded branch. The only solution which can
lie on a branch which bifurcates from u � � 1 are those of the form (. . . , 1, k1, 1, k2, 1, . . . )
with ki �

�
1, 2, 3 � . However, some of these happen to lie on loop-shaped branches. This

still leaves some undecided cases and we will not try to make bold predictions about
those. Nevertheless a quite complete picture exists of all these branches. We should add
that the relative position of the coalescence points β � (the turning points of the loop-
shaped branches) has been investigated and partially resolved in [35].
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� �
)-plane with the set
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V � 0 � . If V 	� 0 the velocity (u

�
, u

� � �
) lies

in a cone depicted in (b) for V � 0 and in (c) for V � 0.

There is a second shooting method for equations of the form (1.12), which has been
developed in [84, 3, 43]. In contrast to the method above, the central role is played by the
(u, u

���
)-plane. This setting stems from the identity (for energy E � 0)

u
�
(u
����� � β

2
u
�
) � 1

2
u
��� 2 � F(u) (1.20)

Defining V � 1
2 u
��� 2 � F(u) the (u, u

���
)-plane is divided into regions where V has different

signs (see Figure 1.10a). The sign of V implies a form of monotonicity: if V � 0 then by
Equation (1.20) the velocity (u

�
, u
�����

) lies in the cone as indicated in Figure 1.10b (for β � 0),
whereas for V � 0 the velocity lies in the cone depicted in Figure 1.10c. Note that the
opening angles of the cones depend on the parameter β.

If V � 0 then either u
� � 0 or u

����� � β

2 u
�
. Therefore, if an orbit intersects the set

�
V � 0 �

at x � x0 then there are two possibilities. Either the velocity (u, u
���
) is non-zero and the

direction u
� � �

u
� of the orbit is � (vertical) or β

2 ; or u
� � u

����� � 0 implying that u is symmetric
about x0, and the direction of the incoming and outgoing orbit is β � f (u)

u
� � , which again

depends on the value of β.
The transition from real saddle to saddle-focus is characterised by the fact that the

slope of the cones becomes smaller than the slope of the graph of
�
V � 0 � at the equi-

librium point. Besides, at the transition value the direction β � f (u)
u

� � of an orbit with zero
velocity (i.e. at a turning point) close to the equilibrium point, also becomes equal to the
slope of the graph of

�
V � 0 � . The value of β therefore has a serious influence on the

possible dynamics.
We have only touched upon the basic features of this second approach to a shooting

method and we do not want to go into the details. We remark that this method has been
successfully applied to prove several results for the Equation (1.12) with f (u) � � u

�

u2 [3, 43], see also [33] for an application in the setting of Lorentz-Lagrangian systems. The
above description of the setting in the (u, u

���
)-plane is largely based on the work in [112],

which was already mentioned in Section 1.3.1.

1.3.3 Variational techniques
It is well-known that many problems with a physical origin have a variational formula-
tion and Equation (1.12) indeed falls in this category. Solutions of (1.12) correspond to
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critical points of the action

J
�
u � �

�
L(u(x), u

�
(x), u

���
(x)) dx,

where the integrand, the Lagrangian, is given by

L(u, u
�
, u
���
) � γ

2
u
��� 2 � β

2
u
� 2 � F(u). (1.21)

The Lagrangian is closely related to the Hamiltonian formulation, see (1.16). There is an
intimate connection between Hamiltonian and Lagrangian systems and we refer to [9] for
more details.

The Lagrangian (1.21) is a second order Lagrangian since it depends on the deriva-
tives up to second order. One can thus embed Equation (1.12) in the class of second
order Lagrangian systems, which makes it possible to extend those results on (1.12) which
are obtained via a variational approach to a larger class of fourth order equations. The
Euler-Lagrange equation, which is satisfied by critical/stationary points of a second order
Lagrangian system L(u, u

�
, u
���
), reads

∂L
∂u

� d
dx

∂L
∂u
�
� d2

dx2

∂L
∂u
��� � 0.

Let us return to the Lagrangian (1.21) with F(u) � � 1
4(u2 � 1)2 to study stationary solu-

tions of (1.13). To find periodic solutions with period
�

one can consider the minimisation
problem

min
u � X

�
L(u, u

�
, u
���
) dx where X � H2(0, �2 ) � H1

0(0, �2 ).

Minimisers automatically satisfy the boundary conditions u(0) � u
���
(0) � u( �2 ) � u

���
( �2 ) � 0,

so that by the symmetry of (1.13) they extend to periodic solutions with period
�
. This

minimisation problem has been investigated in [124] for β � 0. In that case one fixes
β � 1 and it was found that for γ � 0 there exist periodic solutions for any period

�
�

2π � 2γ�
1 � 4γ � 1 (which originates from the linearisation around u � 0; for

� � 2π � 2γ�
1 � 4γ � 1

the uniform state u � 0 is the minimiser). These periodic solutions have precisely two
zeros and two extrema in one period.

Although such a minimisation procedure is greatly facilitated by the non-negativity of
the integrand L(u, u

�
, u
���
) for β � 0, it seems that, since we are dealing with finite intervals,

at least part of this method could be applied for β � 0 as well, but this has not been
pursued. In [124] a similar method is used to prove the existence of a heteroclinic solution
for all β � 0, which in the notation of Section 1.3.2 corresponds to the type ( � , � ) in the
case of saddle-foci.

Chapter 3 deals with the variational analysis of periodic solutions with more than two
extrema in one period. We restrict our search to the energy level E � 0. The minimisation
method used here does not fix the period but instead minimises in a class of functions
with a certain shape, thus finding local minimisers of the action.

Consider the punctured phase-plane P � �
(u, u

�
) � � 2 � ( � 1, 0) � . The fundamental

group of P is generated by two loops e1 and e2 winding around the points ( � 1, 0) and
( � 1, 0) respectively in clockwise direction, see Figure 1.11a. The path of a continuously
differentiable periodic function u which has no extrema on the lines u � � 1, belongs to
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�� ��
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u
�
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u
�

e1e2
� �� �

Figure 1.11: (a) The punctured plane P with the two generators of the fundamental
group. (b) The path of a function in equivalence class � e2

2e1
�
, homotopy type � 1, 2

�
.

some equivalence class, say
�
emn

2 emn � 1
1

����� em3
1 em2

2 em1
1 � for some n � � . The integers mi are

positive since u is a function (i.e., we are dealing with the half-group generated by e1

and e2). Without loss of generality we take n to be even. We define a function class X
corresponding to a set of positive integers (mi)n

i � 1 as all periodic functions in H2 whose
path in P lies in the equivalence class, say

�
emn

2
����� em2

2 em1
1 � , see Figure 1.11b for an example.

Define the homotopy type as the finite sequence of even numbers
�
2m1, 2m2, . . . , 2mn � ; this

homotopy type counts the number of consecutive crossings of the lines u � 1 and u � � 1
for the functions in the equivalence class. In each of these equivalence classes we obtain a
minimising periodic solution. The result holds whenever the equilibrium points u � � 1
are saddle-foci and β � 0.

Theorem 1.3 Let β � 0 and γ

β2 � 1
8 . For any homotopy type

�
2m1, 2m2, . . . , 2mn � , with

n even and mi ��� for all 1 � i � n, there exists a periodic solution of (1.13) which locally
minimises the action J

�
u � .

Note that since the period is not fixed, minimisation is also carried out over all possible
periods, which implies that all minimisers have energy E

�
u � � 0.

When we try to compare these solutions to the notation introduced in Section 1.3.2
we encounter the following difficulty. Consider the solutions of periodic type (. . . , 2, 4, 2,
4, 2, . . . ) and (. . . , 1, 2, 2, 2, 1, 2, 2, 2, 1, . . . ), then the homotopy type of both these solutions
is

�
2, 4 � , see Figure 1.7a,e. Numerical evidence as well as the nature of the minimisation

procedure suggest that the minimiser is the solution of type (. . . , 2, 4, 2, 4, 2, . . . ), while the
other one is a solution of index 1 (i.e. one unstable direction). In general this has how-
ever not been proved. Nevertheless, the idea is that the periodic solution which are made
from only even building blocks are the minimisers and thus are stable stationary solutions
of Equation (1.9), whereas each odd building block used corresponds to one unstable dir-
ection so that the index of the solution equals the number of odd building blocks. Finally,
we remark that the homotopy type is conserved along a continuous branch of solutions
with E

�
u � � 0, see also Section 1.3.2. The pair of solutions discussed here lie on a loop-

shaped branch of solutions (see again Section 1.3.2).
The method works for a large class of second order non-negative Lagrangians which

have two global minima which are saddle-foci. If L is of the form (1.21) with a symme-
tric potential then one obtains Theorem 1.3. For non-symmetric Lagrangians one finds
minimisers for homotopy types

�
2m1, . . . , 2mn � with mi

� 2 or mi sufficiently large.
We also prove the existence of minimising solutions corresponding to non-periodic
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homotopy types. Some properties of the homotopy type, such as symmetry, are reflected
in the corresponding minimisers. Another example is that if a homotopy type is asymp-
totically periodic in both directions, then there exists a minimiser of that type which is a
heteroclinic connection between two periodic minimisers. An important feature of min-
imisers is that their projections onto the (u, u

�
)-plane have no more self-intersections then

necessary, i.e., the only self-intersections are those forced by the homotopy type. A similar
result in the situation of a constrained minimisation problem can be found in [114].

In many ways the situation resembles the that for geodesics: one tries to find the
most cost-effective path to make J

�
u � as low as possible, so that shortcuts are very fa-

vourable (see Chapter 3 for more details). This technique was developed in [89] to prove
the existence of heteroclinic and homoclinic solutions in much the same setting as de-
scribed above for periodic solutions. Heteroclinics and homoclinics are found of type
( � , 2m1, . . . , 2mn, � ), where mi � � , and n is odd for homoclinics and even for heteroclin-
ics.

A series of related variational problems has been investigated in the last few years,
and we will briefly discuss the most relevant ones.

In the study of second order materials a minimisation problem of the form

inf lim
T � � 1

2T

� T

� T
L(u, u

�
, u
���
) dx (1.22)

is encountered, where the infimum is taken over all functions u � H2
loc for which this

limit exists. For β � 0 the minimisers are the homogeneous states u � � 1, but when β
is sufficiently negative this is no longer true, and a periodic function takes over the role
of minimiser [46, 99, 106]. This happens when β reaches the (a priori unknown) value β �

for which the first periodic solutions appears with action J
�
u � � 0. The numerical value

of β � is about � 0.92 for γ � 1. We remark that the minimisation technique in homotopy
type classes described in this section relies on the positivity of the Lagrangian L to apply
cut-and-paste techniques, i.e., it only works for β � 0. Nevertheless it seems that one
should be able to extend this to β � 0 as long as β � β � , since for β � β � every function
corresponding to a loop in the configuration plane P has positive action.

In the description of geological pattern formation the following constraint minimisa-
tion plays a role [113]:

inf
X

�
�

L(u, u
�
, u
���
) dx, where X � �

u � H2 � 	 � u
� 2dx � λ � .

Here L is taken to be of the form L � 1
2 u
��� 2 � 1

2 u2 � 1
4 u4 � a

6 u6. For a � 1
4 a minimising

homoclinic orbit to 0 is found, which converges to a periodic function as λ � � , where
the periodic function solves a related minimisation problem.

A mountain pass argument has been applied to prove the existence of a homoclinic
solution to 0 of (1.12) with f (u) � � u

�
u2 for β � ( � �

8, � ) [33]. The estimates needed
for this method (to prove that the Palais-Smale condition is satisfied) are unfortunately
only available for nonlinearities of the special form f (u) � � u

�
us, s � 1.

Various gluing methods have been used to show that, when the equilibria u � � 1 are
saddle-foci, the existence of a heteroclinic loop implies the existence of infinitely many
heteroclinic, homoclinic and periodic solutions. These methods are partly variational
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and partly functional analytic in the sense that one tries to prove the existence of a zero
of dJ

�
u � . If the heteroclinic orbits of the heteroclinic loop are transverse intersections of

Wu( � 1) and Wu( � 1) then, as was already shown in [54], dynamical system techniques
imply the existence of a Smale horseshoe, hence there are infinitely many heteroclinic,
homoclinic and periodic solutions. For Equation (1.13) the transversality condition can
be checked for γ

β2 very close to 1
8 . In [90, 36] it was shown that similar results can be ob-

tained via a gluing method without checking the transversality conditions. However, one
needs the fact that the heteroclinic orbits are isolated, which for example holds for ana-
lytic nonlinearities. Finally, in Section 1.3.5 we will encounter a truly variational variant
of this gluing technique. This variational variant has in common with the minimisation
method described above (see also [89]) that no information about the non-degeneracy or
isolation of the heteroclinic orbits is needed.

There are several advantages and disadvantages of the variational methods when we
compare them to a shooting method. The most important advantage is that, since use is
made of the variational structure, conclusions can be drawn about the index of solutions
and their stability. Another advantage is that a large class of systems can be dealt with
simultaneously. On the other hand, solutions of different index often require a totally
different method. Besides, the information about the shape of the solutions is usually
less detailed and sometimes completely absent. In the next section we will show how we
can combine the variational setting with the shooting information to get the best of both
worlds.

1.3.4 Twist maps and braids:
a combination of shooting and variational methods

In this section we investigate the existence of periodic orbits in a fixed energy level
�
E �

E � via an approach which can either be viewed as a shooting method or as a variational
method. Alternatively, the method can be regarded as an attempt to unify the variational
and shooting approaches. This will lead to the introduction of a Twist property. The first
application of a Twist map to Equation (1.13) was presented in [96], although the ap-
proach there is very different from ours. We now try to give the essential ingredients, and
for precision, more generality and details we refer to Chapter 7.

1.3.4.1 Twist maps

Let us start by explaining the dynamical systems (shooting) point of view. Since the
present subject is rather geometrical we will use the Hamiltonian formulation (1.16). Tra-
jectories of the Hamiltonian system lie on three dimensional sets ME

def� �
H � E � . The

sets ME are smooth manifolds for all regular energy values E of H (i.e. � H � ME

�� 0), and
are non-compact for all E � � . A bounded solution of (1.12) has either finitely or infinitely
many isolated local extrema (or zero for a monotone heteroclinic solution). This means
that a bounded orbit always intersects the section

�
u
� � 0 � in ME. In case there are only

finitely many intersections, u must be asymptotic to an equilibrium point as x � � � .
If E is a regular energy level then this possibility is excluded.
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Recall that v � u
�
, pu

� βu
� � γu

�����
and pv

� γu
���
. The section

�
v � 0 � � ME will be de-

noted by ΣE. This Poincaré section ΣE
� �

(u, v, pu, pv) � v � 0, pv
� � �

2γ(E � F(u)) � splits
into two graphs Σ

�
E over the (pu, u)-plane. Let us also define the set I � �

u � � � E � F(u) �
0 � .

Bounded trajectories can thus be identified with sequences of points (pui , ui) in the
(pu, u)-plane or rather in the subset ��� I. The vector field is transverse to the interior of
the sections Σ � and Σ � . It therefore makes sense to consider the Poincaré return maps,
i.e. maps from Σ � to Σ � and from Σ

� to Σ � by following the flow starting at Σ � until it
intersects Σ � . For the points in Σ � for which the flow does intersect Σ � we have defined a
map T � from Σ � to Σ � . The same can be done for the map T � from Σ

� to Σ � . These are of
course just the maps considered in the shooting method in Section 1.3.2. The maps T � can
be considered as maps from (part of) the (pu, u)-plane to itself. Since periodic solutions
consist of increasing laps alternated by decreasing laps we seek fixed points of iterates of
the composition map T � T ��� T � .

The flow is a Hamiltonian, which implies that maps T � are area preserving (we refer
to [9] for more details about this and what follows). This in turn implies that

pu2 du2
� pu1 du1

� dS � (pu1 , u1), (1.23)

where (pu2 , u2) � T � (pu1 , u1) and S � is a C1-function of (pu1 , u1). The map T � is a Twist map
if u2

� u2(pu1 , u1) is strictly increasing in � pu1 . It then follows from (1.23) that there exists
a C1-function SE(u1, u2) � S � (pu1(u1, u2), u1) such that ∂1SE

� � pu1 and ∂2SE
� pu2 . This

function is called the generating function of the Twist map. A similar construction can be
carried out for T � . Notice that the above definition of a Twist map is nothing else than the
following requirement. When one shoots from a fixed minimum the only free parameter
is the third derivative u

�����
(0). Now T � is a Twist map if the height of the first maximum is

a strictly increasing function of u
�����

(0).
The advantage of having such a generating function will become clear when we make

the connection with the variational interpretation, and that is what we will do next.

Periodic solutions in an energy level are often called closed characteristics. These are
functions u which are stationary for J

�
u � and are τ-periodic for some period τ . If we seek

closed characteristics at a given energy level E we can invoke the following variational
principle:

Extremise
�

JE
�
u � � u �

�

τ � 0
C2(S1,τ) � , (1.24a)

where
JE

�
u � �

� τ

0

�
L(u, u

�
, u
���
)
�

E � dx. (1.24b)

It may be clear that τ is also a parameter in this problem, which guarantees that any
critical point has energy H def� E

�
u � � E.

The connection between the variational problem (1.24) and the shooting maps T � is
as follows.

Lemma 1.4 Let S � (pu1 , u1) � JE
�
u � , where u is the trajectory starting at (u1, pu1) � Σ � , and

τ � τ(pu1 , u1) is the first intersection time at Σ � . Then S � satisfies Equation (1.23).

This Lemma does not depend on T � being a Twist map or not. If T � is a Twist map,
then for JE this implies that there exists a continuous family u(t; u1, u2) of extrema (and
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τ(u1, u2) varies continuously). Conversely, the continuity conditions on the family of ex-
trema u(t; u1 , u2) imply the Twist property.

We now need to take care of the domains of u1 and u2. For that purpose we denote the
connected components of I � �

u � � � E � F(u) � 0 � by IE, and we will refer to them as in-
terval components. Define the diagonal ∆ � �

(u1, u2) � IE � IE � u1
� u2 � . The Lagrangian L

is now said to satisfy the Twist property on an interval component IE if (with E a regular
energy value):

(T) inf
�

JE
�
u � � u � Xτ (u1, u2), τ � � � � has a minimiser u(t; u1 , u2) for all (u1, u2) � IE � IE

� ∆,
and u and τ are C1-smooth functions of (u1, u2).

Here Xτ
� Xτ (u1, u2) � �

u � C2(
�
0,τ � ) � u(0) � u1, u(τ) � u2, u

�
(0) � u

�
(τ) � 0, u

� � (0,τ) �
0 if u1 � u2 and u

� � (0,τ) � 0 if u1 � u2 � . In practice the minimiser is often unique. A similar
definition holds for singular energy values. Finally, if L satisfies the Twist property (T)
we may take as a definition

SE(u1, u2) � inf
u � Xτ
τ � � �

� τ

0

�
L(u, u

�
, u
���
) � E � dx.

On the diagonal ∆ we set SE � ∆ � 0, so that SE is continuous on IE � IE. Let us remark
that these definitions can be applied to general second order Lagrangians provided that
∂2

u
� � L � δ � 0.

The Twist property allows one to reduce the variational problem (1.24) to a finite
dimensional setting where only the extrema ui are varied, because the monotone laps
between two extrema are unique. The concatenations of these monotone laps are the
analogues of broken geodesics (cf. [103]).

We would not have introduced all these concepts if it was not for the following.

Lemma 1.5 Let the Lagrangian L be as in (1.21), and let IE be an interval component.
Then for all β � 0 this L satisfies the Twist property (T) on IE.

The proof is based on the following reduction to a second order equation. Stationary
solutions of (1.12) with energy E

�
u � � E satisfies the equation � γu

�
u
����� � γ

2 u
��� 2 � β

2 u
� 2 �

F(u) � E � 0. For an increasing lap from u1 to u2 the derivative u
�

can be represented as
a function of u. Set z(u) � u

� 3
�
2(x(u)), where x(u) is the inverse of u(x) on a monotone lap

of u. We find that z(u) satisfies the equation�
d2z
du2

� g(u, z) for u � (u1, u2),
z(u1) � z(u2) � 0 and z � 0 on (u1, u2),

(1.25)

where g(u, z) � 2
3γ

1
2βz4 � 3 � F(u) � E

z5 � 3 . The same holds for decreasing laps (z � 0). The fact that
∂g
∂z � 0 forβ � 0 and (u1, u2) � I � �

u � � � E � F(u) � 0 � allows us to apply the comparison
principle to conclude the uniqueness of the lap z.

The generating function SE has the following essential properties which follow from
its definition:

Lemma 1.6 Let E be a regular energy value.
(a) ∂1SE(u1, u2) � � pu1 and ∂2SE(u1, u2) � pu2 for all (u1, u2) � IE � IE

� ∆.
(b) ∂1∂2SE(u1, u2) � 0 for all (u1, u2) � int(IE � IE

� ∆).
(c) ∂n � SE � int(∆)

� � � , where n � � ( � 1, � 1)T.
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D �
E

u2
� u �

u 1

� u

�

u 1

� u 2

Figure 1.12: A picture of D �E for the case of a compact interval component IE
� � u � , u �

�
.

The arrows schematically denote the direction of the gradient � W2. Clearly the max-
imum of W2 is attained in the interior of D �E .

The question of finding closed characteristics can now be formulated in terms of SE.
Extremising the action JE over a space of ‘broken geodesics’ corresponds to finding critical
points of the sum W2p(u1, . . . , u2p) ��� 2p

i � 1 SE(ui, ui � 1), where u2p � 1
� u1. Critical points are

characterised by the set of equations

∂2SE(ui � 1, ui)
� ∂1SE(ui, ui � 1) � 0, for i � 1, . . . , 2p. (1.26)

Such equations are called second order recurrence relations (cf. [5]). If (1.26) is satisfied for
all i � 1, . . . , 2p then u-laps can be glued to a C3-function for which all derivatives up to
order three match (Lemma 1.6a), so that one finds a C3-function u that is stationary for
J

�
u � , hence a periodic solution of (1.12). Moreover, periodic sequences as critical points

of W2p have a Morse index, which is exactly the Morse index of the corresponding closed
characteristic u as critical point of JE.

Let us focus on simple closed characteristics. A useful aid in finding critical point of
W2(u1, u2) (or W2p in general) is to consider the gradient flow:� du1

dt
� ∂1W2(u1, u2),

du2
dt

� ∂2W2(u1, u2).

Since W2(u1, u2) � W2(u2, u1) we can restrict our analysis to D �
E

� �
(u1, u2) � IE � IE � u2 �

u1 � .

The following result is derived immediately from the properties of SE in Lemma 1.6
(see also Figure 1.12).

Theorem 1.7 Let L satisfy the Twist property on some compact interval component IE for
some regular energy level E. Then W2 has at least one maximum on D �

E , corresponding
to a simple periodic solution, generically with index 2.

For singular energy levels a similar theorem can be proved. The bottom line is that un-
der the compactness assumption there exists a simple closed characteristic in the broader
sense of the word, i.e., depending on possible singularities a closed characteristics is either
a regular simple closed trajectory, a simple homoclinic orbit, or a simple heteroclinic loop.

Let us now draw some conclusions for Equation (1.13). Energy levels E � ( � 1
4 , 0) are

regular and all contain a compact interval component, so that the existence of a simple
periodic solution (with � u ��� � 1) in each of these energy levels can be concluded. This



1.3. The fourth order equation 35

A1

A2 A3

A4

u2
� ũ2

u 1

� ũ
1

u 1

� u 2

�

�
(1, 1)

( �
1, �

1)

Figure 1.13: The triangle D �E � � ũ1, ũ2
��� � ũ1 , ũ2

��� �
u2 � u1 � . The arrows denote (schem-

atically) the direction of the gradient � W2. Clearly W2 has at least one maximum in A1
and one minimum in A2. Additionally, when the equilibrium points are saddle-foci then
W2 has saddle points in A3 and A4.

holds for all values of γ and β since for u �
� � 1, 1 � the restriction on β in Lemma 1.5 can

be disregarded. There is also a closed characteristic in the broad sense in the singular
energy level E � 0, the compact interval component being

� � 1, 1 � . For β � 0, γ

β2 � 1
8 this

is the heteroclinic loop, while for all other parameter values it is a simple periodic orbit.
We investigate the energy level E � 0 more carefully. Using the asymptotic behaviour

of F(u) � � 1
4 (u2 � 1)2 for u � � , one can show that for large � ũ1 and ũ2 the gradient

� W2(ũ1, ũ2) points in the north-west direction; the system is then said to be dissipative on�
ũ1, ũ2 � . Besides, if an equilibrium point u � is a saddle-focus, then we can find a point

(û1, û2) close to (u � , u � ) such that û1 � u � � û2 and � W2(û1, û2) points in the north-west
direction.

The following theorem follows from these observations and the (monotonicity) prop-
erties of SE in Lemma 1.6. The proof is illustrated in Figure 1.13.

Theorem 1.8 Let L be as in (1.21) with β � 0 and F(u) � � 1
4 (u2 � 1)2. Then in the energy

level E � 0 there are at least two geometrically distinct simple closed characteristics: one
with � u � � � 1 and (generically) index 2, and one with � u � � � 1 and (generically) index 0.
If u � � 1 are saddle-foci then there exist two more geometrically distinct simple closed
characteristics (generically index 1).

We mention once again that all details of this analysis as well as generalisations are
described in Chapter 7. Remark that the solutions in Theorem 1.8 were already found
previously via the shooting method (Section 1.3.2). The importance of the Twist map
approach lies more in the variational information and the generality. Moreover, it can
be used to find more complicated closed characteristics. This is the subject of the next
section.

1.3.4.2 Braids

The Twist property allows one to encode a characteristic by its extrema
�
ui � . Assume

without loss of generality that u1 is a local minimum. We can construct a piecewise lin-
ear graph by connecting the consecutive points (i, ui) � � 2 by straight line segments (see
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Figure 1.14: (a) A periodic function and (b) its piecewise linear graph; (c) a braid con-
sisting of 3 strands.

Figure 1.14a,b). If u is a closed characteristics then its critical points are encoded in a fi-
nite sequence

�
ui � 2p

i � 1, where 2p is the discrete period. The piecewise linear graph, called
a strand, is really cyclic: one restricts to 1 � i � 2p

� 1 and identifies the end points ab-
stractly. A collection of n closed characteristics of period 2p then gives rise to a collection
of n strands. We place on these diagrams a braid structure by assigning a crossing type
(positive) to every transverse intersection of the graphs: larger slope crosses over smaller
slope (see Figure 1.14c). We thus represent periodic sequences of extrema in the space of
closed, positive, piecewise linear braid diagrams. Since for bounded characteristics local
minima and maxima occur alternately, we require that ( � 1)i(ui

� ui
�

1) � 0: the (natural)
up-down restriction. This space of piecewise linear up-down braids is denoted by E n

2p,
where 2p is the period and n is the number of strands. The completion E n

2p includes sin-
gular braid diagrams (having non-transverse crossings). We refer to Chapter 8 for more
details and to [74] for a complete development of the theory.

The gradient flow of W2p(u1, . . . , u2p) on 2p-periodic sequences immediately translates
to a flow on En

2p. Lemma 1.6b implies that along this flow the number of crossings of a
braid does not increase. This property is the discrete analogue of the lap number theorem
for second order parabolic equations.

The strategy is to construct isolating neighbourhoods for the gradient flow of W2p

on En
2p and to compute its Conley homology. Non-trivial Conley homology implies the

existence of closed characteristics.

Consider the special situation of (n � 1)-strand braid diagrams where n designated
strands, the skeleton, corresponds to a collection of closed characteristics. Since these
closed characteristics are stationary for the gradient flow of W2p, it induces a flow on
a (2p-dimensional) invariant subset of E n � 1

2p , the relative braid diagrams: only one of the
strands exhibits dynamics under the gradient flow of W2p.

The space En � 1
2p is partitioned into braid classes by co-dimension 1 ‘walls’ of singular

braids. This also induces a partitioning of the relative braid diagrams. These equivalence
classes of braid types are candidates for isolating neighbourhoods.

In order to have a smooth flow on a compact space we consider the two boundary
conditions introduced in Section 1.3.4.1: the compact case (large amplitudes are repelling)
and the dissipative case (large amplitudes are attracting). Under either of these boundary
conditions consider a braid class for which the (n � 1)st strand is non-isotopic to the skel-
eton (i.e., none of the strands of the skeleton is contained in the boundary). The fact that
the number of intersections only decreases along the flow implies that the closure of such
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Figure 1.15: Two examples of relative braid classes (dashed) whose Conley homology
with respect to the fixed strands (solid) is nontrivial. (a) Compact boundary conditions:
Xr

p,q with p � 6, r � 3, q � 2; (b) dissipative boundary conditions: Yr
p,q with p � 6, r � 1,

q � 4.

a braid class is a proper isolating neighbourhood for the induced flow. Consequently the
Conley homology is well-defined, see Chapter 8 for precise statements.

We carry out the above construction for two special braid classes depicted in Fig-
ure 1.15. In the compact case we consider a skeleton of two linked strands with period 2p
and nonzero linking number r (i.e. crossing number 2r), where 0 � r � p. The third strand
(dashed) has linking number q � r with the skeleton. We denote this braid class by Xq

p,r. In
the dissipative case we consider a skeleton of two strands of period 2p with non-maximal
linking number 0 � r � p. The third strand (dashed) has linking number q � r with the
skeleton. We denote this braid class by Yq

p,r.

Proposition 1.9 Consider the braid classes Xq
p,r (with 0 � q � r � p) and Yq

p,r (with 0 �
r � q � p) indicated in Figure 1.15. The Conley homology of the gradient flow of W2p on
these braid classes is well-defined and given by

CHk(X
q
p,r) �

���
k � 2q � 1 or 2q,

0 else.
CHk(Y

q
p,r) �

�	�
k � 2q or 2q

� 1,
0 else.

One easily constructs an infinite family of closed characteristics with distinct braid
types forced by the pair of non-maximally linked (including unlinked) orbits for dissipat-
ive boundary conditions or linked orbits for compact boundary conditions, by taking
higher covers of the base orbits (i.e., taking multiples of p and r) and applying The-
orem 8.1 iteratively.

Theorem 1.10 Consider Equation (1.12) for a regular energy level E under the Twist hy-
pothesis (T). The following are sufficient conditions for the existence of infinitely many
distinct (in particular having distinct braid types) closed characteristics:

(a) a compact interval component IE and the existence of a pair of closed orbits whose
braid representations are linked.

(b) an interval component IE
� � with dissipative asymptotic behaviour and the exis-

tence of a pair of closed orbits whose braid representations are unlinked or non-
maximally linked.



38 1. Introduction to fourth order equations

Note that in both cases the existence of a single non-simple closed characteristic u is a suf-
ficient condition. Indeed, two even shifts of the braid representation of u yield a 2-strand
braid that is necessarily linked but not maximally linked.

1.3.5 Dynamics of the partial differential equation
In this section we discuss some of the consequences of the results on stationary solu-
tions for the dynamics of the partial differential equation (1.9). A simple example is that
minimisers of the action J

�
u � are expected to be stable solutions of the partial differential

equation, since (1.9) is, at least formally, the gradient flow of the action. Here one has
to choose the function classes appropriately, so that this formal argument can be made
precise. We also remark here that the index of a periodic solution is in general not equal
to the index of the same function as solution of a boundary value problem. Besides, there
are subtle differences between being a minimiser and being stable.

Let us focus on solutions on a finite interval
�
0,

� � with Neumann boundary conditions

ux(t, 0) � uxxx(t, 0) � ux(t,
�
) � uxxx(t,

�
) � 0. (1.27)

Now (1.9) is indeed the L2-gradient flow of J, and J
�
u � (t) � J

�
u(t, x) � is a Lyapunov func-

tional: dJ � u � (t)
dt � 0 for all solutions of (1.9) with boundary conditions (1.27). The natural

function space for this case is H2
N

� �
u � H2(0,

�
) � ux(0) � ux(

�
) � 0 � .

By symmetry the stationary solutions can be extended to periodic solutions, and for
γ

β2 � 1
8 , β � 0 these have all been classified in Section 1.3.1. The situation for the stationary

solutions in this case is completely analogous to the second order equation. In Chapter 4
it is shown that this analogy extends to the characterisation of the attractor.

Theorem 1.11 Let β � 0 and γ

β2 � 1
8 . Then for all

�
� 0 there is a semi-conjugacy from the

flow on the attractor of the fourth order equation (1.9) with Neumann boundary condi-
tions (1.27) to the flow on the attractor of the second order equation.

In particular this implies that for any interval length
�

there are exactly two stable solu-
tions, namely the homogeneous states u � � 1.

For γ

β2 � 1
8 the situation is completely different. The origin of this change is again

the fact that the nature of the equilibrium points u � � 1 changes from real saddle to
saddle-focus at γ

β2
� 1

8 . The minimisation method of Section 1.3.3 already gives one stable
periodic solution (or at least a minimiser) of every homotopy type. Together with a sym-
metry property this shows that there are stable stationary solutions for many different
interval lengths

�
. This only proves the existence of stable solutions for a discrete set of

values of
�
. This is caused by the fact that all solutions have energy E

�
u � � 0. In Chapter 4

a variational variant of the gluing method is used to construct stable solutions for all the
intermediate values of

�
. This construction is carried out in such a way that the shape of

the stable equilibria is also revealed. The main result is a lower bound on the number of
stable equilibria of (1.9) as a function of the interval length

�
.

Theorem 1.12 Let β � 0 and γ

β2 � 1
8 . Then for any n � � there exists a constant

�
n such

that for all
� � �

n Equation (1.9) with Neumann boundary conditions (1.27) has at least
n disjunct stable sets of stationary solutions. Moreover, the number of disjunct stable sets
grows exponentially in

�
.
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Each stable set consists of stationary solutions with a specific geometrical shape. One can
think of these sets as consisting of exactly one stable stationary solution, but this cannot
be proved generally.

As in Section 1.3.3 this method can be applied to a large class of double-well poten-
tials F(u) and even to more general Lagrangians L(u, u

�
, u
���
). The crucial condition in The-

orem 1.12 is that u � � 1 are saddle-foci. The boundary conditions are of minor import-
ance; as long as they are variational the result of Theorem 1.12 stays the same.

Let us consider the consequences for the formation of patterns for Equation (1.9). The
usual definition of a pattern is a stable non-homogeneous stationary state, although dif-
ferent definitions are also in use. For (1.9) with Neumann boundary conditions the above
theorems imply that there are no patterns for γ

β2 � 1
8 , whereas for γ

β2 � 1
8 more and more

patterns appear as
� � � . For other nonlinearities this transition may not be so sharp, but

for small values of γ the behaviour is always similar to the second order equation, while
as soon as the equilibria u � � 1 become saddle-foci pattern formation occurs. We note
that the situation for β � 0 is not well understood and certainly merits further explora-
tion. Finally, we remark that the slow motion results for the flow near the attractor [92]
do not distinguish between the case where there are only two stable states and the case
where there are may stable states, i.e., slow motion may be no motion.

We now turn our attention to the behaviour of (1.9) on the entire real line, i.e. x � � .
For γ

β2 � 1
8 , β � 0 the heteroclinic solutions are asymptotically stable. This follows from

the fact that they are minimisers combined with the transversality result in Section 1.3.1.
The results in [89] shows that there are many heteroclinic and homoclinic solutions for
γ

β2 � 1
8 , β � 0, which are weakly stable in the sense that they are local minimisers of the

action (this does however not ensure (asymptotic) stability).
There is another class of special solutions of (1.9) with x � � , namely travelling wave

solutions. These are the subject of the next section.

1.3.6 Travelling wave solutions
We consider a special case of Equation (1.10) which is a slight generalisation of (1.9):

∂u
∂t

� � γ ∂4u
∂x4
�
β

∂2u
∂x2

� (1 � u2)(u � a), a �
�
0, 1). (1.28)

Travelling waves u(t, x) � U(x � ct), where c is the wave speed, obey the ordinary differ-
ential equation (where we have switched to lower case again)

� γu
������� �

βu
��� � cu

� � (1 � u2)(u � a) � 0. (1.29)

We restrict our analysis to c � 0 (waves travelling to the left). The energy E
�
u � (x) is

a non-decreasing function: E
� �

u � � cu
� 2 � 0. Since for the equilibrium points we have

E
�
1 � � E

� � 1 � � E
� � a � (see Figure 1.2), we look for heteroclinic solutions of (1.29) from

� 1 to 1, and from � a to � 1.
For β � 0 fixed, say β � 1, and γ very small the problem of finding travelling waves

and determining their stability may be approached via (singular) perturbation methods.
This is done in [2, 72] for the travelling wave connecting � 1 to 1. It is found that a unique
travelling wave exists in the neighbourhood of the wave for the second order equation
(i.e. u � tanh

�
x � a

�
2t�

2 � ), and its wave speed is c � a
�

2 � 1
5

�
2a(2a2 � 3)γ � O(γ2). Stability
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Figure 1.16: The projection (in grey) of the energy level
�
E � E0 � onto the (u, u

� � �
)-plane.

The two closed curves depict the projection of the intersections W s(1)
� �

E � E0 � for
small c and large c.

of this wave could be proved following the method of [72]. In [130] travelling waves
connecting � a to � 1 are proved to exist for small γ, and ‘energy’ estimates are used to
prove stability (in a restricted class of initial profiles) for a range of wave speeds.

A perturbation result in a different direction is obtained in [34]. There it is proved
that the heteroclinic solutions for a � 0 (and c � 0) obtained via the shooting method
(see Section 1.3.2) are topologically transverse intersection of Wu( � 1) and Ws( � 1). A
perturbation argument is then used to show that for all γ � 0, β � 0, each such a kink
solution can be perturbed to a travelling wave solution of (1.28) for a sufficiently small,
with c � c(a) small as well.

In Chapter 5 we investigate the existence of travelling wave solutions for a more global
parameter range. Let us first consider travelling waves connecting � 1 to 1. We want to
find an intersection of the two dimensional manifolds Wu( � 1) and Ws(1), so we follow
the orbits in Ws

loc(1) back in time. Choose an energy level E0 �
�
E

� � 1 � , E �
1 � � . If an orbit in

Ws(1) is not in Wu( � 1) then it will intersect this energy level
�
E � E0 � . For both very small

and very large c � 0 it is found that the intersection W s(1) �
�
E � E0 � is a closed curve.

However, it turns out that one curve cannot be deformed continuously into the other
curve inside the energy level

�
E � E0 � . The projection of the energy level

�
E � E0 � onto

the (u, u
�����

)-plane contains two holes, and the projection of the closed curves for small c
and large c wind around these holes in topologically distinct ways, see Figure 1.16.

Since the closed curves cannot be deformed into each other, the loop has to break at
some moment when we vary c from 0 to � . At this breaking point, say at c � c0, there is
an orbit u(x) in Ws(1) which does not intersect

�
E � E0 � . The existence of the Lyapunov

functional E
�
u � (x) now implies that this orbit has to converge to � 1 as x � � � . These

arguments, which are made rigorous in Chapter 5 for a range of parameter values, show
that there exists a travelling wave connecting u � � 1 to u � 1:

Theorem 1.13 Let 0 � a � 1 and β � 0, γ

β2 � σ(a) where σ(a) � min
� � F(u)

2 f (u)2 � u � ( � 1, � a) � .
Then for some c � c0 � 0 there exists a travelling wave solution of (1.28) connecting u �

� 1 and u � 1.

To give an idea of the value of σ(a) we mention the estimate σ(a) � 1
8(1 � a) for f (u) � (1 �
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u2)(u � a). The reason for the upper bound on the parameters is that the analysis of the
closed curve for small c � 0 can only be carried out for those values of γ

β2 . The proof
involves a global analysis of the flow of (1.29) and in particular the flow at infinity has to
be investigated. This leads to a complete analysis of the equation u

������� �
u3 � 0, which is

of independent interest (in particular, the dynamics at infinity is completely governed by
two periodic orbits, one attracting, the other repelling).

Travelling waves connecting � 1 to 1 exist only for special values of the wave speed c,
and finding the wave speed is part of the problem. In contrast, intersections of the three
dimensional manifold Wu(a) and the two dimensional manifolds W s( � 1), and hence trav-
elling waves connecting � a to � 1, are expected to and indeed do exist for large ranges of
the wave speed c.

Theorem 1.14 Let 0 � a � 1 and let γ � 0, β ��� . Then
(a) for all c � 0 there exists a travelling wave solution of (1.28) connecting u � � a and

u � � 1.
(b) there exists a c � � 0 such that for all c � c � there exists a travelling wave solution

of (1.28) connecting u � � a and u � 1.

This theorem as well as Theorem 1.13 can be generalised to large classes of nonlinear-
ities f (u).

A different form of a travelling structure has been studied in [47]. These fronts are not
travelling waves, but rather satisfy

u(t, x � cτ) � u(t � τ , x), for some τ , c � 0. (1.30)

Equation (1.30) implies that after a time τ the profile has moved a distance cτ to the right,
but the profile does not translate uniformly. The profiles under consideration in [47] are
solutions u(t, x) of Equation (1.11) for smallα � 0 which tend to 0 as x � � , and for x �

� � they look like some small stationary periodic solution v(x), i.e. u(t, x) � v(x) as x �

� � . In other words, these solutions are heteroclinic (in time) from a homogeneous state
to a periodic state. Although the existence of such solutions has only been proved for very
small α, numerical results suggest that they are omnipresent. For example, in [53, 136] it
is suggested that such solutions play an important role in the dynamics of Equation (1.9)
for γ

β2 � 1
12 (although the limiting periodic solution v(x) is unstable for γ

β2 � 1
8 ). A global

analysis of this type of solutions has so far been lacking. Finally, we also mention related
work in [132] on pulse-shaped travelling structures of the form (1.30).

1.4 Reflections
Having already touched upon an interesting unresolved issue at the end of the previous
section, a few other ideas and open problems are described below.

The dynamics for β � 0

The results in this thesis present a rather complete picture of the dynamics and equilibria
of Equation (1.9) in the parameter region β � 0. Besides, for β � 0 the time-independent
problem is extensively studied. The dynamics of the partial differential equation in the
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parameter region β � 0 is much less explored. While many stationary periodic solutions
have been found, not much is known about the behaviour of time-dependent solutions.
The first step should be to perform a systematic numerical investigation.

Let us summarise the few results that are known in this direction. For small β � 0
the behaviour of the stationary states is the same as for β �

�
0,

�
8), but when β becomes

more negative this starts to change. For example, for β � � �
8 the homogeneous states

u � � 1 are no longer asymptotically stable for the Neumann boundary value problem on
large intervals (they are however always the only stable solution if the interval length is
sufficiently small). The large simple periodic solution of Equation (1.13) withβ � 0, which
is found in Theorem 1.8 and which lies in the energy level E � 0, is a stable solution.
A similar stable solution can be found for small non-zero energies. Of course, such a
periodic solution is only a solution of the Neumann problem when the interval length is
a multiple of half its period. For values of β less than about � 0.92 we know that there is
a simple periodic minimiser of the minimisation problem (1.22). This solution is clearly
stable as well, and it is in general a different solution than the ones described above, since
the energy of this periodic solutions grows towards infinity as β � � � . Let us remark
that although there are numerous indications that these solutions are stable, this has in
fact never been proved rigorously. Moreover, it is unknown whether there are other more
complicated stable solutions.

Homoclinic orbits for β � 0

For β � 0 many homoclinic solutions to � 1 of Equation (1.13) have been found, both via
shooting and via variational methods. For β � 0 such homoclinic solutions appear to be
much harder to grasp. One expects them to exist as long as u � � 1 are saddle-foci, and
this is also observed numerically. Shooting methods fail in showing the convergence of
the tail of the solution to the equilibrium point. The unboundedness from below of the
action J

�
u � is the biggest obstacle for variational approaches. The estimates needed for a

classical mountain pass argument have only been obtained when the nonlinearity is of
the special form f (u) � � u

�
us, s � 1 [33].

Recently it has been shown in [134], using the monotonicity of J
�
u � with respect to β,

that for almost all values of β�
γ
� ( � �

8, 0) there is a solution of (1.13) which is homoclinic
to 1. This solution has the property that u(x) � � 1 for all x � � . A similar result is
obtained for f (u) � 1 � eu, which corresponds to the suspension bridge problem.

Let us mention that numerical calculations [19, 35] suggests the existence of many
branches of homoclinic solutions of (1.13), but only two of those extend all the way to
β � � �

8. Finally, for (1.12) with f (u) � � u
�

u2 � bu3 branches of homoclinic solutions
have also been studied numerically, and it has been found that these branches show a
phenomenon known as homoclinic snaking, see [141]. There it also becomes apparent
that the heteroclinic solutions for b � 2

9 (the equation is then equivalent to (1.13)) play a
central organising role.

Limiting behaviour for β � ���

The limit β � � � can also be considered as the limit γ � 0 with β � 0 fixed. Two cases
have to be distinguished: families of solution whose amplitude � u � � grows to infinity,
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Figure 1.17: Orbits of the Poincaré map T in the (u, u
� � �

)-plane for Equation (1.13) with
γ � 1, β � � 10 and E � 10.

and families of solutions which are uniformly bounded.
In [106] it is shown that the simple periodic solution of (1.13) with � u � � � 1 and

energy E
�
u � � 0 has asymptotic behaviour � u � ��� �β � , while the period behaves as �β � � 1

2

when β � � � . After the rescaling v(x) � 1�
β
� u( �β � � 1

2 x) we obtain

� v
������� � v

��� �
κv � v3 � 0, where κ � 1

β2 . (1.31)

In this equation κ can be varied through zero continuously, and for κ � 0 the solutions
still correspond to stationary solutions of the Swift-Hohenberg equation (1.11). In this
way the periodic solutions whose amplitude grows to infinity as β � � � can be linked
to the periodic solutions which bifurcate from 0 for � 1

4 � κ � 0, see also [122].
Families of periodic solutions which stay bounded exhibit a very different type of

behaviour. Let us fix β � � 1 and let γ � ε2. Numerical and formal computations indicate
that for small ε all bounded solutions of (1.12) are approximately of the form

u(x) � u0(x) � Cε2 cos
� x � ξ
ε � , for some C,ξ � � , (1.32)

where u0(x) is any solution of the second order equation � u
���
0
�

f (u0) � 0. This has how-
ever only been proved for the family of small simple periodic solutions with energy
E

�
u � � 0, in which case u0

� 0 so that it asymptotically becomes a linear problem.
In order to obtain insight into the transition from small solutions (described by (1.32))

and large solutions (governed by (1.31)), a Poincaré map can be studied. In a fixed energy
level E consider the Poincaré section Σ � �

(u, u
�
, u
���
, u
�����

) � u � � 0, u
��� � �

2
γ
(E � F(u)) � ,

corresponding to the local minima of solutions. Let F(u) � � 1
4 (u2 � 1)2, then for E � 0 this

section Σ is a global section. It is natural to project Σ onto the (u, u
�����

)-plane. The Poincaré
return map is denoted by T (see also Section 1.3.4.1). In Figure 1.17 orbits of this map T



44 1. Introduction to fourth order equations

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

�

(a) (b) (c)

Figure 1.18: (a) A strand and its even translates. (b) All information is contained in an
interval of length 2. (c) The braid can be closed to form a knot, in this case the trefoil.

(for Equation (1.13)) in the (u, u
�����

)-plane are depicted (with γ � 1, β � � 10 and E � 10). In
the central region (small solutions) one observes many invariant curves and (1.32) seems
a good description of the dynamics. Further away from the origin chaotic regions and
(periodic) invariant regions alternate. Solutions with very large amplitude oscillate to
infinity rapidly. For smaller ε the orderly central region becomes larger and larger; a
KAM-like scenario takes place.

To conclude, it is known that no homoclinic orbit to u � 1 for (1.12) with f (u) � � u
�

u2

exists in the limit β � � � , as opposed to the situation for β � � where a homoclinic
to u � 0 does exist. This involves a careful analysis of exponentially small terms, i.e.,
terms beyond all orders in the perturbation expansion; we refer to [63] and the references
therein.

Braids and Twist maps

There are many interesting questions in connection with the braids and the Twist map in
Section 1.3.4. First of all, the braid classes can be refined by incorporating all even trans-
lates of the strands (see Figure 1.18a). This gives (additional) information on the relative
position of the extrema. Notice that in this case all information is already contained in an
interval of length 2 (see Figure 1.18b). The set of boundary points on the left is connected
to the same set on the right boundary, but when we follow the strands from left to right
the points are permuted. The representation in Figure 1.18b can be used to close the braid
by identifying the points on the left boundary with those on the right boundary. In this
way one obtains a knot (or an unknot), see Figure 1.18c. An important issue is whether
the orbit of a corresponding solution, when it is regarded as lying in the three dimen-
sional energy surface, has the same knot type as its braid. These questions are part of the
investigation in [74].

Another problem is what to do in those cases where we are unable to prove that the
Poincaré map is a Twist map. For example, for β � 0 numerics strongly suggest that
for (1.12) the Twist property still holds. The only restriction seems to be that for singular
energy levels no equilibrium point with real saddle character lies in the interior of the
interval component. However, suggestive as the numerics may be, we are not able to
prove this in general. A possible solution could be to use the degree, or preferably the
Conley index, to apply a continuation argument. For simple closed characteristics this
can indeed be carried out [91].
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Finally, the flow on the space of braids is of course just a flow on the end points of
monotone laps. This can be regarded as a discretisation of an evolution of curves, and
more particular of a curve shortening flow. Namely, for β � 0 the action J

�
u � can be

interpreted as a length of the curve in the (u, u
�
)-plane. Parametrising curves in the (u, v)-

plane (where v � u
�
) by (u(s), v(s)), one defines the length

� � �
L

�
u, v, v

us
vs � us

v ds (so that� � J
�
u � � 0 for β � 0). Stationary points of the curve shortening flow now are critical

points of J and thus solutions of (1.12). This is all formal arguing, but in this formulation
the problem has strong similarities with the application of curve shortening to find closed
geodesics on two dimensional manifolds [7].

General extensions

It is easy to come up with generalisations of Equation (1.10) or (1.12). First, one could in-
vestigate sixth order equations of the type ut

� Auxxxxxx
� Buxxxx

�
Cuxx

�
f (u). We refer

to [72] for a perturbation result, and to [124] for some basic variational results. Second,
numerical calculations for Equation (1.11) in two (or more) spatial dimensions show a
wide variety of interesting patterns such as roles, hexagonal lattices and labyrinth pat-
terns. We refer to [50, 56, 28] for some nice numerical pictures. A mathematical theory
seems to be utterly lacking.

Let us nevertheless mention a few results in more space dimensions. The stability in
higher space dimensions of essentially one dimensional structures such as domain walls,
roles or travelling waves, could be approached as in [93], possibly in combination with
Evans function techniques (see e.g. [72]). The Γ -limit for Equation (1.9) in higher space
dimensions is examined in [83]. Global uniqueness results on the equation ( � ∆)nu

�
up �

f in arbitrary space dimensions are studied in [26]. We refer to [45] for a study of the
(exceptional) circumstances where a maximum or anti-maximum principle can be applied
to equations of the form ( � ∆)nu � λu

�
f .

Finally, instead of higher order equations it would be worth investigating to what ex-
tent the methods in this thesis can be applied to systems of second order equations. In
particular, a first order Lagrangian L( �u, �u

�
) with �u � (u1, u2), leads to three dimensional en-

ergy manifolds, and perhaps in certain cases the problem of finding closed characteristics
on these manifolds can be formulated in terms of a Twist map.

Two dimensional topology

It is remarkable how often the topology of the two dimensional plane, and the behaviour
of second order equations is exploited in the various attempts in this thesis to examine
fourth order equations, and four dimensional phase spaces. To name just a few examples:
the projection onto the (u, u

�
)-plane in Section 1.3.1, and onto the (u, u

�����
)-plane in Sec-

tion 1.3.6 (and the (u, u
���
)-plane is also used in some instances). Then there is the topology

of the punctured plane in Section 1.3.3, and the two dimensional Poincaré section in Sec-
tion 1.3.4.1. One can argue whether braids are two or three dimensional objects. And to
top it of, the essentially second order behaviour of the gradient flow in the space of braids,
and Equation (1.25) which is used to prove the Twist property, are striking examples of
crucial occurrences of second order equations in the analysis of fourth order problems.
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Chapter 2

The phase-plane picture

2.1 Introduction
In this chapter we study the bounded solutions of fourth order differential equations of
the form

� γu
������� �

u
��� �

f (u) � 0, γ � 0, (2.1)

where f (u) � dF(u)
du , and F(u) is called the potential. By a bounded solution we mean a

function u(x) � C4( � ) � L � ( � ) which satisfies (2.1) for all x � � . For small positive γ,
Equation (2.1) is a singular perturbation of the (mechanical) equation

u
��� �

f (u) � 0. (2.2)

We investigate the correspondence between bounded solutions of (2.1) and (2.2).
Note that (2.1) is both translation invariant and reversible (invariant under the trans-

formation x �� � x). Besides, there is a constant of integration. When we multiply (2.1)
by u

�
and integrate, we obtain the energy or Hamiltonian

E
�
u � def� � γu

�����
u
� � γ

2
(u
���
)2 � 1

2
(u
�
)2 � F(u) � E, (2.3)

where E is constant along solutions.
In recent years fourth order equations of the form (2.1) have attracted a wide interest,

and two special cases have been thoroughly studied. First, when the potential is

F(u) � � 1
4

(u2 � 1)2, (2.4)

then Equation (2.1) is the stationary version of the Extended Fisher-Kolmogorov (EFK)
equation, which has been studied by shooting methods [117, 120, 118, 119] and through
variational approaches [124, 90, 89, 88]. Generalisations of the EFK potential have been
studied in [116], including potentials with maxima of unequal height. Second, in the
study of a strut on a nonlinear elastic foundation and in the study of shallow water waves,
Equation (2.1) arises with the potential

F(u) � � 1
2

u2 � 1
3

u3. (2.5)

The homoclinic orbits of this equation have been studied both analytically [3, 43, 36, 32]
and numerically [35, 41]. In these studies a striking feature is that the behaviour of solu-
tions changes dramatically when the parameter γ reaches the lowest value for which one
of the equilibrium point becomes a saddle-focus. Below this critical value the solutions
that have been found are as tame as for the second order equation. When one of the
equilibrium points becomes a saddle-focus, an outburst of new solutions appears.
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The situation for γ � 0 seems to be much less understood. We refer to [38] for an
overview of equations of the form

u
������� � Au

��� �
Bu � f (u, u

�
, u
���
, u
�����

) A, B ��� .

As remarked, the character of the equilibrium point plays a dominating role. If an
equilibrium point is a center for the second order equation, then it is a saddle-center for
all γ � 0. On the other hand, if an equilibrium point is a saddle for the second order
equation, then it is a real saddle for small (positive) values of γ. The character of such a
point changes to saddle-focus as γ increases beyond some critical value.

Since (2.1) is a singular perturbation of the equation for γ � 0, it is natural to ask
when it inherits solutions from the second order equation. For small γ this question can
be answered by using singular perturbation theory [2, 72]. Here we follow an approach
that leads to uniqueness results for a wider range of γ-values. The method is based on
repeated application of the maximum principle. In [35] this idea has been used to prove
the uniqueness of the homoclinic orbit for the potential in (2.5).

We shall first state two general theorems and subsequently draw detailed conclusions
for the case of the EFK equation. In fact, the general theorems presented here, are a
natural extension of the result for the EFK equation, of which a short summary has been
published in [20].

We consider functions f (u) � C1( � ) and define, for � � � a � b � � ,

ω(a, b) def� max
�
0, max

u ��� a,b �
� f

�
(u) � .

We are only interested in cases whereω(a, b) � � . We will often drop the dependence of
ω on a and b, when it is clear which constants a and b are meant. Also, we introduce sets
of bounded functions

B(a, b) def� �
u � C4( � ) � u(x) �

�
a, b � for all x � � � .

In the following we often have an a priori bound on the set of all bounded solutions, i.e.,
for some � � � a � b � � all bounded solutions of (2.1) are in B(a, b). It is important to
keep in mind that these a priori bounds are usually valid for a range of values of γ. As
will be clear from the statement of the theorems below, a better bound leads to a lower
value ofω, which in turn leads to a stronger result.

The bounded solutions of the second order equation (γ � 0) are found directly from
the phase-plane. Our first theorem states that the (u, u

�
)-plane preserves the uniqueness

property for the fourth order equation as long as γ is not too large.

Theorem 2.1 Let u1 and u2 be bounded solutions of (2.1), i.e., u1 and u2 are in B(a, b) for
some � � � a � b � � . Suppose that γ �

�
0, 1

4ω(a,b)

�
. Then the paths of u1 and u2 in the

(u, u
�
)-plane do not cross.

Remark 2.2 It turns out that we need to give a meaning to the case γ � � . A scaling
in x, which is discussed later on, shows that the natural extension of (2.1) for γ � � is

� u
������� �

f (u) � 0. �

The following theorem shows that the energy E
�
u � (see (2.3)) is a parameter that orders

the bounded solutions in the phase-plane.
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Theorem 2.3 Let u1, u2 � B(a, b) be bounded solutions of (2.1) for some γ �
�
0, 1

4ω(a,b)

�
.

Suppose that (after translation) u1(0) � u2(0) and either u
�
1(0) � u

�
2(0) � 0 or u

�
1(0) � u

�
2(0) �

0. Then E
�
u1 � � E

�
u2 � .

We now give some examples. For the double-well potential F(u) � 1
4 (u2 � 1)2 (note

that this is not the EFK potential in (2.4)) we have that ω( � � , � ) � 1 and thus any two
bounded solutions do not cross in the (u, u

�
)-plane for γ � (0, 1

4 � . Besides, in this parameter
range the energy ordering of Theorem 2.3 holds for all bounded solutions of (2.1).

In the case of the periodic potential F(u) � cos u, we again haveω( � � , � ) � 1. In this
case Theorem 2.1 combined with the periodicity of the potential, shows that for γ � (0, 1

4 �
every bounded solution has its range in an interval of length at most 2π . We note that
in both cases γ � 1

4 is exactly the value where the character of some of the equilibrium
points changes from real saddle to saddle-focus.

In the previous two examples we did not need an a priori bound. However, for
the EFK potential (2.4), the existence of a uniform bound on the bounded solutions is
needed to obtain a finite ω. The results for the EFK equation are discussed in detail in
Section 2.1.1. For the potential (2.5) only a lower bound is needed.

Let us now assume that for some γ � 0 we have an a priori bound on the set of
bounded solutions, i.e., all bounded solutions of (2.1) are in B(a, b) for some � � � a �
b � � , and let us assume that ω � ω(a, b) � � . Then if γ �

�
0, 1

4ω � , bounded solutions
of (2.1) do not cross (by Theorem 2.1), and Theorem 2.3 gives an ordering of the bounded
solutions in the (u, u

�
)-plane in terms of the energy. An immediate consequence of The-

orem 2.1 and the reversibility of (2.1), is that when γ �
�
0, 1

4ω � , any bounded solution
of (2.1) is symmetric with respect to its extrema (therefore the analysis in Theorem 2.3 is
restricted to the upper half-plane). This implies that the only possible bounded solutions
are

� equilibrium points,
� homoclinic solutions with one extremum,
� monotone heteroclinic solutions,
� periodic solutions with a unique maximum and minimum value.

Another implication is that there are at most two bounded solutions in the stable and
unstable manifolds of the equilibrium points.

We will use the following formulation. If ũ(x) is a solution of (2.1), then by the trans-
formation

u(x) � ũ( 4
�
γ x) and q � � 1�

γ
,

it is transformed to a solution of

u
������� �

qu
��� � f (u) � 0, q � 0. (2.6)

We examine the case where q � � 2
�
ω, corresponding to γ � (0, 1

4ω � . It should be clear
that solutions of (2.6) with q � � 2

�
ω correspond to solutions of (2.1) with 0 � γ � 1

4ω ,
and vice versa. The energy in the new setting is

E
�
u � def� � u

�����
u
� � 1

2
(u
���
)2 � q

2
(u
�
)2 � F(u). (2.7)
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For q � � 2
�
ω we define λ and µ such that

λµ � ω and λ
�
µ � � q,

or explicitly,

λ � � q
2

�
� �

q
2
� 2 � ω and µ � � q

2
�

� �
q
2
� 2 � ω .

It is easily seen that λ and µ are positive real number if and only if q � � 2
�
ω. In that

case we have
0 � λ �

�
ω � µ.

Equation (2.6) can be factorised as�
u
��� � λu � w

w
��� � µw � f (u) � ωu,

(2.8)

and the definition of ω ensures that f (u)
�
ωu is a non-decreasing function of u for u ��

a, b � .
The central tool in this chapter is a comparison lemma which shows that if the initial

data of two solutions obey certain inequalities, then at most one of the solutions can be
bounded (cf. [35, Th. 2.1]).

Lemma 2.4 (Comparison Lemma) Let u and v be solutions of (2.6) such that, for some
� � � a � b � � ,

a � u(x) � b, a � v(x) � b for all x �
�
0, � ).

Suppose that q � � 2
�
ω(a, b) and

u(0) � v(0), u
�
(0) � v

�
(0),

u
���
(0) � λu(0) � v

���
(0) � λv(0), u

�����
(0) � λu

�
(0) � v

�����
(0) � λv

�
(0).

Then u(x) � v(x) � C on
�
0, � ) for some constant C ��� , and C � 0 ifω(a, b)

�� 0.

Note that when the bounds a and b are sharper, then ω and λ are smaller, hence the
conditions in the statement of the lemma are weaker. The proof of this lemma relies on
the factorisation (2.8) of Equation (2.6).

We remark that both the splitting (2.8) of the differential operator and the Comparison
Lemma can be extended to sixth and higher order equations. However, the increasing
dimension of the phase space and the lack of additional conserved quantities (like the
energy) make it a difficult task to extend the uniqueness results to such higher order
equations.

This chapter mainly deals with uniqueness of solutions, but the information we obtain
about the shape of solutions of (2.1) for γ not too large also allows us to conclude that any
periodic solution belongs to a continuous family of solutions.

Theorem 2.5 Let u0 be a periodic solution of (2.1) and let a � min u0(x) and b � max u0(x).
Suppose that γ �

�
0, 1

4ω(a,b)

�
. Then u0 belongs to a continuous one-parameter family of

periodic solutions, parametrised by the energy E. To be precise, let E0
� E

�
u0 � , then for

ε � 0 sufficiently small there are periodic solutions uE of (2.1) for all E � (E0
� ε, E0

�
ε)

such that E
�
uE � � E and uE0

� u0, and such that uE depends continuously on the para-
meter E.
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2.1.1 An example: the EFK equation
The stationary version of the Extended Fisher-Kolmogorov (EFK) equation is given by

� γu
������� �

u
��� �

u � u3 � 0, γ � 0. (2.9)

The EFK equation is a generalisation (see [49, 53]) of the classical Fisher-Kolmogorov (FK)
equation (γ � 0). Clearly (2.9) is a special case of (2.1) with the potential F(u) � � 1

4(u2 �
1)2. We note that in some literature about the EFK equation the function

� 1
4(u2 � 1)2 is

called the potential. In the form of (2.6) the EFK equation becomes

u
������� �

qu
��� � u

�
u3 � 0. (2.10)

Linearisation around u � � 1 and u � � 1 shows that the character of these equilibrium
points depends crucially on the value of γ. For 0 � γ � 1

8 they are real saddles (real ei-
genvalues), whereas for γ � 1

8 they are saddle-foci (complex eigenvalues). The behaviour
of solutions of (2.9) is dramatically different in these two parameter regions.

For γ � (0, 1
8 � the solutions are calm. It was proved in [117] that there exists a monoton-

ically increasing heteroclinic solution (or kink) connecting � 1 with
�

1 (by symmetry there
is also a monotonically decreasing kink connecting � 1 with � 1). This solution is antisym-
metric with respect to its (unique) zero. Moreover, it is unique in the class of monotone
antisymmetric functions. In [120] it was shown that in every energy level E � ( � 1

4 , 0)
there exists a periodic solution, which is symmetric with respect to its extrema and an-
tisymmetric with respect to its zeros. Remark that these solutions correspond exactly to
the solutions of the FK equation (γ � 0).

In contrast, for γ � 1
8 families of complicated heteroclinic solutions [89, 90, 118] and

chaotic solutions [119] have been found. The outburst of solutions for γ � 1
8 is due to the

saddle-focus character of the equilibrium points � 1.
We will prove that as long as the equilibrium points are real-saddles, i.e. γ � 1

8 or
q � � �

8, bounded solutions are uniformly bounded above by � 1 and below by � 1. To
prove this, we first recall a bound proved in [119, 116], stating that any bounded solution
of (2.9) for γ � 0 (q � 0) obeys

� u(x) � �
�

2 for all x ��� . (2.11)

This bound is deduced from the shape of the potential and the energy identity. It already
shows that Theorems 2.1 and 2.3 hold for ω � 5, i.e., for any pair of bounded solutions
of (2.9) with γ � (0, 1

20 � . The method used to obtain this a priori estimate on all bounded
solutions is applicable to a class of potentials which strictly decrease to � � as � u � � �
(see Section 2.4).

The a priori bound can be sharpened in the case of the EFK equation.

Theorem 2.6 For any γ � 1
8 , let u be a bounded solution of (2.9) on � . Then � u(x) � � 1 for

all x � � .

Having established the a priori bound (2.11), the sharper bound is obtained by applying
the maximum principle twice to the factorisation of (2.10). Remark that a sharper bound
than the one in Theorem 2.6 is not possible since u � � 1 are equilibrium points of (2.9).

This theorem implies that we can sharpen the results of Theorems 2.1 and 2.3 to γ �
(0, 1

8 � , i.e., to all values γ for which the equilibrium points � 1 are real saddles. It follows
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that for γ � (0, 1
8 � bounded solutions do not cross in the (u, u

�
)-plane, and they are ordered

by their energies.

Remark 2.7 For the potential in Equation (2.5) an upper bound is not needed since f
�
(u) �

� 1
�

2u � 0 for u � 1
2 . An a priori lower bound of a � 0 for γ � 1

4 can be found in the
same way as in the proof of Theorem 2.6. Therefore, for the potential (2.5) Theorems 2.1
and 2.3 hold for γ � (0, 1

4 � or q � � 2 (see also [35]). �

We want to emphasise that the methods used in this chapter to obtain a priori bounds
on bounded solutions are by no means exhaustive. They are sufficient for the EFK equa-
tion but for other potentials different methods may be more suitable. For example, the
techniques from this chapter can be combined with geometric reasoning in the (u, u

���
)-

plane to obtain a priori bounds on the bounded solutions in fixed energy levels, as is
done in [112] for potentials that are polynomials of degree four. This allows an extension
of the results on uniqueness to values of γ for which some of the equilibrium points are
real saddles whereas other equilibrium points are saddle-foci.

The existence of bounded solutions corresponding to the solutions of the FK equation
has been proved in [117, 120, 124]. From Theorems 2.1 and 2.3 it can be deduced that
there is a complete correspondence between the bounded stationary solutions of the EFK
equation and those of the FK equation (γ � 0).

Theorem 2.8 The only bounded solutions of (2.9) for γ � (0, 1
8 � are the three equilibrium

points, the two monotone antisymmetric kinks and a one-parameter family of periodic
solutions, parametrised by the energy E � ( � 1

4 , 0).

The multitude of solutions which exist for γ � 1
8 , shows that this bound is sharp.

Among other things, Theorem 2.8 proves the conjecture in [117] that the kink for γ � (0, 1
8 �

is unique. We mention that the uniqueness of the kink for γ � (0, 1
8 � is also proved in [96]

with the elegant use of a Twist map.
In the proof of Theorem 2.8 we do not use the symmetry of the potential F in an essen-

tial manner (it merely reduces the length of the proofs). By exploiting the symmetry F we
obtain additional results. First, for γ � 1

8 any bounded solution of (2.9) is antisymmetric
with respect to its zeros. Second, the periodic solutions can also be parametrised by the
period

L �
�

2π

�
2γ�

1 � 4γ � 1
, � � .

Third, we prove that the heteroclinic orbit is a transverse intersection of the stable and
unstable manifold.

Theorem 2.9 For γ � (0, 1
8 � the unique monotonically increasing heteroclinic solution of

(2.9) is the transverse intersection of the unstable manifold of � 1 and the stable manifold
of � 1 in the zero energy set.

Since a transverse intersection cannot be perturbed away, we conclude from The-
orem 2.9 that for γ � ( 1

8 , 1
8
�
ε) and ε � 0 sufficiently small, there still exists a transverse

heteroclinic orbit for (2.9). Since the equilibrium points u � � 1 are saddle-foci for γ � 1
8 ,

this makes it possible to apply techniques from [54] (see also [140, Ch. 3]) to obtain ‘multi-
bump’ solutions of (2.9) for γ � ( 1

8 , 1
8
�
ε).
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The transversality result in Theorem 2.9 enables us to prove that the monotonically
increasing kink ũ(x) with ũ(0) � 0 and its translates, are asymptotically stable for the
time-dependent EFK equation

∂u
∂t

� � γ ∂4u
∂x4
� ∂2u

∂x2
�

u � u3. (2.12)

Theorem 2.10 Let u(x, t) be a solution of (2.12). For anyγ � (0, 1
8 � there exists anε � 0 such

that if � u(x, 0) � ũ(x � x0) � H1 � ε for some x0 � � , then there exists a δ � � , depending on
u(x, 0) (and small when ε is small), such that

lim
t � � � u(x, t) � ũ(x � x0

�
δ) � H1

� 0.

We remark that the kink is also asymptotically stable in the space of bounded uniformly
continuous functions.

The outline of the chapter is the following. In Section 2.2 we prove the Comparison
Lemma, and it then follows that bounded solutions do not cross each other in the (u, u

�
)-

plane, as formulated in Theorem 2.1. Section 2.3 is devoted to the proof of Theorem 2.3. In
Section 2.4 we prove the a priori bound from Theorem 2.6, and in Section 2.5 the proof of
Theorem 2.8 is completed. Besides, we prove the antisymmetry of bounded solutions, and
we show that the periodic solutions can be parametrised by their period. In Section 2.6 we
prove that the unstable manifold of � 1 intersects the stable manifold of � 1 transversely
as stated in Theorem 2.9. Theorem 2.10 on the asymptotic stability of the kink for the EFK
equation is proved in Section 2.7. Finally, in Section 2.8 we deal with the continuation and
existence of solutions of (2.1) and in particular we prove Theorem 2.5.

2.2 Uniqueness property
In this section we prove the Comparison Lemma and Theorem 2.1, which states that for
q � � 2

�
ω bounded solutions of (2.6) are unique in the (u, u

�
)-plane.

Remark 2.11 For the results in this section, the condition that f (u) is continuously dif-
ferentiable can be weakened. When f (u) is in C0( � ), then ω(a, b) is defined as the low-
est non-negative number such that f (u) � ω(a, b)u is non-decreasing as a function of u
on

�
a, b � . �

We start with the proof of the Comparison Lemma, which is at the heart of most of the
results in this chapter. The proof proceeds along the same lines as in [35, Th. 2.1].

Proof of Lemma 2.4 (Comparison Lemma). Let u(x) and v(x) satisfy the assumptions in
Lemma 2.4. If u(x) � v(x) � C, then by the assumptions we have that C � 0 and λC � 0,
thus C � 0 if λ

�� 0, i.e. ifω
�� 0.

Suppose now that u(x) � v(x)
�� C. Let k be the smallest integer for which u(k)(0)

��
v(k)(0). Then, by uniqueness of solutions, k �

�
0, 1, 2, 3 � and u(k)(0) � v(k)(0) by the hypo-

theses. Hence there exists a σ � 0 such that

u(x) � v(x) on (0,σ). (2.13)

Now let
φ(x) � u

���
(x) � λu(x), and ψ(x) � v

���
(x) � λv(x).
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Then, by the hypotheses,

φ(0) � ψ(0) � 0, and φ
�
(0) � ψ

�
(0) � 0. (2.14)

Besides, writing h(u) � f (u) � ω(a, b)u,

(φ � ψ)
���
(x) � µ(φ � ψ)(x) � h(u(x)) � h(v(x)) on (0,σ). (2.15)

Since a � u(x) � v(x) � b on
�
0, � ), and since h(u) is a non-decreasing function on

�
a, b �

by the definition ofω(a, b), we have that

h(u(x)) � h(v(x)) � 0 on (0,σ). (2.16)

It is not difficult to deduce from (2.14), (2.15) and (2.16) that

φ(x) � ψ(x) � 0 on (0,σ),

which is equivalent to

(u � v)
���
(x) � λ(u � v)(x) � 0 on (0,σ). (2.17)

By the hypotheses of the lemma we have that

(u � v)(0) � 0, and (u � v)
�
(0) � 0, (2.18)

thus we see from (2.13) and (2.17) that (u � v)
���
(x) � 0 on (0,σ) and this implies that (u �

v)(x) is non-decreasing on (0,σ). Hence

u(x) � v(x) on (0,σ � ,
and by continuity u(x) � v(x) on (0,σ � ε) for ε � 0 small enough. Hence we infer that

sup
�
σ � u(x) � v(x) for all x � (0,σ) � � � ,

and
(φ � ψ)

���
(x) � µ(φ � ψ)(x) � 0 on (0, � ),

(u � v)
���
(x) � λ(u � v)(x) � 0 on (0, � ).

It follows that (u � v)
���
(x) � 0 on (0, � ), and (2.18) then implies that (u � v)

�
(x) is non-

negative and non-decreasing on (0, � ). Finally, the assumption that u(x) � v(x)
�� C im-

plies that
(u � v)(x) � � as x � � .

Clearly, if u(x) and v(x) are bounded this is not possible. This concludes the proof of the
Comparison Lemma.

�

Theorem 2.1 is a consequence of the Comparison Lemma.

Proof of Theorem 2.1. Let u1 and u2 be bounded solutions of (2.6) for q � � 2
�
ω

(corresponding to bounded solutions of (2.1) for 0 � γ � 1
4ω ). Suppose by contradic-

tion that the paths of u1 and u2 cross in the (u, u
�
)-plane. Then, after translation, we

have that u1(0) � u2(0) and u
�
1(0) � u

�
2(0). Without loss of generality we may assume

that u
���
1 (0) � u

���
2 (0). Now if u

�����
1 (0) � u

�����
2 (0), then by the Comparison Lemma we conclude

that u1(x) � u2(x) � C for some C ��� . Since u1(0) � u2(0) this implies that u1(x) � u2(x).
On the other hand, if u

�����
1 (0) � u

�����
2 (0), then we define ũ1(x) � u1( � x) and ũ2(x) � u2( � x).

Clearly ũ1 and ũ2 are also bounded solutions of (2.10). We now apply the Comparison
Lemma to ũ1 and ũ2, and find as before that ũ1(x) � ũ2(x), which concludes the proof of
Theorem 2.1.

�
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We now touch upon a lemma which gives a lot of information about the shape of
bounded solutions. It states that every bounded solution is symmetric with respect to its
extrema.

Lemma 2.12 Let u � B(a, b) be a bounded solution of (2.1) for some γ �
�
0, 1

4ω(a,b)

�
. Sup-

pose that u
�
(x0) � 0 for some x0 ��� . Then u(x0

�
x) � u(x0

� x) for all x � � .

Proof. After translation we may take x0
� 0. Now we define v(x) � u( � x). By reversi-

bility v(x) is also a bounded solution of (2.1). Clearly u(0) � v(0) and u
�
(0) � v

�
(0). From

Theorem 2.1 we conclude that u(x) � v(x).
�

Corollary 2.13 Let u � B(a, b) be a bounded solution of (2.1) for someγ �
�
0, 1

4ω(a,b)

�
. Then

u(x) can only be an equilibrium point, a homoclinic solution with one extremum, a mono-
tone heteroclinic solution or a periodic solution with a unique maximum and minimum.

Proof. It should be clear that when a solution is bounded for x � 0, then it either has an
infinite number of extrema or it tends to a limit monotonically as x � � . We will show in
Lemma 2.14 that such a limit can only be an equilibrium point. The corollary then follows
directly from Lemma 2.12.

�

2.3 Energy ordering
To fill in the remaining details of the phase-plane picture we use Theorem 2.3, which es-
tablishes an ordering in terms of the energy E of the paths in the (u, u

�
)-plane. In this

section we will use the notation of Equation (2.6). Before we start with the proof of The-
orem 2.3, we obtain some preliminary results.

The following lemma shows that when a solution tends to a limit monotonically, then
this limit has to be an equilibrium point. We denote the set of zeros of f (u) by A :

A def� �
u � � � f (u) � 0 � .

Lemma 2.14 Let u(x) be a solution of (2.6) for q � 0 which is bounded on
�
x0, � ) for some

x0 ��� . Suppose that u
�
(x) � 0 for all x � x0, or u

�
(x) � 0 for all x � x0. Then

lim
x � � u(x) � A and lim

x � � u(k)(x) � 0 for k � 1, 2, 3.

Proof. We may assume that u
�
(x) � 0 for x � x0 (the other case is completely analogous).

It is then clear that
lim
x � � u(x) def� L0

exists and u(x) increases towards L0 as x � � . Since u(x) is bounded for x � x0, L0 is
finite.

We now consider the function y � u
����� �

qu
�
. This function y(x) satisfies

y
��� � u

�
f
�
(u).

We first show that u
���
(x) tends to zero as x � � . If f

�
(L0)

�� 0 (the other case will be
dealt with later), then f

�
(u) has a sign for x large enough, by which we mean that either

f
�
(u) � 0 for large x, or f

�
(u) � 0 for large x. Since u

�
(x) � 0, it follows that y

���
(x) has a sign

for x large enough, hence so does y(x). The fact that y(x) � u
�����

(x) � qu
�
(x) has a sign for x

large enough implies that
lim
x � � u

���
(x) � qu(x) def� L1
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exists and u
���
(x) � L1

� qL0 as x � � . Moreover, since u(x) is bounded, we must have

lim
x � � u

���
(x) � 0.

If f
�
(L0) � 0, then we consider ỹ � u

����� � q
2 u
�
. We now have

ỹ
��� � q

2
ỹ � u

�
�

f
�
(u)
� q2

4 � .

Since f
�
(L0)

� q2

4 is positive for x large enough, we conclude from the maximum principle
that ỹ(x) � u

�����
(x) � qu

�
(x) has a sign for x large enough. As before we see that

lim
x � � u

���
(x) � 0.

The fact that u(x) � L0 and u
���
(x) � 0, implies that u

�
(x) � 0 as x � � . Because

u(iv) � � qu
��� �

f (u), we see that

lim
x � � u(iv)(x) def� L2

� f (L0),

and, since u(x) is bounded, L2
� 0 and thus L0 � A . Finally, the fact that u

���
(x) � 0 and

u(iv)(x) � 0, implies that u
�����

(x) � 0 as x � � .
�

Remark 2.15 For q � 0 the situation is slightly more subtle, but when f
�
(u) has a sign as u

tends to L0 monotonically, then the proof still holds. Since we consider bounded solutions
of (2.6) for q � � 2

�
ω, this difficulty only arises whenω � 0, which (by the definition of

ω) implies that f
�
(u) � 0 for all values of u involved, hence the lemma holds for this case.

�

We prove that u
����� � λu

�
(x) is negative if and only if u

�
(x) is positive.

Lemma 2.16 Let u � B(a, b) be a bounded solution of (2.6) for some q � � 2
�
ω(a, b). Then

(with sign(0) def� 0)

sign
�
u
�����

(x) � λu
�
(x) � � � sign

�
u
�
(x) � for all x ��� . (2.19)

Proof. Let x0 � � be arbitrary. We may assume that u
�
(x0) � 0 (for u

�
(x0) � 0 the proof

is analogous). We see from Lemma 2.12 that (2.19) holds if u
�
(x0) � 0. We thus assume

that u
�
(x0) � 0. Since u(x) is bounded there exist � � � xa � x0 � xb � � , such that

u
�
(xa) � u

�
(xb) � 0 and u

�
(x) � 0 on (xa, xb). Here we write u

�
( � ) � limx � � u

�
(x). By

Lemmas 2.12 and 2.14 we have that u
�����

(xa) � u
�����

(xb) � 0. Let y � u
����� � λu

�
. Then y(x)

satisfies the system ���� y
��� � µy � u

�
( f
�
(u) � ω),

y(xa) � u
�����

(xa) � λu
�
(xa) � 0,

y(xb) � u
�����

(xb) � λu
�
(xb) � 0.

Since u
�
(x) � 0 on (xa, xb), we have by the definition of ω that u

�
( f
�
(u) � ω) � 0. By

the strong maximum principle we obtain that y(x) � 0 for all x � (xa, xb), and espe-
cially y(x0) � 0. This completes the proof.

�

Remark 2.17 If a bounded solutions of (2.1) for q � � 2
�
ω attains a maximum at some

point x0 � � , then

u
���
(x0) � 0 and u(iv)(x0) � λu

���
(x0) � 0.
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This follows from the boundary point lemma (see [127, p. 67]) applied to u
�
and u

����� � λu
�
,

combined with the proof of Lemma 2.16 above. Besides, it is seen from the differential
equation that

f (u(x0)) � u(iv)(x0) � qu
���
(x0) � � µu

���
(x0) � 0,

i.e., maxima only occur at positive values of f (u). �

We immediately obtain the following consequence.

Corollary 2.18 Let u � B(a, b) be a bounded solution of (2.6) for some q � � 2
�
ω(a, b).

Then
H(x) def� � E

�
u � � F(u(x)) � 1

2 (u
���
(x))2 � 0 for all x � � .

Proof. By the energy identity we have

H � u
� �

u
����� � q

2
u
��� � u

�
(u
����� � λu

�
) � C(u

�
)2,

where C � � � q
2 � 2 � ω � 0. It is easily seen from Lemma 2.16 that the assertion holds.

�

We will now prepare for the proof of Theorem 2.3. Let u1 and u2 satisfy the assump-
tions in Theorem 2.3. We point out that u1 and u2 are not translates of one another, be-
cause this would contradict the result on symmetry with respect to extrema, obtained
in Lemma 2.12. We only consider the case where u

�
1(0) � u

�
2(0) � 0. The other case fol-

lows by symmetry. By contradiction we assume that E
�
u1 � � E

�
u2 � . It will be proved

in Lemma 2.21 that we can then find points x1 and x2 such that u1(x1) � u2(x2) and
u
���
1 (x1) � u

���
2 (x2). This enables us to apply the following lemma.

Lemma 2.19 Let u1, u2 � B(a, b) be bounded solutions of (2.6) for some q � � 2
�
ω(a, b).

Suppose that E
�
u1 � � E

�
u2 � and

u1(0) � u2(0), u
�
1(0) � u

�
2(0) � 0 and u

���
1 (0) � u

���
2 (0).

Then u1
� u2.

Proof. We will show that

u
�����
1 (0) � λu

�
1(0) � u

�����
2 (0) � λu

�
2(0) (2.20)

and then an application of the Comparison Lemma completes the proof. From the energy
identity we obtain at x � 0

u
�����
i

� λu
�
i

� � E
�
ui � � F(ui)

� 1
2 (u

���
i )2

u
�
i

�
Cu
�
i for i � 1, 2,

where C � � � q
2 � 2 � ω � 0. By the assumptions and from Corollary 2.18, it follows that

� E
�
u2 � � F(u2(0)) � 1

2 (u
���
2 (0))2 � � E

�
u1 � � F(u1(0)) � 1

2 (u
���
1 (0))2 � 0.

Inequality (2.20) is now easily verified.
�

We make the following change of variables on intervals
�
xa, xb � where the function u(x)

is strictly monotone on the interior (see [117]). Denoting the inverse of u(x) by x(u), we
set

t � u and z(t) ��� u � (x(t))
� 2 .
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We now get for t �
�
ta, tb � � �

u(xa), u(xb) �
z
�
(t) � 2u

���
(x(t)).

If xa
� � � , then we write z

�
(ta) � lim

t � ta
z
�
(t) (the limit exists by Lemma 2.14).

Before we proceed with the general case, we first consider the special case where two
different solutions tend to the same equilibrium point as x � � � . The next lemma in
fact shows that there are at most two bounded solution in the unstable manifold of each
equilibrium point.

Lemma 2.20 Let u1, u2 � B(a, b) be two different non-constant bounded solutions of (2.6)
for some q � � 2

�
ω(a, b). Suppose there exists an ũ � A such that

lim
x � � � u1(x) � lim

x � � � u2(x) � ũ.

Then u1(x) decreases to ũ and u2(x) increases to ũ as x � � � , or vice versa.

Proof. By Corollary 2.13, u1 and u2 can only tend to ũ monotonically. Suppose u1 and u2

both decrease towards ũ as x � � � , i.e., u
�
1(x) � 0 and u

�
2(x) � 0 for x � ( � � , x0). We

will show that u1
� u2. The case where they both increase towards ũ is analogous.

For t � (ũ, ũ
�
ε0), where ε0 � 0 is sufficiently small, let z1 and z2 correspond to u1

and u2 respectively by the change of variables described above. Note that z1(t)
�� z2(t) for

t � (ũ, ũ
�
ε0), since otherwise u1

� u2 by Theorem 2.1. Without loss of generality we may
assume that z1(t) � z2(t) on (ũ, ũ

�
ε0). Since zi(t) is differentiable on (ũ, ũ

�
ε0) and z1(ũ) �

z2(ũ) � 0 (by Lemma 2.14), there exist a point t0 � (ũ, ũ
�
ε0), such that z

�
1(t0) � z

�
2(t0).

We now first deal with the case that z
�
2(t0) � 0 (the case that z

�
2(t0) � 0 will be dealt with

later). There are points x1 and x2 in � such that u1(x1) � u2(x2) � t0 and u
���
1 (x1) � u

���
2 (x2) � 0.

By translating u1 and u2 by x1 and x2 respectively, we obtain that

u1(0) � u2(0), u
�
1(0) � u

�
2(0) � 0 and u

���
1 (0) � u

���
2 (0) � 0. (2.21)

Since u1 and u2 tend to ũ monotonically as x � � � , we infer from Lemma 2.14 that
(ui, u

�
i, u
���
i , u

�����
i )(x) � (ũ, 0, 0, 0) as x � � � for i � 1, 2. Therefore E

�
u1 � � E

�
u2 � . It is easy to

check that (2.21) is now sufficient for the proof of Lemma 2.19 to go on unchanged. Hence
u1
� u2. This ends the proof for the case that z

�
2(t0) � 0.

We now consider the case that z
�
2(t0) � 0. Since z2(t) � 0 on (ũ, t0 � and z2(ũ) � 0 there

exists a t1 � (ũ, t0) such that z
�
2(t1) � 0. If z

�
1(t1) � 0, then we have z

�
1(t1) � z

�
2(t1) � 0, which

is equivalent to the case that we have already covered (taking t1 instead of t0). If z
�
1(t1) � 0

then we have
z
�
1(t1) � z

�
2(t1) and z

�
1(t0) � z

�
2(t0),

and by continuity there exists a t2 � (t1, t0 � such that z
�
1(t2) � z

�
2(t2). Thus there are points

x1 and x2 in � such that

u1(x1) � u2(x2) � t2, u
�
1(x1) � u

�
2(x2) � 0 and u

���
1 (x1) � u

���
2 (x2).

Since E
�
u1 � � E

�
u2 � as above, we may apply Lemma 2.19 and conclude that u1

� u2.
�

Of course a similar result holds for solutions that tend to an equilibrium point as x � � � :
there are at most two bounded solutions in the stable manifold of each equilibrium point.

The next lemma shows that if some u1 and u2 violated the conclusion of Theorem 2.3,
i.e. if E

�
u1 � � E

�
u2 � , then we could find a point where u1

� u2 and u
���
1

� u
���
2 .
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Lemma 2.21 Let u1, u2 � B(a, b) be bounded solutions of (2.6) for some q � � 2
�
ω(a, b).

Suppose that u1(0) � u2(0) and u
�
1(0) � u

�
2(0) � 0, and E

�
u1 � � E

�
u2 � . Then there exist x1

and x2 in � such that u1(x1) � u2(x2) and u
���
1 (x1) � u

���
2 (x2).

Proof. Let
�
x̃a, x̃b � be the largest interval containing x � 0 on which u

�
1 is positive, and

let
�
xa, xb � be the largest interval containing x � 0 on which u

�
2 is positive. We now change

variables again. Let z1 correspond to u1 on
�
t̃a, t̃b � � �

u1(x̃a), u1(x̃b) � , and let z2 correspond
to u2 on

�
ta, tb � � �

u2(xa), u2(xb) � . Clearly z1(t) � z2(t) for all t � (ta, tb), since bounded
solutions do not cross in the (u, u

�
)-plane by Theorem 2.1. If xa is finite, then it follows

from Theorem 2.1 that t̃a � ta, while if xa
� � � then this follows from Lemma 2.20.

Similarly, t̃b � tb.
We have that z2(ta) � 0 and z

�
2(ta) � 2u

���
2 (xa) � 0 (if xa

� � � then this follows from
Lemma 2.14, while if xa is finite then it follows from the fact that u2(xa) is a minimum). We
will now prove that z

�
1(ta) � z

�
2(ta) by showing that (z

�
2)2(ta) � (z

�
1)2(ta) � 0. Let ya � (x̃a, x̃b)

be the point such that u1(ya) � u2(xa) � ta. By the energy identity we have that

(z
�
2)2(ta) � (z

�
1)2(ta)

8
� 1

2 (u
���
2 (xa))2 � 1

2 (u
���
1 (ya))2

� E
�
u2 � � F(ta) �

�
E

�
u1 � � F(ta) � u

�
1(ya)

�
u
�����
1 (ya)

� q
2

u
�
1(ya)

� �
� E

�
u2 � � E

�
u1 � � u

�
1(ya)

�
u
�����
1 (ya)

� q
2

u
�
1(ya)

� .

From Lemma 2.16 and the observation that u
�
1(ya) � �

z1(ta) �
�

z2(ta) � 0, we conclude
that at ya

u
�
1

�
u
�����
1
� q

2
u
�
1
� � u

�
1(u

�����
1

� λu
�
1) � � � q

2 � 2 � ωu
�
1

2 � 0.

Having assumed that E
�
u1 � � E

�
u2 � , we now conclude that z

�
1(ta) � z

�
2(ta).

In the same way we can show that z
�
1(tb) � z

�
2(tb). By continuity there exists a tc � (ta, tb)

such that z
�
1(tc) � z

�
2(tc), which proves the lemma.

�

We now complete the proof of Theorem 2.3.

Proof of Theorem 2.3. Let u1 and u2 satisfy the assumptions in the theorem. The previous
lemma shows that if E

�
u1 � � E

�
u2 � , then there exist points x1 and x2 such that

u1(x1) � u2(x2), u
�
1(x1) � u

�
2(x2) � 0 and u

���
1 (x1) � u

���
2 (x2).

By translation invariance we may take x1
� x2

� 0. Lemma 2.19 now shows that u1
� u2,

which contradicts the assumption. Therefore E
�
u1 � � E

�
u2 � , which proves the theorem.

�

2.4 A priori bounds
In this section we derive a priori estimates for bounded solutions of the EFK equation (2.9)
or (2.10). Where possible, we will indicate how the methods can be generalised to arbi-
trary f (u), particularly in Remarks 2.28 and 2.32. We will prove Theorem 2.6 which states
that every bounded solution for q � � �

8 (or γ � (0, 1
8 � ) satisfies � u(x) � � 1 for all x � � .

We first derive a weaker bound for all q � 0, which follows from the shape of the potential
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and the energy identity (2.7). Subsequently, we sharpen this bound for all q � � �
8 with

the help of the maximum principle.
We now prove a slight variation of an important lemma from [119], which shows that

when a solution of (2.10) becomes larger than
�

2, then it will oscillate towards infinity,
and hence is unbounded. The proof can easily be extended to more general potentials F,
as is done in [116]. The value

�
2 is directly related to the fact that

min
�
x0 � 0 � F(x) � F(x0) for all x �

� � x0, x0 � � � �
2.

Lemma 2.22 For any q � 0, let u(x) be a solution of (2.10). Suppose that there exists a
point x0 � � such that

u(x0) �
�

2, u
�
(x0) � 0, u

���
(x0) � 0, and u

�����
(x0) � 0. (2.22)

Then either u decreases to � � monotonically for x � x0, or there exists a first critical
point of u on (x0, � ), say y0, and we have

u(y0) � � u(x0) � � �
2, u

�
(y0) � 0, u

���
(y0) � 0, and u

�����
(y0) � 0.

Besides, F(u(y0)) � F(u(x0)), and the following estimate holds:

F(u(y0)) � F(u(x0)) � � 5
�

2
3

�
E

�
u � � F(u(x0)) �

u(y0) � u3(y0)
. (2.23)

Proof. We write f (u) � u � u3. Since f (u(x0)) � 0 and u
���
(x0) � 0, we see that

u(iv)(x0) � � qu
���
(x0)

�
f (u(x0)) � 0, (2.24)

so that u(x) is decreasing for x in a right neighbourhood of x0. Thus, either u(x) tends to
� � monotonically for x � x0, or there exists a y0 � (x0, � � such that u

�
(y0) � 0 (where

u
�
( � ) � limx � � u

�
(x)), and u

�
(x) � 0 on (x0, y0). From now on we assume that u(x) does

not decrease monotonically to � � for x � x0, and we define

y0
def� sup

�
x � x0 � u

�
� 0 on (x0, x) � .

It follows from the assumptions and (2.24) that u
����� � 0 in a right neighbourhood of x0,

hence we conclude that

x1
def� sup

�
x � x0 � u

�����
� 0 on (x0, x) �

is well-defined. Since u
�
(y0) � 0 we conclude that x1 is finite and x1 � y0. Since u

����� � 0
on (x0, x1), we have that u

���
(x1) � u

���
(x0) � 0. Using the energy identity and the fact that

u
�����

(x1) � 0 and u
�
(x0) � 0, we obtain

F(u(x0)) � E
�
u � � 1

2
(u
���
(x0))2

� E
�
u � � 1

2
(u
���
(x1))2

� E
�
u � � 1

2
(u
���
(x1))2 � q

2
(u
�
(x1))2 � F(u(x1)).

It follows from the definition of x1 and the initial data at x0, that u
����� � 0, u

��� � 0 and u
� � 0

on (x0, x1), and thus u(x1) � u(x0). It is seen from the shape of the potential that

F(s) � F(u(x0)) for all s �
� � u(x0), u(x0) � .

Consequently, the inequalities F(u(x0)) � F(u(x1)) and u(x1) � u(x0) imply that u(x1) �
� u(x0) � � �

2. Since there are no equilibrium points in the region u � � �
2 we conclude
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from Lemma 2.14 that u(x0) does not decrease monotonically to some finite limit, and
therefore y0 is finite.

We now define
x2

def� sup
�
x � x1 � u

���
� 0 on (x1, x) � ,

which is well-defined since u
���
(x1) � 0, and x2 is finite because x2 � y0 � � . From the

definition of x2 we see that

u(x2) � u(x1) � � u(x0), u
���
(x2) � 0, u

�����
(x2) � 0, and u(iv)(x2) � f (u(x2)) � 0.

Since f (u(x)) � 0 on
�
x2, y0 � we have that u(iv)(x) � � qu

���
(x)
�

f (u(x)) � 0 as long as u
���
(x) �

0 and x � (x2, y0 � , and it is not difficult to see that u
���
� 0 and u

�����
� 0 on (x2, y0 � . To

summarise, we have that

u(y0) � � u(x0), u
�
(y0) � 0, u

���
(y0) � 0, u

�����
(y0) � 0 and F(u(y0)) � F(u(x0)).

We still have to prove the estimate (2.23). By the energy identity (2.7) we have that
F(u(x0)) � E

�
u � . For F(u(x0)) � E

�
u � the estimate has already been proved. Therefore we

may assume that F(u(x0)) � E
�
u � , so that u

���
(x0) � � �

2
�
E

�
u � � F(u(x0)) � def� � β � 0.

From the definition of x1 and x2 we see that u
���
(x1) � � β, u

�����
(x1) � 0, and

u(iv) � � qu
��� �

f (u) � f (u(y0)) on (x1, x2).

By integrating we obtain

u
���
(x) � � β � 1

2 f (u(y0))(x � x1)2 for x � (x1, x2 � . (2.25)

By definition, x2 is the first zero of u
���
(x), thus x2

� x1 � � 2β
f (u(y0))

def� ξ. By integrating (2.25)
twice and by using the fact that u

�
(x1) � 0, we obtain

u(x1
�
ξ) � u(x1) � � βξ

2

2
�

f (u(y0))
ξ4

24

� � 5
6

β2

f (u(y0))
.

Because u
�

� 0 on
�
x1
�
ξ , x2 � , we see that

u(x2) � u(x1) � u(x1
�
ξ) � u(x1) � � 5

6
β2

f (u(y0))
def� � α.

Since F
�
(u) � f (u) � 0 for u � � �

2 and u(x2) � u(x1) � α � u(x1) � � �
2, we have that

F(u(y0)) � F(u(x2)) � F(u(x1) � α).

Moreover, F
���
(u) � f

�
(u) � 0 for u � � �

2, and we finally obtain that

F(u(y0)) � F(u(x1) � α) � F(u(x1)) � dF(u(x1))
du

α � F(u(x1)) � f ( � �
2)α.

Since f ( � �
2) � �

2, it is seen from the definitions ofα and β, and the fact that F(u(x1)) �
F(u(x0)), that (2.23) holds.

�

Remark 2.23 It was proved in [119, Lemma 2.3] that if u(x) is a solution of (2.10) on its
maximal interval of existence (xa, xb), then for any x0 � (xa, xb), there either exists an infin-
ite number of extrema of u(x) for x � x0, or u(x) eventually tends to a finite limit mono-
tonically as x � � . This result excludes the possibility in Lemma 2.22 that u tends to � �
monotonically for x � x0. However, this fact is not essential to our reasoning, since we
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want to prove a uniform bound on the set of bounded solutions, hence we do not need to
consider solutions that tend to infinity. �

Remark 2.24 Notice that the estimate (2.23) is by no means sharp. We will use the es-
timate to show that once a solution becomes larger than

�
2 it will start oscillating, and

the amplitude of the oscillations tends to infinity. For the EFK potential we have given
the explicit estimate (2.23), but in general it suffices that F(u) strictly decreases to � �
as � u � � � . In this chapter we do not need any information on the speed at which the
solution tends to infinity, and therefore we are satisfied with this rather weak estimate.
It can in fact be shown that if a solution of (2.10) obeys (2.22) at some x0 � � , then the
solution blows up in finite time (i.e., the maximal interval of existence for x � x0 is finite),
see Chapter 5. �

Remark 2.25 The following symmetric counterpart of Lemma 2.22 holds. For any q � 0,
let u(x) be a solution of (2.10). Suppose that there exists a point x0 � � such that

u(x0) � � �
2, u

�
(x0) � 0, u

���
(x0) � 0, and u

�����
(x0) � 0.

Then either u increases to � � monotonically for x � x0, or there exists a first critical point
of u on (x0, � ), say y0, and we have

u(y0) � � u(x0) �
�

2, u
�
(y0) � 0, u

���
(y0) � 0, and u

�����
(y0) � 0.

Besides, F(u(y0)) � F(u(x0)), and an estimate similar to (2.23) holds. �

The next lemma implies that if a solution u(x) obeys (2.22) then it becomes wildly
oscillatory for x � x0. The function u(x) then has an infinite number of oscillations on
the right-hand side of x0 and the amplitude of these oscillations grows unlimited. The
function sweeps from one side of the potential to the other.

Lemma 2.26 For any q � 0, let u(x) be a solution of (2.10). Suppose that there exists a
ξ0 ��� such that

u(ξ0) �
�

2, u
�
(ξ0) � 0, u

���
(ξ0) � 0, and u

�����
(ξ0) � 0. (2.26)

Then u(x) has for x � ξ0 an infinite, increasing sequence of local maxima
�
ξk � �k � 0 and min-

ima
�
ηk � �k � 1, where ξk � ηk � 1 � ξk � 1 for every k � 0. The extrema are ordered: u(ξk � 1) �

� u(ηk � 1) � u(ξk) �
�

2, and u(ξk)
� � as k � � .

Proof. Remark 2.23 excludes the possibility that u tends to � � or � � monotonically,
thus by combining Lemma 2.22 and Remark 2.25 we obtain the infinite sequences of local
maxima and minima. The orderings u(ξk � 1) � � u(ηk � 1) � u(ξk) �

�
2 and

F(u(ξk � 1)) � F(u(ηk � 1)) � F(u(ξk)) for all k � 0, (2.27)

are immediate. Clearly
�
u(ξk) � �k � 0 is an increasing sequence, whereas

�
F(u(ξk)) � is a de-

creasing sequence. We assert that F(u(ξk)) � � � and thus u(ξk) � � as k � � . Suppose
by contradiction that

�
F(u(ξk)) � is bounded, then

�
F(u(ηk)) � is bounded as well (by Equa-

tion (2.27)). Hence u(x) is bounded for x � ξ0. However, then the right-hand side in (2.23)
is bounded away from zero, which ensures that F(u(ξk)) tends to � � as k � � , contra-
dicting the assumption that

�
F(u(ξk)) � is bounded.

�

Note that if u(x) attains a maximum at x � 0 above the line u � �
2 then (2.26) holds

with ξ0
� 0 for either u(x) or u( � x). The next lemma states our first a priori bound.
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Lemma 2.27 For any q � 0, let u(x) be a bounded solution of (2.10). Then � u(x) � �
�

2 for
all x � � .

Proof. We argue by contradiction and thus suppose that u(x) �
�

2 for some x � � . Since
u(x) is bounded, we infer from Lemma 2.14 that u(x) attains a local maximum larger then�

2, say at x0 � � . By translation invariance we may assume that x0
� 0. Clearly u(0) ��

2, u
�
(0) � 0 and u

���
(0) � 0. Without loss of generality we may assume that u

�����
(0) � 0

(otherwise we switch to ũ(x) � u( � x), which also is a bounded solution of (2.10)). We are
now in the setting of Lemma 2.26. Thus u(x) is unbounded if u(x0) �

�
2 for some x0 � � .

The case where u(x0) � � �
2 for some x0 ��� is excluded in a similar manner.

�

Remark 2.28 This method of obtaining an a priori estimate on all bounded solutions is
applicable to a class of non-symmetric potentials which strictly decrease to � � as � u � �

� . In that case we can find � � � a � b � � such that

F(a) � F(b),

F(u) � F(a) � F(b) for all u � (a, b),

F
�
(u) � 0 for all u � a and F

�
(u) � 0 for all u � b.

Then every bounded solutions u(x) of (2.1) for γ � 0 satisfies a � u(x) � b. We note that
this method gives an explicit a priori bound, which is stronger then the method in [96,
Th. 4]. For the potential in (2.5) a lower bound can be found in an analogous manner. In
general, if for some b ���

F(u) � F(b) for all u � b and F
�
(u) � 0 for all u � b,

then b is an upper bound for all bounded solutions. �

We are now going to use the maximum principle to get sharper a priori bounds for the
EFK equation. The following lemma shows that if a bounded solution has two local min-
ima below the line u � 1, then the solution stays below this line between these minima.
To shorten notation, we will write u( � ) instead of lim

x � � u(x).

Lemma 2.29 For any q � � �
8, let u(x) be a solution of (2.10), and let � � � xa � xb � � .

Suppose that u(xa), u(xb) � 1 and u
���
(xa), u

���
(xb) � 0. If u(x) � � 2 for x � (xa, xb), then

either u � 1 or u(x) � 1 on (xa, xb).

Proof. The proof is based on repeated application of the maximum principle. Let v(x) �

u(x) � 1. The function v(x) obeys, for x � (xa, xb),

v(iv) � qv
��� � 2v � u � u3 � 2(u � 1) � � (u � 2)(u � 1)2 � 0,

where the inequality is ensured by the hypothesis that u(x) � � 2. Now we define w(x) �

v
���
(x) � λv(x) . From the definition of λ and µ we see that

w
��� � µw � v(iv) � (λ � µ)v

��� �
λµv � v(iv) � qv

��� � 2v.

By the hypotheses on u in xa and xb we find that w(x) obeys the system�� � w
��� � µw � � (u � 2)(u � 1)2 � 0 on (xa, xb),

w(xa) � v
���
(xa) � λv(xa) � 0,

w(xb) � v
���
(xb) � λv(xb) � 0.
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By the maximum principle we have that w(x) � 0 on (xa, xb). Finally, v(x) obeys the system���� v
��� � λv � w � 0 on (xa, xb),

v(xa) � u(xa) � 1 � 0,
v(xb) � u(xb) � 1 � 0.

By the strong maximum principle we obtain that either v � 0, or v(x) � 0 on (xa, xb). This
proves Lemma 2.29.

�

Remark 2.30 The symmetric counterpart of the previous lemma shows that if a solution
u(x) of (2.10) has two local maxima above � 1 and u(x) � 2 between the maxima, then we
have u(x) � � 1 between the maxima. �

Note that for bounded solutions the condition that � 2 � u(x) � 2 is automatically
satisfied (Lemma 2.27). For heteroclinic solutions the previous lemma and remark (with
xa

� � � and xb
� � � ) imply that every heteroclinic solution is uniformly bounded from

above by 1 and from below by � 1.
For the case of a general bounded solution, let us look at the consecutive extrema for

x � 0 (and similarly for x � 0) of a bounded solution u(x). Suppose that u is a bounded
solution which does not tend to a limit. In that case we will prove that arbitrarily large
negative xa and arbitrarily large positive xb can be found, such that u(xa) and u(xb) are
local minima below the line u � 1, and thus the conditions in Lemma 2.29 are satisfied.
We will need the following lemma, which has two related consequences. First, it shows
that if u(x) has a maximum above the line u � 1, then the first minimum on at least one of
the sides of this maximum lies below the line u � 1. Second, we infer that a solution does
not have two consecutive minima above the line u � 1.

Lemma 2.31 For any q � 0 let u(x) be a solution of (2.10). Suppose that there exists a
point x0 � � , such that

u(x0) � 1, u
�
(x0) � 0, u

���
(x0) � 0, and u

�����
(x0) � 0.

Then there exists a y0 � (x0, � ) such that u(y0) � 1 and u
�
(x) � 0 on (x0, y0 � .

Proof. The proof is along the same lines as the proof of Lemma 2.22. Since f (u(x0)) � 0
and u

���
(x0) � 0, we see that u(iv)(x0) � � qu

���
(x0) � f (u(x0)) � 0 and thus u

����� � 0 in a right
neighbourhood of x0. We now conclude that

x1
def� sup

�
x � x0 � u

�����
� 0 on (x, x0) �

is well-defined. By Remark 2.23 we conclude that x1 is finite. Since u
�����

� 0 on (x0, x1), we
have that u

���
(x1) � u

���
(x0) � 0. By using the energy identity and the facts that u

�����
(x1) � 0

and u
�
(x0) � 0, we obtain

F(u(x0)) � E
�
u � � 1

2
(u
���
(x0))2 � E

�
u � � 1

2
(u
���
(x1))2 � F(u(x1)).

It follows from the definition of x1 and the initial data at x0, that u
�����

� 0, u
���

� 0 and u
�

� 0
on (x0, x1), and so u(x1) � u(x0). Since F

�
(u) � 0 for u � 1, we see that F(s) � F(u(x0)) for

all s �
�
1, u(x0)), so that u(x1) � 1. Hence

y0
def� inf

�
x � x0 � u � 1 on (x, x0) �

exists and y0 � x1 � � . This proves the lemma.
�
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We can now apply Lemma 2.29 to prove Theorem 2.6.

Proof of Theorem 2.6. We will only prove that u(x) � 1 for all x � � (the proof of the
assertion that u(x) � � 1 is analogous). We argue by contradiction. Suppose there exists
an x0 � � such that u(x0) � 1. We will show that there exists a constant xa �

� � � , x0) such
that

u(xa) � 1, u
�
(xa) � 0 and u

���
(xa) � 0. (2.28)

Similarly we obtain a point xb � (x0, � � such that

u(xb) � 1, u
�
(xb) � 0 and u

���
(xb) � 0.

From Lemmas 2.27 and 2.29 we then conclude that u(x) � 1 on (xa, xb), which contradicts
the fact that u(x0) � 1. We will only prove the existence of xa. The proof of the existence
of xb is similar.

By Remark 2.23 we see that either u(x) has an infinite number of local minima on the
left-hand side of x0, or u(x) tends to a limit monotonically as x � � � . In the latter case
Lemma 2.14 guarantees that u satisfies (2.28) with xa

� � � . In the former case we prove
that at least one of the minima on the left-hand side of x0 lies below the line u � 1. By
contradiction, suppose there exist two consecutive local minima y0 and y1 above the line
u � 1 (with y0 � y1 � x0). Then there clearly exists a local maximum x1 � (y0, y1). By
translation invariance one may assume that x1

� 0. We have that u(0) � 1, u
�
(0) � 0 and

u
���
(0) � 0. Now first assume that u

�����
(0) � 0. Then we are in the setting of Lemma 2.31 and

we conclude that u(y1) � 1, thus a contradiction has been reached. On the other hand,
if u

�����
(0) � 0, we switch to ũ(x) � u( � x) and, by the same argument, we conclude that

u(y0) � 1. This completes the proof of Theorem 2.6.
�

Remark 2.32 The method employed in this section to obtain a better a priori bound from
a weaker one, has a nice geometrical interpretation, which makes it easy to apply the
method to (2.1) with general f (u). Let us assume that we have an a priori bound, i.e., for
some γ � 0 all bounded solutions of (2.1) are in B(a, b). Suppose now that we can find
constants A � a and 0 � Ω � 1

4γ (i.e., γ � (0, 1
4Ω � ), such that

� Ω (u � A) � f (u) for all u �
�
a, b � ,

which means that the line � Ω (u � A) stays below f (u) on the interval under considera-
tion. Then A is a new (improved) lower bound on the set of bounded solutions.

Similarly, when we can find constants B � b and 0 � Ω � 1
4γ , such that

� Ω (u � B) � f (u) for all u �
�
a, b � ,

then B is a new (improved) upper bound on the set of bounded solutions. Remark that a
new upper bound might allow us to find an improved lower bound, and vice versa. �

2.5 Conclusions for the EFK equation
We first make the observation that every bounded solution (except u � � 1) has a zero.

Lemma 2.33 For any q � � �
8, let u(x)

�� 1 be a bounded solution of (2.10). Then u(x) has
at least one zero.
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Proof. Suppose u(x) does not have a zero. We may assume that u(x) � 0 for all x � � .
Since � u(x) � � 1 for all x � � by Theorem 2.6, we conclude that either u(x) has a local
minimum in the range (0, 1), or u(x) is homoclinic to 0. The latter would imply that E

�
u � �

� 1
4 , and that u(x) must attain a local maximum in the range (0, 1). It is easily seen from

the energy identity that these two observations lead to a contradiction. We complete the
proof by showing that u(x) cannot have a local minimum in the range (0, 1).

Suppose that after translation we have

u(0) � (0, 1), u
�
(0) � 0 and u

���
(0) � 0.

We may suppose that in addition u
�����

(0) � 0 (otherwise we switch to ũ(x) � u( � x)). Ana-
logous to the proof of Lemma 2.31 we set

x1
def� sup

�
x � x0 � u

�����
� 0 on (x0, x) � ,

and
y0

def� sup
�
x � x0 � u � 1 on (x0, x) � .

We find that y0 � x1 � � from which we conclude that u(y0) � 1 and u
�
(y0) � 0, which

contradicts Theorem 2.6.
�

We now prove Theorem 2.8.

Proof of Theorem 2.8. Lemma 2.12 shows that the only possible bounded solutions are
equilibrium points, monotone heteroclinic solutions, homoclinic solutions with a unique
extremum and periodic solutions with a unique maximum and minimum. Lemma 2.33
shows that any non-constant bounded solution has a zero, which means that except for
the equilibrium points and the decreasing kink, every bounded solution has a zero at
which it has a positive slope. Excluding the equilibrium points and the decreasing kink
from these considerations, we conclude from Theorem 2.1 that no two solutions can have
the same positive slope at their zeros, and from Theorem 2.3 that the solution with the
larger slope has the higher energy. From these considerations we draw the following
conclusions, to finish the proof of Theorem 2.8.

� Starting at low energies, it follows from the energy identity that solutions which lie in
the levels E � � 1

4 have no extrema in the range
� � �

2,
�

2 � , and thus are unbounded.
� Similarly, for E � � 1

4 the equilibrium solution u � 0 is the only bounded solution,
since any other would have a zero and this would contradict Theorem 2.3.

� There are no equilibrium points (and thus no connecting orbits) in the energy levels
E � ( � 1

4 , 0). Hence, it follows immediately from Lemma 2.33 and Theorem 2.3 that
in each of these energy levels the periodic solution which has been proved to exist
in [120], is the only bounded solution.

� For the energy level E � 0 we derive that beside the equilibrium points u � � 1, the
only bounded solutions are a unique monotonically increasing and a unique mono-
tonically decreasing heteroclinic solution, of which the existence has been proved
in [117]. In particular there exist no homoclinic connections to � 1. These results for
the energy level E � 0 were also obtained in [96] using a Twist property.

� Finally, there are no equilibrium points and thus no connecting orbits in the energy
levels E � 0. Periodic solutions in these energy levels cannot have maxima smaller
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than 1 by Theorem 2.3 (comparing them to the increasing kink). Therefore, The-
orem 2.6 excludes the existence of periodic solutions for energies E � 0.

This completes the proof of Theorem 2.8.
�

We recall how crucially these arguments depend on the real-saddle character of the
equilibrium points. Both Theorem 2.6 and the Comparison Lemma do not hold when
γ � 1

8 . The variety of solutions which exist for γ � 1
8 , shows that this bound is sharp.

Up to now, we did not use in an essential manner the invariance of (2.10) under the
transformation u �� � u. This invariance can be used to obtain further information on the
shape of bounded solutions of (2.9). The next lemma states that every bounded solution
is antisymmetric with respect to its zeros.

Lemma 2.34 For any γ � (0, 1
8 � , let u(x) be a bounded solution of (2.9). Suppose that

u(x0) � 0 for some x0 � � . Then u(x0
�

x) � � u(x0
� x) for all x ��� .

Proof. The proof is analogous to the proof of Lemma 2.12. Without loss of generality
we may assume that x0

� 0. Define v(x) � � u( � x). By the symmetry of (2.9), v(x) is also
a bounded solution of (2.9). Clearly u(0) � v(0) and u

�
(0) � v

�
(0). From Theorem 2.1 we

conclude that u(x) � v(x).
�

We already saw that the periodic solutions of (2.9) can be parametrised by the energy.
The next lemma shows that they can also be parametrised by their period.

Lemma 2.35 Let γ � (0, 1
8 � . Then the periodic solutions of (2.9) can be parametrised by

the period L � (L0, � ), where

L0
def� 2π

�
2γ�

1 � 4γ � 1
.

Proof. By Lemma 2.34 any periodic solution, of period L, is antisymmetric with respect
to its zeros, and thus has exactly two zeros on the interval

�
0, L). Via a variational method

it has been proved in [124] that for every period L � (L0, � ) there exists at least one peri-
odic solution u(x) of (2.9) with exactly two zeros on the interval

�
0, L). Besides, there are

no periodic solutions with period smaller than or equal to L0 [124, Lem. 2.4]. Therefore,
we only need to show that there is at most one periodic solution with period L having
exactly two zeros on the interval

�
0, L).

We argue by contradiction. Suppose there are two such periodic solutions u1
�� u2

of (2.9) with period L. By Lemmas 2.12 and 2.34 we have that (after translation), for
i � 1, 2

u
�
i(0) � 0, ui(

� L
4 ) � 0, and ui(x) � 0 for x � ( � L

4 , L
4 ).

Clearly, both solutions are increasing on ( � L
4 , 0).

We see from Theorem 2.1 that u
�
1( � L

4 )
�� u

�
2( � L

4 ), and without loss of generality we may
assume that u

�
1( � L

4 ) � u
�
2( � L

4 ). Let

x0
def� sup

�
x � � L

4 � u2 � u1 on ( � L
4 , x) � .

We assert that x0
� L

4 . Suppose that x0 � L
4 . Then x0 � 0 since the solutions are symmetric

with respect to x � 0. However, u1 and u2 are increasing on ( � L
4 , x0), and u1( � L

4 ) � u2( � L
4 )

and u1(x0) � u2(x0). This implies that there exist x1 and x2 in ( � L
4 , x0 � such that u1(x1) �

u2(x2) and u
�
1(x1) � u

�
2(x2), contradicting Theorem 2.1.
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Hence, we have established that

u1(x) � u2(x) � 0 for x � ( � L
4 , L

4 ). (2.29)

When we multiply the differential equation of u1 by u2, and integrate over ( � L
4 , L

4 ), then
we obtain

0 �
� L

4

� L
4

�
u2( � γu(iv)

1
�

u
���
1
�

u1
� u3

1)
�

dx

�
� L

4

� L
4

�
u1( � γu(iv)

2
�

u
���
2
�

u2) � u2u3
1

�
dx.

Here we have used partial integration and the fact that u
���
i ( � L

4 ) � 0 (by Lemma 2.34). Since
u2 is a solution of (2.9), this implies that

0 �
� L

4

� L
4

�
u1u2(u2

2
� u2

1) � dx,

which contradicts (2.29).
�

2.6 Transversality
The unique monotonically increasing heteroclinic solution v(x) of (2.10) for q � � �

8 is an-
tisymmetric by Lemma 2.34. Removing the translational invariance by taking the unique
zero of v(x) at the origin, we have

v(0) � 0, v
�
(0) � 0 and v

���
(0) � 0.

In this section we will apply a technique similar to the one in [35] to prove that v(x) is a
transverse intersection of the unstable manifold Wu( � 1) and the stable manifold W s( � 1)
in the zero energy set (here we write Wu,s( � 1) instead of Wu,s( � 1, 0, 0, 0)). Both Wu( � 1)
and Ws( � 1) are two-dimensional manifolds since the equilibrium points u � � 1 are real
saddles for q � � �

8 (for q � ( � �
8,

�
8) they are saddle-foci and the manifolds Wu,s( � 1)

remain two-dimensional). If the intersection of Wu( � 1) and Ws( � 1) were not transverse,
then it follows from the symmetry of the potential that there would be only two possib-
ilities. We will exclude these possibilities with the help of the Comparison Lemma and
some delicate and rather technical estimates. When the potential is not symmetric we
still expect the intersection to be transverse, but a proof along the same lines seems more
involved.

The following lemma provides a bound on the orbits u(x) in the stable manifold of
� 1 that lie close to the kink v(x). This bound will be useful later on, since it enables the
application of the Comparison Lemma to these solutions.

Lemma 2.36 For any q � � �
8, let v(x) be the unique monotonically increasing hetero-

clinic solutions of (2.10) with its zero at the origin. Suppose that u(x) is a solution of (2.10)
such that u � Ws( � 1), and (for some δ � 0)

� u(k)(x) � v(k)(x) � � δ for k � 0, 1, 2, 3, and x �
�
0, � ). (2.30)

Then for δ � 0 sufficiently small we have � u(x) � � 1 for all x � 0.
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Proof. Recall that v(x) increases monotonically from � 1 to � 1. The fact that u(x) � � 1
on

�
0, � ) is immediate from (2.30). It is easily seen that the monotone kink v(x) obeys the

system �� � v(iv) � qv
��� � v � v3 � 0 on ( � � , 0),

v
���
(0) � 0,

v
���
( � � ) � 0.

Since q � 0, it follows from the strong maximum principle that v
���
(x) � 0 on ( � � , 0), and

in particular v
���
( � 1) � 0. Let u(x) obey (2.30), then this implies that

u
���
( � 1) � 0, u( � 1) � 1 and u(x) � � 2 on

� � 1, � ),

for δ sufficiently small. Besides, u( � ) � 1 and u
���
( � ) � 0. It now follows from Lemma 2.29

that u(x) � 1 on
� � 1, � ).

�

We now start the proof of Theorem 2.9. We emphasise that we assume that the po-
tential F is symmetric, which greatly reduces the number of possibilities that we have to
check in order to conclude that the intersection of Wu( � 1) and Ws( � 1) is transverse.

For any q � � �
8, let v(x) be the unique monotonically increasing heteroclinic solution

of (2.10). Since v(x) is antisymmetric by Lemma 2.34, we have that

v(0) � 0, v
�
(0) � 0 and v

���
(0) � 0,

and by Lemma 2.16 we have v
�����

(0) � λv
�
(0) � 0. Besides, v lies in the zero energy manifold,

i.e.,
v
�
v
����� � 1

2
(v
���
)2 � q

2
(v
�
)2 � F(v) � 0,

where F(v) � � 1
4 (v2 � 1)2. Therefore

v
�����

(0) � qv
�
(0) � q

2
v
�
(0) � 1

4v
�
(0)

� ( � λ � C)v
�
(0) � 1

4v
�
(0)

, (2.31)

where C � � � q
2 � 2 � 2 � 0. The tangent space to the zero energy manifold at the point

P � (0, v
�
(0), 0, v

�����
(0)) is �

0, u
�����

(0) � qu
�
(0), 0, u

�
(0) �

�

� � 4 .

The tangent spaces to the two-dimensional manifolds Wu( � 1) and Ws( � 1) at this point
both contain the vector

X � �
v
�
(0), 0, v

�����
(0), 0 � , (2.32)

because of the differential equation.
Let us suppose, seeking a contradiction, that these stable and unstable manifolds do

not intersect transversely in the zero energy set. Then their tangent spaces, which are two-
dimensional, coincide. We denote this two-dimensional tangent space by TP. Because of
the symmetry of F and reversibility, (α,β,γ,δ) lies in Wu( � 1) if and only if ( � α,β, � γ,δ)
lies in Ws( � 1). It then follows that

(α,β,γ,δ) � TP if and only if ( � α,β, � γ,δ) � TP. (2.33)

This symmetry relation implies that there are only two possibilities for TP. Namely, let
TP be spanned by X, given by (2.32), and Y � (α,β,γ,δ). We may assume that α � 0
(replacing Y by Y � α

v
�
(0) X). If β

�� 0, then we see from (2.33) that γ � 0 (otherwise
(v
�
(0), 0, v

�����
(0), 0), (0,β,γ,δ) and (0,β, � γ,δ) would be three linearly independent vectors
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in TP). Besides, δ is directly related to β since TP �
�
0, u

�����
(0)
�

qu
�
(0), 0, u

�
(0) �

�

. On the
other hand, if β � 0, then also δ � 0. Thus, we are left with two possibilities:

Case A: TP
� �

(ξ , 0,η, 0) � (ξ ,η) ��� 2 � , or

Case B: TP
� � �

ξv
�
(0), � ηv

�
(0),ξv

�����
(0),η(v

�����
(0) � qv

�
(0)) � � (ξ ,η) � � 2 � .

Note that the symmetry of the potential has reduced the number of possibilities enorm-
ously. To complete the proof of Theorem 2.9 we have to exclude the possibilities described
in Case A and Case B.

In Case A let ξ � 1 and η � 1 � λ, and consider the point on W s( � 1) given by

(u, u
�
, u
���
, u
�����

)(0) � �
ε
�

O(ε2), v
�
(0) � O(ε2), (1 � λ)ε � O(ε2), v

�����
(0) � O(ε2) � .

It should be clear that for ε small enough the conditions of Lemma 2.36 are satisfied, so
that � u(x) � � 1 on

�
0, � ). We will deal with this case in Lemma 2.38, where we show that

under the present conditions, u(x)
�
� W s( � 1), which excludes Case A.

Now suppose that Case B holds, and let ξ � 0 and η � � 1. Then there is a point
(u, u

�
, u
���
, u
�����

)(0) on Ws( � 1) of the form�
O(ε2), v

�
(0) � εv

�
(0) � O(ε2), O(ε2), v

�����
(0) � ε(v

�����
(0) � qv

�
(0)) � O(ε2) � .

Now
(u
� � v

�
)(0) � εv

�
(0) � O(ε2), (2.34)

and, using (2.31),

(u
����� � v

�����
)(0) � � ε(v

�����
(0) � qv

�
(0)) � O(ε2)

� ε(λ � C)v
�
(0) � ε

4v
�
(0)
�

O(ε2)

� λ(u
� � v

�
)(0) � εCv

�
(0) � ε

4v
�
(0)
�

O(ε2),

where C � � � q
2 � 2 � 2 � 0. We infer that

(u
����� � λu

�
)(0) � (v

����� � λv
�
)(0) � ε

�
Cv
�
(0) � 1

4v
�
(0) � � O(ε2). (2.35)

Besides, it should be clear that for ε small enough the conditions of Lemma 2.36 are sat-
isfied, so that � u(x) � � 1 on

�
0, � ). We will deal with this case in Lemma 2.37, where we

show that under the present conditions, u(x)
�
� W s( � 1), which excludes Case B.

We now prove two technical lemmas (adopted from [35] to the case of an antisym-
metric heteroclinic orbit) to exclude the two possibilities which could occur if the inter-
section of Wu( � 1) and Ws(

�
1) were not transverse. We show that in both Case A and

Case B the initial data of u and v are such that for some small positive x, we arrive in
the situation of the Comparison Lemma. We then conclude that u cannot be in the stable
manifold Ws( � 1).

The next lemma deals with Case B (it is the counterpart of Th. 2.3 in [35]). In order
for the points of Ws( � 1) in Case B to satisfy the assumptions of the lemma, we choose
(looking at (2.34) and (2.35))

α � 1
2

min
�

v
�
(0), Cv

�
(0) � 1

4v
�
(0)
�

and k � 2 max
�

v
�
(0), Cv

�
(0) � 1

4v
�
(0)
�

.
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Lemma 2.37 For any q � � �
8, let v(x) be the unique monotonically increasing hetero-

clinic solutions of (2.10) with its zero at the origin. Let k, α, β � 0 be constants. Suppose
that u(x) is a solution of (2.10) with � u(x) � � 1 on

�
0, � ), satisfying (for some ε � 0)

kε � (u
����� � λu

�
)(0) � (v

����� � λv
�
)(0) � αε and kε � u

�
(0) � v

�
(0) � αε,

and
� u(0) � � � u ��� (0) � � βε2.

Then, for ε sufficiently small, u(0)
�
� W s( � 1).

Proof. The solution v exists on
�
0, � ) and the initial data of u are ε-close to those of v.

Therefore there exists an ε0 � 0 such that if ε � (0,ε0) the function u and its derivatives of
all orders exist and are uniformly bounded on

�
0, 1 � , for all u satisfying the assumptions

independent of ε � (0,ε0). Consequently, by Taylor’s theorem we infer that for some M �
0 and for all x �

�
0, 1 �

u(x) � v(x) � u(0) � v(0) �
�
u
�
(0) � v

�
(0) � x

� 1
2

�
u
���
(0) � v

���
(0) � x2 � Mx3

� � βε2 � αεx � 1
2βε

2x2 � Mx3.

u
�
(x) � v

�
(x) � u

�
(0) � v

�
(0) �

�
u
���
(0) � v

���
(0) � x � Mx2

� αε � βε2x � Mx2.

(u
��� � λu)(x) � (v

��� � λv)(x) � (u
��� � λu)(0) � (v

��� � λv)(0)
� �

(u
����� � λu

�
)(0) � (v

����� � λv
�
)(0) � x

� 1
2

�
(u
������� � λu

���
)(0) � (v

������� � λv
���
)(0) � x2 � Mx3

� � (1 � λ)βε2 � αεx � 1
2 Kβε2x2 � Mx3.

(u
����� � λu

�
)(x) � (v

����� � λv
�
)(x) � (u

����� � λu
�
)(0) � (v

����� � λv
�
)(0)

� �
(u
������� � λu

���
)(0) � (v

������� � λv
���
)(0) � x � Mx2

� αε � Kβε2x � Mx2.

Here we have used the fact that, for some constant K � 0,

� u ������� (0) � λu
���
(0) � � � ( � q � λ)u

���
(0) � u(0) � u3(0) � � Kβε2.

Let K̃ � max
�
1, K � , and let us define

Γ (ε) � �
ε

� �
α

M
� K̃βε3

�
2

2M

�
.

Then we have, for all x �
�
0, Γ (ε) � ,

u
�
(x) � v

�
(x) � 0 and (u

����� � λu
�
)(x) � (v

����� � λv
�
)(x) � 0.

We now introduce τ(ε) � ε2
�
3. It then follows that τ(ε) �

�
0, Γ (ε) � �

�
0, 1 � for ε � 0 suffi-

ciently small. We obtain that

(u � v)(τ(ε)) � � βε2 � αε5
�
3 � 1

2βε
10

�
3 � Mε2 � 0,

for ε � 0 sufficiently small, and

(u
��� � λu)(τ(ε)) � (v

��� � λv)(τ(ε)) � � (1 � λ)βε2 � αε5
�
3 � 1

2 Kβε10
�
3 � Mε2 � 0,

for ε � 0 sufficiently small.
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We can now apply the Comparison Lemma to u(x � τ(ε)) and v(x � τ(ε)) to conclude
that u(x) does not tend to 1 as x � � , which proves the lemma.

�

The following lemma excludes Case A (it is the counterpart of Th. 2.4 in [35]). In order
for the points of Ws(

�
1) in Case A to satisfy the assumptions of the lemma, we choose

α � 1
2 and k � 2.

Lemma 2.38 For any q � � �
8, let v(x) be the unique monotonically increasing hetero-

clinic solutions of (2.10) with its zero at the origin. Let k, α, β � 0 be constants. Suppose
that u(x) is a solution of (2.10) with � u(x) � � 1 on

�
0, � ), satisfying (for some ε � 0)

kε � u
���
(0) � λu(0) � αε and kε � u(0) � αε,

and
� u � (0) � v

�
(0) � � � u ����� (0) � v

�����
(0) � � βε2.

Then, for ε sufficiently small, u(0)
�
� W s( � 1).

Proof. We proceed as in the proof of Lemma 2.37. We find, by Taylor’s theorem, that for
some M � 0, K � 0 and x �

�
0, 1 � ,

u(x) � v(x) � αε � βε2x � Mx2

u
�
(x) � v

�
(x) � � βε2 � α(1 � λ)εx � 1

2βε
2x2 � Mx3

(u
��� � λu)(x) � (v

��� � λv)(x) � αε � (1 � λ)βε2x � Mx2

and

(u
����� � λu

�
)(x) � (v

����� � λv
�
)(x) � (u

����� � λu
�
)(0) � (v

����� � λv
�
)(0)

� �
(u(iv) � λu

���
)(0) � (v(iv) � λv

���
)(0) � x

� 1
2

�
(u(v) � λu

�����
)(0) � (v(v) � λv

�����
)(0) � x2 � Mx3

� � 2βε2 � (2 � µ)αεx � 1
2 Kε2x2 � Mx3.

Here we have used the following facts. First, v(iv)(0) � 0 by (2.10) and

(u(iv) � λu
���
)(0) � µ(u

��� � λu)(0) � 3u(0) � u3(0)

� µαε
� 3αε � k3ε3

� (2 � µ)αε

for ε sufficiently small. Second, by differentiating (2.10) we obtain

u(v) � qu
����� �

u
�
(3u2 � 1) � 0,

from which we deduce that

(u(v) � λu
�����

)(0) � (v(v) � λv
�����

)(0) � µ(u
����� � λu

�
)(0) � µ(v

����� � λv
�
)(0)

� 3(u
�
(0) � v

�
(0)) � 3u

�
(0)u2(0)

� � µ(1 � λ)βε2 � 3βε2 � 6v
�
(0)k2ε2 � � Kε2,

since � u � (0) � � � v � (0) � � βε2 � 2v
�
(0), for ε sufficiently small.

We define
Γ (ε) � �

ε

� �
α

M
� (1 � λ)βε3

�
2

2M

�
.

Then we have, for all x �
�
0, Γ (ε) � ,

u(x) � v(x) � 0 and (u
��� � λu)(x) � (v

��� � λv)(x) � 0.
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If τ(ε) � ε2
�
3, then τ(ε) �

�
0, Γ (ε) � �

�
0, 1 � for ε � 0 sufficiently small and

(u
� � v

�
)(τ(ε)) � � βε2 � α(1 � λ)ε5

�
3 � 1

2βε
10

�
3 � Mε2 � 0,

for ε sufficiently small, and

(u
����� � λu

�
)(τ(ε)) � (v

����� � λv
�
)(τ(ε)) � � 2βε2 � (2 � µ)αε5

�
3 � 1

2 Kε10
�
3 � Mε2 � 0,

for ε sufficiently small.
We can now apply the Comparison Lemma to u(x � τ(ε)) and v(x � τ(ε)) to conclude

that u(x) does not tend to 1 as x � � , which proves the lemma.
�

Remark 2.39 The special symmetry of u � u3 has enabled us to prove that the heteroclinic
solution is transverse. For general f (u) transversality of heteroclinic solutions is much
harder to check. However, for homoclinic solutions this difficulty does not arise, since
every homoclinic solution (for γ � (0, 1

4ω � ) is symmetric with respect to its extremum. We
will give an outline of the proof that every homoclinic solution is a transverse intersection.

Without loss of generality we may assume that v(x) is a positive homoclinic solution
of (2.1) to 0 with a unique maximum at x � 0. As usual, we suppose that γ � (0, 1

4ω(0,v(0)) � .
The method in [35] for homoclinic solutions can be extended to general f (u), as was done
above for heteroclinic solutions. To be able to apply the Comparison Lemma to a solution
in Ws(0) close to v(x), we need a very mild assumption on f (u), but only in a special case
(when γ � 1

4ω(0,v(0)) , then we need that f
�
(u)

�� � ω(0, v(0)) in some left neighbourhood of

u � 0). The only fairly specific condition in the rest of the proof is that f (v(0))� v
� �
(0) � λ, which

follows directly from Remark 2.17. �

2.7 Stability of the kink
In this section we look at the stability of the kink for the EFK equation (2.12) and prove
Theorem 2.10. The EFK equation is a semi-linear parabolic equation and for such equa-
tions the local existence of the flow (e.g., in the space of bounded uniformly continuous
functions) has been well-established (e.g., see [111, 81]). To fix ideas, for γ � 1

8 let v(x)
be the unique monotonically increasing heteroclinic solution of (2.9) such that v(0) � 0
(removing the translational invariance). The existence of this solution can be proved by a
shooting method [117], but it can also be found as the minimiser of the functional

J
�
u � def�

�
�

�
γ

2
(u
���
)2 � 1

2
(u
�
)2 � 1

4
(u2 � 1)2

�
dx.

The minimum is taken over all functions u(x) with u � χ � H2( � ), where χ � C � ( � ) is an
antisymmetric function such that such that χ(x) � � 1 for x � � 1, and χ(x) � 1 for x � 1
(see [89, 124]).

The minimising property of the kink v(x) and its transversality in the zero energy set
allow us to conclude that for γ � 1

8 the kink is asymptotically stable in H1( � ). Another
possible choice is to work in the space of bounded uniformly continuous functions. The
analysis below applies to both function spaces.

To study the stability of the kink, we write u(x, t) � v(x) � φ(x, t). The differential
equation for the perturbation φ(x, t) is then

∂φ
∂t

� � γ ∂4φ

∂x4
� ∂2φ

∂x2
� (1 � 3v2)φ � 3vφ2 � φ3.
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Note that the nonlinear term � 3v(x)φ2 � φ3 is C1 from H1 to H1.
We have to investigate the spectrum of the linearised operator

Lφ def� � γφ
������� �

φ
��� � 2φ � g(x)φ,

where
g(x) � 3 � 3v2(x) � 0 as x � � � .

We consider L as an unbounded operator from D(L) � H5( � ) � H1( � ) to H1( � ). It is
well-known that the essential spectrum of L is

σe(L) � ( � � , � 2 � ,
and that the remaining part of the spectrum σ(L) � σe(L) consists entirely of isolated real
eigenvalues of finite multiplicity (see e.g. [81, Ch. 5]).

The minimising property of the kink,

J
�
v � � inf

�
J

�
u � � u � χ � H2 � ,

implies that
(Lφ,φ)L2 � 0 for allφ � H4. (2.36)

Any eigenfunction of L in H1 is in H5, thus by substituting eigenfunctions in (2.36) we
see that all eigenvalues of L are in ( � � , 0 � .

The EFK equation is autonomous, thus v
�
(x) is an eigenfunction with eigenvalue 0. In

fact, the zero eigenvalue is simple, which follows from the transversality of W s( � 1) and
Wu( � 1). To see this, we note that the flow of the tangent plane TW s(x) of the stable man-
ifold of � 1 at points (v, v

�
, v
���
, v
�����

)(x) on the heteroclinic orbit, is given by the linearised
equation around the kink. Since W s( � 1) is two-dimensional this implies that there are
exactly two linearly independent solutions of Lφ � 0 which tend to 0 as t � � , corres-
ponding to two independent directions in the tangent planes TW s(x). A similar statement
holds for the tangent plane TWu(x) of the unstable manifold of � 1. Because an eigenfunc-
tion with eigenvalue 0 obeys this linearised equation Lφ � 0 and tends to 0 as x � � � , it
corresponds to a common direction in the tangent planes TW s(x) and TWu(x). Therefore,
a second independent eigenfunction with eigenvalue 0 would imply that the stable and
unstable manifolds do not intersect transversely in the zero energy set, which contradicts
Theorem 2.9.

We note that this reasoning also applies to the space of bounded uniformly continu-
ous functions (e.g., see [81, Section 5.4]), the reason being that there is an exponential
dichotomy when x � � � (see [81, 78]).

Having established that the zero eigenvalue of the linearisation around v(x) is simple,
we may apply the theory from [81, Section 5.1] or [16, Th. 4.3]. It follows that the sta-
tionary solution v(x) of Equation (2.12) has a local stable manifold of co-dimension 1 in
the flow of (2.12). The center manifold is one-dimensional and by exploiting the spatial
translation invariance of (2.12) we see that this center manifold consists of the translates
of the kink:

�
v(x � x0) � x0 � � � . Besides, we conclude from the translation invariance

that the stable manifolds of the translates of the kink v(x) fill a tubular neighbourhood of�
v(x � x0) � x0 ��� � in function space. This implies asymptotic stability (see [16] for more

details) and thus proves Theorem 2.10.
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2.8 Continuation and existence
This section is devoted to the continuation of bounded solutions of (2.6) for values of q
that are sufficiently negative. Theorem 2.1 shows that for each point P in the (u, u

�
)-plane

there is at most one bounded solution of which the path goes through P. In this section we
show that if a point P lies on the path of a periodic solution, then there exists a periodic
solution through any point in the neighbourhood of P, i.e., part of the phase-plane is
filled up by bounded solutions. The fact that solutions can be continued, also implies the
existence of certain bounded solutions.

The main result of this section is Theorem 2.5. In the proof of this theorem we use
the notation of Equation (2.6). Let u0(x) be a periodic solution of (2.6) for q � q0. We
define a � min u0(x) and b � max u0(x). Suppose that q0 � � 2

�
ω(a, b). Then this periodic

solution is part of a continuous one-parameter family of periodic solutions. We will use
the Implicit Function Theorem to prove this assertion. In Theorem 2.5 the energy is taken
as parameter. Here we first take the maximum value of solutions as parameter and then
we show that the energy can be used as parameter equally well.

Without loss of generality we may assume that u0 attains a maximum at x � 0. Then
u
�
0(0) � 0 and u

�����
0 (0) � 0 by Lemma 2.12, and from Remark 2.17 we see that

u
���
0 (0) � 0 and u(iv)

0 (0) � λu
���
0 (0) � 0.

Let ξ0 � 0 be the first point where u0 attains a minimum.
We now look at a family of solutions u(x;α,β) of (2.6) with initial data

(u, u
�
, u
���
, u
�����

)(0;α,β) � (α, 0,β, 0),

where (α,β) is in a small neighbourhood of (α0,β0) def� (u0(0), u
���
0 (0)). Note that u(x;α0,β0)

is the periodic solution u0(x).
To show that u0 is part of a continuous family it suffices to prove that (ξ0;α0,β0) lies

on a smooth curve (ξt;αt,βt), with t � ( � ε,ε) for ε � 0 small, such that

u
�
(ξt;αt,βt) � 0 and u

�����
(ξt;αt,βt) � 0.

The functions u(x;αt,βt) extend to periodic solutions by reflection in x � 0 and x � ξt. Let
α play the role of the parameter, then to be able to apply the Implicit Function Theorem,
we have to show that the determinant

D def� det

�
∂u

�
∂x

∂u
� � �

∂x
∂u

�
∂β

∂u
� � �

∂β � (ξ0;α0,β0)

is non-zero.
It follows from Remark 2.17 that

u
���
(ξ0;α0,β0) � 0 and u(iv)(ξ0;α0,β0) � λu

���
(ξ0;α0,β0) � 0. (2.37)

We define v(x) � ∂u
∂β (x;α0,β0) and observe that

v(0) � 0, v
�
(0) � 0, v

���
(0) � λv(0) � 1 and v

�����
(0) � λv

�
(0) � 0. (2.38)

Besides, v satisfies the equation v(iv) � qv
��� � f

�
(u)v, which we write as

(v
��� � λv)

��� � µ(v
��� � λv) � ( f

�
(u) � ω)v. (2.39)

Arguing along the lines of the Comparison Lemma we see from (2.38) that v � 0 on (0,σ)
for σ � 0 small enough. We now observe that ( f

�
(u) � ω)v � 0 on (0,σ) by the definition
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of ω � ω(a, b). We deduce from (2.38) and (2.39) that v
��� � λv � 0 on (0,σ), and as in the

proof of the Comparison Lemma, we conclude that σ � � . Hence, for all x � 0 we have

v � 0, v
�
� 0, v

��� � λv � 0, and v
����� � λv

�
� 0. (2.40)

We now see from (2.37) and (2.40) that

det

�
∂u

�
∂x

∂(u
� � � � λu

�
)

∂x
∂u

�
∂β

∂(u
� � � � λu

�
)

∂β � (ξ0;α0,β0) � det
�
� 0 � 0
� 0 � 0 � � 0,

which immediately implies that D
�� 0.

Above we have used the amplitude of the periodic solution as a parameter. We can
also use the energy E as a parameter, taking x and α as variables. In that case we look at
a family of solutions u(x;α, E) of (2.6) with initial data

(u, u
�
, u
���
, u
�����

)(0;α, E) � (α, 0, � �
2E � 2F(α), 0),

where (α, E) is in a small neighbourhood of (α0, E
�
u0 � ). We define v(x) � ∂u

∂α (x;α0, E
�
u0 � ),

and we notice that v(0) � 1, v
�
(0) � 0, v

�����
(0) � λv

�
(0) � 0 and

v
���
(0) � λv(0) � d

� � �
2E

�
u0 � � 2F(α) � λα �

dα

�
�
�
�
�
α � α0

� � F
�
(α0)

� �
2E

�
u0 � � 2F(α0)

� λ

�
� f (u0(0))

u
���
0 (0)

� µ � � u(iv)
0 (0) � λu

���
0 (0)

u
���
0

� 0,

by (2.6) and Remark 2.17. The previous analysis now applies once more and we conclude
that Theorem 2.5 holds.

Another possibility for continuation of solutions is to fix the energy level E, take q as
a parameter and use x and α as variables. Finally, instead of taking q as a parameter we
can also deform the potential F(u). This offers the possibility to obtain periodic solutions
via continuation starting from a linear equation and then deforming the potential.

A different possible starting point for the continuation of bounded solutions is the
second order equation (γ � 0), because for small positive γ the bounded solutions of (2.1)
can be obtained from the second order equation by means of singular perturbation theory
(e.g., see [2, 72]).

The continuation of periodic solutions can come to an end in a limited number of
ways:

� the value of q becomes too large compared the critical value ω(min u, max u), i.e.
q � � 2

�
ω(min u, max u). This may either happen when we increase q, or when we

deform the potential, or when the range of u(x) expands.
� the amplitude of the periodic solutions tends to infinity.
� the amplitude of the periodic solutions tends to zero, i.e., the periodic orbits converge

to an equilibrium point.
� the periodic solutions converge to a chain of connecting orbits (homoclinic and/or

heteroclinic) as the period tends to infinity.
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Considering homoclinic solutions we note that it follows from Remark 2.39 that under
very weak assumptions on the potential, homoclinic solutions are transverse intersections
and thus can be continued (for example starting at γ � 0 using singular perturbation
theory). Another possibility is to obtain the homoclinic solutions as a limit of periodic
solutions. Conversely, the existence of a transverse homoclinic orbit implies the existence
of a family of periodic solutions close to this homoclinic orbit [55, 139].

Finally, with regard to heteroclinic solutions there is an important result from [89],
which states that if there are two equilibrium points u0 and u1 (u0 � u1) such that

F(u0) � F(u1),

F(u) � F(u0) � F(u1) for all u ��� � �
u0, u1 �

F
���
(u0) � 0 and F

���
(u1) � 0,

F(u) � C1
� C2u2 for all u � � and some C1, C2 � 0,

then for all γ � 0 there exists a heteroclinic solution of (2.1) connecting these equilibrium
points. On the other hand, the heteroclinic connections can also be obtained as a limit
of periodic solutions, and when the potential is symmetric then, for γ not too large, the
heteroclinic solution is a transverse intersection (as discussed in Section 2.6) and thus can
be continued.
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Chapter 3

Homotopy classes for stable patterns

3.1 Introduction
This chapter is a continuation of [89] where a constrained minimisation method has been
developed to study heteroclinic and homoclinic local minimisers of the action functional1

JI
�
u � �

�
I
L(u, u

�
, u
���
) dt �

�
I

�
γ

2
u
��� 2 � β

2
u
� 2 � F(u) � dt, (3.1)

with γ,β � 0. Minimisers are solutions of the equation

γu
������� � βu

��� �
F
�
(u) � 0. (3.2)

This equation with a double-well potential F has been proposed in connection with cer-
tain models of phase transitions. For brevity we will omit a detailed background of this
problem and refer only to those sources required in the proofs of the results. A more ex-
tensive history and reference list are provided in [89] and Chapter 1, to which we refer
the interested reader.

The above equation is Hamiltonian with

H � � γu
�����

u
� � γ

2
u
��� 2 � β

2
u
� 2 � F(u). (3.3)

The configuration space of the system is the (u, u
�
)-plane, and solutions of (3.2) can be

represented as curves in this plane. Initially these curves do not appear to be restricted
in any way. However, the central idea presented here is that, when ( � 1, 0) are saddle-
foci, the minimisers of J respect the topology of this plane punctured at these two points,
which allows for a rich set of minimisers to exist. Using the topology of the doubly-
punctured plane and its covering spaces, we describe the structure of all possible types
of minimisers, including those which are periodic and chaotic. Since the action of the
minimisers of these latter types is infinite, a different notion of minimiser is required that
is reminiscent of the minimising (Class A) geodesics of Morse [107]. Such minimisers
have been intensively studied in the context of geodesic flows on compact manifolds or
the Aubry-Mather theory (see e.g. [29] for an introduction). A crucial difference is that
we are dealing with a non-mechanical system on a non-compact space. Nevertheless, we
are able to emulate many of Morse’s original arguments about how the minimisers can
intersect with themselves and each other. For a precise statement of the main results we
refer to Theorem 3.10 and Theorem 3.34. For related work on mechanical Hamiltonian
systems we refer to [29, 128] and the references therein.

Another important aspect of the techniques employed here and in [89] is the mild-
ness of the hypotheses. In particular, our approach requires no transversality or non-

1Note that in this chapter the potential F(u) is defined with the opposite sign compared to Chapter 1.
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degeneracy conditions, such as those found in other variational methods and dynamical
systems theory, see [89]. Specifically, we will assume the following hypothesis on F:

(H): F � C2( � ), F( � 1) � F
�
( � 1) � 0, F

���
( � 1) � 0, and F(u) � 0 for u

�� � 1.
Moreover there are constants c1 and c2 such that F(u) � � c1

�
c2u2.

We will also assume for simplicity of the formulation that F is even, but many analog-
ous results will hold for non-symmetric potentials, cf. [89]. Finally, we assume that the
parameters γ and β are such that u � � 1 are saddle-foci, i.e. γ

β2 � 1
4F

� �
(
�

1) . An example of
a nonlinearity satisfying these conditions is F(u) � 1

4 (u2 � 1)2, in which case (3.2) is the
stationary version of the so-called Extended Fisher-Kolmogorov (EFK) equation.

In [89] heteroclinic and homoclinic minimisers of J are classified by a finite sequence of
even integers which represent the number of times a minimiser crosses u � � 1. In order
to classify more general minimisers, we must consider infinite and bi-infinite sequences,
as described below.

A function u : � � � can be represented as a curve in the (u, u
�
) � plane, and the asso-

ciated curve will be denoted by Γ (u). Removing the equilibrium points ( � 1, 0) from the
(u, u

�
) � plane (the configuration space) creates a space with nontrivial topology, denoted

by P � � 2 � �
( � 1, 0) � . In P we can represent functions u which have the property that

u
� �� 0 when u � � 1, and various equivalence classes of curves can be distinguished. For

example, in [89] classes of curves that terminate at the equilibrium points ( � 1, 0) are con-
sidered. Another important class consists of closed curves in P , which represent periodic
functions. We now give a systematic description of all classes to be considered.

Definition 3.1 A type is a sequence g � (gi)i � I with gi � 2 � � � � � , where � acts as a
terminator. To be precise, g satisfies one of the following conditions:
(a) I � � , and g � 2 �

�

is referred to as a bi-infinite type.
(b) I � �

0 � � � , and g � ( � , g1, g2, . . . ) with gi � 2 � for all i � 1, or
I � � � � �

0 � , and g � (. . . , g � 2, g � 1, � ) with gi � 2 � for all i � � 1.
In these cases g is referred to as a semi-terminated type.

(c) I � �
0, . . . , N

� 1 � with N � 0, and g � ( � , g1, . . . , gN , � ) with gi � 2 � .
In this case g is referred to as a terminated type.

These types will define function classes using the vector g to count the crossings of u
at the levels u � � 1. Since there are two equilibrium points, we introduce the notion of
parity denoted by p, which will be equal to either 0 or 1.

Definition 3.2 A function u � H2
loc( � ) is in the class M(g, p) if there are nonempty sets�

Ai � i � I such that

1. u � 1( � 1) � �
i � I Ai,

2. #Ai
� gi for i � I ,

3. max Ai � min Ai � 1,
4. u(Ai) � ( � 1)i � p � 1, and
5.
�

i � I Ai consists of transverse crossings of � 1, i.e., u
�
(x)

�� 0 for x � Ai.

Note that by Definition 3.1, a function u in any class M(g, p) has infinitely many cross-
ings of � 1. Definition 3.2 is similar to the definition of the class M(g) in [89] except that
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here it is assumed that all crossings of � 1 are transverse. Only finitely many crossings are
assumed to be transverse in [89] so that the classes M(g) are open subsets of χ � H2( � ).
Since we will not directly minimise over M(g, p), we now require transversality of all
crossings of � 1 to guarantee that Γ (u) � P . However, note that the minimisers found
in [89] are indeed contained in classes M(g, p) as defined above, where the types g are
terminated.

The classes M(g, p) are nonempty for all pairs (g, p). Conversely, any function u �
H2

loc( � ) is contained in the closure of some class M(g, p) with respect to the complete
metric on H2

loc( � ) given by ρ(u, v) � �
i 2 � i min

�
1, � u � v � H2( � i,i) � , cf. [133]. That is, if we

define

M(g, p) �
�
u � H2

loc( � ) � there are un � M(g, p) with un
� u in H2

loc( � ) � ,

then H2
loc( � ) � �

(g,p)M(g, p). Note that the functions in ∂M(g, p) � M(g, p) � int(M(g, p))
have tangencies at � 1 and thus are limit points of more than one class. In the case of an
infinite type, shifts of g can give rise to the same function class. Therefore certain infinite
types need to be identified. Let σ be the shift map defined by σ(g)i

� gi � 1, and the map
τ :

�
0, 1 � � �

0, 1 � be defined by τ(p) � (p
� 1) mod 2 � � p � 1 � . Two infinite types (g, p)

and (g
�
, p
�
) are equivalent if g

� � σn(g) and p
� � τn(p) for some n �

�
, and this implies

M(g, p) � M(g
�
, p
�
). A bi-infinite type g is periodic if there exists an integer n such that

σn(g) � g.
When the domain of integration is � , the action J

�
u � given in (3.1) is well-defined only

for terminated types g and u � M(g, p) �
�
χp
�

H2( � ) � , where χp is a smooth function
from ( � 1)p � 1 to ( � 1)p. For semi-terminated types or infinite types the action J is infinite
for every u � M(g, p). In Section 3.2 we will define an alternative notion of minimiser in
order to overcome this difficulty. The primary goal of this chapter is to prove the follow-
ing theorem, but we also prove additional results about the structure and relationships
between various types of minimisers.

Theorem 3.3 If F satisfies hypothesis (H) and is even, then for any type g and parity p
there exists a minimiser of J in M(g, p) in the sense of Definition 3.4. Moreover, if g is
periodic, then there exists a periodic minimiser in M(g, p).

In Sections 3.4 and 3.5 we show that other properties of the symbol sequences, such
as symmetry, are reflected in the corresponding minimisers. The classification of minim-
isers by symbol sequences has other properties in common with symbolic dynamics; for
example, if a type is asymptotically periodic in both directions, then there exists a minim-
iser of that type which is a heteroclinic connection between two periodic minimisers.

The minimisers discussed here all lie in the 3-dimensional energy manifold M0
�

�
(u, u

�
, u
���
, u
�����

) � H((u, u
�
, u
���
, u
�����

) � 0 � . Exploiting certain properties of minimisers that are
established in this chapter, we can deduce various linking and knotting characteristics
when they are represented as smooth curves in M0 (see also Chapter 8). The minimisers
found in this chapter are also used in Chapter 4 to construct stable patterns for the evolu-
tionary EFK equation on a bounded interval, and the dynamics of the evolutionary EFK
is discussed in [92].

Some notation used in this chapter was previously introduced in [89]. While we have
attempted to present a self-contained analysis, we have avoided reproducing details (par-
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ticularly in Section 3.3) which are not central to the ideas presented here, and which are
thoroughly explained in [89].

3.2 Definition of minimiser
For every compact interval I � � the restricted action JI is well-defined for all types.
When we restrict u to an interval I, we can define its type and parity relative to I, which
we denote by (g(u � I), p(u � I)). Namely, let u � M(g, p). It is clear that (u, u

�
) � ∂I

�
� ( � 1, 0)

for any bounded interval I. Then g(u � I) is defined to be the finite-dimensional vector
which counts the consecutive instances of u � I � � 1, and p(u � I) is defined such that the
first crossing of u � � 1 in I is a crossing of ( � 1)p � 1. Note that the components of g(u � I)
are not necessarily all even, since the first and the last entries may be odd. We are now
ready to state the definition of a (global) minimiser in M(g, p).

Definition 3.4 A function u � M(g, p) is called a minimiser for J over M(g, p) if and only
if for every compact interval I the number JI

�
u � I � minimises JI

� �
v � I � � over all functions

v � M(g, p) and all compact intervals I
�
such that (v, v

�
) � ∂I

� � (u, u
�
) � ∂I and (g(v � I � ), p(v � I � )) �

(g(u � I), p(u � I)).

The pair (g(u � I), p(u � I)) defines a homotopy class of curves in P with fixed end points
(u, u

�
) � ∂I. The above definition says that a function u, represented as a curve Γ (u) in P , is a

minimiser if and only if for any two points P1 and P2 on Γ (u), the segment Γ (P1, P2) � Γ (u)
connecting P1 and P2 is the most J-efficient among all connections Γ̃ (P1, P2) between P1

and P2 that are induced by a function v and are of the same homotopy type as Γ (P1, P2),
regardless of the length of the interval needed to parametrise the curve Γ̃ (P1, P2). As
we mentioned in the introduction, this is analogous to the length minimising geodesics
of Morse and Hedlund and the minimisers in the Aubry-Mather theory. The set of all
(global) minimisers in M(g, p) will be denoted by CM(g, p).

Lemma 3.5 Let u � M(g, p) be a minimiser, then u � C4( � ) and u satisfies Equation (3.2).
Moreover, u satisfies the relation H(u, u

�
, u
���
, u
�����

) � 0, i.e., the associated orbit lies on the
energy level H � 0.

Proof. From the definition of M(g, p), on any bounded interval I � � there exists
ε0(I) � 0 sufficiently small such that u

�
φ � M(g, p) for allφ � H2

0(I) with � φ � H2 � ε � ε0.
Therefore JI

�
u
�
φ � � JI

�
u � for all such functions φ, which implies that dJI

�
u � � 0 for any

bounded interval I � � , and thus u satisfies (3.2).
To prove the second statement we argue as follows. Since u � M(g, p), there exists

a bounded interval I such that u
� � ∂I

� 0. Introducing the rescaled variable s � t
�
T with

T � � I � and v(s) � u(t), we have

JI
�
u � � J

�
T, v � �

� 1

0

�
1

T3

γ

2
v
��� 2 � 1

T
β

2
v
� 2 � TF(v) � ds,

which decouples u and T. Since u
� � ∂I

� 0 we see from Definition 3.4 that J
�
T �

ε, v � �
JT

�
u � � J

�
T, v � . The smoothness of J in the variable T � 0 implies that ∂

∂τ J
�
τ , v �

�
�
�
τ � T

� 0.
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Differentiation yields, since H is constant along solutions (say H(u, u
�
, u
���
, u
�����

) � E),

∂
∂τ

J
�
τ , v � �

� 1

0

�
� τ � 4 3

2
γv
��� 2 � τ � 2β

2
v
� 2 � F(v) � ds

� τ
� 1
� τ

0

�
� 3

2
γu
��� 2 � β

2
u
� 2 � F(u) � dt

� � τ � 1
� τ

0
H(u, u

�
, u
���
, u
�����

) dt � � E.

Thus E � 0, and H(u, u
�
, u
���
, u
�����

) � 0 for t � I. This immediately implies that H � 0 for all
t � � .

�

The minimisers for J found in [89] also satisfy Definition 3.4, and we restate one of the
main results of [89].

Proposition 3.6 Suppose F is even and satisfies (H), and β,γ � 0 are chosen such that
u � � 1 are saddle-focus equilibria. Then for any terminated type g with parity either 0
or 1 there exists a minimiser u � M(g, p) of J.

From Definition 3.2, the crossings of u � M(g, p) with � 1 are transverse and hence isol-
ated. We adapt from [89], the notion of a normalised function with a few minor changes
to reflect the fact that we now require every crossing of � 1 to be transverse.

Definition 3.7 A function u � M(g, p) is normalised if, between each pair u(a) and u(b) of
consecutive crossings of � 1, the restriction u � (a,b) is either monotone or u � (a,b) has exactly
one local extremum.

Clearly, the case of u � (a,b) being monotone can occur only between two crossings at differ-
ent levels � 1, in which case we say that u has a transition on

�
a, b � .

Lemma 3.8 If u � CM(g, p), then u is normalised.

Proof. Since u � M(g, p), all crossings of u � � 1 are transverse, i.e. u
� �� 0. Thus for any

critical point t0 � � , u(t0)
�� � 1, and the Hamiltonian relation from Lemma 3.5 and (3.3)

implies that γ

2 u
���
(t0)2 � F(u(t0)) � 0. Therefore u is a Morse function, and between any

two consecutive crossings of � 1 there are only finitely many critical points. Now on any
interval between consecutive crossings where u is not normalised, the clipping lemmas
of Section 3 in [89] can be applied to obtain a more J-efficient function, which contradicts
the fact that u is a minimiser.

�

3.3 Minimisers of arbitrary type
In this section we will introduce a notion of convergence of types which will be used in
Section 3.5.1 to establish the existence of minimisers in every class M(g, p) by building on
the results proved in [89].

Definition 3.9 Consider a sequence of types (gn, pn) � �
(gn

i )i � In , pn � and a type (g, p) ��
(gi)i � I , p � . The sequence (gn, pn) limits to the type (g, p) if and only if there exist numbers

Nn � 2
�

such that gn
i � Nn � pn � p

� gi for all i � I as n � � . We will abuse notation and write
(gn, pn) � (g, p).
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We should point out that a sequence of types can limit to more than one type. For
example, the sequence (gn, 0) � �

( � , 2, 2, n, 4, 4, 4, 4, n, 2, 2, 2, . . . ), 0 � limits to the types�
( � , 2, 2, � ), 0 � ,

�
( � , 4, 4, 4, 4, � ), 1 � and

�
( � , 2, 2, 2, . . . ), 0 � .

Theorem 3.10 Let (gn, pn) � (g, p) and un � CM(gn, pn) with � un � 1, � � C for all n. Then
there exists a subsequence unk such that unk

� û � M(g, p) in C4
loc( � ), and û is a minimiser

in the sense of Definition 3.4, i.e. û � CM(g, p).

Proof. This proof requires arguments developed in [89] to which the reader is referred
for certain details. The idea is to take the limit of un restricted to bounded intervals. We
define the numbers Nn as in Definition 3.9, and we denote the convex hull of Ai by Ii.
Due to translation invariance we can pin the functions un so that un(0) � ( � 1)p � 1, which
is the beginning of the transition between In

Nn � pn � p and In
1 � Nn � pn � p. Due to the assumed

a priori bound and interpolation estimates which can be found in the appendix to [96],
there is enough regularity to yield a limit function û as a C4

loc-limit of un, after passing to a
subsequence. Moreover, û satisfies the differential equation (3.2) on � . The question that
remains is whether û � M(g, p).

To simplify notation we will now assume that Nn
� 0 and pn � p � 0. Fixing a

small δ � 0, we define In
i (δ) � In

i as the smallest interval containing In
i such that u � ∂In

i (δ)
�

( � 1)i � 1 � ( � 1)i � 1δ (if g is a (semi-)terminated type then In
i (δ) may be a half-line). The in-

terval of transition between In
i (δ) and In

i � 1(δ) is denoted by Ln
i (δ). To see that û � M(g, p),

one has to eliminate the two possibilities that a priori may lead to the loss or creation of
crossings in the limit so that û

�
� M(g, p): the distance between two consecutive crossings

in un could grow without bound or û could possess tangencies at u � � 1.
Due to the a priori estimate in W1, � we have the following bounds on J:

J
�
un � In

i (δ) � � C and J
�
un � Ln

i (δ) � � C
�
, (3.4)

where C and C
�

are independent of n and i. Indeed, note that for n large enough the
homotopy type of un on the intervals In

i (δ) is constant by the definition of convergence
of types. Since the functions un are minimisers, J

�
un � In

i (δ) � is less than the action of any
test function of this homotopy type satisfying the a priori bounds on u and u

�
on ∂In

i (δ)
(see [89, Section 6] for a similar test function argument). The estimate � Ln

i (δ) � � C(δ) is im-
mediately clear from Lemma 5.1 of [89]. We now need to show that the distance between
two crossings of ( � 1)i � 1 within the interval In

i (δ) cannot tend to infinity.
First we will deal with the case when gn

i is finite for all n. Suppose that the distance
between consecutive crossings of ( � 1)i � 1 in In

i (δ) tends to infinity as n � � . Due to (3.4)
and Lemma 3.8, minimisers have exactly one extremum between crossings of ( � 1)i � 1 for
any ε � 0, and hence there exist subintervals Kn � In

i (δ) with �Kn � � � , such that 0 �
� un

� ( � 1)qn � � ε on Kn where qn �
�
0, 1 � , and � u � � ∂Kn � � ε. Taking a subsequence we may

assume that qn is constant.
We begin by considering the case where qn

� i
� 1. Nowε can be chosen small enough,

so that the local theory in [89] is applicable in Kn. If �Kn � becomes too large then un can
be replaced by a function with lower action and with many crossings of ( � 1)i � 1. Sub-
sequently, redundant crossings can be clipped out, thereby lowering the action. This
implies that un is not a minimiser in the sense of Definition 3.4, a contradiction.
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The case where qn
� i must be dealt with in a different manner. First, there are unique

points tn � Kn such that u
�
n(tn) � 0, and for these points un(tn) � ( � 1)i as �Kn � � � . Let

un(sn) be the first crossing of ( � 1)i � 1 to the left of Kn. Taking the limit (along subsequences)
of un(t � sn) we obtain a limit function

�

u which is a solution of (3.2). If � tn
� sn � is bounded

then
�

u has a tangency to u � ( � 1)i at some t � � � . All un lie in
�

H � 0 � (see (3.3)) and
so does

�

u, hence
�

u
���
(t � ) � 0. Moreover

�

u
�����

(t � ) � 0, because
�

u(t � ) is an extremum. By
uniqueness of the initial value problem this implies that

�

u � ( � 1)i, contradicting the fact
that

�

u(0) � ( � 1)i � 1. If � tn
� sn � � � , then

�

u is a monotone function on
�
0, � ), tending to

( � 1)i as x � � , and its derivatives tend to zero (see Lemma 2.14 or [96, Lemma 1 Part (ii)]
for details). This contradicts the saddle-focus nature of the equilibrium point.

In the case that gn
i

� � we remark that (3.4) also holds when In
i is a half-line. It

follows from the estimates in Lemma 5.1 in [89] that un
i

� ( � 1)i � 1 as x � � or x � � �
(whichever is applicable). From the local theory in Section 4 of [89] and the fact that un is a
minimiser, it follows that the derivatives of un tend to zero. The analysis above concerning
the intervals Kn and the clipping of redundant oscillations now goes on unchanged.

We have shown that the distance between two crossings of � 1 is bounded from above.
Next we have to show that the limit function has only transverse crossings of � 1. This
ensures that no crossings are lost in the limit. If û were tangent to ( � 1)i � 1 in Ii, then
we could construct a function in v � M(g, p) in the same way as in [89, Theorem 5.5]
by replacing tangent pieces by more J-efficient local minimisers and by clipping. The
function v still has a lower action than û on a slightly larger interval (the limit function
û also obeys (3.4), so that the above clipping arguments still apply). Since un

� û in
C4

loc it follows that JI
�
un � � JI

�
u � on bounded intervals I. This then implies that for n

large enough the function un is not a minimiser in the sense of Definition 3.4, which is a
contradiction.

The limit function û could also be tangent to ( � 1)i for some t0 � Ii. As before, such tan-
gencies satisfy û(t0) � ( � 1)i � û

�
(t0) � û

���
(t0) � û

�����
(t0) � 0, which leads to a contradiction

the uniqueness of the initial value problem.

Finally, crossings of � 1 cannot accumulate since this would imply that at the accumu-
lation point all derivatives would be zero, leading to the same contradiction as above. In
particular, if gn

i
� � for some i, then � In

i � � � and the crossings in An
j for j � i move off

to infinity and do not show in û, which is compatible with the convergence of types.

We have now proved that û � M(g, p), and since û is the C4
loc-limit of minimisers, û is

also a minimiser in the sense of Definition 3.4.
�

Remark 3.11 It follows from regularity estimates on bounded solutions of (3.2), see e.g.
[96, Theorem 3], that in the theorem above we in fact only need an L � -bound on the
sequence un. �

Remark 3.12 It follows from the proof of Theorem 3.10 that there exists a constant δ0 � 0
such that for all uniformly bounded minimisers u(t) it holds that � u(t) � ( � 1)i � p � � δ for
all t � Ii and all i � I . This means that the uniform separation property discussed in [89]
is uniformly satisfied by all minimisers. �
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3.4 Periodic minimisers
A bi-infinite type g is periodic if there exists an integer n such that σ n(g) � g. The (natural)
definition of the period of g is min

�
n � 2 � � σn (g) � g � . We will write g � �

r � where
r � (g1, ..., gn) and n is even. Cyclic permutations of r, with possibly a flip of p, give rise
to the same function class M(

�
r � , p). In reference to the type

�
r � with parity p we will use

the notation (r, p). Any such type pair (r, p) can formally be associated with a homotopy
class in π1(P , 0) in the following way. Let e0 and e1 be the clockwise oriented circles of
radius one centred at (1, 0) and ( � 1, 0) respectively, so that

�
e0 � and

�
e1 � are generators for

π1(P , 0). Defining θ(r, p) � ern
�
2

τn(p)
����� er1

�
2

p , the map θ :
�

k
�

1 2 � 2k �
�
0, 1 � �

π1(P , 0) is an
injection, and we define π �

1 (P , 0) to be the image of θ in π1(P , 0). Powers of a type pair
(r, p)k for k � 1 are defined by concatenation of r with itself k times, which is equivalent
to (r, p)k � θ � 1((θ(r, p))k).

Definition 3.13 Two pairs (r, p) and (r̂, p̂) are equivalent if there are integers p, q � �
such that (r, p)p � (r̂, p̂)q up to cyclic permutations. This relation, (r, p) � (r̂, p̂), is an
equivalence relation.

Example: if (r, p) � �
(2, 4, 2, 4), 0 � and (r̂, p̂) � �

(4, 2, 4, 2, 4, 2), 1 � , then θ(r, p)3 � θ(r̂, p̂)2.
The equivalence class of (r, p) is denoted by

�
r, p � . A type (r, p) is a minimal represent-

ative for
�
r, p � if for each (r̂, p̂) �

�
r, p � there is k � 1 such that (r̂, p̂) � (r, p)k up to cyclic

permutations. A minimal representative is unique up to cyclic permutations. It is clear
that in the representation of a periodic type g � �

r � , the type r is minimal if the length of
r is the minimal period. Due to the above equivalences we now have that

M(
�
r � , p) � M(

�
r̂ � , p̂), for all (r̂, p̂) �

�
r, p � .

It is not a priori clear that minimisers in M(
�
r � , p) are periodic. However, we will see that

among these minimisers, periodic minimisers can always be found.
For a given periodic type

�
r � we consider the subset of periodic functions in M(

�
r � , p),

Mper(
�
r � , p) � �

u � M(
�
r � , p) � u is periodic � .

For any u � Mper(
�
r � , p) and a period T of u, Γ (u � � 0,T � ) is a closed loop in P whose homo-

topy type corresponds to a nontrivial element of π �
1 (P , 0). In this correspondence there is

no natural choice of a basepoint. For specificity, we will describe how to make the corres-
pondence with the origin as the basepoint, and thereafter we omit it from the notation.
Translate u so that u(0) � 0. Let γ :

�
0, 1 � � P be the linepiece from 0 to (0, u

�
(0)), and let

γ
� (t) � γ(1 � t). Let Γ̃ (u � � 0,T � ) def� γ

� � Γ (u � � 0,T � ) � γ, then � Γ̃ (u � � 0,T � )
�
� π �

1 (P , 0). Now define� Γ (u � � 0,T � )
� � � Γ̃ (u � � 0,T � )

�
.

For any u � Mper(
�
r � , p) there thus exists a pair θ � 1 � Γ (u � � 0,T � )

� � (r̂, p̂) �
�
r, p � , with

r̂ � rk for some k � 1. Therefore we define for any (r̂, p̂) �
�
r, p �

Mper(r̂, p̂) � �
u � Mper(

�
r � , p) � � Γ (u � � 0,T � )

�
� θ(r̂, p̂) � π �

1 (P ) for a period T of u � .

The type r̂ � g(u � � 0,T � ) is the homotopy type of u relative to a period T. This type has an
even number of entries. It follows that Mper(r, p) � Mper(r̂, p̂) for all (r̂, p̂) � (r, p)k, k � 1.
Furthermore Mper(

�
r � , p) � �

(r̂, p̂) � � r,p � Mper(r̂, p̂). In order to get a better understanding of
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periodic minimisers in M(
�
r � , p) we consider the following minimisation problem:

Jper(r, p) � inf
u � Mper(r,p)

JT
�
u � � inf

MT
per(r,p)

T � � �
JT

�
u � , (3.5)

where JT is action given in (3.1) integrated over one period of length T, and MT
per(r, p) is

the set of T-periodic functions u � Mper(r, p) for which g(u � � 0,T � ) � r. Note that T is not
necessarily the minimal period, unless r is a minimal representative for

�
r � . It is clear that

for γ,β � 0 the infima Jper(r, p) are well-defined and are nonnegative for any homotopy
type r. At this point it is not clear, however, that the infima Jper(r, p) are attained for
all homotopy types r. We will prove in Section 3.5 that existence of minimisers for (3.5)
can be obtained using the existence of homoclinic and heteroclinic minimisers already
established in [89].

Lemma 3.14 If Jper(r, p) is attained for some u � Mper(r, p), then u � C4( � ) and satis-
fies (3.2). Moreover, since u is minimal with respect to T, we have H(u, u

�
, u
���
, u
�����

) � 0,
i.e., the associated periodic orbit lies on the energy surface H � 0.

Proof. Since Jper(r, p) is attained by u � Mper(r, p) for some period T, we have that JT
�
u
�

φ � � JT
�
u � � 0 for allφ � H2(S1, T) with � φ � H2 � ε, where ε � 0 is sufficiently small. This

implies that dJT
�
u � � 0, and thus u satisfies (3.2). The second part of this proof is analogous

to the proof of Lemma 3.5.
�

We now introduce the following notation:

CM(
�
r � , p) � �

u � M(
�
r � , p) � u is a minimiser in the sense of Definition 3.4 � ,

CMper(
�
r � , p) � �

u � CM(
�
r � , p) � u is periodic � ,

CMper(r, p) � �
u � Mper(r, p) � u is a minimiser for Jper(r, p) � .

3.4.1 Existence of periodic minimisers of type r � (2, 2)k

If we seek periodic minimisers of type r � (2, 2)k, the uniform separation property for
minimising sequences (see Section 5 in [89]) is satisfied in the class Mper(r). Note that the
parity is omitted because it does not distinguish different homotopy types here. The uni-
form separation property as defined in [89] prevents minimising sequences from crossing
the boundary of the given homotopy class. For any other periodic type the uniform sep-
aration property is not a priori satisfied. For the sake of simplicity we begin with periodic
minimisers of type (2, 2) and minimise J in the class Mper((2, 2)).

Minimising sequences can be chosen to be normalised due to the following lemma,
which we state without proof; the proof is analogous to Lemma 3.5 in [89].

Lemma 3.15 Let u � Mper((2, 2)) and T be a period of u. Then for every ε � 0 there exists
a normalised function w � Mper((2, 2)) with period T

� � T such that JT
� �

w � � JT
�
u � � ε.

The goal of this subsection is to prove that when F satisfies (H) and β,γ � 0 are such
that u � � 1 are saddle-foci, then Jper((2, 2)) is attained, by Theorem 3.17 below. The proof
relies on the local structure of the saddle-focus equilibria u � � 1 and is a modification of
arguments in [89]; hence we will provide only a brief argument. The reader is referred
to [89] for further details.
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In preparation for the proof of Theorem 3.17, we fix τ0 � 0 and δ � 0 so that the con-
clusion of Theorem 4.2 in [89] holds, i.e., the characterisation of the oscillatory behaviour
of solutions near the saddle-focus equilibria u � � 1 holds2. Let u � MT

per((2, 2)) be nor-
malised, and let t0 be such that u(t0) � 0. Then t0 is part of a transition from � 1 to � 1.
Assume without loss of generality that this transition is from � 1 to 1. Define t � � sup

�
t �

t0 : � u(t)
�

1 � � δ � and t � � inf
�
t � t0 : � u(t) � 1 � � δ � . Let S(u) � �

t : � u(t) � 1 � � δ � and
B

�
u, T � � � S(u) �

�
t � , t � � T � � , and note that

�
t0, t0

�
T � � �

S(u) �
�
t � , t � � T � � � �

S(u)c ��
t0, t0

�
T � � . With these definitions we can establish the following estimate (cf. Lemma 5.4

in [89]). For all u � Mper((2, 2)) with JT
�
u � � Jper((2, 2)) � ε0, and ε0 sufficiently small

� u � 2
H2 � C(1 � Jper((2, 2)) � B

�
u, T � ). (3.6)

First, � u � � 2
H1 � C(Jper((2, 2))

�
ε0), and second if � u � 1 � � δ then F(u) � η2u2 for some

small η � 0, which implies that � u � 2
L2 � 1

�
η2 	 t0 � T

t0
F(u) dt

� (1 � δ)2B
�
u, T � � C(JT

�
u � �

B
�
u, T � ). Combining these two estimates proves (3.6).
For functions u � MT

per((2, 2)) that satisfy JT
�
u � � Jper((2, 2)) � 1, it follows from [89,

Lemma 5.1] that there exist constants T1 and T2 (uniform in u) such that T2 � � S(u)c ��
t0, t0

�
T � � � T1 � 0 and thus T � T1. The next step is to give an a priori upper bound on

T by considering the minimisation problem (cf. Section 5 in [89])

Bε � inf
�
B

�
u, T � � u � MT

per((2, 2)) normalised, T ��� � and JT
�
u � � Jper((2, 2)) � ε � .

Lemma 3.16 There exists a constant K � K(τ0) � 0 such that Bε � K for all 0 � ε � ε0.
Moreover, setting T0

� K
�

T2, for any 0 � ε � ε0 there is a normalised u � MT
per((2, 2))

with JT
�
u � � Jper((2, 2)) � 2ε and T1 � T � T0.

Proof. Let (un, Tn) � MTn
per((2, 2)) � � � be a minimising sequence for Bε, with normalised

functions un. As in the proof of Theorem 5.5 of [89], in the weak limit this yields a pair
(û, T̂) such that B

�
û, T̂ � � Bε. We now define K((2, 2),τ0) � 8((2τ0

� 2) � 2). This gives two
possibilities for B

�
û, T̂ � , either B

�
û, T̂ � � K or B

�
û, T̂ � � K. If the former is true then we can

construct (see Theorem 5.5 of [89]) a pair (v̂, T̂
�
) � MT̂

�
per((2, 2)) � � � , with v̂ normalised,

such that
JT̂

� �
v̂ � � JT̂

�
û � � Jper((2, 2)) � ε and B

�
v̂, T̂

� � � B
�
û, T̂ � � Bε,

which is a contradiction excluding the first possibility. In the second case, where B
�
û, T̂ � �

K, we can construct a pair (v̂, T̂
�
) with v̂ normalised such that

JT̂
� �

v̂ � � JT̂

�
û � � ε � Jper((2, 2)) � 2ε, and B

�
v̂, T̂

� � � B
�
û, T̂ � � K,

which implies that T1 � T̂
� � K

�
T2

� T0, and concludes the proof. For details concerning
these constructions, see Theorem 5.5 in [89].

�

Theorem 3.17 Suppose that F satisfies (H) and β,γ � 0 are such that u � � 1 are saddle-
foci, then Jper((2, 2)k) is attained for any k � 1. Moreover, the projection of any minimiser
in CMper((2, 2)) onto the (u, u

�
)-plane is a simple closed curve.

Proof. By Lemma 3.16, we can choose a minimising sequence (un, Tn) � MTn
per((2, 2)) � � � ,

with un normalised and with the additional properties that � un � H2 � C and T1 � Tn �
2The characterisation is the following: let XT

� �
v � H2 � 0, T ��� (v(0), v

�
(0)) � x̄, (v(T), v(T)) � ȳ � . For�

x̄
�
,
�
ȳ
�	�

δ0 the unique global minimiser v̂ of J on XT changes sign in any subinterval of length τ0 in� 0, T � for T 
 1.
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T0. Since the uniform separation property is satisfied for the type (2, 2) this leads to a
minimising pair (û, T̂) for (3.5) by following the proof of Theorem 2.2 in [89]. As for the
existence of periodic minimisers of type r � (2, 2)k the uniform separation property is
automatically satisfied and the above steps are identical.

Lemma 3.8 yields that minimisers are normalised functions and the projection of a
normalised function in Mper((2, 2)) is a simple closed curve in the (u, u

�
)-plane.

�

We would like to have the same theorem for arbitrary periodic types
�
r � . For homo-

topy types that satisfy the uniform separation property the analogue of Theorem 3.17 can
be proved. However, in Section 3.5 we will prove a more general result using the inform-
ation about the minimisers with terminated types (homoclinic and heteroclinic minim-
isers) which was obtained in [89].

Remark 3.18 The existence of a (2, 2)-type minimiser is proved here in order to obtain a
priori W1, � -estimates for all minimisers (Section 3.5). However, if F satisfies the addi-
tional hypothesis that F(u) � � u � s, s � 2 as � u � � � , then such estimates are automatic
(cf. Chapter 5 or [96]). In that case the existence of a minimiser of type (2, 2) follows from
Theorem 3.26 below. To prove existence of minimisers of arbitrary type r we will use an
analogue of Theorem 3.26 (see Lemma 3.33 and Theorem 3.34 below). �

3.4.2 Characterisation of minimisers of type g �

�
(2, 2) �

Periodic minimisers associated with
�
e0 � or

�
e1 � are the constant solutions u � � 1 and u � 1

respectively. The simplest nontrivial periodic minimisers are those of type r � (2, 2)k, i.e.
r �

�
(2, 2) � . These minimisers are crucial to the further analysis of the general case. The

type r � (2, 2) is a minimal type (associated with
�
e1e0 � ), and we want to investigate the

relation between minimisers in M(
�
(2, 2) � ) and periodic minimisers of type (2, 2)k.

Considering curves in the configuration space P is a convenient method for studying
minimisers of type (2, 2). For example, minimisers in CM(

�
(2, 2) � ) and CMper((2, 2)) all

satisfy the property that they do not intersect the line segment L � ( � 1, 1) �
�
0 � in P .

If other homotopy types r are considered, i.e. r
�
�

�
(2, 2) � , then minimisers represented

as curves in P necessarily have self-intersections and they must intersect the segment L,
which makes their comparison more complicated. We will come back to this problem in
Section 3.5. Note that for a C1-function u the associated curve Γ (u) is a closed loop if and
only if u is a periodic function.

Lemma 3.19 For any non-periodic minimiser u � CM(
�
(2, 2) � ) and any bounded interval I

the curve Γ
�
u � I � has only a finite number of self-intersections. For periodic minimisers

u � CMper(
�
(2, 2) � ) this property holds when the length of I is smaller than the minimal

period.

Proof. Fix a time interval I � �
0, T � . If u is periodic, T should be chosen smaller than the

minimal period of u. By contradiction, suppose that P � (u0, u
�
0) is an accumulation point

of self-intersections of u � I . Then P is a self-intersection point, and there exists a monotone
sequence of times τn � I converging to t0 such that Γ (u(τn)) are self-intersection points
and Γ (u(t0)) � P. Also there exists a corresponding sequence σn � I with σn

�� τn such
that Γ (u(τn)) � Γ (u(σn)). Choosing a subsequence if necessary, σn

� s0 monotonically.
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Since u is a minimiser in CM(
�
(2, 2) � ), the intervals

�
σn,τn � must contain a transition, and

hence � τn
� σn � � T0 for some T0 � 0. Therefore, s0

�� t0, and we will assume that s0 � t0

(otherwise change labels). The homotopy type of Γ (u � � s0,t0 � ) is (2, 2)k for some k � 1 (since
I is bounded).

Assume that σn and τn are increasing; the other cases are similar. Using the times
σn � s0 � τn � t0, for δ sufficiently small the curve Γ � � Γ

�
u � �σn � δ,t0 � δ � � can be decom-

posed as Γ � � a � γ2 � γ � γ1 � b, where b � Γ (u � �σn � δ,σn � ), γ1
� Γ (u � �σn,s0 � ), γ � Γ (u � � s0,τn � ), γ2

�
Γ (u � � τn,t0 � ), and a � Γ (u � � t0,t0 � δ � ). For n sufficiently large, γ1 and γ2 have the same homo-
topy type, and γ1

�� γ2, since otherwise u would be periodic with period smaller than
t0

� σn � T. We can now construct two more paths

Γ1
� a � γ1 � γ � γ1 � b and Γ2

� a � γ2 � γ � γ2 � b

which have the same homotopy type for n sufficiently large. Since J
�
Γ � � is minimal, J

�
Γ1 � �

J
�
Γ � � and J

�
Γ2 � � J

�
Γ � � , and thus J

�
γ1 � � J

�
γ2 � and J

�
γ2 � � J

�
γ1 � which implies that J

�
γ1 � �

J
�
γ2 � . Therefore J

�
Γ � � � J

�
Γ1 � � J

�
Γ2 � , and Γ1, Γ2 and Γ � are all distinct minimisers with

the same homotopy type and same boundary conditions. Since these curves all coincide
along γ, the uniqueness of the initial value problem is contradicted. An argument very
similar to the one above is also used in the proof of Lemma 3.24 and is demonstrated in
Figure 3.1.

�

Lemma 3.20 For r � (2, 2)k with k � 1 one has that CMper(r) � CMper((2, 2)), and Jper(r) �
k � Jper((2, 2)).

Proof. Let u � CMper(r) with r � (2, 2)k for k � 1, and let T be the period (one may assume
without loss of generality that T is the minimal period) such that the associated curve in
P , Γ (u � � 0,T � ), has the homotopy type of θ((2, 2)k). First we will prove that Γ (u � � 0,T � ) is a
simple closed curve in P , and hence u � Mper((2, 2)). Suppose not, then by Lemma 3.19
the curve Γ (u � � 0,T � ) can be fully decomposed into k distinct simple closed curves Γi for
i � 1, . . . , k (just call the inner loop Γ1, cut it out, and call the new inner loop Γ2, and so on).
Denote by Ji the action associated with loop Γi, then � i Ji

� JT
�
u � . Let vi � Mper((2, 2)k)

be the function obtained by pasting together k copies of u � Γi . If vi were a minimiser in
Mper((2, 2)k), then by Lemma 3.14 the functions u and vi would be distinct solutions to
the differential equation (3.2) which coincide over an interval. This would contradict
the uniqueness of solutions of the initial value problem, and hence vi is not a minimiser,
i.e. JT̂

�
vi � � k � Ji � Jper((2, 2)k). Consequently Jper((2, 2)k) � �

i Ji � Jper((2, 2)k), which is a
contradiction. Thus u � Mper((2, 2)), and Γ (u � � 0,T � ) is a simple loop traversed k times.

Now we will show that u � CMper((2, 2)). Since Γ (u) is the projection of a function into
the (u, u

�
)-plane, u traverses the loop once over the interval

�
0, T

k � , and Jper((2, 2)k) � k �

JT
�

k
�
u � . Suppose JT

�
k

�
u � � Jper((2, 2)), then we can construct a function in Mper((2, 2)k) with

action less than J
�
u � � Jper((2, 2)k) by gluing together k copies of a minimiser in Mper((2, 2)),

which is a contradiction.
�

Lemma 3.21 For any k � 1, CMper((2, 2)k) � CMper((2, 2)) � CMper(
�
(2, 2) � ).

Proof. We have already shown in Lemma 3.20 that CMper((2, 2)k) � CMper((2, 2)). We
first prove that CMper((2, 2)) � CMper(

�
(2, 2) � ). Let u � CMper((2, 2)) have period T. Sup-

pose u
�
� CMper(

�
(2, 2) � ). Then there exist two points Γ (u(t1)) � P1 and Γ (u(t2)) � P2 on
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Γ (u) such that the curve γ between P1 and P2 obtained by following Γ (u) is not minimal.
Replacing γ by a curve with smaller action and the same homotopy type yields a func-
tion v � Mper(

�
(2, 2) � ) for which J � t1,t2 �

�
v � � J � t1,t2 �

�
u � . Choose k � 0 such that kT � t2

� t1.
Then u is a minimiser in CMper((2, 2)k) � CMper((2, 2)), which contradicts the fact that
J � t1,t2 �

�
v � � J � t1,t2 �

�
u � .

To finish the proof of the lemma we show that CMper(
�
(2, 2) � ) � CMper((2, 2)). Let

u � CMper(
�
(2, 2) � ) have period T. Let Γ (u � � 0,T � ) be the associated closed curve in P and let

ω be its winding number with respect to the segment L. Suppose JT
�
u � � Jper((2, 2)ω) �

ω � Jper(2, 2). This implies the existence of a function v � Mper((2, 2)ω) and a period T̂ such
that JT̂

�
v � � JT

�
u � . Choose a time t0 �

�
0, T � such that u(t0) � 1 and u

�
(t0) � 0. Let P0

�
(1, u

�
(t0)) � P . There exists a δ � 0 sufficiently small such that u(t0

�
δ) � 0, u

�
(t0

�
δ) � 0,

and u does not cross 1 in
�
t0

� δ, t0
�
δ � except at t0. Let P1 and P2 denote the points

(u(t0
�
δ), u

�
(t0

�
δ)). Let γ denote the piece of the curve Γ (u) from P1 to P2 and γ � the

curve tracing Γ (u) backward in time from P2 to P1. Now choose a point P3 on Γ (v) for
which v � 1 and v

�
� 0. We can easily construct cubic polynomials p1 and p2 for which

the curve Γ (p1) connects P1 to P3 and the curve Γ (p2) connects P3 to P2 in P . These curves
Γ (pi) are monotone functions, and hence the loop Γ (p1) � Γ (p2) � γ � has trivial homotopy
type in P . Therefore Γ (u � � 0,T � )k � γ � Γ (p2) � Γ (v � � 0,T̂ � )k � Γ (p1) in P for any k � 1, and from
Definition 3.4 it follows that J

�
Γ (u � � 0,T � )k � γ � � J

�
Γ (p2) � Γ (v � � 0,T̂ � )k � Γ (p1) � . Thus,

k � JT
�
u � � J

�
γ � � J

�
p1 � � J

�
p2 � � k � JT̂

�
v � ,

which implies
0 � k(JT

�
u � � JT̂

�
v � ) � J

�
p1 � � J

�
p2 � � J

�
γ � .

This estimate leads to a contradiction for k sufficiently large.
�

Lemma 3.22 For any two distinct minimisers u1 and u2 in CMper((2, 2)), the associated
curves Γ (ui) do not intersect.

Proof. Suppose Γ (u1) and Γ (u2) intersect at a point P � P . Translate u1 and u2 so that
Γ (u1(0)) � Γ (u2(0)) � P. Define the function u � Mper((2, 2)2) as the periodic extension of

u(t) �
�

u1(t) for t �
�
0, T1 � ,

u2(t � T1) for t �
�
T1, T1

�
T2 � ,

where Ti is the minimal period of ui. Then JT1 � T2

�
u � � 2Jper((2, 2)) � Jper((2, 2)2). By Lem-

ma 3.20 we have u � CMper((2, 2)), which in view of uniqueness of the initial value prob-
lem contradicts the fact that u1 and u2 are distinct minimisers with Γ (u1)

�� Γ (u2).
�

As a direct consequence of this lemma, the periodic orbits in Mper((2, 2)) are ordered
in the sense that Γ (u1) lies either strictly inside or strictly outside the region enclosed by
Γ (u2). The ordering will be denoted by � .

Theorem 3.23 There exists a largest and a smallest periodic orbit in CMper((2, 2)) in the
sense of the above ordering, which we will denote by umax and umin respectively. More-
over, 1 � � umin � 1, � � � umax � 1, � � C0, and umin � u � umax for every u � CMper((2, 2)). In
particular, the set CMper((2, 2)) is compact.

Proof. Either the number of periodic minimisers is finite, in which case there is nothing
left to prove, or the set of minimisers is infinite. Let U � � �

Γ (u) � u � CMper((2, 2)) � � P ,
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and let A � U �
�
(u, u

�
) � u � � 0, u � 0 � . Every minimiser in CMper((2, 2)) intersects the

positive u-axis transversely and exactly once. Moreover, distinct minimisers cross this
axis at distinct points by Lemma 3.22. Thus we can use A as an index set and label the
minimisers as uα for α � A. Due to the a priori upper bound on minimisers (Lemma 5.1
in [89]), A is a bounded set. The set A is contained in the u-axis and hence has an ordering
induced by the real numbers. This order corresponds to the order on minimisers, i.e.
α � β in A if and only if uα � uβ as minimisers.

Supposeα � is an accumulation point of A. Then there exists a sequenceαn converging
to α � . From Theorem 3.10 (the a priori L � -bound on uαn is sufficient by Remark 3.11)
we see that there exists a û � CM(

�
(2, 2) � ) which is a solution of Equation (3.2) such that

uαn

� û in C1
loc( � ). Since uαn is periodic and the C1

loc-limit of a sequence of periodic func-
tions with uniformly bounded periods (compare with the proof of Theorem 3.10 to find a
uniform bound on the periods) is periodic, hence û � CMper(

�
(2, 2) � ). By Lemma 3.21,

û � CMper((2, 2)). Furthermore, û corresponds to uα � , and hence A is compact. Con-
sequently A contains maximal and minimal elements. Let umax and umin be the periodic
minimisers through the maximal and minimal points of A respectively. This completes
the proof.

�

The above lemmas characterise periodic minimisers in CM(
�
(2, 2) � ). Now we turn our

attention to non-periodic minimisers. We conclude this subsection with a theorem that
gives a complete description of the set CM(

�
(2, 2) � ).

Let u � CM(
�
(2, 2) � ) be non-periodic. Suppose that P is a self-intersection point of Γ (u).

Then there exist times t1 � t2 such that Γ (u(t1)) � Γ (u(t2)) � P, and Γ (u � � t1,t2 � ) is a closed
loop. By Lemma 3.19 there are only finitely many self-intersections on

�
t1, t2 � . Without

loss of generality we may therefore assume that γ is a simple closed loop, i.e., we need
only consider the case where P � Γ (u(t1)) � Γ (u(t2)) and Γ (u � � t1,t2 � ) is a simple closed loop.
We now define Γ � � Γ (u � (t1, � )) and Γ � � Γ (u � ( � � ,t2)), and we will refer to Γ � as the forward
and backward orbits of u relative to P.

Lemma 3.24 Let u � CM(
�
(2, 2) � ) be a non-periodic minimiser with at least one self-inter-

section. Let P and Γ � be defined as above. Then the forward and backward orbits Γ �

relative to P do not intersect themselves. Furthermore, P and Γ � are unique, and the
curve Γ (u) passes through any point in P at most twice.

Proof. We will prove the result for Γ � ; the argument for Γ � is analogous. Suppose that
Γ � has self-intersections. Define

t � � min
�
t � t1 � Γ (u(t)) � Γ (u(τ)) for some τ � (t1, t) � .

The minimum t � is attained by Lemma 3.19, and t � � t2 since γ � Γ (u � � t1,t2 � ) is a simple
closed loop. Let t0 � (t1, t � ) be the point such that Γ (u(t0)) � Γ (u(t � )). This point is unique
by the definition of t � , and γ̃ � Γ (u � � t0,t � � ) is a simple closed loop. For small positive δ we
define Q � Γ (u(t � )), B � Γ (u(t1

� δ)), E � Γ (u(t � � δ)) and Γ � � Γ (u � � t1
� δ,t � � δ � ), see Figure 3.1.

We can decompose this curve into five parts: Γ � � σ3 � γ̃ � σ2 � γ � σ1, where σ1 joins B to
P, σ2 joins P to Q, σ3 joins Q to E, and γ and γ̃ are simple closed loops based at P and Q
respectively, see Figure 3.1. The simple closed curves γ and γ̃ go around L exactly once
and thus have the same homotopy type. Moreover, γ

�� γ̃ since u is non-periodic.
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Figure 3.1: The forward orbit Γ � starting at P with a self-intersection at the point Q.
Lemma 3.24 implies that this cannot happen for non-periodic u � CM(

�
(2, 2) � ).

Besides Γ � , we can construct two other (distinct) paths from B to E:

Γ1
� σ3 � σ2 � γ � γ � σ1 and Γ2

� σ3 � γ̃ � γ̃ � σ2 � σ1.

It is not difficult to see that Γ1, Γ2 and Γ � all have the same homotopy type. Since J
�
Γ � � is

minimal in the sense of Definition 3.4, we have, by the same reasoning as in Lemma 3.19,
that J

�
Γ1 � � J

�
Γ � � and J

�
Γ2 � � J

�
Γ � � . This implies that J

�
γ̃ � � J

�
γ � and J

�
γ � � J

�
γ̃ � , hence

J
�
γ � � J

�
γ̃ � . Therefore J

�
Γ1 � � J

�
Γ2 � � J

�
Γ � � , which gives that Γ1, Γ2 and Γ � are all distinct

minimisers of the same type as curves joining B to E. Since these curves all contain the
paths σ1, σ2 and σ3, and are solutions of (3.2), the uniqueness to the initial value problem
is contradicted.

Finally, the curve Γ (u) can pass through a point at most twice because it is a union of Γ �
and Γ � , each visiting a point at most once. Moreover, points in Γ (u � (t1 ,t2)), common to both
Γ � and Γ � , are passed exactly once. It now follows that if there is another self-intersection
besides P, say at R � Γ (u(s1)) � Γ (u(s2)), then s1 � t1 and t2 � s2 (since Γ (u � � t1 ,t2 � ) is a simple
closed loop). We conclude that the curve Γ (u � (s1,s2)) contains Γ (u � � t1,t2 � ) and therefore it is
not a simple closed curve. Thus P is the unique self-intersection that cuts off a simple
loop.

�

Lemma 3.25 Let u � CM(
�
(2, 2) � ) be non-periodic, and suppose that u � L � ( � ). Then u is

a connecting orbit between two periodic minimisers u � , u � � CMper((2, 2)), i.e., there are
sequences t �

n , t �
n

� � such that u(t � t �
n ) � u � (t) and u(t � t �

n ) � u � (t) in C4
loc( � ).

Proof. Lemma 3.24 implies that Γ � is a spiral which intersects the positive u-axis at
a bounded, monotone sequence of points (αn, 0) in P converging to a point (α � , 0). Let
tn be the sequence of consecutive times such that u(tn) � αn and u

�
(tn) � 0. Consider the

sequence of minimisers in CM(
�
(2, 2) � ) defined by un(t) � u(t � tn). By Theorem 3.10 there

exist a C1
loc-limit u � � CM(

�
(2, 2) � ). Suppose u � is non-periodic. Then the curve Γ (u � )

crosses the u-axis infinitely many times. On the other hand, from the C1
loc convergence

it follows that Γ (u � ) crosses this axis only at α � . By Lemma 3.24 the curve Γ (u � ) can
intersect α � at most twice, which is a contradiction. The C4

loc-convergence follows from
regularity (as in the proof of Theorem 3.10). The proof of the existence of u � is similar.

�

Theorem 3.26 Let u � CM(
�
(2, 2) � ). There are three possibilities: either u is unbounded, or

u is periodic and u � CMper((2, 2)), or u is a connecting orbit between periodic minimisers
in CMper((2, 2)).
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Proof. Let u � CM(
�
(2, 2) � ) be bounded, then u is either periodic or non-periodic. In

the case that u is periodic it follows from Lemma 3.21 that u � CMper((2, 2)). Otherwise,
if u is not periodic, it follows from Lemma 3.25 that u is a connecting orbit between two
minimisers u � , u � � CMper((2, 2)).

�

In Section 3.5.2 we give analogues of the above theorems for arbitrary homotopy types r.
Notice that the option of u � CM(

�
(2, 2) � ) being unbounded in the above theorem does

not occur when F(u) � � u � s, s � 2 as � u � � � (see Remark 3.18).

3.5 Properties of minimisers
In Section 3.4 we proved the existence of minimisers in Mper((2, 2)), which will provide
a priori bounds on the minimisers of arbitrary type. These bounds and Theorem 3.10
establish the existence of such minimisers. In this section we will also prove that certain
properties of a type g are often reflected in the associated minimisers. The most import-
ant examples are the periodic types g � �

r � . Although there are minimisers in every class
M(

�
r � , p), it is not clear a priori that among these minimisers there are also periodic min-

imisers. In order to prove existence of periodic minimisers for every periodic type
�
r � we

use the theory of covering spaces.

3.5.1 Existence
The periodic minimisers of type (2, 2) are special for the following reason. For a normal-
ised u � Mper((2, 2)), define D(u) to be the closed disk in � 2 such that ∂D(u) � Γ (u). Let
umin be the minimal element of CMper((2, 2)), see Theorem 3.23.

Theorem 3.27 For any periodic type
�
r � �� �

(2, 2) � and any u � CM(
�
r � , p), it holds that

Γ (u) � D(umin). For any terminated type g and any u � CM(g, p) it also holds then Γ (u) �
D(umin).

Proof. We start with the first assertion. If
�
r � �� �

(2, 2) � then every u � CM(
�
r � , p) has the

property that Γ (u) intersects the u-axis between u � � 1. Suppose that Γ (u) does not lie
inside D(umin). Then Γ (u) must intersect Γ (umin) at least twice, and let P1 and P2 be distinct
intersection points with the property that the curve Γ1 obtained by following Γ (u) from P1

to P2 lies entirely outside of D(umin). Let Γ2 � Γ (umin) be the curve from P1 to P2 following
umin, such that Γ1 and Γ2 are homotopic (traversing the loop Γ (umin) as many times as
necessary), and thus J

�
Γ1 � � J

�
Γ2 � is minimal. Replacing Γ1 by Γ2 leads to a minimiser in

CM(
�
r � , p) which partially agrees with u. This contradicts the uniqueness of the initial

value problem for (3.2).
The second assertion is proved analogously. As in the previous case the associated

curve Γ (u) either intersects Γ (umin) at least twice or lies completely inside D(umin), and
the proof is identical.

�

Corollary 3.28 For all minimisers in the above theorem, � u � 1, � � � umin � 1, � � C0.

In order to prove existence of minimisers in every class we now use the above theorem
in combination with an existence result from [89].
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Figure 3.2: The universal cover
�
X of X is a tree. Its origin is denoted by O . Forθ � e0e1e0,

the quotient space
�
Xθ � �

X
� �
θ � , depicted schematically on the right, is also a covering

space over X, and
�
Xθ � S1.

Theorem 3.29 For any given type g and parity p there exists a (bounded) minimiser u �
CM(g, p). Moreover � u � 1, � � C0, independent of (g, p).

Proof. Given a type g we can construct a sequence gn of terminated types such that
gn

� g as n � � . For any terminated type gn there exists a minimiser un � CM(gn, p) by
Proposition 3.6 (Theorem 1.3 of [89]). Clearly such a sequence un satisfies � un � 1, � � C by
Corollary 3.28. Applying Theorem 3.10 completes the proof.

�

3.5.2 Covering spaces and the fundamental group
The fundamental group of P is isomorphic to the free group on two generators e0 and e1

which represent loops (traversed clockwise) around (1, 0) and ( � 1, 0) respectively, with
basepoint (0, 0). Indeed, P is homotopic to a bouquet of two circles X � S1 � S1. The
universal covering of X denoted by

�

X can be represented by an infinite tree whose edges
cover either e0 or e1 in X, see Figure 3.2. The universal covering of P , denoted by π :

�

P �

P , can then be viewed by thickening the tree
�

X so that
�

P is homeomorphic to an open
disk in � 2 .

An important property of the universal covering is that the fundamental group π1(P )
induces a left group action on

�

P in a natural way, via the lifting of paths in P to paths in
�

P . This action will be denoted by θ � p for θ � π1(P ) and p �
�

P . We will not reproduce
the construction of this action here, and the reader is referred to an introductory book
on algebraic topology such as [69]. However, we will utilise the structure of the quotient
spaces of

�

P obtained from this action, which are again coverings of P . These quotient
spaces will be the natural spaces in which to consider the lifts of curves Γ (u) which lie in
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more complicated homotopy classes than those in the case of u � Mper((2, 2)).
A periodic type g � �

r � is generated by a finite type r, which together with the parity
p determines an element of π1(P ) of the form θ(r) � er2n�

p � 1
� ����� er1

p . Since we only consider
curves in P which are of the form Γ (u) � (u(t), u

�
(t)), the numbers ri are all positive. The

infinite subgroup generated by any such element θ will be denoted by
�
θ � � π1(P ). The

quotient space
�

Pθ � �

P
� �
θ � is obtained by identifying points p and q in

�

P for which q �
θk

� p for some k �
�

. The resulting space
�

Pθ is homotopic to an annulus, and πθ :
�

Pθ
� P

is a covering space. Figure 3.2 illustrates the situation for X, since it is easier to draw, and
for P the reader should imagine that the edges in the picture are thin strips. The lift of
the path θ � e0e1e0 to

�

X based at O , is indicated by the dashed line. This piece of the tree
becomes a circle in the quotient space

�

Xθ. Note that infinitely many edges in
�

X are identi-
fied with this circle. The dashed lines in both

�

X and
�

Xθ are strong deformation retracts of
�

X and
�

Xθ respectively, and hence
�

Xθ is homotopic to a circle. By thickening
�

Xθ one infers
that

�

Pθ is homotopic to an annulus. Thus π1(
�

Pθ) is a generated by a simple closed loop in
�

Pθ which will be denoted by ζ(r). For convenience we suppress the dependence of θ and
ζ on the parity p.

Remark 3.30 If we interpret the shift operator σ on finite types r as a cyclic permutation,
then Mper(r, p) � Mper(σ k(r),τ k(p)) for all k �

�
. Functions in Mper(r, p) have a unique

lift to simple closed curve in
�

Pθ, with θ � θ(r). However, functions in the shifted class
Mper(σ k(r),τ k(p)) are not simple closed curves in

�

Pθ. In order for such functions to be
lifted to a unique simple closed curve we need to consider the covering space

�

Pθk , where
θk

� θ(σ k(r),τ k(p)). �

3.5.3 Characterisation of minimisers of type
�
r �

In Section 3.4.2 we characterised minimisers in CM(
�
(2, 2) � ) by studying the properties

of their projections into P . What was special about the types (2, 2)k was that the pro-
jected curves were a priori contained in P � L, which is topologically an annulus. The
J-efficiency of minimising curves restricts the possibilities for their self and mutual in-
tersections. In particular, we showed that all periodic minimisers in CM(

�
(2, 2) � ) project

onto simple closed curves in P � L and that no two such minimising curves intersect.
These two properties, coupled with the simple topology of the annulus, already force the
minimising periodic curves to have a structure of a family of nested simple loops.

Such a simple picture in the configuration plane P cannot be expected for minim-
isers in CM((

�
r � , p)) with r

�� (2, 2). The simple intersection properties (of Lemmas 3.22
and 3.24) no longer hold; in fact, periodic minimising curves must have self-intersections
in P , as do any curves in P representing the homotopy class of (

�
r � , p). However, by

lifting minimising curves into the annulus
�

Pθ, we can remove exactly these necessary
self-intersections, and this puts us in a position where we can emulate the discussion for
the types (2, 2)k. More precisely, let (r, p) be a minimal type. For any u � Mper((r, p)k)
with period T such that θ � 1

�
Γ (u � � 0,T � ) � � (r, p)k, there are infinitely many lifts of the closed

loop Γ (u � � 0,T � ) into
�

Pθ(r) (see Remark 3.30), but there is exactly one lift, denoted Γθ(u � � 0,T � ),
which is a closed loop homotopic to ζ k(r) in

�

Pθ(r). We can repeat all of the arguments
in Section 3.4 by identifying intersections between the curves Γθ(u � � 0,T � ) in

�

Pθ(r), instead
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of intersections between the curves Γ (u � � 0,T � ) in P � L. Of course, when gluing together
pieces of curves, the values of u and u

�
come from the projections into P . In particular,

the arguments of Lemma 3.21 show that Γθ(u � � 0,T � ) must be a simple loop traced k-times,
which leads to the following.

Lemma 3.31 For every periodic type
�
r � and every k � 1 it holds that CMper((r, p)k) �

CMper(r, p) � CMper(
�
r � , p).

The proof of the next theorem is a slight modification of Theorem 3.23.

Theorem 3.32 For any periodic type
�
r � the set CMper(r, p) is compact and totally ordered

(in
�

Pθ).

The following lemma is analogous to Lemma 3.25. Note however that by Theorem 3.27
we do not need to assume that the minimiser is uniformly bounded.

Lemma 3.33 Let u � CM(
�
r � , p) for some periodic type

�
r � �� �

(2, 2) � . Then either u is
periodic and u � CMper(r, p), or u is a connecting orbit between two periodic minimisers
u � , u � � CMper(r, p), i.e., there are sequences t �

n , t �
n

� � such that u(t � t �
n ) � u � (t) and

u(t
�

t �
n ) � u � (t) in C4

loc( � ).

Combining Theorem 3.29 and Lemma 3.33 we obtain the existence of periodic min-
imisers in every class with a periodic type (this result can also be obtained in a manner
analogous to Theorem 3.17).

Theorem 3.34 For any periodic type
�
r � the set CMper(r, p) is nonempty.

The classification of functions by type has some properties in common with symbolic
dynamics. For example, if a type g is asymptotic to two periodic types, i.e.σ n(g) � r � and
σ

� n(g) � r � as n � � , with r �
�� r � , then any minimiser u � CM(g, p) is a connecting or-

bit between two periodic minimisers u � � CMper(r � , p
�
) and u � � CMper(r � , p

���
), i.e., there

exist sequences t �
n , t �

n
� � such that u(t � t �

n ) � u � (t) and u(t � t �
n ) � u � (t) in C4

loc( � ).
This result follows from Cantor’s diagonal argument using Theorems 3.10 and 3.33, and
thus we have used the symbol sequences to conclude the existence of heteroclinic and
homoclinic orbits connecting any two types of periodic orbits.

Symmetry properties of types g are also often reflected in the corresponding minim-
isers. For example, define the mapΨi0 on infinite types byΨi0(g) � (g2i0 � i)i � � , and consider
types that satisfy Ψi0(g) � g for some i0. Moreover assume that g is periodic. In this case
we can prove that the corresponding periodic minimisers are symmetric and satisfy Neu-
mann boundary conditions.

Theorem 3.35 Let g � �
r � satisfy Ψi0(

�
r � ) � �

r � for some i0. Then for any u � CMper(r, p)
there exists a shift τ such that uτ (x) � u(x � τ) satisfies
(a) uτ (x) � uτ (T � x) for all x �

�
0, T � where T is the period of u,

(b) u
�
τ (0) � u

�����
τ (0) � 0 and u

�
τ ( T

2 ) � u
�����
τ ( T

2 ) � 0, and
(c) uτ is a local minimiser for the functional J T

2

�
u � on the Sobolev space H2

n(0, T
2 ) � �

u �
H2(0, T

2 ) � u � (0) � u
�
( T

2 ) � 0 � .
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Proof. Without loss of generality we may assume that i0
� 1 and that g � �

(g1, . . . , gN) �
for some N � 2 � . We can choose a point t0 in the convex hull of A1 such that u

�
(t0) �

u
�
(t0
�

T) � 0 and g(u � � t0,t0 � T � ) � (g1
�
2, g2, . . . , gN , g1

�
2). We now define v(t) � u(t0

�
T �

t). Then by the assumptions on the symmetry of g we have in fact that (g1, . . . , gN) �
(g1, . . . , g N

2
, g N

2 � 1, g N
2
, . . . , g2), hence g(v � � t0,t0 � T � ) � g(u � � t0,t0 � T � ). Since J � t0,t0 � T � (v) � J � t0,t0 � T � (u)

and Γ (u(t0)) � Γ (u(t0
�

T)) � Γ (v(t0)) � Γ (v(t0
�

T)), we conclude from the uniqueness of
the initial value problem that u(t) � v(t) for all t �

�
t0, t0

�
T � , which proves the first state-

ment. The second statement follows immediately from (a). The third property follows
from the definition of minimiser.

�



Chapter 4

Attracting sets and stable equilibria

4.1 Introduction
Higher order parabolic equations of the form1

ut
� � γuxxxx

�
βuxx

� F
�
(u), (t, x) ��� � � (0, L), (4.1)

with γ � 0, β � 0, may display a multitude of stable equilibrium solutions depending on
various parameters in the problem such as γ, β, the potential F, the interval length L and
the boundary conditions at x � 0 and x � L. The goal of this chapter is to study the set of
stable equilibria of Equation (4.1), and its qualitative properties.

In our notation u is a function of the variables t and x, and ut and ux denote the partial
derivatives. The initial state u(0, x) is denoted by u0. The function F � C2 is a double-well
potential and satisfies

F( � 1) � F
�
( � 1) � 0, F

���
( � 1) � 0 and F(u) � 0 for u

�� � 1. (4.2)

The following growth condition is imposed on the potential: F(u) � � C0
�

C1u2 for some
C0, C1 � 0, i.e. F grows super-quadratically2. We will not require any generic properties
for Equation (4.1) such as non-degenerate equilibria.

We have not yet specified boundary conditions at x � 0 and x � L. In certain phys-
ical models (Swift-Hohenberg equation, Extended Fisher-Kolmogorov equation) in which
Equation (4.1) occurs, the boundary conditions

ux(t, 0) � uxxx(t, 0) � 0 and ux(t, L) � uxxx(t, L) � 0

are often used. These boundary conditions are referred to as the Neumann boundary
conditions. In this case u � � 1 are stable equilibria for all γ,β, L � 0. It should be noted
at this point that the Neumann boundary conditions that we impose on Equation (4.1) are
by no means a restriction for the results presented here, and different conditions can be
used. We will come back to this point later on (especially in Section 4.6).

An essential property of Equation (4.1) is that it is the L2-gradient flow equation for
the action

JL
�
u � �

� L

0

γ

2

� � uxx � 2 � β

2 � ux � 2 � F(u) � dx. (4.3)

This variational structure allows an extension of most of the results to more general ac-
tions: JL

�
u � � 	 L

0 j(u, ux , uxx) dx, where j � 0 satisfies the convexity condition ∂2
uxx

j � δ � 0.
In order to best explain the overall features of our methods we restrict ourselves here to
actions of the form given in (4.3).

1Note that in this chapter the potential F(u) is defined with the opposite sign compared to Chapter 1.
2This growth condition is taken to simplify estimates, but it can be weakened in various directions.
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To give an impression of the type of results proved in this chapter consider the special
case F(u) � 1

4 (u2 � 1)2. When γ � 0 (the Neumann boundary conditions then reduce to
ux(t, 0) � ux(t, L) � 0) it follows that u � � 1 are the only (asymptotically) stable equilibria.
We show that this remains true for all 0 � γ

β2 � 1
8 , whereas for γ

β2 � 1
8 the number of stable

equilibria changes dramatically and grows to infinity as L goes to infinity. In fact, it holds
for all F(u) satisfying (4.2) that when the equilibrium points u � � 1 are saddle-foci, then
the number of stable equilibria grows exponentially as L � � . This behaviour occurs for
all kinds of boundary conditions.

Equations of type (4.1) occur in physical models for phase transitions. For instance,
Equation (4.1) with F(u) � 1

4 (u2 � 1)2 and γ,β � 0, the Extended Fisher-Kolmogorov (EFK)
equation, was proposed by Dee and Van Saarloos [53] as a model equation for phase trans-
itions in the neighbourhood of a Lifshitz point [142]. For β � 0 the model corresponds to
the Swift-Hohenberg equation [137].

There is a substantial literature now about the stationary solutions of (4.1) in the case
that γ,β � 0 and the potential F satisfies the above hypotheses. In a series of papers Pe-
letier and Troy [117, 118, 119, 120] have studied the stationary problem of (4.1) by means of
a topological shooting method. In the case that γ

β2 � 1
8 they find a great variety of different

stationary solutions (heteroclinic orbits, periodic solutions, chaotic patterns). For γ

β2 � 1
8

it was proved in Chapter 2 that the stationary solutions of (4.1) are in 1-1 correspondence
with the stationary solutions in the case γ � 0 (see also [96, 112] for related results).

In [88, 89, 90] stationary solution of (4.1) were found by means of minimisation of the
associated action (4.3). In particular, the results in [89] will be drawn upon to construct
stable solutions of the parabolic equation.

Recently light has been shed on the structure of the set of stationary solutions forβ � 0.
A shooting method has proved the existence of different types of branches of periodic
solutions (see Chapter 6) previously identified by a numerical investigation [19]. Besides,
from a variational point of view the study of such solutions has led to the analysis of a re-
lated Twist map in the framework of Morse-Conley theory on the space of braid diagrams
(see Chapters 7 and 8). The latter method also gives insight into stability properties of the
periodic solutions. In this chapter we restrict our analysis to the parameter region β � 0.
In Section 4.9 we will give a brief indication of some numerical observations concerning
the (im)possibility to extend the present analysis to the parameter regime β � 0.

In order to simplify matters we carry out the construction of stable equilibria in the
case of the Neumann boundary conditions. The natural function space for this case is

H2
N

def� �
u � H2(0, L) � ux(0) � ux(L) � 0 � .

Equation (4.1) has a compact attractor A � A (L,γ,β, F) for all 0 � L � � , γ,β � 0 and
for all potentials F that satisfy the growth condition lim inf�

u
� � � F

�
(u)
u � 0; for β � 0 one needs

that lim inf�
u
� � � F

�
(u)
u � β2

4γ (see e.g. [79, Section 4.3])3. If L is small enough then A contains

exactly two stable equilibria (u � � 1). The size of the attractor A depends on L in the
sense that if L increases, the attractor also becomes larger and the number of equilibria in
A increases. It is not a priori clear whether new stable equilibria are created.

3Note the difference with the earlier growth condition of F.
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For γ � 0 the attractor is well understood. In fact, when F(u) � 1
4 (u2 � 1)2 then u � � 1

are the only stable equilibria for all L � 0, and the attractor of the second order equation
can be characterised completely (see also Section 4.2). For 0 � γ

β2 � 1
8 the following the-

orem gives a strong characterisation of the attractor, relating it to the second order equa-
tion. We first introduce some notation. The semi-flow associated with (4.1) and Neumann
boundary conditions is denoted by φ(L,γ,β). The first bifurcation of the homogeneous
solution u � 0 occurs at L � L0(γ,β) def� π � 2γ�

β2 � 4γ � β (and L0(0,β) � βπ).

Theorem 4.1 Let F(u) � 1
4 (u2 � 1)2 and suppose that β � 0 and 0 � γ

β2 � 1
8 , then for all

L � 0 there is a semi-conjugacy between the flow on the attractor of (4.1) with Neumann
boundary conditions and the corresponding flow for the second order equation (γ � 0).
To be precise, there is a semi-conjugacy betweenφ(L,γ,β) � A andφ(L L0(0,β)

L0(γ,β) , 0,β) � A .

This theorem implies in particular that for γ

β2 � 1
8 and all L � 0 the only stable solutions

are the homogeneous states u � � 1. Another consequence is the existence of connect-
ing orbits between various stationary states (see Section 4.2 for more details). The above
theorem holds for a more general class of potentials F(u). For example, a sufficient con-
dition is that F is even, satisfies (4.2) and F

�����
(u) � 0 for u � 0 (this condition can be some-

what relaxed). The parameter range for which the theorem holds is then γ

β2 � 1
4F

� �
(
�

1) .
An analogous theorem holds for Navier boundary conditions: u(t, 0) � uxx(t, 0) � 0 and
u(t, L) � uxx(t, L) � 0.

If γ

β2 � 1
4F

� �
(
�

1) , then the situation changes dramatically. The origin of this change is the
fact that the nature of the equilibrium points u � � 1 changes from real saddle to saddle-
focus at γ

β2
� 1

4F
� �
(
�

1) . The aim of this chapter is to give a lower bound on the number of
stable equilibria of Equation (4.1) as a function of the interval length L, and to describe
the shape of these stable equilibria.

Since we do not require stationary solutions to be isolated, we need the more general
notion of stable set:

Definition 4.2 A set S of stationary solutions of Equation (4.1) is stable if for any ε �
0 there exists an open neighbourhood U � Bε(S) such that for all u0 � U it holds that
u(t, x) � Bε(S) for all t � 0.

We want to identify various attracting sets, i.e. forwardly invariant sets, in which we can
then find stable sets of equilibria.

Theorem 4.3 Let the potential F satisfy the hypotheses (4.2) and grow super-quadratic-
ally. Suppose that β � 0 and γ

β2 � max
� 1

4F
� �
( � 1) ,

1
4F

� �
( � 1) � . Then for any n � � there exists a

constant Ln � 0, such that for all L � Ln Equation (4.1), with Neumann boundary condi-
tions, has at least n disjoint stable sets of stationary solutions.

Each stable set in the above theorem consists of stationary solutions with a specific geo-
metrical shape, which differs from set to set. Notice that this theorem holds under very
mild conditions on the double-well potential F and that no non-degeneracy assumptions
are made. We stress that the result of Theorem 4.3 is by no means restricted to just Neu-
mann boundary data (see Section 4.6).

The idea of the method is to find regions in appropriate function spaces in which one
can find a local minimum of the action. This also reveals the shape of the minimisers.
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1

0

� 1

LL0 2L0 3L0

u1 u2 u3

� u1
� u2

� u3

Figure 4.1: A sketch of the bifurcation diagram for γ � � 0, 1
8

�
. The shape of the bifurcat-

ing solutions
�

u1,
�

u2 and
�

u3 is indicated.

The neighbourhoods that we seek are roughly speaking product neighbourhoods of trun-
cated homoclinic minimisers, as found in [89]. Such homoclinic minimisers can only be
found in the case that γ

β2 � max
� 1

4F
� �
( � 1) ,

1
4F

� �
( � 1) � . Our results are therefore only valid in

this region.
For the EFK equation Theorem 4.3 holds for γ

β2 � 1
8 , while Theorem 4.1 covers the

range γ

β2 � 1
8 . This shows that there is a sharp transition from a relatively simple attractor

to a rather complicated one. To better understand the transition from γ

β2 � 1
8 to γ

β2 � 1
8 we

investigate this bifurcation in Section 4.8. In this way one also obtains information about
the unstable stationary solutions for γ

β2 � 1
8 . For other potentials F(u) this transition may

not be so sharp, but for all γ,β � 0 for which u � � 1 are saddle-foci, the number of stable
sets tends to infinity as L � � .

The number of stable stationary states will grow rapidly as the interval length L goes
to infinity. In the proof of Theorem 4.3 various a priori estimates are used. If some of these
estimates are carried out more carefully one can find a lower bound on the number of
stable equilibria as a function of the interval length L. We prove that there is are constants
a1 � 0 and a2 � 0 such that

#
�
disjoint stable sets of equilibria � � a1ea2L. (4.4)

Hence the number of stable sets grows exponentially in L.
The dynamics near the attractor will thus depend in a very subtle manner on the

parameters γ and β, which is not captured by, for example, the general slow motion
results in [92].

The results in this chapter are not valid when β � 0. In Section 4.9 we undertake
a numerical study of the parameter region β � 0 and find that new phenomena occur,
which certainly merit further exploration. We refer to Chapters 6, 7 and 8 for recent
results on periodic solutions for this parameter regime. It is in fact quite natural that our
analysis cannot be performed globally, i.e. regardless of the sign of β, because it has been
observed that most of the solutions found in this chapter cease to exist when β becomes
sufficiently negative (while the equilibria are still saddle-foci). See Section 4.9 for a further
discussion of this matter. An interesting open question is whether for β � 0 the number
of stable stationary states grows to infinity as L � � , or whether, on the contrary, this
number is bounded for sufficiently large �β � .

The organisation of the chapter is as follows. In Section 4.2 we consider the case γ

β2 � 1
8
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and prove Theorem 4.1. In Sections 4.3 we recall some results from [89] and introduce
notation. A priori bounds and compactness results are proved in Section 4.4. These are
used in Section 4.5 to perform the gluing method and prove Theorem 4.3. The fact that
the number of stable solutions grows exponentially in L is proved in Section 4.7, but first
we discuss the role of the boundary conditions in Section 4.6. Results on the bifurcation at
γ

β2
� 1

8 and numerical results for β � 0 are presented in Sections 4.8 and 4.9 respectively.
Finally, the hyperbolicity of the stationary solutions for γ

β2 � 1
8 is proved in Section 4.10.

4.2 The semi-conjugacy
We begin with the study of the attractor of (4.1) with F(u) � 1

4 (u2 � 1)2 and Neumann
boundary conditions for γ

β2 � 1
8 , i.e.,�

ut
� � γuxxxx

�
βuxx

�
u � u3 for x � (0, L), t � 0

ux(t, 0) � ux(t, L) � uxxx(t, 0) � uxxx(t, L) � 0 for all t � 0.
(4.5)

Without loss of generality we put β � 1 throughout this section. We first consider the set
of stationary solutions. Clearly all stationary solutions can be extended to the real line
by reflection in the points x � 0 and x � L, and therefore they correspond to bounded
solutions of

� γuxxxx
�

uxx
�

u � u3 � 0. (4.6)

Solutions of (4.6) have a constant of integration, the energy:

E
�
u � def� γuxxxux

� γ

2 � uxx � 2 � 1
2 � ux � 2 � 1

4 (u2 � 1)2 � E, (4.7)

where E ��� is constant along solutions of (4.6).
It was found in Chapter 2 that for γ � (0, 1

8 � the bounded solutions of (4.6) are in 1-1
correspondence with the bounded solutions of the second order equation (γ � 0). To
be precise, for γ � (0, 1

8 � the only bounded solutions of (4.6) are the three homogeneous
solutions u � 0 and u � � 1; two monotone heteroclinic solutions connecting u � � 1;
and a family of periodic solutions which are symmetric with respect to their extrema
and antisymmetric with respect to their zeros. These periodic solutions form a continu-
ous family and can be parametrised either by their energy E � (0, 1

4 ), or by their period
�
� (0, 2π � 2γ�

1 � 4γ � 1 ). Existence of these solutions can be proved either via a shooting
method where the energy is used as a parameter [117], via a minimisation method where
the period is used as a parameter [124], or via continuation (see Section 2.8). The bifurc-
ation diagram for the stationary solutions of (4.5) is given by Figure 4.1. For small L the

only bounded solutions are the three homogeneous states. At L � L0
def� π � 2γ�

1 � 4γ � 1 two
non-uniform stationary solutions bifurcate. These solutions � u1(x; L) are monotone and
have exactly one zero. The bifurcation is a generic supercritical pitchfork bifurcation (see
e.g. [81, Section 6.2]). More generally, the same type of bifurcation occurs at L � nL0 for
all n � 2. The bifurcating stationary solutions are just multiples of the primary bifurcating
branch.

For γ � 0 the attractor of problem (4.1) with Neumann boundary has been extensively
studied (see [4, 37, 81]). For 0 � L � π the attractor consists of the three uniform states
and their connecting orbits. For π � L � 2π the attractor contains five equilibrium points,
namely the three uniform states and two monotone non-uniform states � u1. For 2π � L �
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Figure 4.2: The attractor when γ � 0, for 0 � L � π on the left; for π � L � 2π in the
middle; and for 2π � L � 3π on the right.

3π the attractor is three-dimensional and consists of the seven equilibrium points u � 0,
u � � 1, � u1 and � u2, and their connecting orbits. The situation is depicted in Figure 4.2.
In general, for nπ � L � (n � 1)π the attractor contains 2n

� 3 equilibrium points. The
flow on the attractor can be described completely. In particular, for all L � 0 the flow
φ(L, 0, 1) on the attractor is conjugated to a simple ODE (see [105]).

We now turn our attention back to the fourth order equation with γ � (0, 1
8 � . The-

orem 4.1 states that there exists a semi-conjugacy between the flow on the attractor of
the fourth order equation and the corresponding flow for the second order equation with
the same number of stationary solutions. This follows immediately from [105, Theor-
ems 1.2 & 2.1], since our problem obeys the conditions required for the analysis presented
there:

� The semi-flowsφ(L,γ, 1) have compact global attractors.
� The equilibrium solutions are given by the bifurcation diagram of Figure 4.1. The

zero solution undergoes generic supercritical pitchfork bifurcations, and the equilib-
ria u � � 1 are stable.

� There exists a Lyapunov functional JL
�
u � (given by (4.3)).

We remark that the theorem implies that the dynamics on the attractor are at least
those of the second order equation. When we denote the solution on the k-th bifurca-
ting branch by uk, then there exists a connecting orbit going from uk to ul if and only if
k � l (hence JL(uk) � JL(ul) for k � l, which can also be derived directly from [124]). The
semi-conjugacy does not completely determine the flow on the attractor (as a conjugacy
would), since it is unknown whether the problem has the Morse-Smale property. The
following lemma shows that away from the bifurcation points the equilibrium points are
hyperbolic. Thus, the information which is lacking in order be able to check the Morse-
Smale property is a proof of the transversality of the intersection between unstable and
stable manifolds of the equilibria (for the second order equation this follows from the lap
number theorem [4, 82, 101]).

Lemma 4.4 The nontrivial equilibrium solutions are hyperbolic.

The proof of this lemma can be found in Section 4.10.
Again, the results in this section hold for a more general class of potentials F(u). Ana-

logous results also hold for the Navier boundary conditions (u(t, 0) � uxx(t, 0) � 0 and
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J

s

Figure 4.3: Sketch of the dependence of J on the interval length s for a gluing function
close to a saddle-focus equilibrium.

u(t, L) � uxx(t, L) � 0), and for the mixed case of Navier boundary conditions on one
boundary and Neumann boundary conditions on the other boundary.

4.3 Homoclinic and heteroclinic minimisers
We start our investigation of Equation (4.1) with the Neumann boundary conditions
ux(t, 0) � uxxx(t, 0) � 0 and ux(t, L) � uxxx(t, L) � 0 in the case that the equilibrium points
are saddle-foci. Extending the solutions to x � � by reflecting in x � 0 and x � L, one
may regard equilibrium solutions u of (4.1) as a closed curves in (u, ux)-plane by drawing
the (u, ux)-curve over one period. In Chapter 3 it was proved that, when we puncture the
(u, ux)-plane in ( � 1, 0), for all homotopy classes of closed curves in � 2 � �

( � 1, 0) � there
exist associated minimisers for J4. These minimisers lie on the energy level E � 0, where
the energy is defined by (4.7). The periodic minimisers give rise to minimisers of JL with
Neumann boundary conditions, but the interval length is dictated by the homotopy type
and thus they occur only for certain interval lengths L. Roughly speaking, when L is
sufficiently large, the numbers L � S0

�
nT0

�
mω0, n, m � � , occur as interval lengths,

where S0, T0 and ω0 are constants depending only on γ,β and F. The integer m can be
written as m � � n

i � 1 mi, mi ��� and for every n-tuple (m1, . . . , mn) there exists at least one
minimiser with interval length L � S0

�
nT0
�

mω0. We will prove that for values of L in
between one can also find minimisers. Such minimisers do not necessarily lie on E � 0.

Let us briefly explain the idea. Trying to fit two pieces of solution together one uses
a gluing function which lives in a small neighbourhood of the equilibrium point. In Fig-
ure 4.3 the dependence of the action J on the interval length s (on which the gluing takes
place) is depicted for a saddle-focus equilibrium. The local minima and maxima cor-
respond to solutions with energy E � 0. The minima have been found previously in
Chapter 3, i.e., stable solutions are found for discrete values of the interval length. The
intermediate solutions, although not local minima of the curve, can still be (local) minima
of the action for fixed s. The gluing procedure can be made rigorous under transversality
assumptions, see [36, 90] and Section 4.8. One may compare Figure 4.3 to the numerically
obtained picture in Figure 4.14, but one should keep in mind that in Figure 4.14 only an-
tisymmetric solutions are considered. In the absence of a transversality assumption, we
follow a different approach.

In order to construct attracting sets which contain stable equilibria we will use the

4For most homotopy classes when the evenness assumption on F is dropped.
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u � 1

u � � 1

� �

0 u

ux

P0 P1

Figure 4.4: A heteroclinic solution with homotopy type g � (2, 4). On the right the
projection Γ (u) of the orbit onto the (u, ux)-plane has been depicted (schematically).

heteroclinic and homoclinic minimisers that were found in [89]. Let us first summarise
the results of [89]. Consider the punctured plane P � � 2 � �

P0, P1 � , where P0
� ( � 1, 0)

and P1
� ( � 1, 0). Let u be a heteroclinic or homoclinic solution of (4.1) and let Γ (u) �

(u, ux) : � � P with Γ (u(x)) � x �
� � � �

P0, P1 � , and define its homotopy type as follows.
As x goes from x � � � to x � � , Γ can intersect the lines L � � �

(u, ux) � P � u � � 1 �
and L � � �

(u, u
�
) � P � u � � 1 � . The number of consecutive intersections of L � and L � is

always even. We do not count the intersections of L � at start and finish. In between one
obtains a finite sequence of even numbers denoted by g � (g1, . . . , gk), which we call the
homotopy type of Γ (see Figure 4.4 for an example). Note that given the homotopy type
g one still has the freedom of choosing the initial point to be either P0 or P1. Whether Γ
terminates at P0 or P1 then depends on the length of g.

If F(u) � 1
4 (u2 � 1)2 it follows from the results discussed in Section 4.2 that for γ

β2 � 1
8

the only minimisers are the constant solutions u � � 1 and two heteroclinic connections
with trivial homotopy type. On the contrary, for γ

β2 � 1
8 it is proved in [89] that for any

homotopy type g of any length there exists a ‘geodesic’ Γ (u). In other words by minim-
ising J

�
u � � 	 � j(u) over functions u for which the associated curve Γ (u) has homotopy

type g, a minimiser is found in every homotopy class5. The minimisation is carried out
in classes of functions defined via the homotopy type, and there classes are denoted by
M(g, Pν), where Pν �

�
P0, P1 � (i.e. ν �

�
0, 1 � and (u, ux)( � � ) � Pν for all u � M(g, Pν)). To

be precise, let χ0(x) be a smooth function such that χ0(x) � � 1 for x � � 1 and χ0(x) � 1
for x � 1. Let χ1(x) � � 1, and let χi

� χi mod 2 for i � 2. Then we define for all m � 0 and
any g ��� m (see [89]):

Definition 4.5 A function u is in M(g, Pν) if u � ( � 1)νχm � H2( � ) and if there exist non-
empty subsets

�
Ai � m � 1

i � 0 of � such that

1. u � 1( � 1) � � m � 1
i � 0 Ai;

2. #Ai
� gi for i � 1, . . . , m;

3. max Ai � min Ai � 1 for i � 0, . . . , m;
4. u(x) � ( � 1)ν � i � 1 for all x � Ai;
5.

�
max A0 � � � � m

i � 1 Ai � � �
min Am � 1 � consists of transverse crossings of � 1.

Under these conditions M(g, Pν) is an open set in ( � 1)νχ � H2( � ). The function class with
m � 0 is denoted by M((0), Pν). We will use the notation � g � � m if g � 2 � m , and drop the
implicit dependence of χ � g � on � g � from the notation.

5This result is actually proved for general even potentials F under the condition that γ

β2
� 1

4F
� �
(

�
1) .
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Define
J(g, Pν) � inf

u � M(g,Pν)
J

�
u � ,

where in this case the domain of integration is the entire real line. Finally, the set of global
minimisers of J over the function class M(g, Pν) is denoted by

CM(g, Pν) � �
u � M(g, Pν) � J �

u � � J(g, Pν) � .

Since M(g, Pν) is an open set, minimisers u � CM(g, Pν) satisfy the Euler-Lagrange equa-
tion

� γuxxxx
�
βuxx

�
F
�
(u) � 0. (4.8)

In [89] the following theorem is proved:

Theorem 4.6 Let F � C2( � ) satisfy (4.2) and grow super-quadratically. Suppose that γ

β2 �
max

� 1
4F

� �
( � 1) ,

1
4F

� �
( � 1) � . Then

(a) if F is even: J(g, Pν) is attained for any g.
(b) if F is not even: there exists a universal constant N0(F,γ,β) � � such that J(g, Pν) is

attained for any g � (g1, . . . gm) with gi �
�
2 � � �

n � N0 � for all i � 1, . . . , m.

The homotopy types g selected in the above theorem are called admissible types. In the
following we will always assume that F satisfies the assumptions in the above theorem,
that γ

β2 � max
� 1

4F
� �
( � 1) ,

1
4F

� �
( � 1) � , and that g is an admissible homotopy type.

It has been proved in [89] that all minimisers obtained in Theorem 4.6 are normalised,
i.e., all crossings of � 1 are transverse, and between two consecutive crossings of � 1 the
function is either monotone or has exactly one local extremum.

As was already pointed out, in order to find stable solutions with respect to the Neu-
mann boundary conditions we need to consider certain types of homoclinic connections
found in [89]. Of particular interest are the symmetric types with an odd number of
entries, i.e. g � (g1, . . . , g2n � 1) with gi

� g2n � 2 � i. It follows from the minimising prop-
erty that the curves Γ (and thus also the functions u) inherit the symmetry in g, i.e.,
the functions u are symmetric with respect to the line ux

� 0 (cf. Lemma 3.35). To be
precise, given a minimiser u there exists a point x � x0 such that u(x0

�
x) � u(x0

� x).
Since the minimisers are invariant under translations, one can choose a representative
u such that x0

� 0, and in particular we have ux(0) � uxxx(0) � 0. For the functions
u � � u � � � and u � � u � � � one can define the restricted homotopy type as before by count-
ing the number of intersections of Γ (u) with L � and L � . Thus g(u � ) � (g1, . . . , gn, gn � 1

2 ) and
g(u � ) � ( gn � 1

2 , gn � 2, . . . , g2n � 1). Restricting to functions over � � we still have the freedom
of choosing the endpoint to be either P0 or P1. Define for all (restricted) homotopy types
g � (g1, . . . gm) with g1 ��� and gi � 2 � for i � 2, . . . , m,

M� � (g, Pν) � �
u � ( � 1)ν � 1 � H2( � � ) � ux(0) � 0, g(u) � (g) � .

Lemma 4.7 The infima J � � (g, Pν) � infu � M� � (g,Pν) J� � �
u � are precisely attained by u � � u � � �

with u � CM(g � 1g, Pν), where g � 1g � (gm, . . . , g2, 2g1, g2, . . . , gm) (under the same assump-
tions as in Theorem 4.6).

The minimisers of J� � (g, Pν) in M� � (g, Pν) are denoted by CM� � (g, Pν). For periodic solu-
tions one can set up the same construction (see Chapter 3). The homotopy type is now
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�
1 �

2

I1 I2

u � 1

u � � 1

Figure 4.5: The intervals Ii and
�

i are indicated for a function of type g � (6, 4).

determined over one period. The function classes and sets of global minimisers are de-
noted by Mper(g, Pν) and CMper(g, Pν) respectively, and Jper(g, Pν) is attained under the
same assumptions as in Theorem 4.6.

4.4 A priori estimates
For the class of homoclinic and heteroclinic connections that were found in Theorem 4.6
we prove certain a priori estimates concerning their asymptotic behaviour. We assume
throughout this section that for F even or F not even, the homotopy types are admissible
(see Theorem 4.6). Also assume that γ

β2 � max
� 1

4F
� �
( � 1) ,

1
4F

� �
( � 1) � .

For easy notation we lift the translation invariance of minimisers of J by defining
CM � (g, Pν) � CM(g, Pν)

�
� , represented by functions u � CM(g, Pν) with the property

that u(0) � ( � 1)ν and such that ( � 1)νu(x) � 1 for all x � 0 (this corresponds to taking
min(A1) � 0). For a minimiser u � CM � (g, Pν) recall that the sets Ai represent the success-
ive crossings of ( � 1)ν � i � 1, i � 1, .., � g � and define (see also Figure 4.5)

Ii
def� �

min Ai, max Ai � and
�

i
def� �

max Ai � 1, min Ai � 1 � .

The a priori bounds on minimisers u � CM(g, Pν) obtained in this section will imme-
diately carry over to minimisers on the half line on account of Lemma 4.7.

Lemma 4.8 There exist constants C1, C2, C3 � 0 such that for any admissible homotopy
type g and any u � CM � (g, Pν) it holds that

� u � W1, � (
�

) � C1,

and � u � ( � 1)ν � i � 1 � W1, � ( � i) � C2e � C3gi , for i � 1, 2, . . . , � g � ,
where

�
i

� �
max Ai � 1, min Ai � 1 � .

Before proceeding with the proof of this lemma we first introduce the notion of covering
spaces in the present context (see also Chapter 3). The fundamental group of P � � 2 ��

P0, P1 � is isomorphic to the free group on two generators e1 and e2, which represent
loops (traversed clockwise) around P0

� ( � 1, 0) and P1
� (1, 0) respectively with base-

point (0, 0). Since P represents the phase-plane, the curves corresponding to functions u
only traverse the loops in the clockwise direction. Note that P is homotopic to a bouquet
of two circles X � S1 � S1. The universal covering of X, denoted by

�

X, can be represented
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O

�

P
�

X

Figure 4.6: The universal covering
�
X of X � S1

�
S1 is a tree. The universal covering�

P of P is a thickened version of
�
X. Its origin is denoted by O . The single and double

arrows indicate the two different generators e1 and e2 which can only be traversed in
one direction.

u

ux

��

Figure 4.7: All minimisers in any class are bounded in the (u, ux) plane from the out-
side by u � CMper(2, 2) and from the inside by u � CM((0), Pν) (only u � CM((0), P1) is
depicted here). The dotted curve represents (part of) a minimiser.

by an infinite tree whose edges cover either e1 or e2 in X, see Figure 4.6. The universal
covering of P denoted by π :

�

P � P can then be viewed as a thickened version of
�

X so
that

�

P is homeomorphic to an open disk in � 2 . The origin of
�

P will be denoted by O .
Of course every point in P has many lifts. To be able to fix notation we distinguish a
particular lift π � 1 of the line

�
(0, ux) � ux � � � � P by requiring that π � 1((0, 0)) � O and

continuous extension. Denote π � 1(
�
(0, ux) � ) by N �

�

P .

We now turn to the proof of Lemma 4.8.
Proof. The first estimate (the outer bound) is proved in Theorem 3.27. It follows from the
fact that all minimisers are bounded in the (u, ux)-plane by a minimiser of class Mper(2, 2)
(see Figure 4.7). We will show that the second estimate in Lemma 4.8 comes from a similar
argument where minimisers of class M((0), Pν) take the role of inner bounds. The proof
is completely analogous to the first estimate when we lift the problem to the covering
space

�

P . The idea is that all minimisers lie ‘outside’ the simple heteroclinic minimisers of
type g � ((0), Pν), i.e., they spiral towards Pν slower than these simple minimisers.

Let u � CM � (g, Pν) with g
�� (0). The idea now is to compare different lifts of Γ (u)

to
�

P with lifts of minimisers in CM � ((0), Pν). Fix the index i to be any of the numbers
1, . . . , � g � . Choose u0 � CM � ((0), P0) if ν � i is odd, and u0 � CM � ((0), P1) if ν � i is even.
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O

�

P

u

ux

��

Figure 4.8: On the left: the lifts of the simple heteroclinic π � 1(Γ (u0)) of class g � ((0), P1)
and, as an example, a minimiser π � 1(Γ (u)) of class g � ((4, 2), P0). On the right: the
heteroclinic class g � ((0), P1) and, as an example, (part of) a minimiser of class g �

((6), P1).

Set x0
def� max

�
x � min(Ai) � u(x) � 0 � . Now lift Γ (u0) and Γ (u) to P requiring that both

π
� 1(Γ (u0(0))) � N and π � 1(Γ (u(x0))) � N (where N �

�

P ).

We claim that the lifts π � 1(Γ (u0)) and π � 1(Γ (u)) intersect at most once. Indeed, sup-
pose they intersect twice in say y0 and y1, then their action J between y0 and y1 is equal,
since they are both minimisers. This implies that one can replace u0 by u between y0 and
y1, and in this way one obtains another minimiser of the same homotopy type. Since
all minimisers satisfy (4.8), this contradicts the uniqueness of the initial value problem,
which proves our claim. In fact the same argument shows that, for i � 1, and i � � g � , the
lifts π � 1(Γ (u0)) and π � 1(Γ (u)) do not intersect at all.

For the remaining indices i we assert that if π � 1(Γ (u0)) and π � 1(Γ (u)) intersect, then
they do not cross. That is, if the curves have a point in common (intersect), then this inter-
section can be removed by an arbitrarily small perturbation (the intersection is tangent).
Indeed, if the curves would cross, then there would be a second intersection point con-
tradicting the statement above. This is most easily seen from the left picture in Figure 4.8
since both limits of π � 1(Γ (u)) as x � � � lie on the same side of π � 1(Γ (u0)). It also follows
that π � 1(Γ (u)) lies on the ‘outside’ of π � 1(Γ (u0)), that is to say, on

�
i the curve Γ (u) spirals

around P0 or P1 outside the spiral of Γ (u0) (see Figure 4.8; right).

Finally, the elements in the set CM � ((0), P0) are ordered by their derivatives at the
origin u

�
(0) (since two minimisers cannot intersect in

�

P ). Besides, CM � ((0), P0) turns out
to be compact (see Lemma 4.13). Hence there exists a smallest and a largest element of
CM � ((0), P0) (measured in terms of u

�
(0)). The smallest element Γ (u0) spirals exponentially

towards P0,1 as x � � � . A similar argument holds for CM � ((0), P1) (especially because
these are the same functions with inverted x). Since all other minimisers spiral outside
these minimal elements the second (exponential) estimate of the lemma follows.

�

Another way to prove Lemma 4.8 is to construct annuli as covering spaces as was
done in Chapter 3.
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Remark 4.9 The proof also shows that the tails of any homoclinic or heteroclinic minim-
iser cannot spiral towards the equilibrium point faster than some fixed exponential rate.

�

In [89] the Uniform Separation Property was introduced. This property is closely related
to the question which types are admissible. Here the following result from [89] is used:

Lemma 4.10 There exist a constant C4 � 0 such that for any admissible homotopy type g
and any u � CM � (g, Pν) it holds that

� u � ( � 1)ν � i � L � (Ii) � C4,

where Ii
� �

min Ai, max Ai �
We now deduce a bound on the length of the interval between the tails.

Lemma 4.11 There exists a constant δ1 � 0 so that for any admissible homotopy type g
and any δ � δ1 there exists constants T �

δ � 0 and T �
δ � 0 such that for any u � CM � (g, Pν)

� u � ( � 1)ν � 1 � W1, � ( � � ,T �
δ

) � δ, � u � ( � 1)ν � � g � � W1, � (T
�
δ

, � ) � δ.

Proof. First of all we analyse the tails. We choose δ1 � 0 so small that the local theory
near the equilibrium points from Section 4 in [89] applies for all δ � δ1. According to the
local theory there exists a 0 � δ2 � δ such that if a point x1 � ( � � , min A1) in the left tail of
u is such that � u(x0) � ( � 1)ν � 1 � � δ2 and � u � (x0) � � δ2, then � u � ( � 1)ν � 1 � W1, � ( � � , x1) � δ.
This expresses the fact that Γ (u) spirals towards Pν as x � � � . Of course a similar
statement holds for the right tail.

Now choose κ � min
�
δ2, C4, C2e � C3 max1

�
i
���

g
� gi � , where C2, C3 and C4 are defined in Lem-

mas 4.8 and 4.10. We are going to estimate the measure of

Kκ
def� �

x ��� � dist � 2

�
(u(x), ux(x)),

�
P0, P1 � � � κ � ,

or rather of its complement Kc
κ. By Lemmas 4.8 and 4.10 the interval

�
min A1, max Am � is

contained in Kc
κ if κ is sufficiently small. We assert that there is a constant C � 0 such that

J
�
u � Kc

κ
� � C �Kc

κ �κ2.

Namely, considering u � 0 and u � 0 separately, we obtain that, for some C � 0, the
inequality j(u) � Cκ2 holds pointwise for all x � Kc

κ (since F has non-degenerate equi-
libria). Since J

�
u � Kc

κ
� � J(g, Pν) it follows that �Kc

κ � is smaller than J(g,Pν)
Cκ2 . Hence, choosing

� T �δ1
� � J(g,Pν)

Cκ2 we have proved the lemma.
�

Our next aim is to obtain compactness of the set of minimisers. To proceed we need to
convert to functions on a finite interval. The restriction of the minimisers in CM � (g, Pν) to�
T �
δ , T �

δ � is denoted by CMT� (g, Pν). Let H2� (T
�
δ , T �

δ ) � �
u � H2(T �

δ , T �
δ ) � u(0) � ( � 1)ν � , then

CMT� (g, Pν) � H2� (T
�
δ , T �

δ ). Functions in CMT� (g, Pν) can be mapped back to CM � (g, Pν) as
follows. Define the map E0 : CMT� (g, Pν) � CM � (g, Pν):

E0
�
u � �

���� α �
x � T �

δ , (u(T �
δ ), ux(T �

δ )) � x � ( � � , T �
δ � ,

u(x) x �
�
T �
δ , T �

δ � ,
ω

�
x � T �

δ , (u(T �
δ ), ux(T �

δ )) � x �
�
T �
δ , � ),

(4.9)

where α and ω are unique minimisers of an appropriate functional, i.e., α is the unique
minimiser (see e.g. [89]) for J over functions ϕ in ( � 1)ν � 1 � H2( � � , 0) for which
(ϕ(0),ϕx(0)) � (u(T �

δ ), ux(T �
δ )). A similar definition holds for ω � ( � 1)ν � � g � � H2(0, � ).
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The map E0 is well-defined for all u � H2� (T
�
δ , T �

δ ) for which dist � 2

�
(u, u � )(T

�
δ ),

�
P0, P1 � � is

sufficiently small (see e.g. [36, 89]), say dist � 2

�
(u, u � )(T

�
δ ),

�
P0, P1 � � � δ3.

We now fix
δ � δ0

def� 1
2

min
�
δ1,δ3 � ,

where δ1 is defined in Lemma 4.11. Also fix T
� def� T

�
δ0

(see Lemma 4.11). The set

Vε(g, Pν) � �
u � H2

� (T
� , T � ) � distH2(u, CMT

� (g, Pν)) � ε � ,

is a bounded neighbourhood of CMT� (g, Pν). For every u � Vε there exists v � CMT� (g, Pν)
such that � u � v � H2 � ε and thus � u � v � W1, � � C̃ε, where C̃ is the Sobolev embedding
constant. When C̃ε � δ0 then the map E0 is well-defined on Vε. If we choose

ε � ε0
def� min

�
δ0, C4, C2e � C3 max1

�
i
���

g
� gi � �

C̃,

then by Lemmas 4.8 and 4.10 the set Uε
� E0

�
Vε � is contained M � (g, Pν). Fix ε � ε0 and

write V(g, Pν) def� Vε0(g, Pν). Of course, when necessary one can choose smaller values of ε
and δ.

Corollary 4.12 The map E0 is well-defined for all u � V(g, Pν) and the sets U def� E0
�
V(g, Pν) �

are subsets of M � (g, Pν).

One now obtains the following compactness result.

Lemma 4.13 For any admissible homotopy type g the set CM � (g, Pν) is compact.

Proof. The set CM � (g, Pν) � ( � 1)νχ � H2( � ) is closed and bounded (follows from Lem-
mas 4.8 and 4.11). It remains to show that CM � (g, Pν) is precompact. Let

�
un � �n � 1 �

CM � (g, Pν), then by Lemma 4.11 we have that

dist � 2

�
(un, un,x)(x),

�
P0, P1 � � � δ for x �

�
T

� , T � � c.

Define the functional JT def� J � E0 on the bounded sets V. Since the functions un are min-
imisers it holds that dJT

�
un � � dJ � E0

�
un � � 0, where the restriction of un to

�
T � , T � � is

again denoted by un. This yields the relation 0 � un
�

K
�
un � , where K is a compact op-

erator (cf. [90, Theorem 3.2]). For the sequence
�
un � this implies that (possibly along a

subsequence) un converges in H2(T � , T � ) to some function u. Let us denote the tails of un

on the intervals ( � � , T � � and
�
T � , � ) by αn and ωn respectively. Since δ0 is sufficiently

small and all αn and ωn satisfy Equation (4.8) it follows from the local theory near the
equilibria that the tails αn and ωn also converge to E0

�
u � in H2( � � , T � � and H2

�
T � , � )

respectively. Indeed, F has non-degenerate equilibria and thus (F
�
(u1) � F

�
(u2))(u1

� u2) �
1
2 F
���
( � 1)(u1

� u2)2 for u1 and u2 sufficiently close to � 1. Hence we obtain, using the dif-
ferential equation, for some small C � 0

γ

� T �

� � �αn,xx
� αm,xx � 2 � β

� T �

� � �αn,x
� αm,x � 2 � C

� T �

� � �αn
� αm � 2 �

� γ(αn,xxx
� αm,xxx)(αn

� αm)(T � ) � γ(αn,xx
� αm,xx)(αn,x

� αm,x)(T � )
� β(αn,x

� αm,x)(αn
� αm)(T � ).

The right-hand side tends to 0 as n, m � � , since αn( � T) and αn,x( � T) converge, and
αn,xx( � T) andαn,xxx( � T) are bounded (this follows from regularity arguments). Therefore
the sequence

�
un � converges strongly, possibly along a subsequence, in χ � H2( � ), which

concludes the proof.
�
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For JT we can derive the following geometric properties.

Lemma 4.14 The set of all minimisers of JT in V(g, Pν) is given by CMT� (g, Pν). Moreover,
there exist constants C0

� C0(g, F,γ,β) � 0 such that JT � ∂V � J(g, Pν)
�

C0.

Proof. By definition U � E0
�
V � and thus infV JT � infU J � J(g, Pν). For u � CMT� (g, Pν) �

V it follows that JT
�
u � � J(g, Pν) and therefore infV JT � J(g, Pν). Clearly, if JT

�
u � � J(g, Pν)

for some u � V then E0
�
u � � CM � (g, Pν) which proves the first claim.

Suppose there exists no constants C0 such that JT � ∂V � J(g, Pν) � C0. Then one can find
a sequence un � ∂V such that JT

�
un � � J(g, Pν). By Ekeland’s variational principle [64]

there exists a slightly different sequence ũn with � ũn
� un � H2(T � ,T

�
)

� 0 as n � � , such
that dJT

�
ũn � � 0, and JT

�
ũn � � JT

�
un � .

Since V is bounded it follows that there exists a subsequence, again denoted by ũn,
such that ũn

� u in H2(T � , T � ) and un
� u in W1, � (T � , T � ). By the weak lower-semicon-

tinuity of J we obtain the estimate JT
�
u � � J(g, Pν).

From the fact that dJT
�
ũn � � 0 it follows, arguing as in the proof of Lemma 4.13, that

ũn
� u strongly in H2(T � , T � ), hence un

� u, implying that u � ∂V, and E0
�
u � � M � (g, Pν).

From the definition of J(g, Pν) it follows that JT
�
u � � J(g, Pν). Together with the reversed

inequality which was already obtained, this implies that u � ∂V is a minimiser, a contra-
diction.

�

Remark 4.15 The constant C0 in the above lemma depends on the homotopy type g. In
Section 4.7 we will prove that when we the neighbourhood V(g, Pν) is defined in a differ-
ent way, C0 can be chosen independent of g for a large class of homotopy types g. �

4.5 Stable equilibrium solutions
The a priori properties of minimisers can be used now to construct stable equilibria for
Equation (4.1) via a minimisation procedure partly based on techniques used in [36]
and [90]. Our first goal is to construct stable equilibria for (4.1) that satisfy the Neumann
boundary conditions.

We split two symmetric homoclinics and glue the two halves together by matching
their tails (see Figure 4.9). The length of the plateau thus formed in the middle can be
arbitrarily long. Since our initial homoclinic minimisers are not necessarily isolated we
have to perform a careful gluing procedure in special subsets V of the function space,
so that the infimum of J on ∂V is strictly larger than infimum of J on V, and hence the
minimum is attained in the interior of V.

Another way to express ’splitting’ of symmetric homoclinic minimisers is to take
minimisers from CM� � (g, Pν). Minimisers in CM� � (g, Pν) are obtained from minimisers
in CM(g � 1g, Pν) in the following way. Normalise functions in CM(g � 1g, Pν) by setting
u(0) � 0 at the unique point of even symmetry. The sets CM � � (g, Pν) and CM� � (g, Pν) are
then obtained by restricting to the intervals ( � � , 0 � and

�
0, � ) respectively. For functions

in CM(g � 1g, Pν) that are normalised as described above, we now have that the conclu-
sions of Lemma 4.11 hold for � x � � T � (T � � T � )

�
2. Define CMT� � (g, Pν) and CMT� � (g, Pν)

as the restrictions of functions in CM � � (g, Pν) and CM� � (g, Pν) to the intervals
� � T, 0 �

and
�
0, T � respectively. Let H2

n(0, T) � �
u � H2(0, T) � ux(0) � 0 � and H2

n( � T, 0) � �
u �
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L

u � u �

Figure 4.9: Two symmetric homoclinic minimisers which have to be glued together to
produce a stable stationary solution on the interval � 0, L

�
satisfying Neumann boundary

conditions.

H2( � T, 0) � ux(0) � 0 � , then CMT� � (g, Pν) � H2
n( � T, 0) and CMT� � (g, Pν) � H2

n(0, T). As in
the previous section we can define the map E0 : CMT� � (g, Pν) � CM� � (g, Pν):

E �
0

�
u � �

�
u(x) x �

�
0, T �

ω
�
x � T, (u(T), ux(T)) � x �

�
T, � ).

By the same token we define the map E �
0 : CMT� � (g, Pν) � CM� � (g, Pν). The functionals

J� � � E �
0 and J� � � E �

0 are well-defined on CMT� � (g, Pν) and CMT� � (g, Pν) respectively. As
in the previous section we can define ε-neighbourhoods of CMT� � (g, Pν) � H2

n(0, T � ) and
CMT� � (g, Pν) � H2

n(0, T � ), which we indicate by V � (g � ) and V � (g � ) respectively. The func-
tionals J

�
T are well-defined on these neighbourhoods if ε is small enough, say ε � ε0(g)

(see Corollary 4.12). The following is an immediate consequence of Lemma 4.14.

Lemma 4.16 The set of all minimisers of J �
T over V � is given by CMT� � (g, Pν). Moreover,

there exist constants C0
� C0(g, F,γ,β) � 0 such that J � � � E �

0 � ∂V
�

(g,Pν) � J� � (g, Pν) � C0.
The same statement holds for J � � � E �

0 .

We now use Lemma 4.16 to construct neighbourhoods V � H2
N(0, L) with the property

that inf∂V J � infV J, where

H2
N(0, L) def� �

u � H2(0, L) � ux(0) � ux(L) � 0 � .

In order to do so we again invoke the local theory near the equilibrium points (see The-
orems 4.1 and 4.2 in [89]). Take ȳ � (y1, y2) and z̄ � (z1, z2), with both � ȳ � (1, 0) � � δ1

and � z̄ � (1, 0) � � δ1 and δ1 sufficiently small (in fact one can take the same value as in
Lemma 4.11). Then the boundary value problem for Equation (4.8) on an interval of
length s with left and right boundary conditions given by (u, u

�
)(0) � ȳ and (u, u

�
)(s) � z̄

has a unique global minimiser if s is larger than some constant, say s � S0
� S0(F,γ,β,δ1).

This minimiser is denoted by g(x, ȳ, z̄, s). A similar construction is carried out for ȳ and z̄
close to ( � 1, 0).

Let g � and g � be two admissible homotopy types, i.e. g
� � (g

�
1 , .., g

�
�
g � � ), with g

�
1 �

� and g
�
i � 2 � for i � 2, .., � g � � . Define the map Es

2 : CMT� � (g � , Pν) � CMT� � (g � , Pν) �

H2
N(0, 2T

�
s) as follows:

Es
2

�
u � , u � � �

�� � u � (x) x �
�
0, T �

g(x � T, (u � (T), u �
x (T)), (u � ( � T), u �

x ( � T)), s) x �
�
T, T

�
s �

u � (x � 2T � s) x �
�
T
�

s, 2T
�

s �
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Arguing as in Section 4.4, since δ0 � 1
2δ1 it follows that when ε � min

�
ε0(g � ),ε0(g � ) � , the

functional JT
s

def� J2T � s � Es
2 : V � (g � ) � V � (g � ) � � is well-defined for any s � S0.

The estimate of Lemma 4.16 carries over to the current situation.

Lemma 4.17 There exist constants S1, C0(g � ), and C0(g � ) such that

inf
∂(V

�
(g

�
) � V � (g � ))

JT
s � inf

V
�

(g
�

) � V � (g � )
JT
s
� 1

2
min

�
C0(g � ), C0(g

�
) �

for all s � S1.

Proof. For any pair (u � , u � ) � V � (g � ) � V � (g � ) we have that

JT
s

�
u � , u � � � 	 T

0 j(u � )
� 	 s

0 j(g)
� 	 0� T j(u � )

� J� � � E �
0

�
u � � � 	 �

0 j(ω) � 	 s
0 j(g) � 	 0� � j(α) � J� � � E �

0

�
u � �

� J� � � E �
0

�
u � � � J� � � E �

0

�
u � � � A(s),

where A(s) � �
	 �
0 j(ω) � 	 s

0 j(g) � 	 0� � j(α). The behaviour of A(s) is governed by the
linear flow near a saddle-focus and we find that A(s) � O(e � c0s) for s � � , where c0

�
c0(F,γ,β) � 0. Indeed, A(s) � 	 s

�
2

0

�
j(g) � j(ω) � � 	 �

s
�
2 j(ω) � 	 0� s

�
2

�
j(g(x � s)) � j(α) � �

	 � s
�
2� � j(α), and each integral decays exponentially in s. For the second and fourth term

this follows from the linearisation of the flow near the non-degenerate equilibrium point.
Besides, for the first term we obtain, in a similar manner as in the proof of Lemma 4.13,
that � ω � g � H2(0,s

�
2) is controlled by boundary terms and hence is of order O(e � c1s) for

some c1 � 0. It then follows that 	 s
�
2

0 j(g) � j(ω) � O(e � c2s) for some c2 � 0, sinceω and g
are close to the (non-degenerate) equilibrium point. An analogous argument deals with
the term 	 0� s

�
2 j(g(x � s)) � j(α).

We choose S1 � S0 such that A(s) � 1
4 min

�
C0(g � ), C0(g � ) � for all s � S1. Applying

Lemma 4.16 now finishes the proof.
�

The information of Lemma 4.17 can be used to find minimisers for JT
s in V � (g � ) �

V � (g � ) for all s � S1. Indeed, let (u �
n , u �

n ) � V � (g � ) � V � (g � ) be a minimising sequence
for JT

s , for s � S1 fixed. Then � u �
n � H2

n(0,T)
� � u �

n � H2
n( � T,0) is bounded and thus (u �

n , u �
n ) �

(u � , u � ) � H2
n(0, T) � H2

n( � T, 0). In exactly the same way as in the proof of Lemma 4.14
one obtains that in fact (u �

n , u �
n ) � (u � , u � ) strongly in H2

n(0, T) � H2
n( � T, 0). It follows that

(u � , u � ) � V � (g � ) � V � (g � ), and since JT
s is weakly lower-semicontinuous we derive that

(u � , u � ) is a minimiser of JT
s on V � (g � ) � V � (g � ). The fact that the sets V � (g � ) � V � (g � )

contain minimisers for JT
s does not necessarily imply that the functions Es

2

�
u � , u � � are

solutions of Equation (4.8). However, since the minimisers (u � , u � ) lie in the interior
of V � (g � ) � V � (g � ) one can prove that Es

2

�
u � , u � � are local minimisers for J and hence

solutions of (4.8).

Lemma 4.18 Let (u � , u � ) be a minimiser of Js
T in V � (g � ) � V � (g � ). For allφ � H2

N(0, 2T
�

s)
with � φ � H2 sufficiently small it holds that J2T � s

�
Es

2

�
u � , u � � � φ � � J2T � s

�
Es

2

�
u � , u � � � . More-

over, the function v � Es
2

�
u � , u � � satisfies Equation (4.8) with the Neumann boundary

conditions ux(0) � uxxx(0) � 0 and ux(2T
�

s) � uxxx(2T
�

s) � 0.

Proof. Since the minimiser u � Es
2

�
u � , u � � lies in int(V � (g � ) � V � (g � )) one can find

small open neighbourhoods W � � V � (g � ) and W � � V � (g � ) of u � and u � respectively
such that JT

s

�
u � � φ � , u � �

φ
� � � JT

s

�
u � , u � � for all (u � � φ � , u � �

φ
� ) � W � � W � .
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Let W � H2
N(0, 2T

�
s) be a small neighbourhood of u � Es

2

�
u � , u � � , i.e., v � W can

be written as v � u
�
φ, with φ � H2

N(0, 2T
�

s) and � φ � H2 small. If the neighbourhood
W is small enough then φ � � φ � � T � s,2T � s � � W � and φ � � φ � � 0,T � � W � . The part in the
middle,φ � � T,T � s � , is denoted byφ0. We can write v

�
φ0 � v

�
φ̂0 � (φ0 � φ̂0), where v

�
φ̂0

is the unique minimiser of J � T,T � s � over functions with boundary conditions at x � T and
x � T

�
s equal to (u � � φ � , u �

x
�
φ �

x )(T) and (u � �
φ

� , u �
x
�
φ

�
x )(T

�
s) respectively, i.e.,

functions of the form v � � T,T � s � � ψ0 with ψ0 � H2
0(T, T

�
s).

We now have that

J2T � s
�
Es

2

�
u � , u � � � φ � � 	 T

0 j(u � � φ � ) � 	 T � s
T j(v � φ0) � 	 2T � s

T � s j(u � �
φ

� )

� 	 T
0 j(u � � φ � ) � 	 T � s

T j(v � φ̂0) � 	 2T � s
T � s j(u � �

φ
� )

� J2T � s
�
Es

2

�
u � � φ � , u

� �
φ

� � � � JT
s

�
u � � φ � , u

� �
φ

� �
� JT

s

�
u � , u � � � J2T � s

�
Es

2

�
u � , u � � � .

This proves the first claim. From the fact that u � Es
2

�
u � , u � � is a local minimiser of J2T � s

one easily deduces that u satisfies Equation (4.8) and the Neumann boundary conditions.
�

The next step is to construct proper attracting neighbourhoods in H2
N

�
0, 2T

�
s � for

Equation (4.1) that contain the equilibria Es
2

�
u � , u � � . Let φ � Br(0) � H2

0(T, T
�

s) and
consider the triples (u � , u � ,φ) � V � (g � ) � V � (g � ) � Br(0). Define the map F s : V � (g � ) �
V � (g � ) � Br(0) � H2

N(0, 2T
�

s) as follows: F s(u � , u � ,φ) � Es
2

�
u � , u � � � φ̃, where φ̃ �

H2
0(0, 2T

�
s) is the extension by zero of φ. Set Y def� F s

�
V � (g � ) � V � (g � ) � Br(0) � . We

want to show that inf∂Y J2T � s � infY J2T � s, and from Lemma 4.17 we see that the remaining
problematic boundary of Y is V � (g � ) � V � (g � ) � ∂Br(0). However, if we for example
choose r large enough, then this problem is overcome and

J2T � s
�
u � � J

�
Es

2

�
u � , u

� � � φ̃ � � inf
V

�
(g

�
) � V � (g � )

JT
s
�

C̃0 for all u � ∂Y,

for some C̃0 �
�
0, 1

2 min
�
C0(g � ), C0(g � ) � � .

Let S be a the set of minimisers of JT
s in V � (g � ) � V � (g � ). As before u � Y is in S

if and only if there is a pair (u � , u � ) which minimises JT
s on V � (g � ) � V � (g � ) with u �

F s(u � , u � , 0). We will now show that S is stable.
Let η � ε � min

�
ε0(g � ),ε0(g � ) � , then Bη(S) � �

u � H2(0, 2T
�

s) � distH2(u, S) � η � is
contained in Y (for r large enough).

As before, we find that

a def� 1
2

�
inf

∂Bη(S)
J2T � s

� inf
Bη(S)

J2T � s
� � 0.

Define Na
ε

� Ja
2T � s � Bη(S), where Ja

2T � s is the sub-level set

Ja
2T � s

� �
u � H2

N(0, 2T
�

s) � J2T � s
�
u � � inf

Bη(S)
J2T � s

�
a � .

It follows that J2T � s � ∂Na
ε

� a. Since Equation (4.1) is the L2-gradient flow equation of J, the
quantity J2T � s

�
u(t, x) � decreases in t, and thus for initial data u(0, x) � u0(x) � Na

ε it holds
that u(t, x) � Na

ε for all t � 0. This proves that S is a stable set for Equation (4.1). Since
s � S1 is arbitrary and this construction can be carried out for all admissible homotopy
types g � and g � , we obtain the following theorem (Theorem 4.3 in the introduction).
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Theorem 4.19 Let γ

β2 � max
� 1

4F
� �
( � 1) ,

1
4F

� �
( � 1) � . Then for any n � � there exists a constant

Ln � 0 such that for all L � Ln Equation (4.1) with the Neumann boundary conditions has
at least n disjoint sets of stable equilibria (in the sense of Definition 4.2).

4.6 Different boundary conditions
Theorem 4.3 states that Equation (4.1) has an arbitrary number of stable equilibria pro-
vided that the interval length L is large enough. In the previous section we proved this
in the case of Neumann boundary conditions. The result remains unchanged for various
other types of boundary conditions.

In the case of the Neumann boundary conditions the stable solutions are construc-
ted using minimisers defined on the half-spaces � � and � � , which satisfy the Neumann
boundary conditions at x � 0. These minimisers are derived from the homoclinic minim-
isers found in [89].

Now consider Equation (4.1) with the so-called Navier boundary conditions: u(t, 0) �
u(t, L) � 0, uxx(t, 0) � uxx(t, L) � 0. In order to construct stable equilibria we need to
find minimisers on the half-spaces � � and � � which satisfy the boundary conditions
u(0) � uxx(0) � 0. If the potential F is even such minimisers can be derived from the results
in [89]. Indeed, consider heteroclinic minimisers with homotopy type (gm, .., g1, g1, .., gm).
From Chapter 3 and [89] it then follows that such minimisers are odd with respect to a
unique point of odd symmetry. Due to translation invariance we can choose this point
to be x � 0. The restriction such a minimiser to the intervals � � and � � now satisfies
the boundary conditions u(0) � uxx(0) � 0. From this point on the construction of stable
equilibria is identical to the construction carried out in the previous section. The state-
ment of Theorem 4.3 for the case of the Navier boundary conditions remains unchanged.
Although this construction can only be carried out when F is even, the result also holds
when F is not even, as we will shortly see.

Another set of boundary conditions that can be considered, are Dirichlet boundary
conditions. General Dirichlet boundary conditions for (4.1) are (u(t, 0), ux(t, 0)) � ȳ �
(y1, y2) and (u(t, L), ux(t, L)) � z̄ � (z1, z2). The minimisers on the half-spaces � � and � �
needed for the construction of stable equilibria cannot be found via the results in [89].
To obtain such minimisers on for example � � , we minimise J� � �

u � over functions u for
which the induced curve Γ (u) starts at ȳ and terminates at P1 (or P0), and which has a cer-
tain homotopy type g. The homotopy g is defined as before by counting the number of
consecutive crossings of the lines u � � 1 and u � 1 excluding the intersections in the tail.
This leads to the homotopy vector g � (g1, .., gm), with g1 � � and gi � 2 � for i � 2, . . . , m.
The function classes of a given homotopy g and initial point ȳ are denoted by M� � (g, ȳ).
The potential F is not assumed to be even here. As in [89] (see also Theorem 4.6) there ex-
ists a universal constant N0(ȳ) such that, for homotopy types g with gi � N0 or gi

� 2, the
infima of J� � over M� � (g, ȳ) are attained. These minimisers are again the building blocks
for constructing stable solutions of the Dirichlet problem. Consequently, the statement of
Theorem 4.3 also holds for the Dirichlet boundary conditions.

Let us now come back to the Navier boundary conditions when the potential F is not
even. In this case the minimisers on the half-spaces �

�
, needed for the construction of
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stable solutions, are found in function classes in the space
�
u � H2( � � ) � u(0) � 0 � . It fol-

lows from the variational principle that minimisers satisfy the second boundary condition
uxx(0) � 0.

The various boundary conditions discussed above are not the only possibilities. For
example, one can also treat non-homogeneous Neumann and non-homogeneous Navier
boundary conditions. Furthermore, one can consider various types of mixed boundary
conditions. The bottom line is that as long as one considers boundary conditions for
which Equation (4.8) has a variational principle, then the method in this chapter applies
and a variant of Theorem 4.3 can be obtained.

4.7 Estimating the number of equilibria
Some of the estimates obtained in Sections 4.4 and 4.5 can be made uniform with respect
to the homotopy type g. With such uniform estimates one can obtain a lower bound on
the number of stable solutions of Equation (4.1) as a function of L. The crucial ingredient
in this context is the constant introduced in Lemma 4.14:

C0
� inf

∂V
J

�
u � � inf

V
J

�
u � .

We recall from Section 4.4 that fixing γ,β and F, one has thatε0 only depends max1
�

i
� �

g
� gi.

The following lemma is a uniform analogue of Lemma 4.14 and shows that, with an ap-
propriate choice of the neighbourhood V the constant C0 also depends on max1

�
i

� �
g
� gi

only.

Lemma 4.20 For all N � � � there exists positive constants C0, D1 and D2 such that for any
admissible homotopy type g with gi � 2N � for all i � 1, 2, . . . � g � , there exists a bounded
neighbourhood V(g, Pν) � H2� (T

� , T � ) of CMT� (g, Pν) with � T � � � D1
�

D2 � g � , such that
E0

�
V(g, Pν) � � M � (g, Pν) and inf∂V J � E0

� J(g, Pν) � C0.

It should be clear that we need to restrict the magnitude of gi to get such a uniform estim-
ate, since the higher gi the closer CM � (g, Pν) gets to the boundary of the class M � (g, Pν),
i.e., the more oscillations around one of the equilibrium points the closer the function
approaches the equilibrium. Note however that the length � g � of the homotopy type is
arbitrary. This is made possible by an appropriate choice of V(g, Pν), which will be dis-
cussed later on.

Before we prove the lemma we will first explain how the lemma can be used to count
the number of equilibria (or attracting sets) as L � � . Our goal is to derive the exponen-
tial lower bound on the number of stable equilibria as a function of L, mentioned in Equa-
tion (4.4). Choosing V(g, Pν) as in Lemma 4.20 it follows from the proof of Lemma 4.17
that S1 depends on N � only (since C0 depends on N � only). We now fix N � � 1 and only
consider g with gi � 2N � .

One can now construct stable solutions of (4.1) as in Section 4.5 by using building
blocks (u � , u � ) � V � (g � ) � V � (g � ) for which g �

i , g �
j � 2N � . The solutions are defined on

intervals of length L � T(g � ) � T(g � ) � s with s � S1. Since s � S1 can be chosen arbitrar-
ily, a stable solution of such type then exist for all interval lengths L � T(g � ) � T(g � ) � S1.
Since T(g

�
) � D1

�
D2 � g

� � by Lemma 4.20, a stable solution thus exist for all interval
lengths L � 2D1

�
D2( � g � � � � g � � ) � S1. Hence we obtain a stable solutions on an interval
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of length L for every pair (g � , g � ) with g �
i , g �

j � 2N � such that � g � � � � g � � � (L � S1
�

2D1)
�

D2. The number of such pairs to grows as (N � )(L � S1
� 2D1)

�
D2, that is, exponentially

in L. This establishes Equation (4.4).

To prove Lemma 4.20 we first recall the Uniform Separation Property from [89] (see
also Lemma 4.10) which holds for all admissible types g:

Uniform Separation Property: There exists a δ̃ � 0 and an ε̃ � 0 such that for all
admissible homotopy types g and all u � M(g, Pν) with J

�
u � � J(g, Pν) � δ̃ we

have � u(x) � ( � 1)ν � i � � ε̃ for all x � Ii, i � 0, . . . , � g � � 1.

Although in [89] ε̃ depends on g and the Uniform Separation Property is only used for
so-called normalised functions, the constant ε can in fact be chosen independent of g and
in absence of normalisation.

The justification of the construction of the neighbourhoods V needed in Lemma 4.20
is quite technical. First define

Wε
def� �

u � M � (g, Pν) � dist� 2

�
Γ (u � Icore ), Pi � � ε for i � 0, 1 � ,

where Icore
� �

max A0, min A � g � � is the core interval. Next define

Uε,δ
def� �

u � Wε � J
�
u � � J(g, Pν) � δ � .

By Lemmas 4.8 and 4.10 the set Wε is a neighbourhood of CM � (g, Pν) for ε small enough
and all g with gi � 2N � . By the Uniform Separation Property we have Uε,δ � M � (g, Pν) for
δ small enough.

In order to reduce to function on a finite interval, define

UT �
η

def� �
u � H2

� (T
� , T � )

�
�
� dist � 2

�
Γ (u(T � )), Pν � � η, dist � 2

�
Γ (u(T � )), Pν � � g � � 1 mod 2 � � η

�
,

where η is chosen so small that E0 (see Section 4.4) is well-defined on U T �
η . In what follows

η is fixed. The following lemma shows that Uε,δ � UT �
η for T

�
large enough.

Lemma 4.21 There exist constants δ̃(η) � 0, T̃(η) � 0 such that for any δ � δ̃ and any g
with gi � 2N � for all i � 1, 2, . . . � g � (and η and ε small enough) it holds that when u � Uε,δ

then u � UT �
η , with T � � C � (g) � T̃ and T � � C � (g) � T̃, where the constants C

�
(g) can

be chosen such that C
�

� C̃ � g � for some C̃ independent of g and η.

Proof. The functions u in Uε,δ are uniformly bounded in W1, � . Indeed, a function u �
M � (g, Pν) with large W1, � -norm can be easily modified to a function ũ � M � (g, Pν) with
J

�
ũ � � J

�
u � � C for some C � δ (the appropriate estimates can be found for example in [89,

Lemma 5.1]). This contradiction shows that such u (with large W1, � -norm) are not in Uε,δ.
It follows from a test function argument (cf. [89, Section 4]) that there exists a constant

C � 0, independent of gi, such that J
�
u � � i

� � C, and thus J
�
u � Icore � � C � g � . Since u � Wε,

i.e., Γ (u) stays away from the equilibrium points ( � 1, 0), this implies that � Icore � � C̃ � g � for
some C̃ � C̃(ε̃) � 0.

After taking care of the core interval, we need to estimate the tails. The action of
the tails is also uniformly bounded by a test function argument. For δ smaller than δ̃
(defined in the Uniform Separation Property above) this implies that the norm � u �
( � 1)ν � H2( � � ,max(A0)) of the left tail is uniformly bounded (and similarly for the right tail).

Taking T̃ � T̃(η̃) large enough there exists a point x1 �
�
max(A0) � T̃, max(A0) � such

that Γ (u(x1)) � Bη̃(Pν). From, again, a test function argument and the local behaviour
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E � 1
0 (Wε)

UT �
η

Vε,δ

Jδ

Figure 4.10: The boundary of Vε,δ a priori consists of three parts, since it is the intersec-
tion of UT

�

η , the sub-level set Jδ and the set E � 1
0 (Wε). When δ is sufficiently small then

the (appropriate part of) the sub-level set is contained in U T
�

η .

near the equilibrium it follows that for η̃ small enough J
�
u � ( � � ,x1) � � c1η̃

2 � δ for some
c1 � 0. On the other hand, in order for Γ (u) to go from ∂Bη �

2(Pν) to ∂Bη(Pν), it costs at
least an amount c(η) � 0 of action. Take η̃ � η

�
2 and moreover choose η̃ � η̃(η) and

δ � δ(η) so small that c1η̃
2 � δ � c(η). This ensures that Γ (u(x)) � Bη(Pν) for all x � x1 (and

x1 �
�
max(A0) � T̃, max(A0) � ). Taking T

� � C̃ � g � � T̃ we obtain that u � UT �
η .

�

Finally, we pick up the proof of Lemma 4.20. Let δ̃(η) and T
�

be as in Lemma 4.21. We
next define the neighbourhoods V needed in Lemma 4.20:

Vε,δ(g, Pν) def� �
u � UT �

η � E0
�
u � � Wε and J � E0

�
u � � J(g, Pν)

�
δ � .

This is a bounded neighbourhood of CMT� (g, P). Moreover, the construction of V is such
that ∂V consists of three parts, i.e., any u � ∂V satisfies one of the following possibilities
(see also Figure 4.10):

� J � E0
�
u � � J(g, Pν) � δ;

� Γ (u(T
�

)) � ∂Bη(Pν);
� E0

�
u � � ∂Wε.

The first possibility is no problem, since we in fact want to show that inf∂V J � E0
� infV J �

E0 is bounded away from zero (uniformly in g). The second possibility is excluded by
choosing δ � δ̃( η2 ) so that u � UT �

η
�
2 by Lemma 4.21. The third possibility is dealt with in

the next lemma, which states that for such u we have J � E0
�
u � � J(g, Pν) � C̃0 for some

C̃0 � 0 if δ and ε are sufficiently small. Taking C0
� min

�
C̃0,δ � finishes the proof of

Lemma 4.20.

The following lemma deals with the third of the three possibilities above.

Lemma 4.22 There exist constants C̃0 and ε0 such that for δ sufficiently small and any g
with gi � 2N � for all i � 1, 2, . . . � g � it holds that when u � Vε0,δ and E0

�
u � � ∂Wε0 , then

J � E0
�
u � � J(g, Pν) � C̃0.

Proof. Assume by contradiction that such C̃0 and ε0 do not exist. Thus, for all δ0 and ε0

there exist functions un � Vε0,δ0(g
n, Pνn) and un � ∂Wε0(g

n, Pνn) such that J
�
un � � J(gn, Pνn) �

0 as n � � . We will choose δ0 and ε0 later on.
By taking a subsequence we may take νn constant, say νn

� 0, and we will drop Pν
from our notation. Let xn � In

core be points such that

dist � 2

�
Γ (un(xn)), (( � 1)kn , 0) � � ε0.
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Again taking a subsequence, we may assume that kn is constant in the previous expres-
sion, to fix ideas say kn

� 0 for all n (the case kn
� 1 is analogous).

We now want to locate the points xn, and for this purpose we define the following sets
(see also Figure 4.5 for the definition of

�
i and Ii):

Si
def�
� �

i if i is odd,
Ii if i is even,

for i � 1 . . . � g � � 1,

and

S � g �
def�
� �

�
g
� if � g � is odd,�

max A � g � , min A � g � � 1 � if � g � is even.

These sets cover the core interval, i.e. Icore
� �

�
g
�

i � 1Si. The points xn are in at least one of
these sets Si, say Sin . Taking a subsequence we may assume that one of the following
three cases holds:

1. 1 � in � � g � for all n;

2. in
� 1 for all n;

3. in
� � g � for all n.

We will exclude each of these three possibilities by choosing ε0 and δ0 small enough.
We start with Case 1. Taking a subsequence one may assume that in either is odd for

all n, or even for all n. In the latter case we easily reach a contradiction by choosing ε0 � ε̃
and δ0 � δ̃, where ε̃ and δ̃ are defined in the Uniform Separation Property above.

We now deal with the case that in is odd for all n, which is somewhat more complic-
ated. Taking a subsequence we can assume that gn

in
is constant, say gn

in

� g̃ � 2 � . Shift all
un so that xn

� 0 for all n. We now take another subsequence such that gn
in � 1 and gn

in � 1 are
independent of n as well, say gn

in � 1
� g̃l and gn

in � 1
� g̃r.

Let In
def� �

max(Ain � 2), min(Ain � 2) � . The functions un are uniformly bounded in W1, � , as
discussed in the proof of Lemma 4.21. By a test function argument it follows that J

�
un � In �

is bounded, which in turn (since u � Wε0) implies that � In � and � un � H2(In) are bounded.
Take a weak limit of un (along a subsequence) in H2

loc which converges to v weakly in
H2

loc and strongly in W1, �
loc . We have that dist � 2

�
Γ (v(0)), (1, 0) � � ε0. The intervals In and Sin

converge to intervals Iv and Sv respectively. It holds that v(x) � 1 on ∂Iv, and v(x) � � 1
on ∂Sv. Besides, v(x) has on Iv subsequently g̃r crossings of � 1, then g̃ crossings of � 1 (in
fact these crossings occur in Sv), and finally g̃l crossings of � 1.

Moreover, it is not too difficult to conclude that v � Iv is a minimiser of J in the sense
of Definition 3.4, i.e., among function with the same boundary conditions (i.e., matching
to (v, v

�
) � ∂Iv) and the same number of crossings of � 1, where the interval length is arbit-

rary. However, such minimisers satisfy the result of Lemma 4.8 on the interval Sv, i.e.,� v � 1 � W1, � (Sv) � c1e � 2c2N � for some c1, c2 � 0. We now take ε0 � c1e � 2c2N � to reach a contra-
diction, i.e. contradicting the fact that dist � 2

�
Γ (v(0)), (1, 0) � � ε0. Hence, the possibility in

Case 1 is excluded.
In Case 2 a very similar argument holds. Namely, arguing along the same lines we

now define In
� �

T � , min(A3) � (or
�
T � , T � � if � g � � 1). We again find a weak limit v and v � Iv

is a minimiser of J � E0 in the same sense as above, i.e., E0
�
v � � ( � � ,max(Iv)) is a minimiser of J

among function with the same boundary conditions (instead of a left boundary conditions
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one takes functions in � 1 � H2) and the same number of crossings of � 1. A contradiction
is reached as in the previous case.

Case 3 is completely analogous to Case 2, except that we now use Remark 4.9 to reach
a contradiction.

Having reached a contradiction in all three cases, we have proved the lemma.
�

4.8 The bifurcation
In this section we analyse the bifurcation that occurs at γ

β2
� 1

8 . In particular, for γ

β2 slightly
larger than 1

8 we will completely describe the set of stationary solutions for all L � 0.
Without loss of generality we set β � 1:

� γuxxxx
�

uxx
�

u � u3 � 0, (4.10a)

ux(0) � uxxx(0) � ux(L) � uxxx(L) � 0. (4.10b)

We stress that the bifurcation analysis in the present section is the only part of this chapter
where we need transversality information.

4.8.1 The finite dimensional reduction
As discussed in Section 4.2, for γ � 1

8 the bifurcation diagram is as depicted in Figure 4.1.
The results of Chapter 2, which are used in Section 4.2, can also be applied to γ � 1

8 . One
obtains the following: the only solutions of (4.10a) with � u � � � 4γ � 1

12γ (any γ � 0) are u � 0
and a one parameter family of periodic solutions, symmetric with respect to their extrema
and antisymmetric with respect to their zeros. This family of periodic solutions can be
parametrised by the energy or by the period. Denote this continuous family, including
u � 0, by Fγ. These solutions of (4.10) form the skeleton of the bifurcation diagram.

The additional solutions that appear in the bifurcation diagram for γ slightly larger
than 1

8 are all in a small neighbourhood of the heteroclinic cycle. We denote the unique
monotonically increasing heteroclinic solutions at γ � 1

8 by u0, and we divide out the
translational invariance by fixing u0(0) � 0. Let the heteroclinic cycle in phase space be

∆ � �
( � 1, 0, 0, 0) � � � � (u0(x), u

�
0(x), u

���
0 (x), u

�����
0 (x)) � x ��� � ,

and define Bε(∆) to be the ε-neighbourhood of ∆ in � 4 .

Lemma 4.23 There exists a constant ε0 � 0 such that for all 0 � ε � ε0 there exists a δ0
�

δ0(ε) � 0 such that for all 1
8 � γ � 1

8
�
δ0 any bounded solution of (4.10a) is either an

element of Fγ or its orbit is entirely contained in Bε(∆).

Proof. Suppose by contradiction that the assertion does not hold. Then there exists an
ε � 0 and sequence γn

� 1
8 with corresponding bounded solutions un of (4.10a), such that

un
�
� Fγn and (un, u

�
n, u

���
n , u

�����
n )(xn)

�
� Bε(∆) for some xn ��� .

After translation we may assume that xn
� 0 for all n � � . Since bounded solu-

tions of (4.10a) are uniformly bounded in W3, � there exists a subsequence, again de-
noted by un, which converges in C3

loc on compact sets to some limit function u. This
function u is a bounded solution of (4.10a) for γ � 1

8 . Since (u, u
�
, u
���
, u
�����

)(0)
�
� Bε(∆) we

have that u is one of the solutions in F 1
8

(this follows from the complete classification
of bounded solutions at γ � 1

8 ). Therefore E
�
u � � (0, 1

4 � and � u � � � 1. In particular
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� u ��� � 4γn � 1
12γn

for n sufficiently large. We now assert that � un ��� � � u ��� , which im-
plies that un � Fγn for n sufficiently large, a contradiction. Indeed, we show that un

� u
in phase space, i.e. orbital convergence, which implies that � un � � � � u � � . First no-
tice that E

�
un � � E

�
u � , since this holds for x � 0. Let Bε(u) be the ε-neighbourhood

of
�
(u(x), u

�
(x), u

���
(x), u

�����
(x)) � x � � � . Suppose now, by contradiction, that there exists

a constant η � 0 such that dist � 4

�
(un, u

�
n, u

���
n , u

�����
n )(xn), Bε(u) � � η for some points xn � � .

As before, taking a subsequence, we obtain that un(x � xn) converges in C3 on compact
sets to some limit function v. Again, v is a bounded solution of (4.10a) for γ � 1

8 and
dist� 4

�
(v, v

�
, v
���
, v
�����

)(0), Bε(u) � � η. On the other hand it follows that E
�
v � � limn � � E

�
un � �

E
�
u � . Since there is only one bounded solution of (4.10a) with γ � 1

8 in each energy level
E � (0, 1

4 � we conclude that u � v modulo translation, a contradiction.
�

For γ � 1
8 the heteroclinic orbit is the unique, transversal intersection of Wu( � 1) and

Ws( � 1). For γ slightly larger than 1
8 this transversal intersection persists. This enables us

to glue the two heteroclinics (going from � 1 to � 1 and back) together to form multitrans-
ition solutions. In particular we can find, for γ sufficiently close to 1

8 , all solutions of (4.10)
in a neighbourhood of the heteroclinic cycle. This method has already been successfully
applied in [90] to show that there is a countable infinity of heteroclinic solutions. Besides,
in [131] the stability of multiple-pulse solutions converging to a saddle-focus was studied
via a reduction to a finite-dimensional center manifold (when the pulses are far apart).
Here we will use the transversality to find all solutions of (4.10) and their index.

Let u0 be the unique monotonically increasing heteroclinic solution of (4.10a) at γ � 1
8 .

The transversality implies that d2 J
�
u0 � is an invertible operator on H2

c ( � ) � �
u � H2( � ) �

u(0) � 0 � , where we have made the usual identification (H2) � � H2. Moreover, since u0

is a non-degenerate minimum of J one has (d2 J
�
u0 � v, v) � C0 � v � 2 for some C0 � 0 and all

v � H2
c ( � ). As in Section 4.4 we consider the restriction of u0 to a large finite interval� � T, T � . The tails can be recovered by an application of the extension map E0 defined

in (4.9). Note that E0 also depends onγ. Taking T large enough this extension map Eγ0
�
u � is

well-defined in a small neighbourhood of u0 in H2
c ( � T, T) for γ close to 1

8 . A perturbation
argument shows that there exists a C1 � 0 such that (d2(J � Eγ0 )

�
u � v, v) � C1 � v � 2 for all

u in a small η-neighbourhood Uη(u0) � H2
c ( � T, T) of u0, all v � H2

c ( � T, T) and for all γ
sufficiently close to 1

8 and T sufficiently large.
To glue transitions from � 1 to � 1 and vice versa together, we introduce several gluing

functions, as in Section 4.5. Write �u for the pair (u, u
�
). For ȳ � (y1, y2) and z̄ � (z1, z2) close

to ( � 1, 0) and for large s we define gl(x, ȳ, s), gr(x, ȳ, s) and g(x, ȳ, z̄, s) as the unique local
solutions of (4.10a) near the equilibrium points u � � 1, such that

g
�
l(0, ȳ, s) � 0, g

�����
l (0, ȳ, s) � 0 and �gl(s, ȳ, s) � ȳ;

�gr(0, ȳ, s) � ȳ and g
�
r(s, ȳ, s) � 0, g

�����
r (s, z̄, s) � 0;

�g(0, ȳ, z̄, s) � ȳ and �g(s, ȳ, z̄, s) � z̄.

Here we have implicitly assumed that it will be clear from the context whether these solu-
tions are close to � 1 or close to � 1. The functions g are the unique solutions of the bound-
ary value problem which lie entirely in a small neighbourhood of the equilibrium point in
phase space. On the other hand, in function space they are the unique global minimisers
of the corresponding variational problem, and the unique critical points a neighbourhood
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of � 1 in H2. By symmetry one has gl(x, (y1, y2), s) � g(x � s, (y1, � y2), (y1, y2), 2s), and sim-
ilarly for gr. Note that the solutions g also depend on γ.

We now glue n transitions together. Let Sk
� (2k

� 1)T � � k
i � 0 si, and define for n � 1

the gluing maps Eγn
� Eγn

�
u1, . . . , un; s0, . . . , sn � as

Eγn
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�

�

gl
�
t, �u0( � T), s0 � for t �

�
0, S0

� T �
u1(t � S0) for t �

�
S0

� T, S0
�

T �
g

�
t � S0

� T, �u1(T), �u2( � T), s1 � for t �
�
S0
�

T, S1
� T �

u2(t � S1) for t �
�
S1

� T, S1
�

T �
...
g

�
t � Sn � 2

� T, �un � 1(T), �un( � T), sn � 1 � for t �
�
Sn � 2

�
T, Sn � 1

� T �
un(t � Sn � 1) for t �

�
Sn � 1

� T, Sn � 1
�

T �
gr

�
t � Sn � 1

�
T, �un(T), sn � for t �

�
Sn � 1

�
T, Sn

� T � .
This gluing function is well-defined for (u1, . . . , un) in a product neighbourhood Vη

�
Uη(u0) � Uη( � u0) � ����� � Uη(( � 1)n � 1u0) in

�
H2

c ( � T, T) � n, and for s0, . . . , sn large enough.
Note that Eγ1

�
u � � Eγ0

�
u � as s0, s1

� � . Similarly Eγ2
�
u1, u2 � tends to a concatenation of

Eγ0
�
u1 � and Eγ0

�
u2 � as s0, s1, s2

� � , etcetera.
Introduce the notation u � (u1, . . . , un) and s � (s0, . . . , sn). For fixed s we can find the

unique critical point of JL � Eγn in the product neighbourhood Vη. This is easily seen by
using the following fixed point argument. Consider the iteration (with 1n the unit matrix
in � n )

uk � 1
� uk

� �
d2(J � Eγ0 )

�
u0 � 1n � � 1du(JL � Eγn)

�
uk; s � .

This is a contraction on Vη for η sufficiently small (say 0 � η � η0) and �γ � 1
8 � � δ1(η) and

min(s) def� min0
�

i
�

n si � σ(η). Here δ1(η) and σ(η) are positive constants which, as a func-
tion of η, are non-decreasing and non-increasing respectively. For an explicit calculation
of the derivative du(JL � Eγn) we refer to [90]. The contraction thus has a unique fixed point
z(s) which depends smoothly on s for min(s) � σ(η). Since (d2(J � Eγ0 )

�
u � v, v) � C1 � v � 2 it

follows that z(s) is the minimiser of JL � Eγn on Vη. We substitute this vector into the action
and obtain

K n(s) def� JL � Eγn
�
z(s); s � .

The variational problem has thus been reduced to a finite dimensional setting. Solutions
of (4.10) correspond to critical points of K n(s) under the constraint � n

i � 0 si
� L � 2nT.

Lemma 4.24 Let η � η0, let γ � ( 1
8 , 1

8
�
δ1(η)) and let s with min(s) � σ(η) be a critical

point of K n under the constraint � n
i � 0 si

� L � 2nT. Then Eγn
�
z(s); s � is a solution of (4.10).

The index of the critical point s (under the constraint) is equal to the index of the solution
Eγn

�
z(s); s � .

Proof. It is immediately clear that u � Eγn
�
z(s), s � is a piecewise solution of the differen-

tial equation. We assert that these pieces connect nicely to a solution on the whole inter-
val. Let v be a function in H2

N in a small neighbourhood of u. Then v has precisely n zeros,
say at x1, . . . , xn. Let vi(x � xi) � v(x) � � xi

� T,xi � T � and t0
� x1

� T and ti
� xi � 1

� xi
� 2T, 1 �

i � n � 1 and tn
� L � xn

� T. Then v can be written as v � Eγn
�
v1, . . . , vn; t0, . . . , tn � � � n

i � 0φi

withφi � H2
0(τi,τi

�
ti) for 1 � i � n � 1 where τi

� 2iT
� � i � 1

k � 0 tk, andφ0 � H2
n0(0, t0) and

φn � H2
0n(L � tn, L). Here H2

n0(0, t0) � �
u � H2(0, t0) � u � (0) � u(t0) � u

�
(t0) � 0 � , and H2

0n is
defined similarly. This shows that all variations in H2

N are covered by the decomposition
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of the variational method, hence u is a solution on the whole interval
�
0, L � . The statement

about the index follows from the fact that both g( � , ȳ, z̄, si) and z(s) are non-degenerate
minimisers, thus the unstable directions only come from variations in si.

�

The previous lemma describes all solutions in a small neighbourhood Bε(∆) of the
heteroclinic cycle.

Lemma 4.25 Let η � η0. There exists a constants ε1(η) such that when u is a solution
of (4.10) for γ � ( 1

8 , 1
8
�
δ1(η)) with u entirely contained in Bε1(∆), then for some n � 1 it

holds that u � En(z(s, s)), where s is a critical point of K n under the constraint � n
i � 0 si

�
L � 2nT and min(s) � σ(η).

Proof. Let u be a solution of (4.10) which lies entirely in Bε(∆). Since u
�
0(0)

�� 0, it follows
that for ε sufficiently small u has a finite number of zeros, say at x1, . . . xn. Let s0

� x1
� T

and si
� xi � 1

� xi
� 2T, 1 � i � n � 1 and sn

� L � xn
� T. Let ui(x � xi) � u(x) � � xi

� T,xi � T � ,
and ψi(x � xi

� T) � u(x) � � τi,τi � si � , where τi
� 2iT

� � i � 1
k � 0 sk. The orbit of u passes close to

the equilibrium points � 1. If ε is small enough then the distance between two zeros is
larger than 2T

�
σ(η), hence si � σ(η).

First, we infer that ψi
� g( � , �ui(T), �ui � 1( � T), si) since ψi is entirely contained in some

small neighbourhood of the equilibrium point � 1, and g is the unique local solution of
the corresponding boundary value problem. Second, for ε sufficiently small ui � Uη(u0),
hence u � Vη. Since z are the unique critical points in Vη we have that u � z(s) and thus
u � Eγn

�
z(s); s � . Finally, since u is a critical point in H2

N(0, L) it follows that s must be a
critical point of K n under the constraint � n

i � 0 si
� L � 2nT. Therefore u is obtained from

a critical point of K n.
�

It follows from the above lemma that ε1(η) can be chosen to be a non-decreasing func-
tion of η. Hence forε � ε1(η0) there exists an η1(ε) � η0 such thatε1(η1(ε)) � ε. Combining
Lemmas 4.23–4.25 now implies the following theorem:

Theorem 4.26 Let ε � ε2
def� min

�
ε0,ε1(η0) � , and let δ2(ε) def� min

�
δ0(ε),δ1(η1(ε)) � . When u

is a solution of (4.10) for γ � ( 1
8 , 1

8
�
δ2(ε)) and u

�
� Fγ, then u is entirely contained in Bε(∆)

and u corresponds to a critical point s of K with min(s) � σ(η1(ε)).

For γ � 1
8 the functions K n can also be defined, but their only critical points are the sym-

metric sequences (s0, 2s0, 2s0, . . . , 2s0, s0), corresponding to the simple periodic solutions
in Fγ. For γ slightly larger than 1

8 , Theorem 4.26 implies that the additional solutions ap-
pearing in the bifurcation are completely determined by the bifurcation function K (s). Part
of the bifurcation diagram is still formed by the solutions in Fγ. The solutions corres-
ponding to critical points of K n will fit exactly onto those in Fγ, and they form all of the
remainder of the bifurcation diagram.

In the following we fix ε � ε2, write σ � σ(η1(ε)), and assume that 0 � γ � 1
8 � δ2(ε).

4.8.2 Analysis of the bifurcation function
What remains is to determine the critical points of the bifurcation function K n for all n �
1. For easy notation we denote the n

� 1 gluing functions by g0, g1, . . . , gn � 1, gn. Recall that,
by symmetry, one has gl(x, (y1, y2), s) � g(x � s, (y1, � y2), (y1, y2), 2s) and similarly for gr,
so that all gi can be dealt with on the same footing (taking care to correctly transform the
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variables). In the following we will only discuss those gi which live in a neighbourhood
of � 1, the other case being completely analogous. Calculating the partial derivatives one
obtains that ∂K n(s)

∂si

� E
�
gi( � , z(s), si) � ,

where E is the energy, see (4.7). This follows from an explicit calculation, see e.g. [90].
To investigate the partial derivatives we use the following characterisation due to Buf-
funi and Séré [36]. When γ � 1

8 then the equilibria � 1 are saddle-foci. Shift the equi-
librium point to the origin and choose coordinates ξ � (ξ1,ξ2,ξ3,ξ4) such that the local
stable and unstable manifolds are given by W s

loc
� �

(ξ1,ξ2, 0, 0) � ξ1,ξ2 small � and Wu
loc

�
�
(0, 0,ξ3,ξ4) � ξ3,ξ4 small � . Denote ξs

� (ξ1,ξ2) and ξu
� (ξ3,ξ4). In a small neighbourhood

B4(δ) � � �ξs � � δ, �ξu � � δ � of the origin. the flow is given by

ξ
� �

� � λ � ω 0 0
ω � λ 0 0
0 0 λ � ω
0 0 ω λ

� ξ � f (ξ), (4.11)

where f (0, 0) � 0, f
�
(0, 0) � 0, fu(ξs, 0) � 0 and fs(0,ξu) � 0. The parameters λ � 0 and

ω � 0 are the real and imaginary part of the eigenvalues of the linearised problem re-
spectively. An important observation, to which we will come back later, is that λ � 2 and
ω

� 0 as γ
� 1

8 . Introduce polar coordinates (rs,θs) and (ru,θu): x1
� rs cosθs, x2

� rs sinθs,
and x3

� ru cosθu, x4
� ru sinθu. Write the gluing function gi(x, z(s), si) in these polar co-

ordinates: (rs,θs, ru,θu)(x; s). One obtains the following characterisation [36, Lemma A.2]
of the energy

E g
�
si; s � def� E

�
gi( � , z(s), si � � ∂K n(s)

∂si
� �

λ2 � ω2 �ρ(si; s) � 2 cos(ϕ(si; s)) � O( �ρ(si; s) � 3), (4.12a)

where

ρ(si; s) � e � λsi
�
2

�
rs(0; s)ru(si; s) (1 � O(δ)), (4.12b)

ϕ(si; s) � ωsi
�
θs(0; s) � θu(si; s) � µ � O(δ). (4.12c)

Here µ is a constant which tends to 0 as γ � 1
8 . The terms O(δ) and O( �ρ(si; s) � 3) are due to

the nonlinear influences near the equilibrium point, i.e., they represent the higher order
terms in (4.11).

We first analyse the values of rs(0; s), θs(0; s), ru(si; s) and θu(si; s), which will turn out
to depend only weakly on si, i.e., they are almost constant.

One should keep in mind that for γ close to 1
8 we haveω � 0 and λ � 2. However, the

linearisation for γ � 1
8 is not given by (4.11) with ω � 0. This is caused by the change of

coordinates necessary to convert to the above form. For γ � 1
8 one can choose coordinates

such that for ζ � B4(δ̃)

ζ
� �

� � λ � 1 0 0
0 � λ 0 0
0 0 λ � 1
0 0 0 λ

� ζ � f (ζ).

Of course we choose T so large that (u0, u
�
0, u

���
0 , u

�����
0 )(T) � B4(δ̃) and that the gluing func-

tions gi are entirely contained in B4(δ̃). Before making the connection between the ζ- and
ξ-coordinates, we briefly look at the picture in ζ-coordinates. All orbits in W s, and in
particular the heteroclinic solution u0, tend to the origin along the ζ2 axis. In fact, in ζ-
coordinates u0 behaves as ζ1(x)

�
ζ2(x) � O(1

�
x) for x � � . For γ � 1

8
�
δγ, 0 � δγ

� 1
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the eigenvalues are � 2(1 � i
�

2δγ � 3δγ
�

O(δ3
�
2

γ )). And after an appropriate scaling in x
we may assume that the real part � λ of the eigenvalues is constant, i.e., the eigenvalues
are of the form � 2 � iω and we may take ω (or ω2) as the parameter instead of γ. The
choice of coordinates is such that W s is always given by

�
ζ3

� ζ4
� 0 � � � �ζu � � 0 � . As

opposed to the ξ-coordinates, the ζ-coordinates are chosen to depend smoothly onω for
ω

�
0. The flow becomes

ζ
� �

� � 2 � 1 � O(ω) 0 0
ω2 � O(ω3) � 2 0 0

0 0 2 � 1 � O(ω)
0 0 ω2 � O(ω3) 2 � ζ � f (ζ).

The coordinate change to get fromζ toξ is of the formξ1
� ωζ1

�
O(ω2) andξ2

� ζ2. Since
θ � arctan ξ1

ξ2

� arctan ωζ1 � O(ω2)
ζ2

it follows that θs(0) � O(ω
�
T) or θs(0) � π

�
O(ω

�
T), and

similarly for θu(si). For the difference θs(0) � θu(si) there are now two possibilities, differ-
ing by a factor π . To determine which of these possibilities occurs, we look at situation
at the bifurcation point. For γ � 1

8 the only solutions of (4.10) are the periodic solutions
in F1

8
, and they have energy E � (0, 1

4 � , see Section 4.2. For large periods these solutions
can also be described by the present variational gluing method. Since these solutions are
symmetric they correspond to a critical point of the form s � � (s0, 2s0, . . . , 2s0, s0) for some
s0 � σ , and z(s) � (u1, � u1, u1, . . . ) for some u1 � H2

c . Hence E g
�
2s0, s � � � (0, 1

4 � . By continu-
ity, for smallω and s0 � σ not too large the energy E g

�
2s0; s � � must be positive. Therefore

it must hold that θs(0; s) � θu(si; s) � O(ω
�
T).

Choosing ε small in Theorem 4.26, the constants δ2 and η1 are arbitrary small and σ
is arbitrary large, and it follows that we may restrict our attention to gluing functions gi

such that the point (gi, g
�
i, g
���
i , g

�����
i )(0, z(s), si) is arbitrary close to (u0, u

�
0, u

���
0 , u

�����
0 )(T). Let δ � �

dist� 4

�
(u0, u

�
0, u

���
0 , u

�����
0 )(T), (1, 0, 0, 0) � . One thus has, for some constant 0 � ε2

�
δ � , that

� �ζs � � δ � � � ε2, and �ζu � � ε2. Hence rs(0) � δ �
�

O(ε2) and similarly ru(s) � δ �
�

O(ε2).

Having obtained estimates on rs(0; s), θs(0; s), ru(si; s) and θu(si; s), we are ready to in-
vestigate the function E g

�
si; s � . We will first concentrate on solutions with one transition.

We thus look for critical points of the function K 1(s0, s1) under the constraint s0
�

s1
� L �

2T, i.e., zeros of E g
�
s0; s � � E g

�
L � 2T � s0; s � with min(s) � σ , where s � (s0, L � 2T � s0).

Since in the present case one has to think of the gluing functions gl and gr as half of an or-
dinary gluing function g, we define s � 2s0 and G(s) def� E g

� s
2 ; ( s

2 , L0
� s
2 ) � � E g

� L0
� s

2 ; ( s
2 , L0

� s
2 ) � ,

where L0
� 2(L � 2T).

For L0 not too large and ω small, there is only one solution of the equation G(s) � 0,
since the corresponding function necessarily belongs to Fγ, namely s � L0

�
2. It is imme-

diately clear that for any L0 � 2σ there is a symmetric solution corresponding to s � L0
�
2.

More generally, looking for zeros of G(s) we consider the good approximation

G(s) � G0(s) def� �
λ2 � ω2δ2

�

�
e

� λs cosωs � e
� λ(L0

� s) cosω(L0
� s) � .

The scaling s̃ � ωs is useful as well, effectively settingω � 1 and λ � � as γ
� 1

8 .

It follows that for smallω, zeros of G0(s) only occur in the neighbourhood of the lines
(in the (s, L0)-plane) s � L0

2 , and s � (2k � 1)π
2ω , s � L0

2 for k � � , and s � L0
� (2k � 1)π

2ω , s � L0
2

for k � � , see Figure 4.11. The second and third case are related by symmetry. Next we
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ω
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Figure 4.11: Critical points of K 1 can only occur in the grey regions, which are shown
both in the (L0, s)-plane and in the (s0, s1)-plane.

consider the derivative of G0 in the neighbourhood of these lines:
G
�
0(s)

�
λ2 �

ω2 δ2�
� � λe � λs cosωs � ωe � λs sinωs

� λe � λ(L0
� s) cosω(L0

� s) � ωe � λ(L0
� s) sinω(L0

� s).

First, in a neighbourhood of the line s � L0
2 it follows that G

�
0(s)

�� 0 if (s, L0) is away from
the points s � L0

2
� (2k � 1)π

2ω , because there the first and third terms in G
�
0(s) are dominant

(ω � 0). This means that for fixed L0
�
� (2k � 1)π

ω
the only zero of G0(s) in a neighbourhood

of s � L0
2 is on the diagonal itself: s � L0.

Second, in a neighbourhood of the line s � (2k � 1)π
2ω , s � L0

2 it follows that G
�
0(s)

�� 0 if
(s, L0) is away from the point s � L0

2
� (2k � 1)π

2ω , because there the second term in G
�
0(s) is

dominant. This implies that for fixed L0 � (2k � 1)π
ω

there is exactly one zero of G0(s) in a
neighbourhood of s � (2k � 1)π

2ω .
We conclude that, away from the special points s � L0

2
� (2k � 1)π

2ω the zeros of G0(s) are
transverse and thus depend smoothly on L0. On the line s � L0

2 there are bifurcation
points s � near s � (2k � 1)π

2ω . These points are characterised by the fact that G
�
0(s � ) � 0. In-

terpreting G0 as a function of s and the parameter L0 one calculates that at these points
(s � s � , L0

� 2s � ) a forward pitchfork bifurcation takes place:

∂G0

∂L0

� 0,
∂2G0

∂s2
� 0,

∂2G0

∂L0∂s
�

∂3G0

∂s3 � 0. (4.13)

Next one has to consider the difference between G(s) and G0(s). We have already
obtained estimates on rs(0; s), θs(0; s), ru(si; s) and θu(si; s), but we also need estimates on
their derivative with respect to si. For this purpose we first look at ∂gi(0,z(s),si)

∂si
. Let us

consider ḡ(x; si) � gi(x, ȳ, z̄, si) � 1, which is the solution of (we write ȳ � (1 � y1, y2) and
z̄ � (1

�
z1, z2)) � � γḡ

������� �
ḡ
��� � 2ḡ � 3ḡ2 � ḡ3

ḡ(0) � y1, ḡ
�
(0) � y2, ḡ(si) � z1, ḡ

�
(si) � z2.

Scaling x̃ � x
�
si we get for g̃(x̃) � g(x):� � γ 1

s4
i
g̃
������� � 1

s2
i
g̃
��� � 2g̃ � 3g̃2 � g̃3

g̃(0) � y1, g̃
�
(0) � y2si, g̃(1) � z1, g̃

�
(1) � z2si.
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For h̃(x̃) � ∂g̃
∂si

we obtain:� � γ 1
s4

i
h̃
������� � 1

s2
i
h̃
��� � 2h̃ � 6h̃g̃

�
3h̃g̃2 � 4γ

s5
i

g̃
������� � 2

s3
i
g̃
���

h̃(0) � 0, h̃
�
(0) � y2, h̃(1) � 0, h̃

�
(1) � z2.

And finally for h(x) � h̃(x̃) � ∂ḡ
∂si

� ∂gi
∂si

one gets:� � γh
������� �

h
��� � 2h � 6hḡ

�
3hḡ2 � 4γ

si
ḡ
������� � 2

si
ḡ
���

h(0) � 0, h
�
(0) � y2

�
si, h(si) � 0, h

�
(si) � z2

�
si.

Since � ȳ � (1, 0) � � δ and � z̄ � (1, 0) � � δ, we conclude that � h � W3, � (0,si)
� O(δ

�
si). By

differentiating the identity d(J � Eγn)
�
z(s); s � � 0, one finds that

d2
u(J � Eγn)

∂z(s)
∂si

� � ∂
∂si

du(J � Eγn) � O( � ∂gi
∂si
� W3, � (0,si)).

Here the last equality follows from an explicit calculation of du(J � Eγn). Combining this
with the above estimate on � ∂gi

∂si
� W3, � (0,si), we obtain that ∂z(s)

∂si

� O(δ
�
si), so that ∂rs(0;s)

∂si

�
O(δ

�
si), ∂ru(si;s)

∂si

� O(δ
�
si), and ∂θs(0;s)

∂si

� O(ω
�
si), ∂θu(si;s)

∂si

� O(ω
�
si).

From the previous analysis it is clear that we are only interested in values of s which
are larger than approximately π

2ω , since for smaller s there will only be one critical point
of K 1, which is of the form ( s

2 , s
2 ). Since δ is small it follows that for such values of s the

dominant term in (4.12c) is ωsi, so that the zeros of G(s) can again only occur near the
lines s � L0

2 , and s � (2k � 1)π
2ω , s � L0

2 for k � � , and s � L0
� (2k � 1)π

2ω , s � L0
2 for k � � , see

Figure 4.11. To be able to carry over the analysis of G
�
0(s) to G

�
(s) we need that 1

rs

∂rs
∂si

�
λ,

∂θs
∂si

�
ω, which is true by the estimates above for large si, i.e. for ω sufficiently small.

Moreover, we need estimates on the derivatives of the terms of order O(δ) in (4.12). Since
these terms originate from the higher order terms in (4.11) one finds that they are of order
O( ∂z(s)

∂si
) � O(δ

�
si). Therefore these terms are dominated by ω, for small δ and si � π

4ω .
Hence, as for G

�
0(s), we conclude that, away from the special points s � L0

2
� (2k � 1)π

2ω , the
zeros are unique (near the fore-mentioned lines) and depend continuously on L0.

The analysis of the bifurcation points also carries over from G0(s) to G(s), since es-
timates on the higher order derivatives are found in a similar manner as before: ∂2z(s)

∂s2
i

�
O(δ

�
s2

i ) and ∂3z(s)
∂s3

i

� O(δ
�
s3

i ). Thus, at the bifurcation points s � , characterised by G
�
(s � ) � 0,

the inequality of (4.13) holds (for G instead of G0), while the equalities follow from the
symmetry.

Finally, the index of a critical point ( s
2 , L0

� s
2 ) is easily calculated: it is 1 if G

�
(s) � 0,

and it is 0 if G
�
(s) � 0. More explicitly, the index is 0 if either s � L0

2 and s �
� (4k � 3)π

2ω
�

ε, (4k � 1)π
2ω

� ε � , k � � , or s � (4k � 1)π
2ω , s � L0

2
� ε or s � L0

� (4k � 1)π
2ω , s � L0

2
�
ε for k � � .

Here ε is some small positive number which tends to 0 asω � 0. On the complementary
(parts of) branches the index of the critical point is 1. The points where the index changes
are of course precisely the bifurcation points. Because all this is much easier to under-
stand from a picture, Figure 4.12 shows all solutions (and their index) on the first branch
(consisting of solutions with one zero/transition) of the bifurcation diagram for γ slightly
larger than 1

8 .

We now turn our attention to the solutions with more transitions/zeros. To find critical
points one needs to solve ∂K n

∂si

� ∂K n
∂s j

for all 0 � i, j � n. Since all partial derivatives are of
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Figure 4.12: A blow-up of the first branch of the bifurcation diagram for γ slightly larger
than 1

8 . The branch consists of solutions of (4.10) with one zero (at which it has positive
slope). The profile of solutions on different parts of the branch are depicted below (for
large L). The index of the solution branches is also shown.

the form (4.12) the analysis of the case n � 1 can be repeated for n � 2. To make notation
easier we define s̃0

� 2s0 and s̃n
� 2sn and subsequently drop the tildes from the notation.

The critical points of K n can only occur near the diagonal
�
s0

� s1
�

�����
� sn � , and, for

any permutation τ , any 0 � m � n � 1 and any sequence
�
ki � m

i � 0 � � with ki � ki � 1, near
the line �

sτ(i)
� (2ki

� 1)π
2ω , 0 � i � m � �

�
sτ(m � 1)

�
�����

� sτ(n) � (2km � 1)π
2ω � . (4.14)

In words this means that some (but not all) of the si are fixed at an odd multiple of π
2ω ,

while the remaining si are all equal and larger than the maximum of the fixed si. This gives
the complete bifurcation diagram; for fixed L one needs to restrict to � n

i � 0 si
� s0 � sn

2
�

L � 2nT.
We are solving the (n � 1) equations fi

def� ∂K n
∂si

� ∂K n
∂si � 1

� 0, 0 � i � n � 1, and fn
def�

� n
j � 0 s j

� (L0
� 2nT) � 0. To conclude uniqueness (and continuous dependence) of the

solutions of these equations, one needs det
� ∂ fi

∂s j � �� 0. A direct calculation shows that

det
�

∂ fi

∂s j

� � n�

i � 0

�

0
�

j
�

n
j �� i

∂E g
�
s j; s �

∂s j

� other terms,

where all other terms are small compared to the first term if δ,ω and 1
min(s) are sufficiently

small. As in the case n � 1 discussed above, good bookkeeping reveals the dominant
term(s) in this expression when (s, L0) is not close one of the exceptional points, and one
concludes that det

� ∂ fi
∂s j � �� 0. The exceptional points are the points where two or more of

the lines, which were defined above, meet.
The index of the critical points is equal to the number of negative eigenvalues of the

(n � n)-matrix ∂2K n(s0,s1,...,sn � 1,L ��� n � 1
k � 0 sk)

∂si∂s j
. Since ∂K n

∂si

� E g
�
si; s � � E g

�
L � � n � 1

k � 0 sk; s � and E g
�
si; s �
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Figure 4.13: A blow-up of part of the second branch of the bifurcation diagram for γ
slightly larger than 1

8 . The branch consists of solutions of (4.10) with two zeros. The
profile of solutions on different parts of the branch are depicted below (for large L). The
index of the solution branches is also shown.

is well approximated by F(si)
def� Ce � λsi cosωsi, we get�

∂2K n

∂si∂s j
� �

�
F

�
(s0) � F

�
(sn) F

�
(sn) . . . F

�
(sn)

F
�
(sn) F

�
(s1) � F

�
(sn) . . . F

�
(sn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F

�
(sn) F

�
(sn) . . . F

�
(sn � 1) � F

�
(sn) � � small terms.

On the diagonal
�
s0

� s1
�

�����
� sn � this reduces to�
∂2K n

∂si∂s j
� � F

�
(s0)

�
2 1 � � � 1
1 2 � � � 1
� � ��� � ��� � ��� � �

1 1 � � � 2
� .

Since the matrix is positive definite, the index of the critical point ( s
2 , s, s, . . . , s, s

2 ) is 0 if
s �

� (4k � 3)π
2ω

�
ε, (4k � 1)π

2ω
� ε � , k � � with ε � 0 small. On the complementary part of the

diagonal the index is n.
Working out the number of negative eigenvalues on the other branches of solutions

we get the following. Near the line (4.14) and away from the bifurcation points the index
of the critical point is equal to the number #

�
0 � i � m � ki is odd � raised by n � m � 1 if

sτ(m � 1)
�

�����
� sτ(n) �

� (4 j � 1)π
2ω

�
ε, (4 j � 3)π

2ω
� ε � for some j ��� .

A full examination of the bifurcation points for n � 2 is beyond the scope of the
current investigation. We remark that a (numerical) analysis for the model function
Fi

� Ce � λs j cosωs j (instead of E g
�
si; s � ) already gives a lot of insight. Walking along one of

the curves of solutions near the lines (4.14), branches bifurcate in the neighbourhood of
points where all si are equal to an odd multiple of π

2ω . The number of bifurcating branches
is (n � m)(n � m � 1), which can be explained as follows. The jump in the index along the
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primary curve is n � m � 1., while there is an (n � m)-fold symmetry which is broken
upon bifurcation. We refer to [14, 66] for rigorous results on the multiplicity of bifurcat-
ing branches in the presence of symmetries. However, keep in mind that the symmetry
is usually broken upon returning to E g

�
si; s � instead of the model function Fi. As an illus-

tration part of the branch of solutions of (4.10) for n � 2 (i.e., with two transitions/zeros)
is shown in Figure 4.13.

4.9 Numerical results
The analysis in this chapter describes properties of the attractor for β � 0. It is not diffi-
cult to see that the results also hold for β � 0 (the estimates needed are slightly more in-
volved). A natural question is to ask what can be said about the parameter region β � 0.
To answer that question, fairly detailed information is needed about the stationary solu-
tions of the problem, and this information has so far been lacking. Although an overall
picture is still missing, recent progress has been made in the investigation of periodic sta-
tionary solutions. In Chapter 6 the existence of many families of periodic solutions with
energy E � 0 is proved by a shooting method, some existing for all β � ( � � ,

�
8), others

existing only in a finite parameter range. The variational structure is used in Chapters 7
and 8 to prove the existence of many periodic solutions with the use of a Twist map.

In this section we shall briefly discuss some numerical results on what happens to the
stationary solutions found for β � 0 when β becomes negative. We focus on stationary
solutions of the Equation (4.5), which for β � 0 corresponds to the well-known Swift-
Hohenberg equation [137]. Without loss of generality we fixγ � 1 throughout this section.
The numerical calculations were performed using the continuation program AUTO [57].
Part of these calculations were also presented in [19], but there the emphasis was on
heteroclinic solutions instead of solutions on a finite interval.

We have investigated the branch of solutions which bifurcates at the first bifurcation
point from the trivial solution u � 0, and for simplicity we have restricted our attention
to solutions which are anti-symmetric with respect to the zero at x � L

2 . There are many
bifurcations which break this symmetry, but we want to focus on the simplest possible
case. As characteristic parameters for the solutions we have chosen the interval length L,
the action J, and the energy E.

In Figure 4.14 the (J, L)-diagram of this branch is shown for β � � 2. This picture is
representative for the whole range � 2 � β �

�
8. One sees the bifurcation from the trivial

solution u � 0 (the straight line in the figure) and as one follows the branch it converges
in an oscillating manner to a limiting value of J as L � � . The branch is also represented
in the (J, E)-plane, where we see that it spirals to a point on the line E � 0.

The solutions for five points on this branch for β � � 2 are presented in Figure 4.15.
The first four points are chosen in the energy level E � 0, which are special points in
the sense that the action J is extremal at these points. This is due to the fact that when
variations in the interval length are taken into consideration, then the extrema of J all
lie in the energy level E � 0 (e.g. see Chapter 3). The existence of the infinite number of
solutions with E � 0 on this branch can been proved by a shooting method (see Chapter 6
and [118]) in the parameter regime 0 � β �

�
8. Half of these, namely the solutions for
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Figure 4.14: The (J, L)- and (J, E)-diagram of the simplest branch at β � � 2. The little
squares indicate the solutions shown in Figure 4.15 (in the (J, E)-diagram only the first
three of the squares are indicated for clarity).

0 0.5 1 1.5 2
-2

-1

0

1

2

PSfrag
replacem

ents

u

x

JELβ-
88abcde

(a)

0 1 2 3
-2

-1

0

1

2

PSfrag
replacem

ents

u

x

JELβ-
88abcde

(a)

(b)

0 2 4 6
-2

-1

0

1

2

PSfrag
replacem

ents

u

x

JELβ-
88abcde

(a)
(b)

(c)

0 2 4 6 8
-2

-1

0

1

2

PSfrag
replacem

ents

u

x

JELβ-
88abcde

(d)

0 20 40 60 80 100
-2

-1

0

1

2

PSfrag
replacem

ents

u

x

JELβ-
88abcde

(d)

(e)

Figure 4.15: The five functions for the parameter values indicated by the little squares
in Figure 4.14 (β � � 2). The functions in figures (a)-(d) have energy E � 0.

which J attains a minimum, can also be found by a variational method (see Chapter 3).
However, these methods fail for β � 0 and we will come back to this later on.

We see that the four solutions with E � 0 are clearly distinguished by the number
and relative position of their minima and maxima (relative to the lines/solutions u �
� 1). This is a general phenomenon: all solutions with E � 0 on this branch are clearly
distinct. The fifth solution shown has interval length L � 100 and its energy is, for all
practical purposes, indistinguishable from 0. The branch of solutions thus converges to a
heteroclinic orbit, in fact a very simple one

The solutions on this branch are not all stable (they form the central branch in Fig-
ure 4.12), but they are stable in the class of antisymmetric functions (e.g., taking Navier
boundary conditions on the left and Neumann boundary conditions on the right).

In Figure 4.16 the first four functions are continued in the parameter β, where we
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have fixed the energy level E � 0. The first three branches (Figure 4.16a) exist for all
β � ( � � ,

�
8). These solutions have been proved to exist in Chapter 6 and [120], and in

the limit β �
�

8 they converge to a simple heteroclinic solution (cf. [120]). We remark
that there are many other branches of solutions with zero energy which start at β � �

8,
bifurcating from the heteroclinic orbit, and extending all the way to β � � � .

Another feature is that the action J becomes negative along two of the branches. This
is responsible for the breakdown of the variational method of [89] in the parameter re-
gime β � 0. It seems likely that the variational method could give results as long as any
monotone lap between two extrema has positive action J. This ceases to be true at the first
zero in Figure 4.16a, i.e., at approximately β � � 0.92. We conjecture that this (β � � 0.92)
is in fact the highest value of β for which there exists a monotone lap with action less than
or equal to 0 (cf. [46, 106]). Let us remark that the minimisation technique in homotopy
type classes used in [88, 89] and in this chapter, relies on the positivity of the Lagrangian L
to apply cut-and-paste techniques, i.e., it only works for β � 0. Nevertheless it seems that
one might be able to extend this to β � 0 as long as β � � 0.92, since for β � � 0.92 every
function corresponding to a loop in the configuration plane P has positive action. There-
fore, cutting out a loop always lowers the action. As mentioned before, it is only natural
that our analysis cannot be performed globally, i.e. for all β � 0, because it is observed
that most of the solutions found in this chapter cease to exist when β becomes sufficiently
negative (while the equilibria are still saddle-foci). An example of this phenomenon is
discussed next.

The fourth branch (Figure 4.16b) does not exists for all β � ( � � ,
�

8) but folds back
at approximately β � � 2.06. The lower part of the branch converges again to the simple
heteroclinic solution as β �

�
8, while the upper part converges to three copies of this

heteroclinic (one increasing from � 1 to � 1 and two decreasing from � 1 to � 1), which
move further and further apart as β �

�
8. Again, there are many other branches which

behave in this way. They all have a different value of β where they fold back. The infinite
number of solutions with E � 0 on the branch in Figure 4.14 all behave in this way, except
for the first three (Figure 4.16a). As mentioned before, existence of these solutions has
been proved for β �

�
0,

�
8), while the fact that the folding point is different for each

branch makes it difficult to extend these results to negative β. The fact that the pair
of solutions (of index 0 and 1) is able to coalesce and disappear (at β � � 2.06) can be
understood from the Morse-type analysis in Chapter 8.

In Figure 4.17 three solutions on the folding branch of Figure 4.16b are shown and
we clearly see the difference between the two functions for β � � 1 on the lower and
the upper part of the branch. In Figure 4.17c we see how the upper part of the branch
converges to three copies of a heteroclinic orbit.

Note that apart from the two types of branches shown in Figure 4.16 there exists a third
type of branch. This type exist on a finite interval (β0,

�
8), where β0 � � �

8 is different
for each branch (but contrary to the folding branches, there is an expression for β0). As
β

�
β0 the solutions on such a branch converge to one of the homogeneous states u � � 1.

We refer to Chapter 6 for an extensive description of this type of branches.

In Figure 4.18 the continuation of the heteroclinic of Figure 4.15e is shown (of course,
in reality it is a solution on a finite, but large, interval). Existence of this heteroclinic
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Figure 4.16: On the left the continuation in β of the solutions in Figures 4.15a-c (with
corresponding labels) lying in the energy level E � 0. On the right the continuation of
the solution in Figure 4.15d. The functions corresponding to the little squares are shown
in Figure 4.17. The extrapolation to β � �

8 is shown by a dotted line. The region where
the equilibrium points u � � 1 are saddle-foci is bounded by the two vertical dashed
lines.
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Figure 4.17: The three solutions which are indicated by little squares in Figure 4.16b: a)
the solution for β � � 1 with lower action J; b) the solution for β � � 1 with higher J; c)
the solution on the tip of the upper part of the branch.
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Figure 4.18: The continuation diagram of the simple heteroclinic solution. The solu-
tion for β � 0 on the upper part of the branch is shown on the right. The solution in
Figure 4.15e (for β � � 2) lies on the lower part of the branch.
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Figure 4.19: At the top the (J, L)-diagram for β � � 2.1. The solutions indicated by the
little square and the little are depicted below, in (b) and (c) respectively (the fact that the
maximum of this function lies on the line u � 1 is purely coincidental). The little circle
denotes the bifurcation point.

solution has been proved for all β �
�
0, � ) [117, 118, 124]. For β �

� �
8, � ) it has been

shown to be unique (see Chapter 2 and [96]). The branch of heteroclinic solutions folds
in the same way as the solution in Figure 4.16b, and this is characteristic for all branches
of heteroclinic solutions: they all have a folding point β � � ( � �

8, 0). Existence of many
families of heteroclinic solutions has been proved in [89, 118] for β �

�
0,

�
8) and the fold-

ing behaviour has been extensively investigated numerically [19]. Similar behaviour was
observed for homoclinic solutions [35]. In [141] the folding behaviour of the branches of
heteroclinic solutions is discussed in the context of homoclinic snaking.

The branch in Figure 4.14 contains an infinite number of solutions with E � 0. Since
the fourth of these solutions ceases to exist for β smaller than about � 2.06, it is interesting
to see what happens to the branch of solutions for β � � 2.06. In Figure 4.19 the branch
is depicted for β � � 2.1, and we indeed see a very different behaviour. The branch starts
of in the same manner as for β � � 2, but then suddenly goes in a different direction,
and finally tends to a heteroclinic orbit (Figure 4.19b) which differs significantly from the
limiting heteroclinic for β � � 2. In the (J, L)-diagram the second branch bifurcating from
u � 0 is also shown (dotted line). It is just a (triple) multiple of the first branch, and it
crosses the first branch at a bifurcation point, denoted by a circle. The solution at this
bifurcation point is shown in Figure 4.19c.

To get a better understanding of the difference between β � � 2 and β � � 2.1, we



4.9. Numerical results 137

-3 -2 -1 0
-2

-1

0

1

PSfrag
replacem

entsux

J

E

Lβ-
88abcde

β � � 2

-3 -2 -1 0
-2

-1

0

1

PSfrag
replacem

entsux

J

E

Lβ-
88abcde

β
2

β � � 2.1

0 20 40 60 80 100

-1

0

1

PSfrag
replacem

ents

u

x

JELβ-
88abcde

Figure 4.20: At the top the (J, E)-diagrams for β � � 2 (left) and β � � 2.1 (right); in
black the branch coming from the first bifurcation point, and in grey a different branch.
One of the limits of the grey branch is depicted below.

have in Figure 4.20 compared the (J, E) diagrams for these two values. In black we see, as
usual, the branch bifurcating from the first bifurcation point of the trivial solution. In grey
another branch of solutions is shown; one of the limits of this branch, the limit which is
(almost) the same for both values of β, is also depicted in Figure 4.20. This limit consists
of a simple heteroclinic orbit with half a homoclinic orbit on each side. The heteroclinic
and homoclinic pieces move further and further apart as the interval length grows.

The other limit of the grey branch is different in both cases: for β � � 2 it resembles the
function in Figure 4.19c, whereas for β � � 2.1 it resembles the function in Figure 4.15e. It
should be clear from these pictures that a bifurcation, where a connection of branches is
exchanged, has occurred between β � � 2 and β � � 2.1, most probably at β � � 2.06, the
folding point in Figure 4.16b.

The phenomenon described above repeats itself as β decreases. On the left in Fig-
ure 4.21 the branch for β � � 2.3 is depicted. One sees that the limiting heteroclinic now
has two central oscillations compared to one central oscillation for β � � 2.1.

When β � � �
8 the equilibrium points u � � 1 are centers and heteroclinic solutions

no longer exist. It is therefore natural to ask what happens in this parameter range. On
the right in Figure 4.21 the branch is shown for β � � 3. We see that the process discussed
above has (presumably) repeated itself an infinite number of times. The branch does not
converge to a heteroclinic solution but continues to generate more and more oscillations
around 0. Notice that we have no clear information about the index, and an overview of
the attractor is still very much lacking.
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Figure 4.21: On the left the (J, L)- and (J, E) diagram for β � � 2.3 and below the lim-
iting heteroclinic solution. On the right the same diagrams for β � � 3 and below a
characteristic solution on the branch.
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We stress that we have only tried to describe one interesting phenomenon which oc-
curs when β becomes negative. There are of course many other branches of solutions
which we have not shown here. It is clear that this parameter regime has to be subjected
to a deeper investigation, both from the point of view of stationary solutions, as well as
regarding the behaviour of the parabolic equation. For example, an interesting question
is whether for all β � 0 the number of stable stationary states grows to infinity as L � � ,
or whether on the contrary this number is bounded for sufficiently large �β � .

4.10 Hyperbolicity
We show that the non-trivial solutions of (4.5), for γ

β2 � 1
8 , are hyperbolic for all L � 0

(Lemma 4.4). It is clear that the homogeneous states u � � 1 are hyperbolic and stable
for all L � 0, and that u � 0 is hyperbolic except at the bifurcation points L � nL0

�
nπ � 2γ�

β2 � 4γ � β , n ��� . For convenience we set γ � 1 in (4.5) and we also shift the interval,
i.e., �

u
�������

(x) � βu
���
(x) � u(x) � u3(x) � 0 for x � ( � L

2 , L
2 )

u
�
( � L

2 ) � u
�����

( � L
2 ) � 0.

(4.15)

The condition β �
�

8 corresponds to γ

β2 � 1
8 . As before we will extend solutions of (4.15)

to all of � .
As is depicted in Figure 4.1 we have the following lemma, which follows from the

results in Chapter 2:

Lemma 4.27 For all β �
�

8, problem (4.15) has, apart from the homogeneous solutions
u � 0 and u � � 1, exactly the following solutions: for any n � 1 and all L � nL0(β) there
are two solutions, � un(x; L) with precisely n zeros on ( � L

2 , L
2 ). It holds that un(x; L) �

u1(x � n � 1
2n L; L

�
n), i.e., un(x; L) is obtained by extending the solution u1(x; L

�
n). The func-

tions u1(x; L) have the property that u
�
1(x; L) � 0 and � u1(x; L) � � 1 for all L � L0 and all

x � ( � L
2 , L

2 ). Besides, u1 is antisymmetric with respect to its zero, and u
���
1 (x) � 0 for all

x � (0, L
2 � . Finally, u1(x; L) is a continuous function of L and u

�
1(0; L) is strictly increasing

in L.

To show that all these solutions are hyperbolic we need to investigate the 0-eigenvalue
problem �

v
�������

(x) � βv
���
(x)
�

(3u2
n(x; L) � 1)v(x) � 0 for x � ( � L

2 , L
2 )

v
�
( � L

2 ) � v
�����

( � L
2 ) � 0.

(4.16)

To tackle this problem we use the following Comparison Lemma (see also Lemma 2.4
and [35]):

Lemma 4.28 (Comparison Lemma) Let � u(x) � � 1 for all x � � and let β �
�

8. Suppose
that v1 and v2 are bounded functions on � , both satisfying

v
�������
i

� βv
���
i
� (3u2(x) � 1)vi

� 0 for all x ��� , i � 1, 2, (4.17)

and
(v1

� v2)(0) � 0, (v1
� v2)

���
(0) � λ(v1

� v2)(0) � 0,
(v1

� v2)
�
(0) � 0, (v1

� v2)
�����

(0) � λ(v1
� v2)

�
(0) � 0,

where λ � β

2
� � �

β

2 � 2 � 2. Then v1
� v2.
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The proof of this lemma is along the same lines as in Lemma 2.4 (see Section 2.2), and we
will not repeat it here. The core of the argument is the splitting of Equation (4.17) into�

v
��� � λv � w,

w
��� � µw � (3 � 3u(x)2)v,

where µ � β

2
� � �

β

2 � 2 � 2, and observing that the right-hand sides are increasing (in w
and v).

Let us start with the simplest case, namely that u1 is hyperbolic, i.e., u1 does not have
a 0-eigenvalue. The following lemma shows that there is no symmetric 0-eigenfunction.

Lemma 4.29 For n � 1 there is no symmetric nontrivial solution of problem (4.16).

Proof. By contradiction, suppose that v(x) is a symmetric nontrivial solution of prob-
lem (4.16). Notice that u1(x) and v(x) are bounded functions on � . If v(0) � 0, then the
Comparison Lemma (comparing with the function ṽ � 0), implies that v � 0. One thus
finds that v(0)

�� 0. Taking v1(x) � u
�
1(0)

v(0) v(x) and v2(x) � u
�
1(x), we find that

(v1
� v2)(0) � 0, (v1

� v2)
�
(0) � 0, (v1

� v2)
�����

(0) � 0.

Since either (v1
� v2)

���
(0) � 0 or (v2

� v1)
���
(0) � 0 holds, we now find from the Comparison

Lemma that v1
� v2. However, v

�
1( L

2 ) � 0 whereas v
�
2( L

2 ) � u
���
1 ( L

2 ) � 0 (see Lemma 4.27), a
contradiction.

�

The next lemma is slightly more involved. It shows that there is no antisymmetric
0-eigenfunction of problem (4.16).

Lemma 4.30 For n � 1 there is no antisymmetric nontrivial solution of problem (4.16).

Proof. By contradiction, suppose that v(x) is an antisymmetric nontrivial solution of
problem (4.16) for L � L � . We first introduce the notation z(x;α,η) for the solution of�

z
������� � βz

��� � z
�

z3 � 0
z(0) � 0, z

�
(0) � α, z

���
(0) � 0, z

�����
(0) � λz

�
(0) � η,

where, as before, λ � β

2
� � �

β

2 � 2 � 2. Now define two families of solutions. First, consider
the family

w(x; s) def� z
�
x; u

�
1(0)

�
v
�
(0)s, u

�����
1 (0) � λu

�
1(0)

� �
v
�����

(0) � λv
�
(0) � s � .

One has ∂w
∂s (x; 0) � v(x). Since v

�
( L �

2 ) � v
�����

( L �

2 ) � 0, this implies that

∂z
�

∂α ( L �

2 ; 0, 0) v
�
(0)
� ∂z

�
∂η ( L �

2 ; 0, 0)
�
v
�����

(0) � λv
�
(0) � � 0,

∂z
� � �

∂α ( L �

2 ; 0, 0) v
�
(0)
� ∂z

� � �
∂η ( L �

2 ; 0, 0)
�
v
�����

(0) � λv
�
(0) � � 0.

Viewing these as linear equations in v
�
(0) and v

�����
(0) � λv

�
(0), one concludes that�

∂z
�

∂α
∂z

� � �
∂η

� ∂z
�

∂η
∂z

� � �
∂α � ( L �

2 ; 0, 0) � 0. (4.18)

Second, consider the family u1(x; L). Clearly u1(x; L) � z(x;α(L),η(L)) for certain con-
tinuous functions α(L) and η(L). We know from Lemma 4.27 that α(L) is strictly increas-
ing, and hence invertible. We may therefore write

y(x;α) def� z
�
x;α,η(L(α)) � � u1(x; L(α)),
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and from the Implicit Function Theorem we obtain

dL
dα

(α(L � )) � �
�

∂z
�

∂α
∂z

� � �
∂η

� ∂z
�

∂η
∂z

� � �
∂α � ( L �

2 ; 0, 0)�
∂z

�
∂x

∂z
� � �

∂η
� ∂z

�
∂η

∂z
� � �

∂x � ( L �

2 ; 0, 0)
.

Here the denominator is nonzero (this follows from the analysis in Section 2.8), whereas
the numerator is zero by (4.18), and hence dL

dα (α(L � )) � 0. Combining this with the fact that
y
�
(L(α),α) � u

�
1(L(α); L(α)) � 0 and similarly y

�����
(L(α);α) � 0, we infer that ∂y

�
∂α ( L �

2 ;α(L � )) � 0
and ∂y

� � �
∂α ( L �

2 ;α(L � )) � 0. It follows that ṽ(x) � ∂y
∂α (x;α(L � )) satisfies (4.16) for L � L � , and thus

ṽ is an antisymmetric 0-eigenfunction of u1(x; L � ).
Notice that ṽ(x) � 0 for x � (0, L �

2 ). Indeed, ṽ(x) � 0 for x � (0, L �

2 ) since u1(x; L) �
u1(x; L̃) for all x � (0, L̃

2 ) and L � L̃ (see e.g. the proof of Lemma 2.35). If ṽ(x0) � 0 for some
x0 � (0, L �

2 ) then also ṽ
�
(x0) � 0, and it follows from the Comparison Lemma that ṽ � 0,

but ṽ
�
(0) � 0, a contradiction.

Finally, using integration by parts and the differential equation (4.15), we obtain that

0 �
� L �

2

0
u1(ṽ

������� � Aṽ
��� � (3u2

1
� 1)ṽ) �

� L �

2

0
2u3

1ṽ,

which contradicts the fact that u1 � 0 and ṽ � 0 on (0, L �

2 ).
�

Combing these two lemmas we obtain:

Lemma 4.31 For n � 1 there is no nontrivial solution of problem (4.16).

Proof. By contradiction, suppose that w(x) is a nontrivial solution. Then either v(x) �
w(x) � w( � x) or ṽ(x) � w(x) � w( � x) is a nontrivial solution of (4.16). However, the exis-
tence of a symmetric (i.e. v(x) � v( � x)) 0-eigenfunction is excluded by Lemma 4.29, while
an antisymmetric (i.e. ṽ(x) � � ṽ( � x)) 0-eigenfunction is excluded by Lemma 4.30.

�

We now proceed by induction. Let n � 1 and suppose that uk has no 0-eigenvalue for
k � n. In the following it is proved that then un has no 0-eigenvalue. As in Lemma 4.31
we may assume, without loss of generality, that an eigenfunction is either symmetric or
antisymmetric. We split up the argument into four cases.

1. If n is even then there is no antisymmetric 0-eigenfunction.
2. If n is odd then there is no symmetric 0-eigenfunction.
3. If n is even then there is no symmetric 0-eigenfunction.
4. If n is odd then there is no antisymmetric 0-eigenfunction.

Proving these four statements finishes the proof. Case 1 and 2 follow from the Compar-
ison Lemma as in Lemma 4.29. Next we deal with Case 3. Suppose, by contradiction,
that v(x) is a symmetric 0-eigenfunction of un(x; L). Note that un(x � L

2 ; L) � un
�
2(x; L

2 ).
Obviously v(x � L

2 ) is therefore a 0-eigenfunction of un
�
2(x; L

2 ), contradicting the induction
hypothesis.

As for Case 4, let n � 3 be odd and assume, by contradiction, that v(x) is an antisym-
metric 0-eigenfunction of un(x; L). The function un has an extremum at x � L

2n
def� a, and it

is symmetric with respect to this extremum. One distinguishes two cases: v(2a) � 0 and
v(2a)

�� 0.
In the case v(2a) � 0, define v1(x) � v(x � 2a) and v2(x) � � v( � x

� 2a), then

(v1
� v2)(0) � 0, (v1

� v2)
�
(0) � 0, (v1

� v2)
�����

(0) � 0.
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As in Lemma 4.29 the Comparison Lemma implies that v1
� v2, i.e., v is antisymmet-

ric with respect to x � 2a. Since v is antisymmetric with respect to x � 0 and x � 2a, the
boundary conditions v

�
(na) � v

�����
(na) � 0 (with n odd) imply that v

�
(a) � v

�����
(a) � 0. There-

fore v(x) is a 0-eigenfunction of u1(x; L
n ) on ( � a, a), contradicting the induction hypothesis.

If v(2a)
�� 0, define w(x) � v(x � 2a) � v(x � 2a). Since v(x) is antisymmetric, w(x) is

symmetric. We now apply the Comparison Lemma to v1(x) � u
�
n(0)

w(0) w(x) and v2(x) � u
�
(x),

which yields

v(x � 2a) � v(x � 2a) � cu
�
(x), where c � 2v(2a)

u
�
(0)

�� 0. (4.19)

Successively substituting x � 2ka in (4.19) for k � 1, 2, . . . gives that v(2ka) � ( � 1)k � 1kv(2a),
for k � 0, 1, 2, . . . (since u

�
(2ka) � ( � 1)ku

�
(0)). This is impossible since v is symmetric with

respect to x � na, and a contradiction has been reached.



Chapter 5

Travelling waves

5.1 Introduction
Fourth order parabolic equations of the form

ut
� � γuxxxx

�
uxx
�

f (u), γ � 0, (5.1)

where x � � , t � 0, occur in many physical models such as the theory of phase-transitions
[53], nonlinear optics [1], shallow water waves [35], etcetera. Usually the potential F(u) �
	 f (s) ds has at least two local maxima (stable states), and one local minimum (unstable
state)1. A prototypical example is fa(u) � (u

�
a)(1 � u2) with � 1 � a � 1.

For a thorough understanding of Equation (5.1), the stationary problem is of great
importance. An extensive literature on this subject exists (see e.g. [3, 21, 35, 88, 89, 90, 112,
116, 117, 118]). Typically, depending on the parameter γ, the stationary problem displays
a multitude of periodic, homoclinic, and heteroclinic solutions. The stationary equation
is Hamiltonian, which restricts the possible connections between the equilibrium points.
As an example we mention that when the maximum of F is attained in two points, e.g.
F(u) � � 1

4(u2 � 1)2, a solution connecting these maxima exists for all γ � 0. One could
regard this solution as a standing wave. The heteroclinic solution is unique (modulo the
obvious symmetries) for small values of γ, say γ � γ1( f ) (see Chapter 2 and [96]). On
the other hand, for large γ, say γ � γ2( f ), there is a multitude of (multi-bump) solutions
connecting the two maxima [89, 90, 118]. This is due to the fact that as γ crosses the
critical value γ � γ2( f ), the eigenvalues of the linearised stationary equation around the
two maxima of F become complex.

In the special case f (u) � u � u3, corresponding to F(u) � � 1
4 (u2 � 1)2, it holds that

γ1( f ) � γ2( f ) � 1
8 . Although in many simple cases equality holds, generally there will be

a gap between γ1( f ) and γ2( f ). The critical value γ1 is not necessarily small, and a lower
bound on γ1 can in general be explicitly determined (see Chapter 2 for more details).

For the time-dependent problem travelling fronts of the form u(x, t) � U(x � ct), con-
necting extrema of the potential F, play a prominent role in most models. Results on
travelling waves for Equation (5.1) have previously been obtained in [34], where nonlin-
earities of the form f (u) � fa(u) � (u � a)(1 � u2), a � 0, are studied using transversality
arguments and perturbing near a standing wave. Moreover, in [2] singular perturbations
techniques were applied near γ � 0. In both cases travelling waves between local max-
ima (stable states) are studied. A recent work [130] deals with singular perturbations
techniques for travelling waves connecting an unstable and a stable state; the stability of
these waves for very small γ is also established. Furthermore, in the context of singu-
lar perturbation theory, travelling waves for higher order parabolic equations have been

1Sometimes the potential is denoted by � F so that the stable states correspond to local minima.
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studied in [72].
The objective of this chapter is to obtain existence results for a large range of para-

meter values. We therefore study travelling waves of (5.1) via topological arguments
rather than perturbation methods. To illustrate the underlying ideas of the method, let
us consider the related second order parabolic equation, i.e. γ � 0. Such equations arise
as models in for example population genetics and combustion theory [11]. In the spe-
cial case where f (u) � fa(u), Equation (5.1) with γ � 0 admits a travelling wave solution
u(x, t) � tanh

�
x � a

�
2t�

2 � . This travelling wave connects the two stable homogeneous states
u � � 1 and u � � 1. The literature on this problem is extensive and we will not attempt
to give a complete list. However, a few key references are of importance for explaining
the similarities of the second and fourth order problems. In the case γ � 0 the equation
for travelling waves u(x, t) � U(x � ct) is given by cU

� � U
��� �

f (U). A phase-plane ana-
lysis for both 0 � c � 1 and c � 1 shows two topologically different phase portraits, from
which the conclusion may be drawn that a global bifurcation has to take place for some
intermediate c-value(s). In this way a wave speed c0 can be found for which a travel-
ling wave exists which connects the two local maxima of F. In this context we mention
the work by Fife and McLeod [68] based on an analytic approach, and Conley’s more
topological approach [48].

From the second order problem we learn that for the present problem it is sensible to
look for topologically different phase portraits (in � 4 ) for small and large values of c. A
big part of our analysis will be to do just that.

In order to simplify the exposition of the main results we reformulate (5.1) as

ut
� � uxxxx

�
βuxx

�
f (u), (5.2)

via the rescaling x �� γ
1
4 x, with β � 1�

γ
. Notice that Equation (5.2) also has meaning for

β � 0.
Let us start now with the hypotheses on the nonlinearity:

(H0)

�
�
�
�
�
�
��
�
�
�
�
�
�

�
� F

�
(u) � f (u) � C1( � );

� f (u) � 0 � u �
� � 1, � a, 1 � for some a � ( � 1, 1), and f

�
( � 1)

�� 0, f
�
( � a)

�� 0;
� F( � 1) � F(

�
1);

� F(u) � � � as u � � � ;
� for some M � 0 it holds that f

�
(u) � M for all u � � .2

Of course, the prototypical example fa(u) � (u � a)(1 � u2) satisfies (H0) for a � 0. We
remark that the third condition excludes the existence of a standing wave which connects
two different equilibria. The last condition is a technical one, which we use to obtain
certain a priori bounds. Without loss of generality we set

F(u) �
� u

1
f (s)ds,

so that F(1) � 0.
Denote the wave speed by c, and, searching for a travelling wave, we set u(x, t) �

U(x � ct), which, switching to lower case again, reduces (5.2) to the ordinary differential

2Note that f
�
(u) may be unbounded from below.
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equation
cu
� � � u

������� �
βu
��� �

f (u). (5.3)

An important ingredient of our analysis is a conserved quantity for (5.3) when c � 0,
which is a Lyapunov function when c

�� 0. Define

E(u, u
�
, u
���
, u
�����

) def� � u
�
u
����� � 1

2
u
��� 2 � β

2
u
� 2 � F(u). (5.4)

Multiplying (5.3) by u
�
we find that

E
�
(u, u

�
, u
���
, u
�����

) � cu
� 2, (5.5)

so that E , which will be referred to as the energy of the solution, is increasing along orbits
if c � 0, constant if c � 0, and decreasing if c � 0. When we are looking for a solution
of (5.3) connecting u � � 1 to u � 1, we see that we can restrict our attention to c � 0.

The first theorem deals with the connection between the two stable states u � � 1 and
u � � 1. This connection is non-generic with respect to the wave speed c. Noting that
F(u) � 0 for all u � � if f satisfies hypothesis (H0), we define

σ( f ) def� min� 1 � u � � a

� F(u)
2 f (u)2 . (5.6)

Theorem 5.1 Let f satisfy hypothesis (H0) and let β � 1�
σ( f )

. Then, for some wave speed

c � c0( f ) � 0, there exists a travelling wave solution of (5.2) connecting u � � 1 to u � � 1.

The analogous condition on γ for Equation (5.1) reads 0 � γ � σ( f ). We remark that the
theorem also holds when f

�
( � a) � 0, since the (non)degeneracy of u � � a does not play

any role for connections between � 1 and � 1.
At the minimum in (5.6) the equality

� F(u)
2 f (u)2

� � 1
4 f

�
(u) holds. We easily derive that for our

model nonlinearity fa we have σ( fa) � 1
8(1 � a) for all 0 � a � 1. Although this estimate is

sharp for a � 0, it is not sharp at all for larger values of a.
For general nonlinearities f (u) satisfying (H0), a lower bound on σ is

σ � min
� � 1

4 f
�
(u)

�
�
� u � ( � 1, � a) and f

�
(u) � 0

�
. (5.7)

This estimate is often easier to compute than σ itself, but it is in general a rather blunt
estimate. Finally, we remark that the critical value σ is also encountered in the study
of homoclinic orbits for c � 0 (see [116, Theorem B]). This originates from the similarity
of that problem with the proof of Lemma 5.20, which is in fact the only instance in our
analysis where γ is required to be smaller than σ .

We do not obtain much insight in the shape of the travelling wave from Theorem 5.1.
Because Theorem 5.1 does not give information about the wave speed, it is not known
whether the connected equilibrium points are approached monotonically or in an oscillat-
ory manner. The linearised equation around the equilibrium points leads to the following
characteristic equation for the eigenvalues: cλ � � λ4 � βλ � f

�
( � 1). A few conclusions

can be drawn from analysing this equation. It follows that forβ �
� � 4 f

�
(1) the travelling

wave tends to � 1 monotonically as x � � . Besides, for β �
� � 4 f

�
( � 1) the travelling

wave tends to � 1 in an oscillatory way as x � � � . For other cases the behaviour in the
limits depends on the (a priori unknown) value of c.

The travelling wave solution found in Theorem 5.1 connects the two maxima of F.
Theorem 5.1 can be extended to potentials F having many local extrema, i.e. f (u) having
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many zeros. In that case we find a travelling wave connecting the global maximum and
the second largest local maximum of F. The other conditions on F remain the same, but
we also need the sign condition f (u)u � 0 for large values of � u � . The definition of σ in
this case is (setting maxu � � F(u) � 0):

σ( f ) def� inf
� � F(u)

2 f (u)2

�
�
� u ��� and f (u) f

�
(u) � 0

�
.

The travelling wave solution found in Theorem 5.1 connects the two stable states. The
following theorems deal with travelling waves connecting the unstable state u � � a to
one of the stable states u � � 1. These theorems also apply to the parameter regime where
β � 0, but for these parameter values we need an additional condition on f :

(H1) f satisfies (H0) and lim�
u
� � � f (u)

u
� � � .

Theorem 5.2 Let β � � and let f satisfy hypothesis (H0) if β � 0 and (H1) if β � 0.3

Then for every c � 0 there exists a travelling wave solution of (5.2) connecting u � � a to
u � � 1.

The limiting behaviour of the travelling waves can be determined from the character-
istic equations. For β �

� � 4 f
�
( � 1) the solution tends to � 1 monotonically for x � �

regardless of the speed c. On the other hand, for β �
� � 4 f

�
( � 1) the limit behaviour

is oscillatory for small c and monotonic for large c. The limit behaviour near u � � a as
x � � � is more complicated. For small c the behaviour is generically oscillatory, while
for large c the solutions generically tends to � a monotonically. We do not know whether
the behaviour is indeed generic. However, for β �

�
12 f

�
( � a) there is an intermediate

range of c-values for which the travelling wave certainly tends to � a monotonically.
For general potentials F this result applies to any pair of consecutive non-degenerate

extrema u � (a minimum) and u � (a maximum), for which the interval
�
F(u � ), F(u � ) � con-

tains no critical values and either u � or u � is the only critical point at level F(u � ). The
other conditions on F remain the same. The method of proof of Theorem 5.2 requires
only one of the two extrema � 1 or � a to be non-degenerate.

The next theorem deals with the case of travelling waves from � a to � 1.

Theorem 5.3 Let β ��� and let f satisfy hypothesis (H0) if β � 0 and (H1) if β � 0. Then
there exists a constant c � ( f ) � 0, such that for every c � c � there exists a travelling wave
solution of (5.2) connecting u � � a to u � � 1.

Theorem 5.3 extends to general potentials, giving travelling waves between any pair
of consecutive non-degenerate extrema u � (a minimum) and u � (a maximum), provided
the local minimum ũ � on the other side of u � , if it exists, satisfies F(ũ � ) � F(u � ). Of
course, if the opposite inequality holds then one can exchange u � and ũ � . If equality
holds, i.e. F(ũ � ) � F(u � ), then one obtains for every c � c � a travelling wave connecting
either u � or ũ � to u � . Again, the other conditions on F remain the same.

In certain cases one obtains information about the constant c � in Theorem 5.3. In that
case the situation is very much analogous to the second order equation.

3The result also holds when F( � 1) � F( � 1).
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Corollary 5.4 Let f satisfy hypothesis (H0) and letβ � 1�
σ( f )

. Then there exists a c � ( f ) � 0,

such that c � is the largest speed for which there exists a travelling wave solution of (5.2)
connecting u � � 1 to u � � 1. Moreover, for all c � c � there exists travelling wave solution
of (5.2) connecting u � � a to u � � 1.

Finally, we discuss nonlinearities with different behaviour for u � � � . Assume that
f has two zeros and satisfies

(H2)

�
�
�
�
�
�
��
�
�
�
�
�
�

�
� F

�
(u) � f (u) � C1( � );

� f (u) � 0 � u �
�
0, 1 � , and f

�
(0)

�� 0, f
�
(1)

�� 0;
� for some D � 0 it holds that F(u) � F(1) for all u � D;
� F(u) � � � as u � � ;
� if β � 0, then lim �

u
� � � f (u)

u
� � � .

A typical example is f (u) � u(1 � u). The following theorem is analogous to Theorem 5.2.

Theorem 5.5 Let β � � and let f satisfy hypothesis (H2). Then for every c � 0 there exists
a travelling wave solution of (5.2) connecting u � 0 to u � 1.

This last theorem is just an example of how the methods in this chapter can also be
applied when F(u) does not tend to � � as u � � � . The theorem holds under weaker
conditions, but we leave this to the interested reader.

Of the results in this chapter, the proof of Theorem 5.1 is by far the most involved.
This is caused by the fact that connections between local maxima are non-generic with
respect to the wave speed c. Hence, part of the problem is to determine the wave speed c.
The idea behind the proof is that one can detect a change in the phase portrait (in � 4 )
of Equation (5.3) as c goes from small values to large values. In particular, looking for
a travelling wave which connects � 1 to � 1, we investigate the global behaviour of the
orbits in the stable manifold W s(1) of the equilibrium point u � � 1.

The analysis for c � 0 large is based on a continuation argument deforming the non-
linearity f (u) into a function which is linear on some interval containing u � 1. For c � 0
small the analysis is much more involved. A crucial step is that for c � 0 all orbits in W s(1)
are unbounded. A first result in this direction was already proved in Chapter 2. There it
was shown that, for γ not too large, the bounded stationary solutions of (5.1) correspond
exactly to the bounded stationary solutions of the second order equation (γ � 0). This
excludes the existence of bounded orbits in W s(1). However, since the analysis comprises
all bounded solutions, this result is limited to a restricted parameter regime. In particular,
the equilibrium points u � � 1 need to be real saddles. In the present situation we want to
exclude bounded solutions in the stable manifold of u � 1, i.e., we can restrict the analysis
to the energy level E � 0. This allows us to cover a larger range of β-values, to be precise:
β � 1�

σ( f )
. This parameter regime includes cases where both equilibrium points u � � 1

are saddle-foci. To give an example, for our model nonlinearity fa
� (u � a)(1 � u2) with

0 � a � 1 the result from Chapter 2 holds for β �
�

8(1 � a). The equilibrium points u � 1
and u � � 1 become saddle-foci for β �

�
8(1 � a) and β �

�
8(1 � a) respectively. One

may compare this to the estimate σ( fa) � 1
8(1 � a) . Notice that this estimate, although sharp

for a � 0, is very blunt for a close to 1.
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For the description of unbounded orbits we use a modified Poincaré transformation
which we believe is of independent interest. We investigate the unbounded orbits, and
we will show that, in an appropriate compactification of the phase space, these orbits
must converge to a unique periodic orbit lying at infinity in the phase space. The analysis
at infinity largely relies on a global analysis of bounded and unbounded solutions of the
family of equations

u
������� �

us � 0 with the convention that us � � u � s � 1u, s � 1.

This equation is invariant under the scaling u(t) �� κu(κ
s � 1

4 t) for all κ � 0. The analysis
of this equation is in particular used in the proof of finite time blow-up of unbounded
solutions, and, more importantly, to determine the behaviour of unbounded orbits for
0 � c � 1.

From this analysis we conclude that the phase portrait for c positive but small is dif-
ferent from the phase portrait for c large, which in turn is used to prove the existence of a
connection between � 1 and

�
1 for some intermediate wave speed c0.

The organisation of the chapter is as follows. We start with some a priori bounds in
Section 5.2. In Section 5.3 we give the proof of Theorem 5.1, and in the Sections 5.4 to 5.6
the details of this proof are filled in. In particular, in Section 5.4 we perform an analysis
of the flow ‘at infinity’. Sections 5.5 and 5.6 deal with the analysis of the orbits in W s(1)
for small c and large c respectively. Section 5.7 discusses the existence of travelling waves
connecting u � � a to u � � 1; Theorems 5.2 to 5.5 are proved here. We conclude with
some remarks on open problems in Section 5.8.

5.2 A priori estimates
We establish a priori bounds on the wave speed c and the profile u for any travelling wave
connecting � 1 and � 1. The bound on the wave speed c holds for all β ��� .

Lemma 5.6 Let f satisfy hypothesis (H0) and let β � � . There exists a constant c0, de-
pending only on β, F( � 1), F( � a), and the upper bound M for f

�
(u), such that when c � 0

is a speed for which there exists a travelling wave solution of (5.3) connecting � 1 to � 1,
then c � c0.

Proof. Suppose u is a solution of (5.3) connecting � 1 to � 1. Integrating (5.5), we have

� F( � 1) � F(1) � F( � 1) � c
� �

� � u
� 2. (5.8)

Multiplying (5.3) by u
���

and integrating (by parts) we obtain� �
� � u

����� 2 �
β

� �
� � u

��� 2 �
� �

� � ( f (u))
�
u
� �
� �

� � f
�
(u)u

� 2 � M
� �

� � u
� 2 � M

� F( � 1)
c

. (5.9)

Let u1 � ( � a, 1) be defined by

F(u1) � F( � a) � F( � 1)
2

.

There must be points t0, t1 � � , t0 � t1, such that u(t0) � � a, u(t1) � u1 and u(t) �
� � a, u1 �

for t �
�
t0, t1 � . The length of this interval is estimated from below by

(u1
�

a)2 �
� � t1

t0

u
�
(t)dt � 2

� (t1
� t0)2

� t1

t0

u
�
(t)2dt � (t1

� t0)2
� F( � 1)

c
.
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On the one hand, because the energy E increases along orbits, we have� t1

t0

� � u
�����

(t)u
�
(t) � 1

2
u
���
(t)2 � β

2
u
�
(t)2 � dt

�
� t1

t0

�
F( � 1) � F(u(t)) � dt

� (F( � 1) � F(u1))(t1
� t0) � F( � 1) � F( � a)

2
(t1

� t0)

� F( � 1) � F( � a)
2

(u1
�

a)
�

c
� F( � 1)

. (5.10)

We now first restrict to the case that β � 0, and come back to the other case later on.
Using (5.8) and (5.9), we obtain the estimate� t1

t0

� � u
�����

(t)u
�
(t) � 1

2
u
���
(t)2 � β

2
u
�
(t)2 � dt

�
� t1

t0

�
1
2

�
u
�����

(t)2 � u
���
(t)2 � � 1 � β

2
u
�
(t)2 � dt

�
�
M max

� 1
β

, 1 � � 1 � β �
� F( � 1)

2c
. (5.11)

By combining (5.10) and (5.11) we obtain

F( � 1) � F( � a)
2

(u1
�

a)
�

c
� F( � 1)

�
�
M max

� 1
β

, 1 � � 1 � β �
� F( � 1)

2c
.

Since also
F( � 1) � F( � a)

2
� F(u1) � F( � a) � M

2
(u1
�

a)2,

it follows that
c � M

1
3

�
M max

� 1
β

, 1 � � 1 � β �
2
3

� F( � 1)
F( � 1) � F( � a)

.

This completes the proof of the lemma for the case that β � 0.
We now deal with the case β � 0. The first part of estimate (5.11) is replaced by� t1

t0

� � u
�����

(t)u
�
(t) � 1

2
u
���
(t)2 � β

2
u
�
(t)2 � dt

�
� �

� �
�

1
2

u
�����

(t)2 � 1
2

u
���
(t)2 � 1

2
u
�
(t)2 � dt

�
� �

� �
�
u
�����

(t)2 � βu
���
(t)2 � � 1

2
� β � u

���
(t)2 � 1

2
u
�����

(t)2 � 1
2

u
�
(t)2 � dt

�
� �

� �
�
u
�����

(t)2 � βu
���
(t)2 � 4β2 � 4β � 5

8
u
�
(t)2 � dt,

where we have used that 	 �� � u
��� 2 � λ 	 �� � u

����� 2 � 1
4λ
	 �� � u

� 2 for all λ � 0. The remainder of
the proof is the same as above.

�

The L � -bound on the profile u holds for β � 0, or equivalently, for all γ � 0.

Lemma 5.7 Let f satisfy hypothesis (H0) and let β � 0. There exists a constant C1, de-
pending only on β, F( � 1), F( � a), and the upper bound M for f

�
(u), such that when u is,

for some c � 0, a travelling wave solution of (5.3) connecting � 1 to � 1, then F(u) � C1.
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Proof. We may suppose that there is a connection u with range not contained in the
bounded interval

�
u � � � F(u) � F( � a) � , otherwise we already have our desired uniform

bound. Therefore, without loss of generality we may assume that

F(u(0)) � min
t � � F(u(t)) � F( � a). (5.12)

We consider the case where u(0) � � 1 (the case u(0) � 1 is completely analogous).
Since

E(u, u
�
, u
���
, u
�����

)(t) �
�
F( � 1), F(1) � � �

F( � 1), 0 � for all t ��� , (5.13)

we clearly have that

u(0) � � 1, u
�
(0) � 0, 0 � � 2

�
F( � 1) � F(u(0)) � � u

���
(0) �

� � 2F(u(0)).

We now consider two cases: u
�����

(0) � 0 and u
�����

(0) � 0. We start with the latter case. Since
u(t) tends to an equilibrium point as t � � � , there exists a t1 � 0 such that u

�����
(t) � 0 for

t1 � t � 0 and u
�����

(t1) � 0. Equation (5.5) implies that

� u
�
(t)u

�����
(t) � F(u(t)) � F(u(0)) � � 1

2

�
u
���
(t)2 � u

���
(0)2 � � β

2
u
�
(t)2 � c

� t

0
u
�
(s)2ds. (5.14)

By (5.12) we know that F(u(t1)) � F(u(0)), so that

1
2

�
u
���
(t1)2 � u

���
(0)2 � � β2 u

�
(t1)2 � � c

� 0

t1

u
�
(s)2ds.

Since u
���
(t) decreases on (t1, 0) and β is positive, this implies that c � 0, a contradiction.

We now deal with the case that u
�����

(0) � 0. Since u
�������

(0) � 0 by the differential equation,
and since u(t) tends to an equilibrium point as t � � , there exists a t2 � 0 such that
u
�����

(t) � 0 for 0 � t � t2 and u
�����

(t2) � 0. By (5.12) we know that F(u(t2)) � F(u(0)). Since
β � 0, it follows from (5.14) and the fact that u

���
(t) increases on (0, t2), that

β

2
u
�
(t2)2 � c

� t2

0
u
�
(s)2ds � c

� �
� � u

�
(s)2ds � � F( � 1). (5.15)

Furthermore, from the fact that u
���
(t) increases on (0, t2) we infer that

u
���
(0)t � u

�
(t) � u

�
(t2) for t �

�
0, t2 � . (5.16)

On the one hand it follows from (5.15) and (5.16) that β

2 u
�
(t2)2 � c 	 t2

0 u
�
(s)2ds � cu

�
(t2)2t2,

hence
t2 � β

2c
. (5.17)

On the other hand it follows from (5.15) and (5.16) that � F( � 1) � c 	 t2
0 u

�
(s)2ds � 1

3 ct3
2u
���
(0)2.

Combining with (5.17) we thus obtain that

u
���
(0)2 �

� 24c2F( � 1)
β3 .

This gives a bound on u
���
(0)2, because it follows from Lemma 5.6 that the wave speed c is

bounded above by a constant c0
�
β, M, F( � a), F( � 1) � .

Finally, by (5.12) and (5.13) we have

F(u(t)) � F(u(0)) � F( � 1) � 1
2

u
���
(0)2 for all t ��� .

This completes the proof of Lemma 5.7.
�
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5.3 Proof of Theorem 5.1
In this section we give the proof of Theorem 5.1. Some of the major steps, which require
a quite involved analysis, are only stated as a proposition in this section and are proved
in subsequent sections.

We first use the a priori bounds of Section 5.2 to reduce our analysis to nonlinearities
f (u) of the form f (u) � � u3 � g(u), where g(u) has compact support. The advantage of
such nonlinearities is that they behave nicely as u � � � , and it will thus be possible to
analyse the flow near/at infinity.

Let f (u) satisfy hypothesis (H0). Lemma 5.7 implies that there exists a constant C0 such
that any travelling wave solution u connecting � 1 to � 1 satisfies � u � � � C0. Define the
cut-off functionφ � C �0 with 0 � φ � 1,φ(y) � 1 for � y � � C0, andφ(y) � 0 for � y � � C0

�
1.

We now consider the modified nonlinearity f̃ (u) � φ(u) f (u) � u3(1 � φ(u)). Lemma 5.7
ensures that u is a travelling wave solution for nonlinearity f (u) if and only if u is a
travelling wave solution for nonlinearity f̃ (u). Besides, σ( f ) � σ( f̃ ). This shows that we
may restrict our analysis to nonlinearities f (u) such that

f (u) � � u3 � g(u) with g compactly supported, and f satisfies hypothesis (H0). (5.18)

The purpose of the reduction to nonlinearities f which satisfy (5.18) is that it makes it pos-
sible to analyse the orbits which are unbounded. An important property of unbounded
solutions, which we will need in the following, is formulated in the next lemma.

Lemma 5.8 Let f satisfy hypothesis (5.18) and let β, c � � . Then any unbounded solution
of (5.3) blows up in finite time.

This lemma is proved in Section 5.4.5, Theorem 5.18b, and is based on the analysis of the
flow near/at infinity.

As already discussed in the introduction, denote the wave speed by c. For finding a
travelling wave we set u(x, t) � U(x

�
ct), which reduces (5.1) to the ordinary differential

equation (5.3). Written as a four-dimensional system, (5.3) becomes

u
� � v; v

� � w; w
� � z; z

� � βw � cv
�

f (u). (5.19)

The equilibria of this system are (u, v, w, z) � ( � 1, 0, 0, 0), (u, v, w, z) � ( � a, 0, 0, 0) and
(u, v, w, z) � (1, 0, 0, 0) (for short: u � � 1, u � � a and u � 1). To prove Theorem 5.1 we
look for a c

�� 0 and a corresponding heteroclinic orbit of (5.19) connecting u � � 1 to
u � 1. Linearising around u � � 1 we find that, irrespective of c, both u � � 1 and u � 1
have two-dimensional stable and unstable manifolds, denoted by W s( � 1) and Wu( � 1).
Generically Ws(1) and Wu( � 1) will not intersect but varying c we expect to pick up a
non-empty intersection.

We recall that the energy is defined as

E(u, v, w, z) def� � vz
� 1

2
w2 � β

2
v2 � F(u),

where the potential F(u) � 	 u
1 f (s)ds is depicted in Figure 5.1. Since we are looking for a

solution of (5.3) which connects u � � 1 to u � 1, we see from (5.5) that we can restrict our
attention to c � 0. The energy E thus increases along orbits.
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F(u)

u
� 1 � a 1

E0

Figure 5.1: The potential F(u) and the energy level E0 separating u � � a from u � � 1.

To separate the equilibrium point u � � a from u � � 1, we choose an energy level E0

such that (see also Figure 5.1)

F( � a) � E0 � F( � 1) � 0,

and we define the set

K def� �
(u, v, w, z) ��� 4 � E(u, v, w, z) � E0 � . (5.20)

This allows us to formulate the following lemma:

Lemma 5.9 Let f satisfy hypothesis (5.18) and let β � � . If c � 0 is such that W s(1) �
Wu( � 1) � � , then every orbit in Ws(1) enters K through its boundary δK and Γ̂ � Ws(1) �
δK is a simple closed curve. The set of positive c for which this property holds is open
and Γ̂ varies continuously with c.

Proof. In view of (5.5) the intersection of W s(1) and δK must be transverse. Assume that
Ws(1) � Wu( � 1) � � . We need to show that every orbit in W s(1) can be traced back to
δK, for then there is bijection between W s(1) � δK and a smooth simple closed curve in
Ws

loc(1) winding around u � 1 (in Ws
loc(1)). Arguing by contradiction we assume that there

is an orbit in Ws(1) which is completely contained in K. Let u(t) be a solution representing
this orbit. Then u(t) exists on some maximal time interval (tmin, � ). Since u(t) has energy
larger than E0, it follows from (5.5) and (5.20) that� �

tmin

u
� 2 � F(1) � E0

c
� � E0

c
, (5.21)

so that u(t) remains bounded on (tmin, � ) if tmin is finite. Therefore tmin
� � � and, by

Lemma 5.8, u(t) is bounded. It follows from standard arguments that the orbit converges
to a limit as t � � � . Because u � � 1 is the only equilibrium in K with energy less
than the energy of u � 1, we infer that u(t) � Wu( � 1). This contradicts the assumption
that Ws(1) � Wu( � 1) � � . The second statement is an immediate consequence of the
(topological) transversality of W s(1) � δK.

�

It now suffices to show that there is a c � 0 for which the assumption of Lemma 5.9
fails. Again arguing by contradiction, we assume that Lemma 5.9 applies to all c � 0 and
search for a topological obstruction. This requires a description of δK that allows us to
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1� 1 � a
u

z

� � �

small c

la
rg

e
c

Figure 5.2: The projection (in grey) of δK onto the (u, z)-plane. The closed curves which
form the boundary of the grey area are given by Equation (5.22). The other two curves
depict Γ (i.e., the projection of W s(1)

�
δK onto the (u, z)-plane) for small c and large c.

form a global picture of this set. To this end we write δK as (with β � 0)

δK � �
(u, v, w, z) ��� 4

�
�
�
β

2

�
v � 1

β
z � 2 � 1

2
w2 � E0

� F(u) � 1
2β

z2 � .

In Figure 5.2 we have plotted the projection of δK onto the (u, z)-plane. For (u, z) lying
inside one of the two closed curves (see Figure 5.2) defined by

E0
� F(u) � 1

2β
z2 � 0, (5.22)

every (u, v, w, z) belongs to K, hence there are no points in δK with (u, z) lying inside these
two closed curves. For (u, z) lying outside the two closed curves we have that (u, v, w, z) is
in K if (v, w) is outside the ellipse defined by β

2

�
v � 1

β
z � 2 � 1

2 w2 � 0. We conclude that the
projection of δK onto the (u, z)-plane is the region outside the two closed curves defined
by (5.22), see Figure 5.2.

The projection of δK onto the (u, z)-plane maps Γ̂ � Ws(1) � δK, which by assumption
exists for all c � 0, to a closed but not necessarily simple curve Γ in the (u, z)-plane for
which the winding numbers4 n(Γ , � 1) and n(Γ , 1) around (u, z) � ( � 1, 0) and (u, z) � (1, 0)
respectively, are well-defined and independent of c (by continuity). However, the fol-
lowing proposition establishes the configuration depicted in Figure 5.2, contradicting the
assumption that Ws(1) � Wu( � 1) � �

for all c � 0, and thereby completing the proof of
Theorem 5.1.

Proposition 5.10 Let f satisfy hypothesis (5.18).
(a) Let β � 1�

σ( f )
. Then there exists a c � � 0 such that n(Γ , � 1) � 1 and n(Γ , 1) � 1 for all

0 � c � c � .
(b) Let β � � . Then there exists a c � � 0 such that n(Γ , � 1) � 0 and n(Γ , 1) � 1 for all

c � c � .

4We may choose the orientation of the simple closed curve in W s
loc(1) winding around u � 1 in such a way

that its projection onto the (u, z) plane has winding number equal to � 1.
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Part (a) of Proposition 5.10 will be proved in Theorem 5.22 in Section 5.5, while Part (b) is
proved in Section 5.6, Theorem 5.24.

5.4 Classification of unbounded solutions
In this section we investigate the behaviour of unbounded solutions, or in other words,
we analyse the flow at infinity. This analysis is relevant both for the proof of finite time
blow-up of unbounded solutions, and to determine the behaviour of unbounded orbits
for 0 � c � 1. We have argued in Section 5.3 that we may restrict our attention to nonlin-
earities of the form f (u) � � u3 � g(u), where g(u) has compact support. It turns out that
the flow for large u is governed by the reduced equation u

������� �
u3 � 0, i.e., only the highest

order derivative and the highest order term in the nonlinearity play a role at infinity. In
the following sections we investigate the reduced equation, and in Section 5.4.5 we come
back to the full equation.

5.4.1 A modified Poincaré transformation
We analyse the reduced equation

u
������� �

us � 0 with the convention that us � � u � s � 1u, s � 1, (5.23)

and we use this notational convention throughout. Written as a system, (5.23) reads

x
�
1

� x2; x
�
2

� x3; x
�
3

� x4; x
�
4

� � xs
1, (5.24)

where x1, x2, x3 and x4 correspond to u, u
�
, u
���

and u
�����

. Note that for this system the energy
(or Hamiltonian)

H(x1, x2, x3, x4) def� � x2x4
� x2

3

2
� � x1 � s � 1

s
� 1

is a conserved quantity.
Introduce five new dependent variables X1, X2, X3, X4 and X5 � 0 by setting

xi
� Xi

Xai
5

(i � 1, 2, 3, 4), (5.25)

where the exponents ai are to be chosen shortly. Unbounded orbits of (5.24) will cor-
respond to orbits in the new variables with X5 approaching zero. By substituting (5.25)
in (5.24) we obtain the equations

X5X
�
1

� a1X1X
�
5

� X2X1 � a1
� a2

5 ; (5.26a)

X5X
�
2

� a2X2X
�
5

� X3X1 � a2
� a3

5 ; (5.26b)

X5X
�
3

� a3X3X
�
5

� X4X1 � a3
� a4

5 ; (5.26c)

X5X
�
4

� a4X4X
�
5

� � Xs
1X1 � a4

� sa1
5 , (5.26d)

with a fifth equation pending. We choose the exponents in such a way that all the expo-
nents in the right-hand sides of (5.26) are the same, i.e,

b def� 1 � a1
� a2

� 1 � a2
� a3

� 1 � a3
� a4

� 1 � a4
� sa1.

Solving for a1, a2, a3, a4 and b we find

a1
� 4λ; a2

� (s � 3)λ; a3
� (2s

� 2)λ; a4
� (3s

� 1)λ; b � 1 � (s � 1)λ, (5.27)
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where λ is still free and, for the moment, positive. We close system (5.26) by imposing as
a fifth equation

Xs
1X
�
1
�

X2X
�
2
�

X3X
�
3
�

X4X
�
4

� 0. (5.28)

If we multiply (5.26a-5.26d) by Xs
1, X2, X3 and X4 respectively, and add up the resulting

equations, we obtain
PX

�
5

� � 1
λ

QXb
5 . (5.29)

Here we have set

P def� 4 �X1 � s � 1 � (3 � s)X2
2
� (2 � 2s)X2

3
� (1 � 3s)X2

4 , (5.30)

which is non-negative, and

Q def� Xs
1(X2

� X4) � X3(X2
�

X4).

Introducing a new independent variable, we write

Ẋ5
� PX(s � 1)λ

5 X
�
5

� � 1
λ

QX5, (5.31)

where the dot denotes derivation with respect to this new independent variable from
which the old one may be recovered by integration. Thus, combining (5.31) and (5.26),
we arrive at the system

Ẋ1
� X2P � 4X1Q ; (5.32a)

Ẋ2
� X3P � (3 � s)X2Q ; (5.32b)

Ẋ3
� X4P � (2 � 2s)X3Q ; (5.32c)

Ẋ4
� � Xs

1P � (1 � 3s)X4Q . (5.32d)

Note that X5 has been decoupled from the equations. By construction (the choice
of (5.28)) the system (5.32) leaves the surfaces

Σ
def� �

(X1, X2, X3, X4)
�
�
�
�X1 � s � 1

s
� 1

� X2
2

2
� X2

3

2
� X2

4

2
� C0

�
�� S3 (5.33)

invariant for all C0 � 0. The free parameter λ only appears in (5.31) and may be discarded.
The Poincaré transformation (5.25) is used here to blow up the flow near ‘infinity’. As

will be explained in Section 5.4.4 this is equivalent to blowing up the flow near the equi-
librium point u � 0. This blowing-up technique is frequently used in the study of flows in
the neighbourhood of non-hyperbolic equilibrium points (see e.g. [60, 61, 110]). The trans-
formation defined by (5.25) and (5.33) is a variant of the standard Poincaré transforma-
tion, which has a1

� a2
� a3

� a4
� 1 and imposes as fifth equation that X2

1
�

X2
2
�

X2
3
�

X2
4
�

X2
5 be constant, so that the transformed problem is situated on the Poincaré sphere.

The modification presented above, in particular the choice of exponents, is needed to ob-
tain a non-trivial vector field at infinity from which we may derive the qualitative proper-
ties of the flow of the system (5.24) near infinity. The values of the exponents are derived
from the invariance of (5.23) under the scaling u(t) �� κu(κ

s � 1
4 t).

In Equation (5.28) we have chosen not to include a term X5X
�
5 and to modify the ex-

ponent of X1. This simplifies the new vector field and allows the decoupling of the Ẋ5-
equation. Note that instead of a Poincaré sphere we now have a Poincaré cylinder Π ,
namely the topological product of the deformed sphere Σ and the positive X5-axis:

Π
def� �

(X1, X2, X3, X4, X5) � (X1, X2, X3, X4) � Σ , X5 � 0 � �� S3 �
�
0, � ).
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The flow of (5.24) is completely determined by the flow of (5.32) on Σ . Therefore we have
a reduction from dimension 4 for (5.24) to dimension 3 for (5.32). The roles of X5

� 0 and
X5

� � can be reversed by changing from positive to negative λ at the expense of a minus
sign in (5.31).

Remark 5.11 The choice of C0 � 0 in (5.33) is arbitrary, because the flows on all spheres
Σ are C1-conjugated (modulo the introduction of the new independent variable in Equa-
tion (5.31)). This is in fact the very idea of Poincaré transformations, namely that we
divide out the invariance of (5.23) and focus on the resulting flow. From a more abstract
point of view one can construct a flow on the quotient manifold

�
� 4 � �

0 � � �
� � �� S3 via

the scaling invariance u(t) �� κu(κ
s � 1

4 t) ( � � -action), see [109] for more details. Our con-
struction involves explicit choices of coordinates, for which the flows, by general theory,
are all related by conjugation.

To be explicit, let Xi and Yi be two sets of Poincaré coordinates, i.e.,

xi
� Xi

Xai
5

� Yi

Yai
5

for i � 1, 2, 3, 4,

with constraints
�X1 � s � 1

s
� 1

� X2
2

2
� X2

3

2
� X2

4

2
� C0, (5.34a)

�Y1 � s � 1

s
� 1

� Y2
2

2
� Y2

3

2
� Y2

4

2
� C1. (5.34b)

When we define µ � X5
Y5

, then the two sets of coordinates are related by

X5
� µY5 and Xi

� µaiYi for i � 1, 2, 3, 4. (5.35)

Substituting this into (5.34a) we obtain

G(Y1, Y2, Y3, Y4,µ) � µ(s � 1)a1
�Y1 � s � 1

s
� 1

�
µ2a2

Y2
2

2
�
µ2a3

Y2
3

2
�
µ2a4

Y2
4

2
� C0.

Since ∂G
∂µ � 0 for all Yi that obey (5.34b), it follows from the Implicit Function Theorem that

µ(Y1, Y2, Y3, Y4) is a differentiable function. It is now easily seen from (5.35) that Xi and Yi

are related by a C1-conjugacy. Therefore, we may choose the constant C0 according to our
liking to obtain a description of the flow that is most suitable to our needs. �

5.4.2 The flow at infinity
For the analysis of (5.32) we first observe the following.

Lemma 5.12 System (5.32) has no stationary points on Σ for any C0 � 0.

Proof. Since X1
� X2

� X3
� X4

� 0 is excluded we have that P, defined by (5.30), is
positive. Equating the right-hand sides of (5.32) to zero and considering the resulting
equations as linear equations in P and Q, it follows that we can only have solutions if
every determinant of every pair of two equations vanishes. This would give for instance
that

0 � (2 � 2s)X2
3

� (3 � s)X2X4;

0 � 4 �X1 � s � 1 � � (1 � 3s)X2X4.

We conclude that X2X4
� 0 and with any of the Xi

� 0 the others follow immediately.
�
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We next use the conserved quantity to obtain a further reduction from dimension 3 to
dimension 2 for the limit sets of orbits of (5.26) which approach infinity (X5

� 0) or the
origin (X5

� � ). In the new variables the Hamiltonian is

H �
�

� X2X4
� X2

3

2
� �X1 � s � 1

s
�

1
� X

� 4λ(s � 1)
5 .

Denote the first factor of H by H0:

H0
def� � X2X4

� X2
3

2
� �X1 � s � 1

s
� 1

. (5.36)

Since H is a conserved quantity, we conclude that for λ � 0

X5
� 0 � H0

� 0. (5.37)

For the classification of unbounded orbits we have to analyse the flow restricted to the
invariant set given by

T def� �
(X1, X2, X3, X4) � Σ � H0

� 0 �
� �

(X1, X2, X3, X4)
�
�
�
�X1 � s � 1

s
� 1

� X2
2

2
� X2

3

2
� X2

4

2
� C0,

X2
3

2
� X2X4

� �X1 � s � 1

s
� 1

�
.

This set is a topological torus as can be seen by setting

X1
� ξ1; X2

� ξ2
�
ξ4�

2
; X3

� ξ3; X4
� ξ2

� ξ4�
2

, (5.38)

so that, in terms of the ξ-variables,

T � �
(ξ1,ξ2,ξ3,ξ4)

�
�
�

2
s
� 1
�ξ1 � s � 1 � ξ2

2
� ξ2

3
�
ξ2

4
� C0

�
�� S1 � S1. (5.39)

Clearly we have that T is the product of two topological circles, one in the (ξ1,ξ2)-plane,
the other in the (ξ3,ξ4)-plane.

Lemma 5.13 Let s � 1 and fix the constant C0 � 0. Then there exist precisely two periodic
orbits Λ � and Λ � of (5.32) on the torus T.

Proof. The proof is based on the observation that the coefficient Q in (5.31), which after
transforming by (5.38) reads

Q � �
2(ξ s

1ξ4
�
ξ2ξ3), (5.40)

plays a double role. Obviously it determines which parts of infinity attract solutions
towards X5

� 0, in forward and in backward time. We begin by showing that Q can also
be seen as minus the divergence of the vector field restricted to the invariant torus T.
From (5.32) and (5.38) we derive

ξ̇1
� ξ2

�
ξ4�

2
P � 4ξ1Q ; (5.41a)

ξ̇2
� ξ3

� ξ s
1�

2
P � ((2 � 2s)ξ2

� (1 � s)ξ4)Q ; (5.41b)

ξ̇3
� ξ2

� ξ4�
2

P � (2 � 2s)ξ3Q ; (5.41c)

ξ̇4
� ξ3

�
ξ s

1�
2

P � ((1 � s)ξ2
�

(2
�

2s)ξ4)Q . (5.41d)

We parametrise T by ‘polar coordinates’

ξ1
� f1(φ); ξ2

� g1(φ); ξ3
� f2(θ); ξ4

� g2(θ), (5.42)
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T0

T�

T�

T�

T�

T�
θ

φ

Figure 5.3: A fundamental domain of the torus, in which T � , T� and T0 are indicated
(schematically).

satisfying
f
�
1

� � g1; g
�
1

� f s
1 ; f

�
2

� � g2; g
�
2

� f2. (5.43)

Note that when C0
� 1 and s � 1 we just have

ξ1
� cosφ; ξ2

� sinφ; ξ3
� cosθ; ξ4

� sinθ.

From (5.41a), (5.41c), (5.42) and (5.43) we derive that on T the flow is given by: .

φ̇ � P�
2

( � 1 � g2

g1
)
�

4Q
f1

g1

� w1(φ,θ), (5.44a)

θ̇ � P�
2

(1 � g1

g2
)
�

2(s
�

1)Q
f2

g2

� w2(φ,θ), (5.44b)

where in terms of f1, g1, f2, g2,

P � 4(s � 1)C0
� 2(1 � s)g1g2, and Q � �

2( f s
1 g2
�

f2g1).

The functions w1 and w2, defined in (5.44), appear to have singularities, but using (5.39)
they can be written as

w1(φ,θ) � �
2 � � 2(s � 1)C0

� (s � 3)g1g2
� (s � 1)g2

2
� 4 f1 f2

�
,

w2(φ,θ) � �
2 � 2(s

�
1)C0

� (3s
�

1)g1g2
�

(s � 1)g2
1
�

2(s
�

1) f s
1 f2
�
.

Taking the divergence of the vector field w we obtain (using (5.43),

� � w � ∂w1

∂φ
� ∂w2

∂θ
� �

2( � 5 � 3s)( f s
1 g2
�

f2g1) � � (3s
� 5)Q.

Next, we split T into

T� � �
(X1, X2, X3, X4) � Q � 0 � and T � � �

(X1, X2, X3, X4) � Q � 0 � .

These two sets share the boundary

T0
� �

(X1, X2, X3, X4) � Q � 0 � ,

which, in view of (5.39) and (5.40), consists of two topological circles, which both wind
once around the two homotopically distinct simple loops on the torus (see Figure 5.3). We
will show in Lemma 5.14 that, when C0 is chosen properly, an orbit can only pass through
T0 from T� to T� . It then follows from the negativity of � � w in T� and the winding
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properties of T0 on T, that T� contains precisely one periodic orbit. The same statement
holds for T� with respect to the backward flow on T.

To be precise, we deduce from (5.42), (5.43) and (5.39) that we may choose ξ3
� f2(θ) �

�
C0 cosθ. Define the set S def� �

(θ,φ) � T � θ � π
2 � , and it follows that

θ̇

�
�
�
S

� �
2

�
2(s � 1)C0

� (3s
� 1)

�
C0g1

� (s � 1)g2
1 � .

Since � g1 � �
�

C0, it is easy to check that θ̇ � S � 0, and equality only holds at the point
where g1

� �
C0. By continuity arguments the orbit through this point also crosses S in

the direction of increasing θ. Thus S is a global section for the flow on T. Moreover,
the return map is well-defined, since there is no point in T for which the forward orbit
is contained in T � S. Indeed, such a forward orbit would either be contained in T � or
eventually be in T� , because T� is positively invariant and orbits can only pass through T0

from T � to T� . In the absence of equilibrium points (Lemma 5.12) its ω-limit set would
be a periodic orbit. However, there would have to be an equilibrium point inside this
periodic orbit, contradicting Lemma 5.12. Hence the return map is well-defined. The
intersection S � (T�

�
T0) consists of the line segment

�
(θ,φ) � T � θ � π

2 , f1(φ) � 0 � . The
return map maps this line segment into itself, which implies the existence of a periodic
orbit in T� . Similarly there exists a periodic orbit in T � . The return map is contracting
in T� and expanding in T � , since the divergence of the vector field is negative in T� and
positive in T � . This proves the uniqueness of the two period orbits and shows that all
other orbits on the torus T have Λ � asα-limit set and Λ � asω-limit set.

We remark that the same conclusion can be reached by combining the Poincaré-Ben-
dixson theorem for flows on the torus with Morse theory for Morse-Smale flows.

Finally, note that although the preceding proof needs C0 to have a particular value (see
Lemma 5.14 and Equation (5.47)), the statement in Lemma 5.13 is true for any choice of
C0 � 0 (see Remark 5.11).

Another observation is that the linear case s � 1 may be treated by direct computa-
tion, i.e., by transforming the general solution of the then linear equation (5.23) to the
X-variables.

�

We still have to show that an orbit can only pass through T0 from T � to T� .

Lemma 5.14 Let s � 1. There exists a C0 � 0 such that orbits on T can only pass through
T0 in the direction from T � to T� .

Proof. We deduce from (5.40) and (5.41) that

Q̇
�
�
Q � 0

� P
�
�ξ1 � 2s � ξ2

2
�
ξ2

3
�
ξ2

4
� (s �ξ1 � s � 1 � 1)(ξ2

�
ξ4)ξ4

� . (5.45)

Notice that for s � 1, P is positive on T (see (5.30)), thus Q̇ � Q � 0 � 0 on T. For s � 1 we
define R as the second factor on the right-hand side of (5.45) and simplify it using the
expression (5.39) for T:

R def� �ξ1 � 2s � ξ2
2
�
ξ2

3
�
ξ2

4
� (s �ξ1 � s � 1 � 1)(ξ2

�
ξ4)ξ4

� 2C0
� �ξ1 � 2s � 2

s
� 1
�ξ1 � s � 1 � (1 � s �ξ1 � s � 1)(ξ2

�
ξ4)ξ4. (5.46)

From (5.39) we infer that

(ξ2
�
ξ4)ξ4 � ((C0

� 2
s
� 1
�ξ1 � s � 1)

1
2
�

C
1
2
0 )C

1
2
0

� C0(1 � (1 � 2
C0(s � 1)

�ξ1 � s � 1)
1
2 ).
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Fix
C0

� 2
s
� 1

�
1
s
� s � 1

s � 1
, (5.47)

and set
�ξ1 � � x

�
1
s
� 1

s � 1
, where 0 � x � 1.

It follows that

R � 2
s
�

1

�
1
s
� s � 1

s � 1
�
2 � s

� 1
2s

x2s � xs � 1 � (1 � xs � 1)(1 � (1 � xs � 1)
1
2 ) �

� 2
s
� 1

�
1
s
� s � 1

s � 1
�
1 � s

� 1
2s

x2s � xs � 1 � xs � 1 � (1 � xs � 1)(1 � xs � 1)
1
2
�

� 2
s
� 1

�
1
s
� s � 1

s � 1
�
(1 � xs � 1)

1
2

�
(1 � xs � 1)

1
2 � (1 � xs � 1)

1
2 � � xs � 1 � s

� 1
2

x2s � .

Since 0 � x � 1 we see that R � 0 unless x � 0. Looking at (5.46) we infer that R can only
be zero if ξ1

� ξ3
� 0 and ξ2

� ξ4
� � �

C0, or, in terms of the Xi, if X1
� X3

� X4
� 0. By

continuity arguments it follows that also in these two points the orbits go from T � to T� .
Thus, with the particular choice of C0 given by (5.47) we have indeed that T� is positively
invariant and T � is negatively invariant.

�

Having proved the existence of precisely two periodic orbits, Λ � and Λ � , on the torus
T, we analyse some of their properties.

Lemma 5.15 The three non-trivial Floquet multipliers of Λ � are contained in the interval
(0, 1), and the three non-trivial Floquet multipliers of Λ � are contained in the interval
(1, � ).

Proof. Restricted to T the nontrivial Floquet multiplier of Λ � equals (see e.g. [125,
p. 198])

exp
���
Λ �

� � w � � exp
���
Λ �

� (3s
�

5)Q � .

Since Q is uniformly positive on Λ � , this Floquet multiplier lies in the interval (0, 1).
Close to the periodic orbit Λ � we choose φ, θ, X5 and H0 as coordinates on the Poincaré
cylinder Π , where H0 given by (5.36). Since H � H0X

� 4λ(s � 1)
5 is a conserved quantity on

Π , it follows from (5.31) that
Ḣ0

� � 4(s � 1)Q H0.

Together with (5.31) this implies that the other Floquet multipliers are

exp
���
Λ �

� 4(s � 1)Q � and exp
���
Λ �

� 1
λ

Q � ,

which are in (0, 1) as before. Thus Λ � is exponentially stable. The statement for Λ � is
obtained by time reversal.

�

Lemma 5.16 Every orbit (other than Λ � ) on the sphere Σ , has Λ � as α-limit set and Λ �
asω-limit set.

Proof. We have already dealt with the flow on the torus T in Lemma 5.13. Orbits of the
flow on the complement Σ � T of the torus T on the sphere Σ , correspond to solutions
with non-zero Hamiltonian H. Since X5 does not appear in (5.31), the motion on Σ is
independent of X5. Let X5

�� 0, then the dynamics of X5 are governed by (5.32), and the
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motion takes place in the part of the Poincaré cylinder Π that corresponds to the finite
part of phase space in the x-variables. In other words, orbits of the flow on the set Σ � T
correspond to solutions of (5.24) with non-zero Hamiltonian.

Since H � H0X
� 4λ(s � 1)
5 and H0 is bounded on Σ (because Σ is compact), it follows that

for such orbits X5 remains bounded, i.e., in x-variables the solution stays away from the
origin. Thus orbits in Σ � T are bounded in the X-variables and hence have nonempty
invariant α- and ω-limit sets. We have to show that these limit sets can only be the two
periodic orbitsΛ � andΛ � provided by Lemma 5.13. To this end it suffices to show that all
solutions of (5.23) with H

�� 0 are unbounded in forward and backward time, i.e., X5
� 0

along a sequence of points in forward and backward time.
Postponing the proof of the unboundedness of solutions with H

�� 0, we first show
how unboundedness in backward and forward time implies that Λ � and Λ � are the α-
and ω-limit sets. By (5.37) X5

� 0 implies that also H0
� 0. An unbounded orbit thus

comes arbitrary close to the torus T. We choose an open tubular neighbourhood Λε� of
Λ � in T, such that Q � 0 in Λε� . Clearly all orbits starting in T � Λε� tend to Λ � in forward
time. Note that T0

�
T� � T � Λε� . By compactness of T and since Λ � is asymptotically

stable (see Lemma 5.15), there exists an open neighbourhood Tε of T � Λε� in Π such that
all orbits starting in Tε tend to Λ � in forward time. Since an orbit which comes close to
X5

� 0 (and thus close to T), can only do so with non-negative Q, it enters Tε and hence
tends to Λ � . The statement for Λ � follows by time reversal.

We still have to prove that any solution of (5.23) with non-zero Hamiltonian is un-
bounded in forward and backward time. We recall that solutions with H

�� 0 stay away
from the origin. If an orbit would be bounded in backward or forward time, then its
(nonempty) α- or ω-limit set would consisted of bounded orbits, i.e., orbits which are
bounded for all time. However, this is not possible, because it has been proved in [96]
that (5.23) admits no bounded solutions except u � 0. Here we present a different proof
of the fact that (5.23) admits no bounded solutions except u � 0, because we need to ex-
tend this result to more general situations (see Remark 5.17).

Assume, by contradiction, that u
�� 0 is a bounded solution of (5.23). First observe that

if u tends to a limit as t � � � , then this limit can only be 0. It follows that u attains
at least one positive maximum or one negative minimum. Switching from u to � u if
necessary, we may suppose that u attains a positive maximum at t0:

u(t0) � 0, u
�
(t0) � 0, u

���
(t0) � 0.

Changing from t to � t if necessary, we may assume that u
�����

(t0) � 0 and apply an oscilla-
tion argument from Section 2.4, which we repeat here for the sake of completeness. There
exists a t � � t0 such that u

�����
(t) � 0 for t0 � t � t � and u

�����
(t � ) � 0. Using the fact that,

H � � u
�
u
����� � 1

2
u
��� 2 � 1

s
� 1
� u � s � 1

is constant, it follows that u(t � ) � � u(t0) and that the next minimum must occur at t1 � t �

with u(t1) � u(t � ) � � u(t0) and both u
���
(t1) and u

�����
(t1) positive. Repeating this argu-

ment we obtain a sequence t1 � t2 � t3 � . . . , in which u(t) has non-degenerate extrema
with � u(t1) � � � u(t2) � � � u(t3) � � . . . . By assumption these extrema remain bounded, say
limi � � � u(ti) � � a � � � , and the derivatives are bounded as well. A compactness argu-



162 5. Travelling waves

ment now shows that there must be a solution ũ of (5.24) in theω-limit set of u with

ũ(t0) � a, ũ
�
(t0) � 0, ũ

���
(t0) � 0, and ũ

�����
(t0) � 0 at some t0 ��� ,

and such that � ũ(t) � � a for all t � � . However, when we apply the above argument to
ũ we obtain that ũ � � a at the first minimum to the right of t0, a contradiction. This
completes the proof of Lemma 5.16.

�

Remark 5.17 The oscillation argument above will be applied several times in this chapter
to differential equations that differ from the present one. It holds that any solution of (5.3)
with c � 0 and β � 0 which does not have its range contained in�

u ��� � F(u) � F( � a) � ,

oscillates towards infinity either in forward or in backward time in exactly the way de-
scribed above (the additional second order term does not cause any difficulties). For more
details we refer to Section 2.4. �

5.4.3 The reduced system in the linear limit
We have shown in the previous section that for any s � 1 the flow of (5.23) is basically
governed by two periodic orbits at infinity. For the linear equation (s � 1) this was already
observed (in a broader setting) by Palis [110]. The analysis thus shows that the behaviour
for all s � 1 is largely analogous to the linear equation. In this section we make some
observations about the limit s

�
1.

Let us rewrite this system as

Ẋ � V(X; s), X � (X1, X2, X3, X4). (5.48)

Then the vector field V( � , s) is continuously differentiable for every s � 1 and the first
order partial derivatives are bounded on compact sets, uniformly in s � 1. We do not
have that V( � , s) � V( � , 1) in C1

loc because of the term Xs
1 appearing in V, but we do have

that V( � , s) � V( � , 1) uniformly on compact sets. Therefore the orbits of (5.48) with s � 1,
which are bounded uniformly in s in view of (5.33), converge to orbits of (5.48) with s � 1
as s � 1. More precisely, the solution map

(τ ,ξ , s) � X(τ ;ξ , s),

where X(τ ;ξ , s) is the solution X(τ) of (5.48) with X(0) � ξ, is continuous on � � � 4 ��
1, � ). In particular, this implies that the two periodic orbits Λ � and Λ � depend continu-

ously on s for s �
�
1, � ).

In the limit case s � 1 the two periodic orbits on

T � �
(ξ1,ξ2,ξ3,ξ4) � ξ2

1
�
ξ2

2
� ξ2

3
�
ξ2

4
� C0 �

are given by
ξ1ξ3

� ξ2ξ4
� 0, (5.49)

or in terms of (5.42), byφ � θ � � π
2 . This can be seen from a second conservation law that

exists in the linear case: multiplying u
������� �

u � 0 by u
�����

we infer that 1
2 u
����� 2 � uu

��� � 1
2 u
� 2 is

constant. In particular, after transforming to the X-variables,
1
2

X2
4
�

X1X3
� 1

2
X2

2
� 0

is invariant, whence (5.49), which defines two circles on the torus T.
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X5
� 0

X5
� �

Λ � Λ �
� �

� �

Figure 5.4: A schematic view of the flow on the Poincaré cylinder Π for the equa-
tion u

� � � ���
us � 0. The role of X5

� 0 and X5
� � is reversed when λ is negative.

5.4.4 Small solutions

We observed in Section 5.4.1 that the role of X5
� 0 and X5

� � may be reversed. This is
a direct consequence of the scaling invariance of (5.23). Therefore we may also use (5.25)
for the analysis of small solutions to (5.23). The situation is depicted schematically in
Figure 5.4. We simply apply (5.25) with a negative λ so that X5

� 0 corresponds to u � 0.
This only changes the sign in the Equation (5.31) for X5 and means that the orbit Λ � now
lies in the part of X5

� 0 which repels solutions with X5 � 0. Hence the stable manifold
of Λ � is contained in Π �

�
X5

� 0 � . The unstable manifold of Λ � is given by the direct
productΛ � �

�
X5 � X5 � 0 � and has dimension 2. In the original variables it is the unstable

manifold of u � 0 if s � 1 and the center-unstable manifold if s � 1. Likewise, the stable
manifold of Λ � is Λ � � �

X5 � X5 � 0 � , i.e., the direct product of Λ � and the positive X5-
axis. As we have seen in Section 5.4.3, the limit s � 1 is well behaved in the X-variables.

We will use this analysis of the behaviour near the equilibrium point u � 0 in Sec-
tion 5.5 to perform a continuous deformation of the stable manifold for s � 1 to the
center-stable manifold for s � 1. We remark that, based on the similarity of the linear
and nonlinear problem, the equilibrium point u � 0 of (5.23) for s � 1 can be considered
as the nonlinear equivalent of a saddle-focus.

5.4.5 The full system

Applying the Poincaré transformation (5.25) with exponents (5.27) to the full differential
equation (5.3), or more generally, to

x
�
1

� x2; x
�
2

� x3; x
�
3

� x4; x
�
4

� Φ(x1, x2, x3, x4),

we arrive at
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Ẋ1
� X2P � 4X1Q , (5.50a)

Ẋ2
� X3P � (3 � s)X2Q , (5.50b)

Ẋ3
� X4P � (2 � 2s)X3Q , (5.50c)

Ẋ4
� ΨP � (1

�
3s)X4Q , (5.50d)

Ẋ5
� � 1

λ
X5Q , (5.50e)

where
Q � Xs

1X2
�

X4Ψ
�

X3(X2
�

X4), (5.51)

and
Ψ � X4λs

5 Φ

�
X1

X4λ
5

,
X2

X(3 � s)λ
5

,
X3

X(2 � 2s)λ
5

.
X4

X(1 � 3s)λ
5

� ,

In the case of (5.3) we have

Φ(x1, x2, x3) � βx3
� cx2

�
f (x1),

where f (x1) � � x3
1
�

g(x1) with g(x1) compactly supported. With s � 3 and λ � 1
2 we thus

obtain
Ψ � � X3

1
�
βX3X2

5
� cX2X3

5
�

g
�

X1

X2
5

� X6
5 . (5.52)

The last term in (5.52) is C2 and has its derivatives up to second order vanishing in X5
� 0.

The extra terms are thus at least quadratic in X5 for small X5. Therefore the local analysis
near X5

� 0 and in particular the Floquet multipliers of Λ � in the previous section are
completely unaffected. The flow on the sphere Σ at infinity is identical to the flow for the
reduced equation (5.24). Only the flow on Π � Σ is different. Note that in this analysis it
is essential that the exponent s is larger than 1. We have the following theorem (compare
Lemmas 5.13, 5.15 and 5.16).

Theorem 5.18 Let f satisfy hypothesis (5.18) and let β, c � � .
(a) The stable periodic orbit Λ � of (5.32) is an asymptotically stable periodic orbit of the

full system (5.50) with non-trivial Floquet multipliers in (0, 1). Every solution of (5.3)
which is unbounded in forward time corresponds to a solution of (5.50) having Λ �
asω-limit set. A similar statement holds for solutions unbounded in backward time
and Λ � .

(b) Unbounded solutions of (5.3) blow up oscillatorily in finite time.
(c) If c

�� 0 the energy E also blows up.

Proof. By Lemma 5.16 all solutions of (5.50) which lie in the invariant set Π �
�
X5

� 0 � �
Λ � tend toΛ � in forward time. Reminiscent of the proof of Lemma 5.16 we choose a small
negatively invariant open tubular neighbourhood Λε� of Λ � in Π . By compactness of
Π �

�
X5

� 0 � there exists an open neighbourhood Σε of Π �
�
X5

� 0 � � Λε� in Π such that
all orbits with starting point in Σε tend to Λ � in forward time. Clearly every unbounded
solution of (5.3) enters Σε and thus tends to Λ � .

For Part (b) we observe that the exponent b in (5.29) is smaller than 1 so that in the
old time variable X5 can only go to zero in finite time. Finally we have that the energy E
can only remain bounded if its derivative is integrable. For c

�� 0 this implies that u
�

is
square integrable (see (5.5)) and thus u itself is (locally) bounded, which prohibits finite
time blow-up, a contradiction.

�
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Remark 5.19 Theorem 5.18 establishes that large solutions of (5.3) are really described by
oscillating solutions of u

������� �
u3 � 0. Thus large solutions do not “see” the other terms

in (5.3) as they oscillate away to infinity. This is not only true for perturbations of the
form � u3 � g(u) with g compactly supported and smooth, but also for global lower order
perturbations. For such lower order perturbations Theorem 5.18 applies as well. �

5.5 The winding number for small speeds
In this section we prove Part (a) of Proposition 5.10. Before we can prove this theorem
we first need a description of the global behaviour of W s(1) for c � 0. In the following
lemma we show that for β � 1�

σ( f )
all orbits in the stable manifold W s(1) are unbounded,

and, after transforming to the X-variables of Section 5.4, they all have Λ � as α-limit set.
Because all the non-trivial Floquet multipliers of Λ � lie in (1, � ) (see Theorem 5.18a), this
remains true for c � 0 sufficiently small.

Lemma 5.20 Let f satisfy hypothesis (5.18), let β � 1�
σ( f )

and c � 0. Then Ws(1) consists

of unbounded orbits only, all of which connect Λ � to u � 1.

Proof. The proof is a combination of arguments also used in [112]. Any bounded solu-
tion must have its range in the set

V � �
u � � � F(u) � F( � a) � ,

because a solution reaching outside this interval oscillates away towards infinity, as men-
tioned in Remark 5.17. Besides, any bounded solution must have at least one minimum
below the line u � � a, again basically by the same oscillation argument as in the proof
of Lemma (5.15). We now assume, arguing by contradiction, that u is a bounded orbit
in Ws(1). We will show that the range of u is not contained in V, so that u is in fact
unbounded. It then follows from Theorem 5.18 that u tends to Λ � as t � � � .

Thus, suppose that u is a bounded solution in W s(1). Changing from t to � t if neces-
sary we have that in such a minimum (using the fact that E(u, u

�
, u
���
, u
�����

) � 0)

u(t0) � � a, u
�
(t0) � 0, u

���
(t0) � � � 2F(u(t0)) � 0, u

�����
(t0) � 0. (5.53)

We will show that u(t) increases to a value outside V for t � t0, which immediately leads
to a contradiction.

Define an auxiliary function

G(t) def� u
���
(t) � � � 2F(u(t)).

The following line of reasoning is depicted in Figure 5.5. First, G(t0) � 0 and we show
that G(t) � 0 in a right neighbourhood of t0. It is seen from the condition on β and the
observation that f (u) � 0 on ( � � , � 1)

�
( � a, 1), that

f (u) � �
�

� β2

2
F(u) for u � 1. (5.54)

If u
�����

(t0) � 0, then clearly G
�
(t0) � 0, whereas when u

�����
(t0) � 0 then G

�
(t0) � 0, and (since

u
�
(t0) � 0)

G
���
(t0) � u

�������
(t0) � f (u(t0))� � 2F(u(t0))

u
���
(t0) � β

� � 2F(u(t0)) � 2 f (u(t0)) � 0
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u
���

u� 1 � a 1

u
��� � � � 2F(u)

V
Figure 5.5: The (u, u

� �
)-plane with the curve u

� � � � � 2F(u). We have sketched the orbit
of u for t

�
t0, which is discussed in the proof of Lemma 5.20. We have also indicated

the set V, in which every bounded solution has its range.

by the differential equation, and (5.53) and (5.54). Thus G(t) � 0 in a right neighbourhood
of t0.

Second, we show that G(t) � 0 as long as u(t) � 1. We define t1 � t0 as the first max-
imum of u(t) and t2 � t0 as the first point where G(t2) � 0 (a priori, both t1 and t2 may
be � ). Then t2 � t1 since u

���
(t) � 0 as long as G(t) � 0. It now follows from the expres-

sion (5.4) for the energy and by (5.54) that

G
�
(t) � u

�����
(t) � f (u(t))� � 2F(u(t))

u
�
(t)

� 1
2 u
��� 2(t) � F(u(t))

u
�
(t)

�
�
β

2
� f (u(t))� � 2F(u(t)) � u

�
(t)

� 0,

as long as G(t) � 0 and u(t) � 1. Since G(t) � 0 in a right neighbourhood of t0 this implies
that G(t) � 0 and G

�
(t) � 0 as long as u(t) � 1, and thus u(t2) � 1.

Finally, we define t3 � t0 as the first point where u(t) � � a. It is now immediate that
t3 � t2. By the energy expression we have that u

�����
(t) � 0 as long as G(t) � 0, thus u

���
(t2) �

u
���
(t3) �

� � 2F( � a). Combining the inequalities u(t2) � 1 and F(u(t2)) � � 1
2 u
��� 2(t2) �

F( � a), we infer that u(t2) lies outside V, so that u is unbounded. By Theorem 5.18 all
unbounded orbits converge to Λ � .

�

Remark 5.21 Because all the non-trivial Floquet multipliers of Λ � lie in (1, � ) (see The-
orem 5.18a), Lemma 5.20 remains true for c � 0 sufficiently small. �

The following Theorem is equivalent to Proposition 5.10a. We recall that K is defined
in (5.20), and that its boundary δK is a level set of the energy.

Theorem 5.22 Let f satisfy hypothesis (5.18) and let β � 1�
σ( f )

. For F( � a) � E0 � F( � 1)

let K be defined by (5.20) and let W s(1) be the stable manifold of the equilibrium u � 1.
Then, provided c � 0 is sufficiently small, W s(1) � δK is a topological circle. Its projection
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Γ on the (u, u
�����

)-plane winds exactly once around a disk containing both closed curves
defined by E0

� F(u) � 1
2βu

����� 2 � 0 (see also Figure 5.2), i.e., n(Γ , � 1) � n(Γ , 1) � 1.

Proof. Our strategy is to deform f (u) in several steps to the pure cubic � u3 and let β
go to zero. We have to do this in such a way that for each intermediate f the conclusion
of Lemma 5.20 remains valid. All orbits in the stable manifold W s(1) thus tend to Λ �
in backward time, and this remains true during the entire deformation process. At the
end of the deformation process we arrive at the reduced equation u

������� �
u3 � 0. We then

use the analysis performed in Section 5.4 to find a precise description of the orbits in
Ws(1). Finally, we obtain the results of Theorem 5.22 for the original equation (5.3) via
continuation arguments.

Recall that f (u) � � u3 � g(u) with g having compact support, say g(u) � 0 for all
� u � � C0. Taking C0 sufficiently large, define the cut-off function φ � C �0 with 0 � φ � 1,
φ(y) � 1 for � y � � C0, andφ(y) � 0 for � y � � C0

� 1.

Step 1. First deform f (u) to a function which changes sign at u � 1 only. Let

fλ(u) � f (u) � λ(u � 1)φ(u).

For λ large enough, say λ � λ0, the function fλ(u) has a zero at u � 1 only.

Lemma 5.23 Let β � 1�
σ( f )

and replace f (u) by fλ(u). Then for all λ �
�
0,λ0 � the stable

manifold Ws(1) consists of unbounded orbits only, all of which connect Λ � to u � 1.

Proof. Let λ1
� inf

�
λ � fλ(u) � 0 for all u � 1 � . For any λ � λ1 the argument is exactly the

same as in the proof of Lemma 5.20, where we use the following generalised definition
of σ :

σ( fλ) � min
� � F(u)

2 f (u)2

�
�
� u � 1 and f (u) � 0

�
.

Note that σ( fλ) � σ( f0) for 0 � λ � λ1, since fλ(u) and � Fλ(u) are increasing in λ for all
u � 1. For λ � λ1 the result also holds, but by a different and less restrictive oscillation
argument, which applies to any f (u) with a single zero at which it goes from positive to
negative, and all β � 0. We already used this in the proof of Lemma 5.16; the argument
showing that every solution u

�� 1 oscillates towards infinity is almost identical (for β � 0
the second order term does not cause any difficulties). This completes the proof of the
lemma.

�

Continuing with the proof of Theorem 5.22, we change f to f 1 def� fλ0 by letting λ go
from 0 to λ0. This leaves the local structure near X5

� 0, and in particular near Λ � , unaf-
fected (see Section 5.4.5).

Step 2. We change f 1(u) � � u3 � g1(u) with g1(u) � g(u) � λ0(u � 1)φ to f 2(u) def� � u3(1 �
φ) � (u � 1)φ. Using the deformation functions

fλ(u) � � u3(1 � φ(u)) � (1 � λ)( � u3φ(u) � g1(u)) � λ(u � 1)φ(u),

we let λ go from 0 to 1, thus continuously deforming f 1 into f 2. All orbits in Ws(1) are still
unbounded and tend to Λ � as t � � � during this deformation, since fλ(u) has a single
zero at which it goes from positive to negative (see the proof of Lemma 5.23).

Step 3. It is now easy to shift the zero to the origin. Define

fλ(u) � � u3(1 � φ(u)) � (u � (1 � λ))φ(u).
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Letting λ change from 0 to 1 deforms f 2 into f 3 def� � u3(1 � φ) � uφ. Since we have shifted
the origin we now have Ws(0) instead of Ws(1). All orbits in Ws(0) are still unbounded
and tend to Λ � as t � � � .

Step 4. Next we let β go to zero. The stable manifold W s(0) changes smoothly and the
local structure near Λ � again remains unaffected because β only appears in terms quad-
ratic in X5. For β � 0 we have arrived at the equation

u
������� � f 3(u) � 0, with f 3(u) � � u3(1 � φ) � uφ.

Step 5. We change f 3 using a family of functions

fs(u) � � u3(1 � φ) � usφ.

Letting s increase from s � 1 to s � 3 we obtain a function f 4(u) def� u3. We note (see
Section 5.4.4) that for s � 1 the manifold W is the center-stable manifold of 0. Here we
use Section 5.4.3 to conclude that in this process W changes continuously, with the orbits
in manifold W � Wcs(0) still tending to Λ � in backward time.

By Sections 5.4.1 and 5.4.4 we have that, after going through Steps 1–5, W is the
product of Λ � and the X5-axis, i.e. W � Λ � � �

X5 � X5 � 0 � . In view of the non-trivial
Floquet multipliers of Λ � being in (1, � ), it holds that for any small ε � 0 there exists a
negatively invariant tubular neighbourhood Λε� of Λ � in Π with

Λε� �
�
X � (X1, X2, X3, X4, X5) � Π � d(X,Λ � ) � ε � .

We can choose this neighbourhood such that

Λε� �
�
X5

� ε � � �
(X1, X2, X3, X4) � Λ � , X5

� ε � . (5.55)

Besides, we can choose Λε such that the flow for our final equation u
������� �

u3 is transverse
to δΛε� . Moreover, for ε � 0 sufficiently small, we can choose Λε such the flow is trans-
verse to δΛε� for every intermediate f (u) and β in the deformation process of Steps 1–5
above, hence also for the original equation (5.3) with c � 0.

For any given r � 0 we can choose ε � 0 so small that the projection Γε of W � δΛε� on
the (x1, x4)-plane (or, equivalently, on the (u, u

�����
)-plane) is a curve with minimal distance

to the origin at least r. To see this, we observe that the solution of (5.23) represented by
Λ � cannot have a point where u � u

����� � 0, for in such a point also u
��� � 0 in view of the

energy E being zero. This would contradict the fact that Q � 0 on Λ � . Thus in the X-
variables Λ � is uniformly bounded away from (X1, X4) � (0, 0), so that for any r � 0 we
can find an ε � 0 such that the projection of Λε� on the (u, u

�����
)-plane has a distance larger

than r from the origin. Therefore, the winding numbers around u � � 1 of the projection Γε
of W � δΛε� on the (u, u

�����
)-plane are well-defined for ε sufficiently small.

It follows from (5.55) that for our final equation u
������� �

u3 � 0 we have

W � δΛε� � �
(X1, X2, X3, X4, X5) � (X1, X2, X3, X4) � Λ � , X5

� ε � ,

so that, choosing r large, n(Γε, � 1) � n(Γε, 1) � 1. By continuity the winding numbers
of Γε do not change if we reverse Steps 1–5, and again by continuity arguments and Re-
mark 5.21 this remains true for c � 0 sufficiently small.

Finally, for our original equation (5.3) we know that, tracing back orbits in W s(1) until
they hit δΛε� , their energy E remains close to 0, provided we keep c � 0 sufficiently small.
Thus Ws(1) � δK is contained in Λε� for small c � 0. Following Ws(1) � δΛε� backwards
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along the flow to Ws(1) � δK (which is a transverse intersection for c � 0), we see that the
winding numbers n(Γ , � 1) of the projection of W s(1) � δK are also 1. This completes the
proof of Theorem 5.22.

�

5.6 The winding number for large speeds
In this section we prove Part (b) of Proposition 5.10:

Theorem 5.24 Let f satisfy hypothesis (5.18) and let β � � . For c � 0 sufficiently large
the intersection of the stable manifold W s(1) of u � 1 and the boundary δK of K is a
smooth simple closed curve, which projects on a closed curve Γ in the (u, z)-plane with
n(Γ , � 1) � 0 and n(Γ , 1) � 1.

Proof. We first prove the theorem for a deformation of f (u). We choose the nonlinearity
f̃ (u) to satisfy

f̃ (u) � f
�
(1)(u � 1) in a neighbourhood Bε(1) of u � 1.

For this deformed nonlinearity f̃ we compute the energy Ẽ on a closed curve in W̃ �
Ws(1) winding once around u � 1 with u-values contained in Bε(1). The equation is now
linear near u � 1, and the characteristic equation

� µ4 � βµ2 � f
�
(1) � cµ

has two eigenvalues � µ1 and � µ2 with negative real part (recall that f
�
(1) � 0). For c � 0

large enough µ1 and µ2 are real, and asymptotically

µ1 � c
1
3 and µ2 �

� f
�
(1)

c
as c � � . (5.56)

Since the equation is linear, W̃ is given by (for c large enough)

W̃ � �
(u, v, w, z) � u � u(t) � 1 � A1e � µ1t � A2e � µ2t, v � u

�
(t), w � u

���
(t), z � u

�����
(t) � (5.57)

We may choose a curve S1 � W̃ around u � 1 parametrised byφ �
�
0, 2π), by taking t � 0

and A1
� r cosφ, A2

� r sinφ in (5.57) for some fixed r � 0. The projection of S1 on the
(u, u

�����
)-plane is given by

�
(u, z) � u � 1

�
r(cosφ

�
sinφ), z � � r(µ3

1 cosφ
�
µ3

2 sinφ), 0 � φ � 2π � .

The energy on S1 is given by

� E �
� �

0
cu
�
(t)2dt � c

� �
0

(A1µ1e � µ1t � A2µ2e � µ2t)2dt

� c(
A2

1µ1

2
� 2A1A2µ1µ2

µ1
�
µ2

� A2
2µ2

2
) � cµ2(

A2
1µ1

2µ2

� 2A1A2µ1

µ1
�
µ2

� A2
2

2
). (5.58)

Using (5.56) and estimating (5.58) from below we have, for c sufficiently large,

E � f
�
(1)
4

r2 � 0 on S1.

Thus, choosing an energy level 0 � Ẽ0 � f
�
(1)
4 r2, we have that S1 lies in the complement of

K. Let S̃ � W̃ � δK̃. Then S̃ lies inside S1 and is obtained by tracing solutions in (5.57) of
the linear equation forwards in time (starting on S1) until they enter K̃. It follows that S1

and S̃ wind around u � 1 in W̃ exactly once and therefore its projection Γ̃ on the (u, z)-
plane winds once around (u, z) � (1, 0).
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The calculations above only involve u-values between 1 � r
�

2 and 1 � r
�

2 so we
may change the definition of f̃ (u) outside this range. In particular, taking r small, we may
choose f̃ (u) such that F̃(u) has a minimum F̃( � a) � Ẽ0 and a maximum F̃( � 1) � (Ẽ0, F̃(1)),
with � 1 � � a � 1 � r

�
2. Clearly Γ̃ does not wind around the point (u, z) � ( � 1, 0).

We continuously deform f̃ to f and Ẽ0 to E0, keeping the above configuration, and
taking c large enough as to stay within a class of nonlinearities for which there does not
exist a connection between u � � 1 and u � 1 (see Lemma 5.6). By continuity we still have
that n(Γ , � 1) � 0 and n(Γ , 1) � 1.

�

5.7 Travelling waves connecting an unstable to a
stable state

In this section we focus on travelling waves that connect the unstable state u � � a to one
of the two stable states u � � 1. As in the proof of Theorem 5.1 in Section 5.3 we begin by
reducing to nonlinearities f which satisfy (5.18).

To obtain the necessary bound for β � 0 we fix c � 0 and simply follow the argument
in the proof of Lemma 5.7 with F( � 1) replaced by F( � a) (for connections from � a to � 1),
or by F( � 1) � F( � a) (for connections from � a to � 1).

By different methods it is also possible to prove a priori bounds in the case that β � 0.
Applying a result by T. Gallay [71] to the present context we obtain the following. Let
f satisfy (H1), i.e. lim �

u
� � � f (u)

u
� � � , and fix c � 0. Then for any β � � there exists

a constant C0 such that any travelling wave solution u(t, x) � U(x � ct) of (5.1) satisfies� u ��� � C0. The constant C0 only depends on β and m def� sup
� � u � : f (u)

u � � Dβ � , where
Dβ � 0 is a constant which depends on β only.

The idea is to consider Φy(t) � 	 �� � hy(x)u2(t, x)dx, where hy(x) � 1
1 � (x � y)2 . Using the

differential equation (5.1) one obtains an estimate of the form dΦy

dt � A0
� Φy for some

constant A0 independent of y and t (A0 only depends on β and m), henceΦy(t) � A0
�

Φy(0)e � t. Defining Ψ (t) � supy � � Φy(t) one derives that for travelling waves Ψ is inde-
pendent of t, hence Ψ � A0. Combining with the fact that 	 �� � ( du

dx )2dx � F(
�

1) � F( � a)
c , one

then obtains an L � -bound on u.5

Thus, for every c � 0 there exists a constant C0 � 0 such that any solution of (5.3)
connecting � a to � 1 satisfies � u � � C0. This a priori estimate implies that we may replace
f by f̃ (u) � φ(u) f (u) � u3(1 � φ(u)), where the cut-off function φ � C �0 is such that 0 �
φ � 1, φ(y) � 1 for � y � � C0, and φ(y) � 0 for � y � � C0

� 1. As in Section 5.3 it holds
that u is a travelling wave solution with speed c for nonlinearity f (u) if and only if u is a
travelling wave solution with speed c for nonlinearity f̃ (u).

The above argument shows that, looking for travelling waves, we may as well assume
that f satisfies (5.18). The next theorem thus proves Theorem 5.2.

Theorem 5.25 Let f satisfy hypothesis (5.18) and let β ��� . For every c � 0 there exists a
solution of (5.3) connecting u � � a to u � � 1.

5With a little bit more effort the estimate can be made uniform in c.
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Proof. For all c � 0 we have that the three equilibria are hyperbolic and

dim Ws( � 1) � dimWu( � 1) � 2, dimWu( � a) � 3, dim Ws( � a) � 1.

Travelling wave solutions connecting u � � a and u � � 1 correspond to a nonempty in-
tersection of Wu( � a) and Ws( � 1). Recall that

E(u, u
�
, u
���
, u
�����

) � � u
�
u
����� � 1

2
u
��� 2 � β

2
u
� 2 � F(u), where F(u) �

� u

1
f (s)ds,

satisfies (5.5). We take F( � 1) � E1 � F(1) and consider the set

K̃ � �
(u, v, w, z) � E(u, v, w, z) � � vz

� 1
2

w2 � β
2

v2 � F(u) � E1 � .

Now suppose that for some c � 0 the theorem is false. Then all orbits in Wu( � a) have
to leave K̃ through δK̃, because an orbit with bounded energy has no other choice than to
converge to an equilibrium, see the proof Lemma 5.9, and u � � 1, the only equilibrium
in K̃ with energy larger than E( � a, 0, 0, 0), is excluded by assumption. Thus we have that
the intersection of Wu( � a) and δK̃ is homeomorphic to a 2-sphere S2.

For the moment we consider the case that β � 0. Since δK̃ is given by

β(v � z
β

)2 � w2 � 2E1
� 2F(u) � z2

β
, (5.59)

we may deform it smoothly into
�
(u, v, w, z) � u2 � z2 � 1

�
v2 � w2 � ,

which defines a 3-manifold homeomorphic to � 2 � S1. As deformations we use

(λβ
�

1 � λ)(v � λ z
β

)2 � w2 � G(u,λ)
�

(1 � λ � λ
β

)z2,

with λ running from 1 to 0, and G(u, 1) � 2E1
� 2F(u) and G(u, 0) � � 1 � u2. Singularities

can only appear in points on these manifolds where dG
du

� v � w � z � 0 and can thus be
avoided by the choice of E1.

It follows that δK̃ is homeomorphic to � 2 � S1, or, equivalently, to the open solid torus.
The intersection Wu( � a) � δK̃, being homeomorphic to S2, divides δK̃ into two compon-
ents, one bounded and homeomorphic to an open ball in � 3 , the other unbounded. This
division is in fact not completely straightforward. One needs to lift (a neighbourhood of)
Wu( � a) � δK̃ to the universal covering space � 3 of K̃ and show that the unbounded part
of the complement of the countable union of lifts is path-connected. Using the fact that
the intersection Wu( � a) � δK̃ is induced by a flow, one can invoke the generalised Schoen-
flies theorem (see [30, Theorem 19.11]) to conclude that one lift of Wu( � a) � δK̃ divides � 3

into an unbounded and a bounded component, which is homeomorphic to an open ball.
Besides, the bounded components of the countable infinity of lifts can be contracted to
points. The unbounded component (the complement of the countable union of bounded
components) is thus homeomorphic to � 3 � � , hence path-connected6.

Now consider the piecewise smooth 3-manifold formed by the disjoint union of the
point ( � a, 0, 0, 0) and Wu( � a) � K̃ and the bounded component of δK̃ � (Wu( � a) � δK̃).

6We gratefully acknowledge several discussions with H. Geiges. He showed us that, via the Jordan-
Brouwer separation theorem and an inductive Mayer-Vietoris argument, the division of δK̃ into two com-
ponents can also be derived without using the extra information provided by the flow.
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This 3-manifold is homeomorphic to two closed three-dimensional balls sharing an S2,
namely Wu( � a) � δK̃, as boundary and is therefore homeomorphic to an S3. By the
Jordan-Brouwer theorem this 3-manifold divides � 4 to two components, one bounded,
the other unbounded. We notice that the bounded component is negatively invariant.
Clearly both components contain exactly one of the two orbits which together form the
stable manifold Ws( � a). Now consider the orbit in W s( � a) contained in the bounded
component (which is negatively invariant). Since its energy is bounded we may, again by
the argument in the proof of Lemma 5.9, conclude that, tracing it backwards, it must go
to an equilibrium with energy less than the energy of u � � a. Since such an equilibrium
does not exist, we have arrived at a contradiction.

The cases β � 0 and β � 0 are similar, the only changes being that we deform δK̃,
given by (5.59), to u2 � v2 � 1

�
z2 � w2 if β � 0, and that for β � 0 we rewrite δK̃ as

� 2vz
�

w2 � 2E1
� 2F(u), which deforms into � 2vz

�
w2 � � 1 � u2 or 1

2 (v � z)2 � u2 �
1
2 (v � z)2 � w2 � 1. This completes the proof of the theorem.

�

Remark 5.26 In the proof of Theorem 5.25 above we have used the non-degeneracy of the
equilibrium point u � � a, while u � � 1 may degenerate (i.e. f

�
( � 1) � 0). The theorem

also holds when u � � a is degenerate and u � � 1 is non-degenerate; in this case the
argument in the proof of Theorem 5.27 below can be used. If F( � 1) � F(1) one also applies
the proof of Theorem 5.27, see Remark 5.28. �

Next we prove Theorem 5.3. Let

c � def� inf
�
c̃ � 0 � there is no connection from � 1 to � 1 for c � c̃ � .

From Lemma 5.6 we see that c � is well-defined, and c � � 0 for β � 1�
σ( f )

by Theorem 5.1.

The argument at the beginning of this section shows that, in order to prove Theorem 5.3,
we may restrict to nonlinearities f which satisfy (5.18). If c � � 0, then it follows from
Lemma 5.9 that for c � c � there exists a solution of (5.3) which connects � 1 to � 1. The
following theorem thus proves both Theorem 5.3 and Corollary 5.4.

Theorem 5.27 Let f satisfy hypothesis (5.18) and let β � � . For every c � c � there exists
a solution of (5.3) connecting u � � a to u � 1.

Proof. We consider the stable manifold W � W s(1) of u � 1. We have shown in The-
orem 5.24 that for c � 0 large enough the intersection of W and the boundary δK of K
(defined in (5.20)) is a smooth simple closed curve which projects on a closed curve Γ in
the (u, z)-plane with n(Γ , � 1) � 0 and n(Γ , 1) � 1. It follows from the definition of c � and
Lemma 5.9 that, by continuity, this remains true for all c � c � . Now fix c � c � .

Let us assume by contradiction that there is no connection between u � � a and u � 1.
The intersection between W and δK depends continuously on the energy level E as long as
we do not encounter an equilibrium point. Assuming there is no connection between u �

� a and u � 1, we let E decrease from F( � 1) � E0 � F( � a) to E2 � F( � a). The projection
Γ in the (u, z)-plane then depends continuously on E, as do the winding numbers, so that
n(Γ , � 1) � 0 and n(Γ , 1) � 1 for all E0 � E � E2. However, for the energy level E2 we have
that ( � 1, 0) and (1, 0) lie in the same component of the complement of the projection of δK
onto the (u, z) plane. Therefore n(Γ , � 1) � n(Γ , 1), a contradiction.

�
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Remark 5.28 When F( � 1) � F( � 1) then the same method shows that there exist travel-
ling waves connecting u � � a to u � � 1 and connecting u � � a to u � � 1 for all c � 0
and all β � � . Besides, as already noted in Remark 5.26, the method in the proof of The-
orem 5.27 can be used to obtain an alternative proof of Theorem 5.25. �

Finally, we prove Theorem 5.5 which deals with nonlinearities with two zeros (and a
different behaviour for u � � � ).

Theorem 5.29 Let β � � and let f satisfy hypothesis (H2). For every c � 0 there exists a
solution of (5.3) connecting u � 0 to u � 1.

Proof. Since the shape of the nonlinearity differs significantly from the one considered
so far, we cannot invoke Lemma 5.9 directly. Besides, we find a priori bounds via a
slightly different method.

Let D def� sup
�
ũ � 0 � F(u) � 0 on ( � � , ũ) � . Travelling wave solutions connecting 0 to 1

satisfy u � D, since it follows from (5.4) and (5.5) that u can have no extremum in the
range u � D (at an extremum one would have E � F(1), which is impossible). Therefore,
we may without loss of generality replace f by any function f1 for which f1(u) � f (u) for
u � D, and f1(u) � 0 for u � D. We choose f1 such that f1(u) � u for u � D � 1.

Now that we have a bound from below, we can also obtain a bound from above. As
was just explained, a connecting solution of (5.3) is also a solution of (5.3) with f1 replaced
by any f2 for which f2(u) � f1(u) for all u � D � 1. We choose f2(u) � � u3 for u � D � 2,
and argue as at the beginning of this section to conclude that there exists a uniform bound� u ��� � C0 on all travelling wave solutions. We may thus replace f1 by a function f3 for
which f3(u) � f1(u) for u � C0 and f3(u) � � u3 for u � C0

� 1. We conclude that u is a
travelling wave solution with speed c for nonlinearity f (u) if and only if u is a travelling
wave solution with speed c for nonlinearity f3(u).

In the following we therefore assume, without loss of generality, that f (u) � u for
u � D � 1, and f (u) � � u3 for u � C0

� 1.
We now follow the argument in the proof of Lemma 5.9. However, we cannot use

Lemma 5.8 to show that orbits in W s(1) which are completely contained in K, are bounded.
Instead, we argue as follows. Suppose, by contradiction, that an orbit u(t) in W s(1) is
completely contained in K and is unbounded. As in the proof of Lemma 5.9 it follows
from Equation (5.21) that u(t) exists for all t � � . There are now two possibilities: either
u(t) � D � 1 for all t � � , or there exists some t0 � � such that u(t0) � D � 1. First we deal
with the latter case.

Since u(t) cannot attain an extremum in the range u � D (see above), it follows that
u(t) is increasing for t � t0. Hence u(t) obeys, for t � t0, the linear equation cu

� � � u
������� �

βu
��� �

u. Since u is unbounded as t � � � , it follows that u � � a0e � a1t � o(1) for some
a0, a1 � 0 as t � � � . By substituting this into Equation (5.21) a contradiction is reached.

Next we deal with the case where u(t) � D � 1 for all t � � . Clearly u(t) is a solution
of (5.3) with f replaced by any function f̃ for which f̃ (u) � f (u) for all u � D � 1. We
choose f̃ (u) � � u3 for u � D � 2, and it follows from Lemma 5.8 that u blows up in finite
time, a contradiction.

Having circumvented the problem in the proof of Lemma 5.9 we conclude that for
F(0) � E0 � F( � 1) the intersection of the stable manifold W of u � � 1 and the boundary
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δK of K (defined in (5.20)) is a smooth simple closed curve which projects on a closed
curve Γ in the (u, z)-plane with n(Γ , 1) � 1.

The rest of the argument is analogous to the proof of Theorem 5.27. Assuming that
there is no connection between u � 0 and u � 1, the final contradiction is now obtained
by the fact that n(Γ , 1) � 0 for E2 � F(0).

�

5.8 Concluding remarks
The most apparent open problem concerns the range of β-values for which a travelling
wave connecting � 1 to

�
1 exists. For some examples it can be shown that such a trav-

elling wave does not exist for all β � � . The more general question whether for any
nonlinearity satisfying (H1) a bound β � � � exists such that there are no travelling waves
for β � β � remains open.

Regarding the uniqueness of the various travelling wave solutions not much is known.
For large β (i.e γ � 0) the travelling wave connecting � 1 to � 1 may be expected to
be unique (analogous to the limiting second order case). The results in [34] show that
uniqueness does not hold for fa(u) � (u � a)(1 � u2) with a small when β �

�
8. Equa-

tion (5.1) with f (u) � u � u3 admits an abundance of standing wave solutions for 0 � β ��
8. It has been proved in [34] that these solutions can be perturbed to travelling waves

for fa(u) with small a and small c � c(a). Since this can be done for any standing wave,
an infinite family of solution curves in the (a, c)-plane passing through the origin is thus
obtained.

The method used in this chapter does not give any information about the shape of
the solution. For example, we would like to know for which values of β the solution is
monotone. Since we do not know the value of c for which a traveling wave occurs, we
in general do not even know whether the connected equilibrium points are approached
monotonically or in an oscillatory manner.

Finally, the question arises to what extent the travelling wave solution is of importance
to the dynamics of the PDE. It might be a limit profile for a broad class of initial condi-
tions as is the case for the second order equation [68]. Since travelling waves connecting
u � � a to u � � 1 exist for large ranges of c, it would also be interesting to know which
of these waves is generally encountered. In [53, 62] the wave selection mechanism has
been investigated for a propagating front which is formed from localised initial data (i.e.,
u
�

a is localised). Using the physically motivated assumption that the linearised equa-
tion (around u � � a) drives the system, it is argued that for β �

�
12 f

�
( � a) one of the

travelling waves is selected (and the wave speed is calculated), while for β �
�

12 f
�
( � a)

the propagating front is argued not to have a fixed profile. However, the only rigorous
stability result that we know of, is of a perturbative nature [130] (i.e. β very large) and
moreover it does not answer the question of the selection of the wave speed.



Chapter 6

Multi-bumps via the shooting method

6.1 Introduction
In this chapter we present new families of global branches of single and multi-bump
periodic solutions of the fourth order equation

d4u
dx4

�
q

d2u
dx2

�
u3 � u � 0, q ��� . (6.1)

This equation arises in a variety of problems in mathematical physics and mechanics. As
an important example we mention that (6.1) describes stationary solutions of the Swift-
Hohenberg (SH) equation:

∂U
∂t

� �
�
1 � ∂2

∂x2
� 2

U
�
αU � U3, α � 0. (6.2)

Equation (6.2) was first introduced by Swift & Hohenberg [137] in studies of Rayleigh-
Bénard convection, and was proposed by Pomeau & Manneville [126] as a good descrip-
tion of cellular flows just past the onset of instability. Of particular interest in these stud-
ies was the formation of stationary periodic patterns, and the selection of their wave-
lengths. For further references about the SH equation we refer to the book by Collet
& Eckmann [47] and the survey by Cross & Hohenberg [52]. If α � 1, then stationary
solutions U of Equation (6.2), when suitably scaled, are readily seen to be solutions of
Equation (6.1). Specifically, U and u are related through

u(x) � 1�
α � 1

U((α � 1) � 1
4 x) and q � 2�

α � 1
. (6.3)

It is clear from (6.3) that in this example, q only takes positive values. An example where q
takes negative values, is the Extended Fisher-Kolmogorov (EFK) equation [49, 53],

∂U
∂t

� � γ ∂4U
∂x4

� ∂2U
∂x2

�
U � U3, γ � 0,

which yields (6.1) if we set

u(x) � U(γ � 1
�
4x) and q � � 1�

γ
.

Equation (6.1) also arises as the Euler-Lagrange equation of variational problems in-
volving functionals with second order gradients, such as in the study of period selec-
tion in cellular flows [126] or layering phenomena in second order materials [99, 46, 106].
We mention in particular in this context the governing equation of a strut [86, 138] with
stiffness EI under an axial compression P and subjected to a load Q(y):

EIy(iv) � Py
��� �

Q(y) � 0.

Here y denotes the deflection of the strut in a direction perpendicular to its axis.
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Figure 6.1: Folding of a stiff layer in a ductile material (reproduced from [129]).
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The investigation in this paper is part of a study of complex patterns in physics and
mechanics in the description of which Equation (6.1) plays an important role. A typical
example of such a pattern is the phenomenon of localised buckling in mechanics. In this
type of buckling, the deflections are confined to a small portion of the otherwise unper-
turbed material. In Figure 6.1 we give an example of such a pattern due to Ramsay [129].
It shows the effect of compression on a layered material in which the layers have dif-
ferent stiffness. Because the stiffer layer (black, in the center) will not contract as easily
as the more ductile material that surrounds it, the stiff layer deflects sideways and pro-
duces folds. Patterns are described by bounded solutions of Equation (6.1) on the real
line. Thus, mathematically this study amounts to an investigation of the different types
of bounded solutions Equation (6.1) possesses.

In recent years a great deal has been learnt about the structure of the set of bounded
solutions of Equation (6.1) on the real line. It turns out to depend very much on the
value of the parameter q. In particular, one can identify two critical values of q: �

�
8

and � �
8. At these values the linearisation around the constant solutions u � � 1, i.e. the

points P� � ( � 1, 0, 0, 0) in (u, u
�
, u
���
, u
�����

) phase space, changes character, as indicated in
Figure 6.2.

For q � � �
8, the set of bounded solutions is very limited, and consists (modulo trans-

lations) of a one parameter family of single bump periodic solutions, which are even with
respect to their extrema and odd with respect to their zeros, and two heteroclinic orbits
or kinks, connecting P� and P� (see Chapter 2 and [117, 120]); both are odd, one is strictly
increasing and one is strictly decreasing. Because we shall often need to refer to it, we
denote the odd increasing kink for q � � �

8 byϕ(x).



6.1. Introduction 177

As q increases beyond � �
8 the set of bounded solutions becomes much richer. It

has been proved that for � �
8 � q � 0 it includes a great variety of multi-bump periodic

solutions, heteroclinic orbits and homoclinic orbits to P� and P� , as well as chaotic solu-
tions. For detailed results we refer to [90, 89, 118, 119, 120]. For q � 0 the results are more
tentative and incomplete: although numerical studies for Equation (6.1) [19] and related
equations [35, 43] suggest an abundance of bounded solutions in this parameter range as
well, much of this still remains unproved.

The aim of this chapter is to investigate the existence and qualitative properties of
multi-bump periodic solutions of Equation (6.1). By this we mean here solutions which
have more than one critical point in each period. When q lies in a right neighbourhood of

� �
8, then all local extrema of the periodic solutions lie near the constant solutions u �

� 1, and solutions have transitions between these uniform states. In this regime the term
‘multi-bump’ corresponds to the way it is commonly used in dynamical systems theory.
However, as q moves away from � �

8, local extrema are no longer tied to u � � 1, and
it is not easy to identify the transitions. However, we shall still describe such solutions
as multi-bump periodic solutions. Thus, this work extends previous results [120, 106]
in which the properties of single bump periodic solutions were studied. In particular, we
will investigate the existence and global behaviour of families of odd and even, single
and multi-bump periodic solutions which bifurcate from the strictly increasing kinkϕ at
q � � �

8. Odd solutions may also be even with respect to some of their critical points.
On the other hand, by even solutions we mean solutions, which are not odd with respect
to any of their zeros. Below we indicate some of our findings:

1. We obtain a family of periodic solutions, bifurcating from the kink ϕ at q � � �
8

and extending to infinity, i.e., these solutions exist for all q � � �
8 (see Figure 6.3a).

The family consists of a countable infinity of distinct periodic solutions. The simplest
examples of these are shown in Figures 6.4-6.6. In the bifurcation diagram we graph
the supremum norm M � � u ��� against q.

2. In addition, another pair of families, both consisting of a countable infinity of distinct
periodic solutions, are proven to exist for q � ( � �

8, 0 � . These solutions continue to
exist for some, but not all, positive values of q. Numerical evidence suggests that the
solutions from both families pairwise lie on loops in the (q, M) plane (see Figure 6.3b),
of which the projection on the q-axis is of the form ( � �

8, q � � , and one solution lies
on the top of the loop while the other solution lies on the bottom. At q � � 0 the two
solutions coalesce.

3. Finally, we find a third kind of periodic solutions. These again come as a family
of countable many distinct periodic solutions which bifurcate from the kink ϕ at
q � � �

8. However, this family does not extend to infinity nor do they lie on loops.
Instead, our numerical results indicate that these periodic solutions bifurcate from
the constant solution u � 1 as q tends to a critical value qn (see Figure 6.3c) which is
of the form

qn
� �

2
�
n
� 1

n
� , n � 1, 2, . . . . (6.4)

Note that q1
� �

8, that qn � 1 � qn for every n � 1, and that qn
� � as n � � . For

n � 2 these solutions come in pairs. Graphs of some of them are shown in Figures 6.8,
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Figure 6.3: The three types of bifurcation graphs: (a) Type 1; (b) Type 2; (c) Type 3.

6.9 and 6.11. The critical values qn arise when the moduli of the eigenvalues of the
linearisation around u � 1 are a multiple of one another. Further details of the deriv-
ation of (6.4) are given in Section 6.5 (see also [42]).

Samples of the bifurcation curves in the (q, M) plane of these three types of solutions are
shown in Figure 6.3.

Equation (6.1) admits a first integral, often referred to as the energy,

E
�
u � def� u

�
u
����� � 1

2
(u
���
)2 � q

2
(u
�
)2 � F(u),

where1

F(u) � 1
4

(u2 � 1)2.

The energy E
�
u � is constant if u is a solution. For the solutions u(x) � ϕ(x) and u(x) � 1

it is clear that E
�
u � � 0. In this chapter we focus on branches of periodic solutions which

bifurcate from either u � ϕ or u � 1 or both. This motivates us to consider solutions
which have zero energy, that is for which

E
�
u � � 0. (6.5)

In constructing periodic solutions, we make extensive use of symmetry properties of
solutions: if a � � is a point where u

� � 0 as well as u
����� � 0, then thanks to the reversibility

of Equation (6.1), it is easily verified that u is even with respect to a:

u(a � y) � u(a
�

y) for all ��� .

Also, since the function F is even, it follows that if b ��� is a point where u � 0 as well as
u
��� � 0, then u is odd with respect to b:

u(b � y) � � u(b � y) for all � � .

We begin with a brief summary of previous results [120, 106] in which the existence of
two families of single-bump periodic solutions u � and u � was proved.

Theorem 6.1 For every q � � �
8 there exist two periodic solutions u � and u � of Equa-

tion (6.1) such that E
�
u � � � 0. Both u � and u � are odd with respect to their zeros and

even with respect to their critical points, and

M � � max
�
u � (x) � x ��� � � 1 and M � � max

�
u � (x) � x ��� � � 1.

1Note that in this chapter the potential F(u) is defined with the opposite sign compared to Chapter 1.
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Figure 6.5: Small and large single bump periodic solutions (q � 1).

We denote these two families of solutions by

Γ � � �
u � ( � , q) � q � � �

8 � .

Numerical computations of these branches made with AUTO [57] are shown in Figure 6.4.
As will be done throughout this chapter when depicting solution branches, we set q along
the horizontal axis and the supremum norm of the solution,

M def� � u � � ,

along the vertical axis. Graphs of u � and u � made with Phaseplane [65] are given in
Figure 6.5.

The two families Γ � and Γ � will be used to construct families of multi-bump periodic
solutions of greater complexity. We shall characterise these solutions by the critical points
and the critical values of their graphs. We label the positive critical points corresponding
to local maxima by

�
ξk � and the positive critical points corresponding to local minima by�

ηk � . For odd solutions with u
�
(0) � 0 these points satisfy

0 � ξ1 � η1 � ξ2 � . . . .

In fact, since � u(x) is a solution whenever u(x) is, we will assume throughout that u
�
(0) �

0 for odd solutions. For even, non-constant solutions such that E
�
u � � 0, we find that

u(0) ��� � � � 1, 1 � . In this case u
�
also has infinitely many positive zeros and these satisfy

0 � ξ1 � η1 � ξ2 � . . . if u
���
(0) � 0,

0 � η1 � ξ2 � η2 � . . . if u
���
(0) � 0.

Starting from the solutions u � and u � , we use a shooting technique to obtain a count-
able family of odd multi-bump periodic solutions which also exists on the entire q-interval

� �
8 � q � � . The solutions of this family obey the rule that all their local maxima lie
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Figure 6.6: The branches T2 and T3, and corresponding solutions at q � 1.5: (b) the
solution on T2; (c) the solution on T3.
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Figure 6.7: Loop-shaped branch and odd periodic solutions at q � � 1
10 . The solution in

(b) is on the lower part of the loop.

above u � � 1 and all their local minima lie below u � � 1. However, the first point of sym-
metry ζ is an exception: at such a point u(ζ) lies below u � � 1 if it is a maximum, and above
u � � 1 if it is a minimum:

u(ζ) � � 1 if ζ � ξk for some k � 1,
u(ζ) � � 1 if ζ � ηk for some k � 1.

We denote by TN the branch of odd periodic solutions of this family, of which the N th

critical point ζN is the first point of symmetry:

TN
� �

u( � , q) � q � � �
8, u( � , q) is symmetric with respect to ζN � .

In Figure 6.6 we give the numerically computed branches T2 and T3, as well as specific
solutions which lie on T2 and T3 at q � 1.5. In Section 6.3 the precise result for this family
is formulated in Theorem 6.16.

In addition to these branches which exist on the entire q-interval ( � �
8, � ), we prove

the existence of a second family of odd periodic solutions on ( � �
8, 0 � . They exist in pairs,

and our numerical experiments indicate that they lie on loop shaped branches, which
extend well into the regime q � 0. An example of such a loop, together with the cor-
responding two solutions, is given in Figure 6.7. For this particular family, the solutions
are symmetric with respect to η1 with � 1 � u(η1) � 1. The precise description of these
solutions is given in Theorems 6.17 and 6.19.

The techniques used to prove the existence of these solutions for � �
8 � q � 0 have

been developed in [120, 118, 119]. In the present chapter we show how to obtain several
families of single and multi-bump periodic solutions via this method. However, we do
not aim at completeness, and there are many more branches of periodic solutions that
can be established using this technique for � �

8 � q � 0 (see also [118, 119]) than those
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Figure 6.8: Branch of even single bump periodic solutions. The solution at q � � 2 and
q � 2 are depicted in (b) and (c) respectively.

presented here. We are not able to extend this existence proof to the regime q � 0. An
essential difficulty seems to be that the solutions cease to exist at a coalescence point q � ,
which is different for every branch of solutions.

A different method for proving the existence of periodic solutions with energy E
�
u � �

0 in the regime � �
8 � q � 0 has been presented in [89]. There, a minimisation proced-

ure is used to obtain periodic solutions both with and without symmetry with respect
to a zero or an extremum. Since only the minimisers of an associated functional are con-
sidered, the variational method establishes (for example) the existence of only one of the
two solutions in Figure 6.8.

In Sections 6.4, 6.5 and 6.6 we turn to even periodic solutions of Equation (6.1). Here
we find a third type of branching phenomenon: solutions existing on finite q-intervals of
the form ( � �

8, qn), still bifurcating from the kink ϕ at the lower end, and according to
numerical evidence, also bifurcating from the constant solution u � 1 at the top end. Our
results here extend those obtained in our analysis [121] of the equation

u(iv) � c2u
��� �

eu � 1 � 0,

proposed in [97] in connection with the study of travelling waves (with speed c) in sus-
pension bridges. Concerning even single bump periodic solutions of (6.1) we prove the
following existence theorem:

Theorem 6.2 For every q � ( � �
8,

�
8) there exists a periodic solution u of Equation (6.1),

such that E
�
u � � 0, which is even with respect to all its critical points, with the property:

� 1 � min
�
u(x) : x ��� � � � 1 � max

�
u(x) : x ��� � .

Two such solutions, at q � � 2 and q � � 2, are shown in Figure 6.8b,c, and the branch of
solutions on which they lie is presented in Figure 6.8a.

In order to formulate our results about even multi-bump periodic solutions we need to
introduce the notion of an n-lap solution. If u is an even periodic solution for which all
the critical points are local maxima or minima, we say that u is an n-lap solution if it is
symmetric with respect to its nth critical point, so that its graph will have 2n monotone
segments in one period. Recall that qn

� �
2(n
� 1

n ).

Theorem 6.3 For each n � 2 there exist two families of even periodic n-lap solutions when
q � ( � �

8, qn). At the points of symmetry, ζn, we have

u(ζn) � 1 for every n � 1.
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Figure 6.9: Two even periodic 2-lap solutions at q � 2: (a) on the upper branch Γ2a; (b) on
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Figure 6.10: Branches of even periodic 2-lap solutions, and a blowup at q2.

For n � 2 and n � 3, and q � ( � �
8, qn) it is possible to show in addition that the critical

values of the solutions all lie in the interval ( � 1, 1) with the exception of the point of
symmetry, and, if the solution is symmetric with respect to a minimum, its neighbouring
maxima. Note that the case n � 1 is discussed in Theorem 6.2, and corresponding 1-lap
solutions are shown in Figure 6.8.

In Figure 6.9 we present two 2-lap solutions and in Figure 6.10 we show the branches
of the two solutions, as well as a blowup near the point (q, M) � (q2, 1).

In Figure 6.10, the solutions on the upper branch Γ2a satisfy u
���
(0) � 0 and are sym-

metric with respect to ξ2. Along the lower branch Γ2b the solutions satisfy u
���
(0) � 0 and

are symmetric with respect to η1. Thus, both branches consist of 2-lap solutions. The
existence of these solutions is proved in Theorem 6.33.

Corresponding results for 3-lap solutions are presented in Figures 6.11 and 6.12. Solu-
tions on the upper branch Γ3a satisfy u

���
(0) � 0 and are symmetric with respect to ξ2. On

the lower branch Γ3b the solutions satisfy u
���
(0) � 0 and are symmetric with respect to η2.

Thus both branches consist of 3-lap solutions. The existence of these solutions is proved
in Theorem 6.36.

It is interesting to note the difference in the local behaviour of the solution branches
near the points (q2, 1) and (q3, 1) in the (q, M)-plane (see Figures 6.10 and 6.21). Although
a detailed analysis of this local behaviour is beyond the scope of this chapter, we do
present a local analysis of the branches Γ2a and Γ2b near (q2, 1). This yields the angles θa

and θb between the branches Γ2a and Γ2b and the q axis at (q2, 1). They are given by

tanθa
� 2

�
2

3
and tanθb

� �
�

2
3

.

In addition to the branches of n-lap solutions extending over ( � �
8, qn), which bifurc-
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Figure 6.12: Branches of even periodic 3-lap solutions, and a blowup at q3.

ate at q � � �
8 and at q � qn, it is possible to construct branches of even periodic solutions

which bifurcate at q � � �
8 and at q � qm,n, where

qm,n
� �

2
�

n
m
� m

n
� , m, n � 1. (6.6)

In this chapter we do not study these solution exhaustively, but merely prove the exis-
tence of two branches of 3-lap periodic solutions which connect q � � �

8 and q � q2,3.
This is done in Theorem 6.37.

As an example of the general phenomenon we present in Figures 6.13 and 6.14 solu-
tions which lie on the branches that bifurcate at q � qm,5 for m � 1, 2, 3, 4. In each case only
solutions on one of the two branches bifurcating from each bifurcation point are shown.
All depicted solutions are at q � 2. Without going into details, we observe that n is the
number of monotone laps, while m is the number of laps that cross the constant solution
u � 1 (between two points of symmetry).

The organisation of the chapter is the following. In Section 6.2 we introduce some
notation and recall the important properties of critical points obtained in earlier papers
[117, 118, 119, 120, 121]. In Section 6.3 we establish the existence of several families of odd
periodic solutions, some of which exist for all q � � �

8 and some on finite q-intervals
only. In Section 6.4 we begin our analysis of even periodic solutions with a discussion of
the interval � �

8 � q �
�

8. After a brief section on the local behaviour of solutions near
u � 1, this study is continued in Section 6.6 for values of q in the interval ( � �

8, q3). In
this interval it is possible to obtain information about the location of the critical values of
the solution graphs thanks to a Comparison Lemma which is valid for � �

8 � q � q3. In
Section 6.7 we study the local behaviour of solution branches near q2, and in Section 6.8
we establish of families of periodic solutions with an arbitrary large number of laps (The-



184 6. Multi-bumps via the shooting method

|
|

8

1.25

1.50

| || | |

PSfrag replacements

x

u

M

q

Im

Re
Γ

Γ

Γ1

Γ2a

Γ2b

Γ3a

Γ3b

Γ2,3a

Γ2,3b

Γ1,5

Γ2,5

Γ3,5

Γ4,5

T2

T3

q1

q2

q3

q4

q2,3

q1,5q2,5q3,5q4,5

Figure 6.13: Four branches of periodic 5-lap solutions. See Figure 6.14 for the shape of
the solutions.

||

−11.1

1

−1

11.1

PSfrag replacements

x

u

M
q

Im

Re
Γ

Γ

Γ1

Γ2a

Γ2b

Γ3a

Γ3b

Γ2,3a

Γ2,3b

Γ1,5

Γ2,5

Γ3,5

Γ4,5

T2

T3

q1

q2

q3

q4

q2,3

q1,5

q2,5

q3,5

q4,5

(a)

||

−11.5

1

−1

11.5

0

PSfrag replacements

x

u

M
q

Im

Re
Γ

Γ

Γ1

Γ2a

Γ2b

Γ3a

Γ3b

Γ2,3a

Γ2,3b

Γ1,5

Γ2,5

Γ3,5

Γ4,5

T2

T3

q1

q2

q3

q4

q2,3

q1,5

q2,5

q3,5

q4,5

(a)

(b)

||

−12

1

−1

12

0

PSfrag replacements

x

u

M
q

Im

Re
Γ

Γ

Γ1

Γ2a

Γ2b

Γ3a

Γ3b

Γ2,3a

Γ2,3b

Γ1,5

Γ2,5

Γ3,5

Γ4,5

T2

T3

q1

q2

q3

q4

q2,3

q1,5

q2,5

q3,5

q4,5

(c)

||

−13.2

1

−1

13.2

0

PSfrag replacements

x

u

M
q

Im

Re
Γ

Γ

Γ1

Γ2a

Γ2b

Γ3a

Γ3b

Γ2,3a

Γ2,3b

Γ1,5

Γ2,5

Γ3,5

Γ4,5

T2

T3

q1

q2

q3

q4

q2,3

q1,5

q2,5

q3,5

q4,5

(c)

(d)

Figure 6.14: Periodic 5-lap solutions on branches (see Figure 6.13) that bifurcate at q �

qm,5 for (a) m � 1; (b) m � 2; (c) m � 3; (d) m � 4. All solutions are at q � 2.

orem 6.3). In Section 6.9 we conclude with the rather technical proof of the Comparison
Lemma used in Section 6.6.

6.2 Critical points
To establish the existence of new families of periodic solutions we shall further develop
the topological shooting method established in [120, 118, 119, 121]. For this, we begin
with a summary of the key properties of critical points in Lemmas 6.4, 6.6 and 6.9. Then,
in Lemma 6.12, we prove a new global result. Finally, Lemmas 6.13 and 6.14 summa-
rise two previously obtained global results. These properties will allow us to extend our
shooting method and enables us to obtain further families of solutions and more detailed
information about their qualitative properties.

The solutions we discuss in this chapter will be either even or odd, and thus we shall
study Equation (6.1), which we restate here for convenience:

u(iv) � qu
��� �

u3 � u � 0, (6.7)
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and supply appropriate initial conditions. When looking for odd solutions we impose the
conditions

u(0) � 0, u
�
(0) � α, u

���
(0) � 0, u

�����
(0) � β, (6.8a)

and when looking for even solutions we set

u(0) � α, u
�
(0) � 0, u

���
(0) � β, u

�����
(0) � 0. (6.8b)

In both cases we shall assume that the first integral is zero, i.e.

E
�
u � def� u

�
u
����� � 1

2
(u
���
)2 � q

2
(u
�
)2 � 1

4
(u2 � 1)2 � 0. (6.9)

This means that the constants α and β are related by

β
def� β(α) �

�
�
�
��
�
�
�

� � qα
2

� 1
4α

(α
�� 0) for odd solutions,

� 1�
2
�α2 � 1 � for even solutions.

(6.10a)

(6.10b)

For brevity we denote problem (6.7), (6.8a), (6.9), (6.10a) by Problem A and prob-
lem (6.7), (6.8b), (6.9), (6.10b) by Problem B. We observe that if u is a solution of Equa-
tion (6.7), then so is � u. Therefore, when discussing odd solutions of Problem A, we
restrict our attention to solutions with a positive initial slope, i.e.α � 0.

For any given α � � � there exists a unique local solution of Problem A and for any
given α � � there exists a unique local solution of Problem B. In both cases we denote it
by u(x,α). The critical points of the solution graphs of u(x,α), that is the zeros of u

�
(x,α),

will play a pivotal role in the construction and classification of the different families of
periodic solutions. Below we summarise the most important properties of these points.
They were derived in [117, 118, 119, 120, 121].

We begin with a preliminary lemma which implies that all critical points are isolated.

Lemma 6.4 ([120]) Suppose that u is a non-constant solution of (6.1) such that E
�
u � � 0,

and that u
�
(x0) � 0 at some x0 ��� .

(a) If u
���
(x0) � 0 then u(x0) � � 1 and u

�����
(x0)

�� 0.
(b) If u(x0) � � 1 then u

���
(x0) � 0 and u

�����
(x0)

�� 0.

Lemma 6.4 implies that, unless u is a constant solution, we can number the critical
points of the graph of u(x,α). We denote the positive local maxima by ξk and the minima
by ηk with k � 1, 2, . . . . At inflection points these points coincide. To start the sequences,
we need to distinguish two cases:

(i) u
�
� 0 in (0,δ) and (ii) u

�
� 0 in (0,δ),

for some small δ � 0.
Case (i): When u

�
� 0 in a right-neighbourhood of the origin, we define

ξ1
� sup

�
x � 0 � u � � 0 on

�
0, x) � . (6.11a)

If u
���
(ξ1) � 0 we set

η1
� sup

�
x � ξ1 � u

�
� 0 on (ξ1, x) � . (6.11b)

When u
���
(ξ1) � 0, and so u(ξ1) � 1 by Lemma 6.4, we set

η1
� ξ1. (6.11c)
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Case (ii): When u
� � 0 in a right-neighbourhood of the origin, we skip ξ1 and define

η1
� sup

�
x � 0 � u � � 0 on

�
0, x) � . (6.11d)

In (6.11) we have defined the first terms in the sequences
�
ξk � and

�
ηk � in both cases. We

can now continue formally to larger values of k. For k � 2 we define

ξk
�
�

sup
�
x � ηk � 1 � u � � 0 on (ηk � 1, x) � if u

�
� 0 in (ηk � 1,ηk � 1

�
δ1),

ηk � 1 otherwise,
(6.12a)

where δ1 is some small positive number. Similarly, we set

ηk
�
�

sup
�
x � ξk � u � � 0 on (ξk, x) � if u

� � 0 in (ξk,ξk
�
δ2),

ξk otherwise,
(6.12b)

in which δ2 is some small positive number. It is readily seen that

ξk � ηk � ξk � 1, k � 1. (6.13)

We will make extensive use of the following observation:

Remark 6.5 If u is a non-constant solution, then one of the inequalities in (6.13) must be
strict. To see this, suppose that ξk

� ηk. Then, because the zeros of u
�

are isolated by
Lemma 6.4, it follows from (6.12b) that u

�
� 0 in a right-neighbourhood of ξk, so that u

has an inflection point atξk, where u
�����
� 0. Hence by (6.12a) ηk � ξk � 1. On the other hand,

if ηk
� ξk � 1, then by Lemma 6.4 and (6.12a) u

�
� 0 in a right-neighbourhood of ξk, and u

has an inflection point at ηk, where u
����� � 0. Therefore by (6.12b)ξk � ηk. In particular, this

implies that ξk � ξk � 1 and ηk � ηk � 1 for every k � 1. �

In the following lemma we present the important continuity properties of the critical
points. In particular, we emphasise that, as α changes, critical points are preserved and
cannot disappear by coalescing with one another.

Lemma 6.6 ([118, 120]) Suppose that q � � �
8. For everyα � I, where I � � � in Problem

A, and I � � � � � 1, � 1 � in Problem B, and for every k � 1,
(a) ξk(α) � � and ηk(α) � � ;
(b) u

�
(ξk(α),α) � 0 and u

�
(ηk(α),α) � 0;

(c) ξk � C(I) and ηk � C(I).

Remark 6.7 In [118, 120], Lemma 6.6 has been proved for solutions of Problem A. For
solutions of Problem B the proof is similar (see also [121]). �

Remark 6.8 For odd solutions we have the following result: if q � � �
8, then there exists

a unique value α0 � 0 for which the corresponding solution u(x,α0) tends monotonically
to 1 (the kink), so that ξ1(α0) � � and the sequence

�
ξk � is not well defined [117]. �

In order to proceed with the construction of new families of periodic solutions with
complex structure, we need to determine the precise local behaviour of u(ξk) and u(ηk)
when they cross the level u � 1 or u � � 1 as α changes. This is the subject of the next
lemma.

Lemma 6.9 ([118, 121]) Let q ��� . Suppose that for some k � 1

u(ξk) � 1 and u
���
(ξk) � 0 atα � α � ,
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and for some δ � 0
u(ξk(α),α) � 1 for α � � α � α � � δ.

(a) If u
�����

(ξk) � 0 atα � , then there exists an ε � 0 such that

u(ξk(α),α) � u(ηk(α),α) � 1 for α � � α � α � � ε.

(b) If u
�����

(ξk) � 0 atα � , then there exists an ε � 0 such that

u(ξk(α),α) � u(ηk � 1(α),α) � 1 for α � � α � α � � ε.

Remark 6.10 In [118], Part (a) of Lemma 6.9 was first proved for q � 0, and in [121] this
restriction on q was subsequently removed. The proof of Part (b) is completely analogous
to that of Part (a). A similar result applies when u(ξk) and u(ηk) cross the line u � � 1 from
below, or when u(ξk) and u(ηk) cross the line u � � 1 from above or below. �

Remark 6.11 It is clear from Lemma 6.9 that critical values cross the lines u � � 1 in pairs.
This is a property which we shall very much exploit in Section 6.8. �

The next three lemmas give important global properties of solutions of Equation (6.1).
The first one applies to solutions which have a critical point on the line u � 1 or on u � � 1.
Thus, let u be a solution of Equation (6.1), and let a � � be a critical point where u has the
following properties:

u(a) � 1, u
�
(a) � 0, u

���
(a) � 0 and u

�����
(a) � 0. (6.14)

Then u
�
� 0 in a right-neighbourhood of a so that the point

b � sup
�
x � a � u � � 0 on (a, x) �

is well defined. By Lemma 6.6 it is also finite. We now derive some properties of u and
its derivatives at b.

Lemma 6.12 Suppose that

� �
8 � q � q3

� �
2
�
3 � 1

3
� .

Let u be a solution of Equation (6.1) which at a point a � � has the properties listed
in (6.14). Then

u(b) � 1, u
�
(b) � 0, u

���
(b) � 0 and u

�����
(b) � 0. (6.15)

The proof of Lemma 6.12 is given in Section 6.9. This result will play an important role in
the analysis of n-lap periodic solutions given in Section 6.6.

The second lemma applies to solutions for which 0 � u � 1�
3

at a critical point, and
yields properties of the subsequent maxima and minima. We emphasise that it is only
valid for non-positive values of q.

Lemma 6.13 ([119]) Suppose that � �
8 � q � 0. Let u be a solution of Equation (6.1) on �

such that E
�
u � � 0, and let for some a ���

0 � u(a) � 1�
3

, u
�
(a) � 0, u

���
(a) � 0 and u

�����
(a) � 0.

Then
� u � �

�
2 whenever u

� � 0 on (a,ω).

Here
�
a,ω) is the maximal interval in

�
a, � ) on which u exists.
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We conclude with a universal bound for bounded solutions.

Lemma 6.14 ([119] or Lemma 2.27) Suppose that � �
8 � q � 0. Let u be a solution of

Equation (6.1) which is uniformly bounded on � . Then

� u � � �
�

2.

6.3 Odd periodic solutions
In this section we investigate the existence and qualitative properties of odd periodic solu-
tions of Equation (6.1) for which E

�
u � � 0. In previous studies (cf. Chapter 2 and [120]) it

was shown that for q � � �
8 there are no such odd zero energy periodic solutions. How-

ever, for q � � �
8 odd zero energy periodic solutions do exist. In fact, it was proved

in [120] that as q increases from � �
8, two families of odd, single bump periodic solutions

emerge as the result of a bifurcation from the unique increasing kink ϕ which exists at
q � � �

8, and it was shown in [120] and [106] that they continue to exist for all q � � �
8. A

precise description of these results is given below in Theorem 6.15. As we shall see, these
families of single bump periodic solutions will form a basis for our topological shooting
arguments, which lead to the construction of multi-bump periodic solutions with a more
complicated structure.

Theorem 6.15 For every q � � �
8 there exist two odd periodic solutions u � and u � of

Equation (6.1) such that E
�
u � � � 0, with the following properties:

(a) � u � � � � 1 and � u � � � � 1.
(b) If u � (a) � 0 for some a ��� , then u � (a � y) � � u � (a � y) for y ��� .
(c) If u

�
� (a) � 0 for some a ��� , then u � (a � y) � u � (a � y) for y ��� .

By way of convention we choose the origin such that u
�
� (0) � 0. It was also shown

in [120] that, as q decreases to � �
8, both families of periodic solutions tend to the unique

odd increasing kinkϕ at q � � �
8: u � ( � , q) �

ϕ as q � � �
8 uniformly on compact sets.

On the other hand, as q tends to infinity, the small amplitude solutions u � tend to zero
uniformly on � , while the amplitude of the large solutions u � tends to infinity. More
specifically,

u � (x, q) �
1

q
�

2
sin(x

�
q) as q � � , (6.16a)

and
u � (x, q) � q V(x

�
q) as q � � , (6.16b)

where V is an odd solution of the equation

v(iv) � v
��� �

v3 � 0,

which possesses the symmetry properties listed in Theorem 6.15, and

max
� �V(t) � : t ��� � �

�
0,

1
2

�
2
� .

At present it is not known whether the solution V is unique. Thus, the convergence
in (6.16b) is along sequences, and the function V may possibly depend on the choice of
the sequence.
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A numerically obtained plot of the two branches Γ � and Γ � of odd single bump peri-
odic solutions Γ � � �

u � ( � , q) : q � � �
8 � is presented in Figure 6.15. Along the vertical

axis we put M � � u ��� . In Figure 6.16 we give graphs of solutions on the branches Γ � and
Γ � at q � 1. As mentioned earlier, the two families of single bump periodic solutions will
be used to construct further families of periodic solutions. In the following theorem we
present a family which also exists on the entire interval � �

8 � q � � . These solutions
look like u � in that their local maxima lie above u � � 1 and all the local minima lie below
u � � 1, with the exception of the point of symmetry x � ζ. At that point these extrema
lie on the ‘wrong’ side of the constant solution u � � 1, in case of a maximum, or u � � 1
in case of a minimum:

u(ζ) � � 1 if ζ � ξk for some k � 2,
u(ζ) � � 1 if ζ � ηk for some k � 1.

We denote by TN (N � 2) the branch of odd periodic solutions of this family, of which the
Nth critical point is the first point of symmetry:

TN
� �

u( � , q) � q � � �
8, u

�
(ζN , q) � 0, u

�����
(ζN , q) � 0 � .

The branches T2 and T3, as well as solutions on these branches at q � 1.5, are presented in
Figure 6.6. The existence of this family is the content of the next theorem.

Theorem 6.16 Let q � � �
8.

(a) For each N � 1 there exists an odd periodic solution u of Equation (6.1) such that
E

�
u � � 0 and u

�
(0) � 0, which is symmetric with respect to ηN, and has the properties

u(ξk) � 1 for 1 � k � N
u(ηk) � � 1 for 1 � k � N � 1 (N � 2)

and u(ηN) � 1.
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(b) For each N � 2 there exists an odd periodic solution u of Equation (6.1), such that
u
�
(0) � 0, which is symmetric with respect to ξN, and has the properties

u(ξk) � 1 for 1 � k � N � 1
u(ηk) � � 1 for 1 � k � N � 1

and u(ξN) � � 1.

Proof. We use an iterative type of argument, and begin by proving the existence of a
periodic solution which is symmetric with respect to η1. This is the case N � 1 of Part (a).
Such a solution is illustrated in Figure 6.6b.

We denote the initial slopes of the zero energy odd single bump periodic solutions u �
and u � , constructed in Theorem 6.15, byα � andα � respectively, i.e.α � � u

�
� (0). From the

construction in [120] we know that 0 � α � � α � . Plainly (see Figure 6.16),

u(ξk) � 1 and u(ηk) � � 1 for k � 1 whenα � α � , (6.17a)

0 � u(ξk) � 1 and � 1 � u(ηk) � 0 for k � 1 whenα � α � , (6.17b)

where u(ξk) � u(ξk(α),α) and u(ηk) � u(ηk(α),α). In view of (6.17a) we can define

a1
� inf

�
α � 0 � u(ξ1) � 1 on (α,α � ) � ,

and it follows from (6.17b) that a1 � (α � ,α � ). By Lemma 6.6, the location of the first critical
point ξ1(α) depends continuously on α, and by standard theory the solution u(x,α) of
problem (6.7), (6.8) depends continuously on α for x in compact sets. Since E

�
u � � 0, it

follows from Lemma 6.4 that

u(ξ1) � 1, η1
� ξ1 and u

�����
(ξ1) � 0 ifα � a1. (6.18)

By Lemma 6.9 this implies that u(η1(α),α) � 1 for α � (a1, a1
�
δ), where δ � 0 is a small

positive constant. Hence, we can define

a �
1

� sup
�
α � a1 � u(η1) � 1 on (a1,α) � .

As we saw in (6.17a), u(η1) � � 1 at α � , so that a �
1 � (a1,α � ). Invoking the continuity of

η1(α) and u(x,α), we deduce that

u(η1) � 1, η1
� ξ2 and u

�����
(η1) � 0 ifα � a �

1 . (6.19)

Using the continuity of η1(α) and of u and its derivatives, we see that (6.18) and (6.19)
imply that there must exist a point α �1 � (a1, a �

1 ) where u
�����

(η1) vanishes, and so

u
�
(η1(α �1),α �1) � 0 and u

�����
(η1(α �1),α �1) � 0.

This means that the solution u(x,α �1) is symmetric with respect to η1(α �1). Since it is also
odd with respect to the origin, we conclude that u(x,α �1) is a periodic solution with period
4η1. It is readily verified that it has the desired properties.

We continue with the construction of the periodic solution which is symmetric with
respect to ξ2. This is the case N � 2 of Part (b), and such a solution is illustrated in
Figure 6.6c.

Because u(η1) � � 1 at α � , we can define

b1
� inf

�
α � α � � u(η1) � � 1 on (α,α � ) � ,

and it follows from (6.18) that b1 � (a �
1 ,α � ). Like at a �

1 , we once again invoke the continu-
ity of η1 and u and the fact that E

�
u � � 0 to conclude from Lemma 6.4 that

u(η1) � � 1, η1
� ξ2 and u

�����
(η1) � 0 at b1.
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Figure 6.18: Solutions symmetric with respect toξ2 from Theorem 6.17b; N � 2, q � � 1
10 .

By a result similar to Lemma 6.9 we find that u(ξ2) � � 1 in an interval (b1, b1
�
δ), where

δ � 0 is sufficiently small. Thus, we can define

b �
1

� sup
�
α � b1 � u(ξ2) � � 1 on (b1,α) � .

Remembering (6.17a), we see that b �
1 � (b1,α � ), and using the continuity properties of ξ2

and u, we conclude that

u(ξ2) � � 1, ξ2
� η2 and u

�����
(ξ2) � 0 at b �

1 .

Another application of the continuity of ξ2 and u and its derivatives implies the existence
of a point b �1 � (b1, b �

1 ) such that

u(ξ2) � � 1, u
�
(ξ2) � 0 and u

�����
(ξ2) � 0 at b �1.

As in the previous case, this means that u(x, b �1) is a periodic solution with period 4ξ2.
Recall that b �1 � a1, so that u(ξ1) � 1. Thus, this solution has the desired properties.

Continuing in this manner, we successively prove the existence of all the periodic
solutions listed in Theorem 6.16.

�

In addition to these branches of solutions, which exist for all q � � �
8, there exists

a multitude of odd zero energy periodic solutions for � �
8 � q � 0. In Theorems 6.17

and 6.19 we present a few of these families. They exist in pairs. Those corresponding to
Theorem 6.17 are shown in Figures 6.17 and 6.18, and those obtained in Theorem 6.19 in
Figure 6.20. A numerical study shows that the solutions obtained in Theorem 6.17 lie on
branches which are loop shaped. The branch for Part (a) is shown in Figure 6.19.

Theorem 6.17 Let � �
8 � q � 0.

(a) For each N � 1 there exist two odd periodic solutions u1 and u2 of Equation (6.1)
such that E

�
ui � � 0 and u

�
i(0) � 0 (i � 1, 2), which are symmetric with respect to ηN,
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Figure 6.19: Branch of solutions as constructed in Theorem 6.17a for N � 1

and have the properties

u1(ξk) � 1, u2(ξk) � 1 for 1 � k � N
u1(ηk) � � 1, u2(ηk) � � 1 for 1 � k � N � 1 (if N � 2)

� 1 � u1(ηN) � 0 � u2(ηN) � 1.

(b) For each N � 2 there exist two odd periodic solutions u1 and u2 of Equation (6.1),
such that E

�
ui � � 0 and u

�
i(0) � 0 (i � 1, 2), which are symmetric with respect to ξN,

and have the properties

u1(ξk) � 1, u2(ξk) � 1 for 1 � k � N � 1
u1(ηk) � � 1, u2(ηk) � � 1 for 1 � k � N � 1

� 1 � u1(ξN) � 0 � u2(ξN) � 1.

Proof. We pick up the line of argument in the proof of Theorem 6.16, and consider the
interval

�
a1, b1 � . We recall that

u(η1) � 1 at a1 and u(η1) � � 1 at b1.

By continuity this implies that u(η1) has a zero on (a1, b1). Let c1 be the smallest zero of
u(η1) on (a1, b1), and let

c �
1

� inf
�
α � c1 � u(η1) � 1 on (α, c1) � . (6.20a)

Similarly, let d1 be the largest zero of u(η1) on (a1, b1), and let

d �
1

� sup
�
α � d1 � u(η1) � � 1 on (d1,α) � . (6.20b)

Plainly, c �
1 �

�
a �

1 , c1) and d �
1 � (d1, b1 � , and

u(η1) � 1 at c �
1 and u(η1) � � 1 at d �

1 .

Since u(ξ1) � 1 on (a1, b1 � , it follows that u
�����

(η1) � 0 at c �
1 as well as at d �

1 .
We deduce from Lemma 6.13 that u

�����
(η1) � 0 at c1 and at d1. For suppose to the con-

trary that u
�����

(η1) � 0 at c1 or at d1. Then we deduce from Lemma 6.13 that u �
�

2 at every
critical point on the interval

� � η1,η1 � . But u( � η1) � 0 because u is odd, a contradiction.
Thus, u

�����
(η1) changes sign on (c �

1 , c1) and on (d1, d �
1 ), so that there exist a point c �1 � (c �

1 , c1)
and a point d �1 � (d1, d �

1 ) such that

u
�����

(η1) � 0 at c �1 and d �1.

Writing u1(x) � u(x, d �1) and u2(x) � u(x, c �1), we conclude that u1 and u2 are odd periodic
solutions which are symmetric with respect to η1, and that they have the properties

u1(ξ1) � 1, u2(ξ1) � 1 and � 1 � u1(η1) � 0 � u2(η1) � 1.
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This completes the proof of the case N � 2 of Part (a).
Next, we construct a pair of odd periodic solutions which are symmetric with respect

to ξ2. This corresponds to the case N � 2 of Part (b). To this end, we define

a2
� inf

�
α � α � � u(ξ2) � 1 on (α,α � ) � .

Plainly, b1 � a2 � α � . Because u(ξ2) � � 1 at b1 and u(ξ2) � � 1 at a2, u(ξ2) has a zero on
(b1, a2). Let e1 be the smallest zero of u(ξ2) on (b1, a2) and f1 the largest. Then, proceeding
as in the previous case we show that u

�����
(ξ2) has two zeros, e �1 and f �1 , on (b �

1 , a2) such that
u1(x) � u(x, e �1) and u2(x) � u(x, f �1 ) are periodic solutions with the following properties:

ui(ξ1) � 1 and ui(η1) � � 1 (i � 1, 2), and � 1 � u1(ξ2) � 0 � u2(ξ2) � 1.

This completes the proof of the case N � 2 of Part (b).
For the next step we define

b2
� inf

�
α � α � � u(η2) � � 1 on (α,α � ) � .

Since u(η2) � 1 at a2, it follows that b2 � a2. By repeating the arguments applied to the
interval

�
a1, b1 � to

�
a2, b2 � , we prove Part (a) for N � 2. We can continue this process in-

definitely, and so successively prove all the cases in Parts (a) and (b) of Theorem 6.17.
�

Remark 6.18 Using a continuity argument, we can show that the families of periodic
solutions described in Theorem 6.17 continue to exist for small values of q � 0. This is
consistent with the numerically computed bifurcation branch shown in Figure 6.19 for
the case N � 1 of Part (a). �

In the next theorem we obtain a different family of periodic solutions. To explain the
difference, let u be a periodic solution which is symmetric with respect to its nth critical
point ζn. Then solutions of Theorem 6.17 have the property that

� u(ζk) � � 1 for 1 � k � n � 1 and � u(ζn) � � 1.

In contrast, the solutions of Theorem 6.19 have the property that

� u(ζk) � � 1 for 1 � k � n � 2 and � u(ζn � 1) � � 1, � u(ζn) � � 1.

Thus, whereas in the first family, the point of symmetry is the only critical point at which
u � ( � 1, 1), in the second family the value of u at the point of symmetry, as well as at the
two adjacent critical points, lie in the interval ( � 1, 1). A pair of such solutions is shown in
Figure 6.20. Since the characteristics of these solutions are not very clear when q � 0, we
have set q � 1.5.

Theorem 6.19 Let � �
8 � q � 0.

(a) For each N � 2 there exist two odd periodic solutions u1 and u2 of Equation (6.1)
such that E

�
ui � � 0 and u

�
i(0) � 0 (i � 1, 2), which are symmetric with respect to ξN,

and have the following properties:

ui(ξk) � 1 for 1 � k � N � 1
ui(ηk) � � 1 for 1 � k � N � 2 (if N � 3)

�
for i � 1, 2,

and
0 � ui(ξN) � 1 for i � 1, 2,

� 1 � u1(ηN � 1) � 0 � u2(ηN � 1) � 1.
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Figure 6.20: Solutions symmetric with respect to ξ2 from Theorem 6.19a with N � 2.
The solutions in (b) and (c) are at q � 1.5, the one in (b) being on the lower part of the
loop.

(b) For each N � 2 there exist two odd periodic solutions u1 and u2 of Equation (6.1)
such that E

�
ui � � 0 and u

�
i(0) � 0 (i � 1, 2), which are symmetric with respect to ηN,

and have the following properties:

ui(ξk) � 1 for 1 � k � N � 1
ui(ηk) � � 1 for 1 � k � N � 1

�
for i � 1, 2,

and � 1 � ui(ηN) � 0 for i � 1, 2,
� 1 � u1(ξN) � 0 � u2(ξN) � 1.

Proof. We begin with the proof of Part (a) for N � 2. To that end, we return to the
interval

�
a1, b1 � defined in the proof of Theorem 6.17, and consider the two subintervals:

I �
1

� �
a1, c1 � and I �

1
� �

d1, b1 � ,
where c1 and d1 are, respectively, the smallest and the largest zero of u(η1) on (a1, b1). We
observe that by Lemma 6.13,

u(ξk) � 1 and u(ηk) � � 1 for k � 2 at c1 and d1. (6.21)

We first consider the interval I �
1 . As in (6.20a) we set

c
�
1

� inf
�
α � c1 � u(η1) � 1 on (α, c1) � .

Then a �
1 � c �

1 � c1. By Lemma 6.9 u(ξ2) � 1 in a right-neighbourhood of c �
1 , so that we

can define
c �

1
� sup

�
α � c

�
1 � u(ξ2) � 1 on (c �

1 ,α) � .

It is clear that c �
1 � (c �

1 , c1) and that

u(ξ2) � u(η2) � 1 and u
�����

(ξ2) � 0 at c �
1 .

Since u
�����

(ξ2) � 0 at c �
1 , it follows that u

�����
(ξ2) has a zero c �1 � (c �

1 , c �
1 ). Thus u2(x) � u(x, c �1)

is an even periodic solution with the properties

u2(ξ1) � 1, 0 � u2(ξ2) � 1, 0 � u2(η1) � 1 and u
�����
2 (ξ2) � 0.

For the second solution we consider the interval I �
1

� �
d1, b1 � . Because u(η1) � u(ξ2) �

� 1 at b1 we can define

b �
1

� sup
�
α � d1 � u(η1) � � 1 on (d1,α) � .

Then b �
1 � (d1, b1 � , and we define

d �
1

� inf
�
α � b �

1 � u(ξ2) � 1 on (α, b �
1 ) � ,
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and in view of (6.21) it follows that d �
1 � (d1, b �

1 ). Since u(η1) � 0 on I �
1 and u(ξ2) � 1 at d �

1 ,
we conclude that u

�����
(ξ2) � 0 at d �

1 . Let

β̃1
� sup

�
α � d �

1 � u(ξ2) � 0 on (d �
1 ,α) � .

Plainly, d �
1 � β̃1 � b �

1 . As in the proof of Theorem 6.17, we deduce from Lemma 6.13 that
u
�����

(ξ2) � 0 at β̃1. Therefore, u
�����

(ξ2) changes sign on (d �
1 , β̃1), and hence there exists a point

b �1 � (d �
1 , β̃1) where u

�����
(ξ2) vanishes. This means that u1(x) � u(x, b �1) is a periodic solution

endowed with the properties

u1(ξ1) � 1, 0 � u1(ξ2) � 1, � 1 � u1(η1) � 0 and u
�����
1 (ξ2) � 0.

This completes the proof of Theorem 6.19a for N � 2.
To prove Part (a) for N � 3, we repeat the above arguments for the interval

�
a2, b2 �

defined in the proof of Theorem 6.17. For N � 4 we consider the corresponding interval�
a3, b3 � and generally, we consider the interval

�
aN � 1, bN � 1 � for arbitrary N � 2.

For the proof of Part (b), say for N � 2, we consider the interval
�
b1, a2 � . Proceeding as

in the proof of Part (a) (N � 2) we now find solutions which are symmetric with respect to
η2 for values of α on (b1, e1) and ( f1, a2), where e1 and f1 have been defined in the proof of
Theorem 6.17. The argument, and its generalisation to higher values of N is very similar
to the arguments involved in the proof of Part (a), and we shall therefore omit the details.

�

6.4 Even periodic solutions: � 8 � q � 8
In this section we establish the existence of an infinite sequence of countable families of
even periodic solutions of Equation (6.1) for q � ( � �

8,
�

8), distinguished by the number
and location of local maxima and minima of their graphs. Thus, whereas some of the
results obtained for odd solutions were only valid for q � 0, the results proved in this
section are also valid for positive values of q up to

�
8. In the next five sections we go

even beyond this number, and show how the branches of multi-bump periodic solutions
obtained in this section extend to higher values of q. As we stated in Section 6.2, we shall
use a shooting technique to establish the existence of these solutions, and hence, thanks
to symmetry with respect to x � 0, we will study the initial value problem���� u(iv) � qu

��� �
u3 � u � 0 for x � 0,

u(0) � α, u
�
(0) � 0, u

���
(0) � β, u

�����
(0) � 0.

(6.22a)

(6.22b)

Again, we only discuss solutions for which the first integral is zero, i.e.

E
�
u � def� u

�
u
����� � 1

2
(u
���
)2 � q

2
(u
�
)2 � F(u) � 0, (6.23a)

where
F(u) � 1

4
(u2 � 1)2 and F

�
(u) � f (u) � u3 � u. (6.23b)

This means that
β

def� β(α) � � 1�
2
�α2 � 1 � .
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Figure 6.21: The small and the large single bump periodic solutions for Case I.
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Figure 6.22: Even single bump periodic solutions for (a) q � � 2 and (b) q � 2.

The cases u
���
(0) � 0 and u

���
(0) � 0 will be dealt with in succession. We refer to them by,

respectively, Case I and Case II:

Case I: u
���
(0) � 0 and Case II: u

���
(0) � 0.

In both cases we shall denote the solution of problem (6.22) by u(x,α).
Note that the single bump periodic solutions of Section 6.3 become even solutions

after a shift over a quarter of a period. Thus if the period of u � is 4
� � , and M � � � u � � � ,

then
u(x, � M � ) � u � (x � � � ) in Case I,
u(x, � M � ) � u � (x �

� � ) in Case II.

These solutions provide the point of departure for the shooting arguments which will
yield new families of even periodic solutions with more complicated structure. For con-
venience we provide the graphs of u(x, � M � ) in Figure 6.21.

We begin by establishing the existence of a new family of even, single bump periodic
solutions whose maxima lie above the line u � � 1, and whose minima lie between the lines
u � � 1 and u � � 1. In Figure 6.22 we give examples of two such solutions computed at
q � � 2 and q � 2.

It is readily apparent that these solutions are qualitatively different from those shown
in Figure 6.21. Like Γ � and Γ � , this new family of solutions forms a branch Γ1 which bi-
furcates from the unique odd kinkϕ(x) at q � � �

8. However, as the bifurcation diagram
in Figure 6.23 shows, in contrast to the branches Γ � and Γ � , which extend all the way to
q � � � (see Figure 6.4), our computations indicate that Γ1 only extends over the finite
q-interval ( � �

8,
�

8), and bifurcates at q � �
8 from the constant solution u � � 1. In

Theorem 6.20 we prove that the new solutions indeed exist for every q � ( � �
8,

�
8).
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Figure 6.23: Branch of even single bump periodic solutions

Theorem 6.20 Let q � ( � �
8,

�
8). Then there exists an even, single bump periodic solu-

tion u such that E
�
u � � 0, and

� 1 � min
�
u(x) � x ��� � � � 1 � max

�
u(x) � x ��� � .

Proof. The proof uses ideas developed in [121]. We seek a single bump periodic solu-
tion, and we choose Case I, i.e. u

���
(0) � 0. We follow u(ξ1) asα varies, and seek a value of

α � ( � 1, 1) such that
u(ξ1) � 1 and u

�����
(ξ1) � 0.

Then, by symmetry, u is a periodic solution with half-period L � ξ1 whose maxima and
minima are located as indicated above:

min
�
u(x) � x ��� � � α � ( � 1, 1) and max

�
u(x) � x ��� � � u(ξ1) � 1.

To find such a value ofα, we use the auxiliary functional

H (u) � 1
2

(u
���
)2 � q

2
(u
�
)2 � F(u),

where F has been defined in (6.23b). Let u(x) be a smooth function. Then we write

H(x) def� H (u(x)).

Differentiation yields
H
� � u

���
u
����� �

qu
�
u
��� �

f (u)u
�
, (6.24)

and if u is a solution of Equation (6.1), then

H
��� � (u

�����
)2 � qu

�
u
����� �

f
�
(u)(u

�
)2. (6.25)

The right-hand side of (6.25) is a second order polynomial in u
�����

, with discriminant

D � �
q2 � 4 f

�
(u) � (u

�
)2.

Thus, H
���

will be nonnegative whenever

q2 � 4(3u2 � 1) or u2 � q2 � 4
12

. (6.26)

Define

α0
�

�
q2 � 4

12
. (6.27)

Thenα0 � (0, 1) as long as q2 � 8.

Lemma 6.21 Let q2 � 8, and letα �
�
α0, 1). Then

u(ξ1) � 1 and u
�����

(ξ1) � 0.
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Proof of Lemma 6.21. Letα �
�
α0, 1). Then u

���
(0) � 0, so that u

�
(x,α) � 0 and u(x,α) � α0

for 0 � x � ξ1. This implies, by (6.25) and (6.26), that H
���
(x) � 0 for 0 � x � ξ1, and so

H
�
(x) � H

�
(0) � 0 for x � (0,ξ1 � . (6.28)

Hence
H(ξ1) � H(0). (6.29)

According to the identity (6.23),

(u
���
)2 � 2F(u) if u

� � 0. (6.30)

Therefore, at any critical point ζ of u we have

H(ζ) � 2F(u(ζ)). (6.31)

Combining (6.29) and (6.31), we conclude that

F(u(ξ1)) � F(α0).

Because F
� � f � 0 on (0, 1) and α0 � (0, 1), this implies that u(ξ1) � 1. From (6.30) we

deduce that u
���
(ξ1) � 0. Because H

�
(ξ1) � 0 by (6.28), we conclude from (6.24) that u

�����
(ξ1) �

0, and the proof of Lemma 6.21 is complete.
�

We now continue with the proof of Theorem 6.20. By Lemma 6.21, u(ξ1) � 1 atα � α0.
Thus, remembering that u(ξ1) � M � � 1 whenα � � M � , we can introduce the point

α1
� inf

�
α � α0 � u(ξ1) � 1 on (α,α0) � ,

and conclude that α1 � ( � M � ,α0). It follows from the continuity of ξ1(α) and u(ξ1(α),α),
established in Lemma 6.4 and Lemma 6.6, which we can apply because E

�
u � � 0, that

u(ξ1) � 1, u
�����

(ξ1) � 0 and ξ1
� η1 atα1. (6.32)

The fact that u
�����

(ξ1) is positive atα1 follows from Lemma 6.4 and the definition ofξ1. Thus
u
�����

(ξ1) has changed sign on (α1,α0). Since u
�����

(ξ1(α),α) depends continuously on α by
Lemma 6.6, there must be a pointα �1 � (α1,α0) where u

�����
(ξ1) vanishes, i.e. u

�����
(ξ1(α �1),α �1) �

0. Remembering that u
�
(ξ1) � 0 as well, it follows by symmetry that the function u(x,α �1)

is an even, single bump periodic solution, which is symmetric with respect to ξ1, such
that u(ξ1) � 1 and the period is 2ξ1. This completes the proof of Theorem 6.20.

�

We continue with the construction of an even, 1-bump periodic solution, which is
symmetric with respect to ξ2. We have seen in (6.32) that when α � α1, then u � 1 and
u
�����
� 0 at ξ1. This means that u(ξ2) � 1 atα1. We now define the point

α̃1
� sup

�
α � � M � � u(ξ1) � 1 on ( � M � ,α) � .

Then α̃1 � ( � M � ,α0), and (6.32) holds, but now at α̃1. Thus, u(ξ2) � 1 at α̃1, and we define

α2
� inf

�
α � α̃1 � u(ξ2) � 1 on (α,α̃1) � ,

Since u(ξ2, � M � ) � M � � 1, we can conclude again that α2 � ( � M � ,α̃1). As before,
u
�����

(ξ2) � 0 at α2. Thus, it remains to determine the sign of u
�����

(ξ2) when α � α̃1. We
have

H
�
(ξ1) � 0 at α̃1.

Because u(x) � 1 for x � (ξ1,ξ2 � , it follows that H
���
� 0 on (ξ1,ξ2), and

H
�
(ξ2) � u

���
(ξ2) u

�����
(ξ2) � 0 at α̃1.
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Figure 6.24: Multi-bump periodic solutions of Theorem 6.22 with u
� �
(0) � 0 at q � 2 for

(a) N � 2 and (b) N � 3.

Plainly, u(ξ2) � 1, and hence, by the first integral, u
���
(ξ2) � 0. Thus, u

�����
(ξ2) � 0 at α̃1,

and u
�����

(ξ2) has changed sign on (α2,α̃1), and therefore has a zero α �2 in this interval:
u
�����

(ξ1(α �2),α �2) � 0. By symmetry this yields an even periodic solution u(x,α �2) which
is symmetric with respect to ξ2, so that u(ξ2) � 1, u(ξ1) � 1 and the period is 2ξ2 (cf.
Fig 6.24a).

We can now construct an N-bump periodic solution for any N � 2 by continuing the
above process in an iterative manner. This yields a decreasing sequence of numbers

�
α
�
k �

such that the solutions uk(x) � u(x,α �k ) are even and periodic with period 2ξk. They have
the properties

uk(ξ j) � 1 for j � 1, . . . , k � 1 and uk(ξk) � 1.

Thus we have proved:

Theorem 6.22 Let � �
8 � q �

�
8. Then for any N � 2 there exists an even periodic

solution u of Equation (6.1) such that E
�
u � � 0 and u

���
(0) � 0, which is symmetric with

respect to ξN and has the properties:

u(ξk) � 1 for 1 � k � N � 1 and u(ξN) � 1. (6.33)

For N � 2 and N � 3 such solutions are shown in Figure 6.24. Equation 6.33 means that
all the local maxima of u, except the one at the point of symmetry ξN, lie below the line
u � 1, but u(ξN) � 1.

Remark 6.23 The proof of Theorem 6.22 can be modified to obtain more precise informa-
tion on the position of the local minima. One can prove that there are solutions which, in
addition to (6.33), satisfy � 1 � u(ηk) � 1 for 1 � k � N � 1. Hence these solutions obey
u(x) � � 1 for all x � � . This is also observed in Figure 6.24. In the following theorems
(and in Sections 6.6 and 6.8) this additional property can in fact always be proved. �

In addition to the family of periodic solutions uN described in Theorem 6.20 and The-
orem 6.22, which are symmetric with respect to ξN for some N � 1, there exists a cor-
responding family of periodic solutions which are similar to uN , but they are symmetric
with respect to ηN. Such solutions are shown in Figure 6.25. The existence of this family
of solutions is established in Theorem 6.24.

Theorem 6.24 Let � �
8 � q �

�
8. Then for every N � 1 there exists an even periodic

solution u of Equation (6.1) such that E
�
u � � 0 and u

���
(0) � 0, which is symmetric with

respect to ηN and has the properties:

u(ξk) � 1 for 1 � k � N � 1 if N � 2, and u(ξN) � 1 and u(ηN) � 1.
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Figure 6.25: Multi-bump periodic solutions of Theorem 6.24 with u
� �
(0) � 0 at q � 2 for

(a) N � 2 and (b) N � 3.

Proof. We give the proof for N � 2. For N � 1 and for N � 3 it is similar. For further
details we refer to [121]. We recall the point α2 defined in the proof of Theorem 6.22, and
in particular that

u(ξ2) � 1, u
�����

(ξ2) � 0 and ξ2
� η2 atα2. (6.34)

Therefore, by Lemma 6.9, u(η2) � 1 for α � (α2,α2
�
δ) for some small δ � 0. At the point

α
�
2 � α2, also defined in the proof of Theorem 6.22, the solution u(x,α �2) is symmetric with

respect to ξ2, and hence

u(η2) � u(η1) � u(ξ1) � 1 at α �2 .

Thus
ᾱ2

� sup
�
α � α2 � u(η2) � 1 on (α2,α) �

is well defined, and ᾱ2 � (α2,α �2). We have

u(ξ2) � 1, u(η2) � 1 and u
�����

(η2) � 0 at ᾱ2.

Remembering from (6.34) that u
�����

(η2) � 0 at α2, we conclude that there must be a point
α
� �
2 � (α2,ᾱ2) where u

�����
(η2) vanishes, so that u(x,α � �2 ) is a periodic solution of Equation (6.1)

with the properties listed in Theorem 6.24 for N � 2.
�

For any q � ( � �
8,

�
8), there exists yet another family

�
un � of even periodic solutions.

They are characterised by the properties:

(P1) For every n � 1, un is symmetric with respect to the nth critical point ζn;
(P2) For k � 1, . . . , n � 1 it holds that un(ζk) � 1 if ζk is a maximum, whereas un(ζk) � 1

if ζk is a minimum; these inequalities are reversed for k � n.

This family was first investigated in some detail in [121], where the proof of their existence
can be found. We show three solutions of this family in Figure 6.26. These solutions are
interesting because of the following conjecture:

Conjecture 6.25 For any q � ( � �
8,

�
8), let un be a sequence of even periodic solutions

with the properties (P1) and (P2), and let un(0) � αn. Thenαn
�
α
� as n � � , and u(x,α � )

is an even homoclinic solution of Equation (6.1) with u(0,α � ) � 1.

Remark 6.26 Following the construction described in [121], it is possible to obtain an
infinite sequence of periodic solutions ũn such that ũn(0) � 1 and ũ

���
n(0) � 0. This leads

one to conjecture that there exists a second homoclinic solution ũ(x) of Equation (6.1), this
one with ũ(0) � 1 (for any q � ( � �

8,
�

8)). �
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Figure 6.26: Multi-bump periodic solutions at q � 2.5 with properties (P1) and (P2) for
n � 2, 3, 4. They figure in Conjecture 6.25.

We now investigate Case II, where we assume that u
���
(0) � 0, and establish results sim-

ilar to those obtained in Theorems 6.20, 6.22 and 6.24 for Case I. We emphasise that since
the first critical point is now a minimum, which is denoted η1, we skip ξ1 and number the
critical points as follows:

0 � η1 � ξ2 � η2 � . . . .

We begin our analysis of Case II by proving a result analogous to Lemma 6.21. Recall the
definition of α0 given in (6.27), and the fact that 0 � α0 � 1 for � �

8 � q �
�

8.

Lemma 6.27 Let q2 � 8, and u
���
(0) � 0. Then there exists a point α̃ � (α0, 1) such that if

α �
�
α̃, 1), then

u(ξ2) � 1 and u
�����

(ξ2) � 0 atα.

Proof. From a linear analysis at u � 1, of which the details can be found in Section 6.10,
we see that

ξ2(α) � 3π

� q
� �

8
and u(η1(α),α) � 1 � (1 � α)

a
b

sinh
�
πa
2b
� asα � 1,

where a and b are positive constants which are independent of α, and given in Equa-
tion (6.98) of Section 6.10. Thus, there exists an ᾱ � (α0, 1) such that ifα � (ᾱ, 1), then

u(x,α) � α0 if 0 � x � ξ2.

Hence by (6.26)
H
���
(x) � 0 if 0 � x � ξ2.

Because H
�
(0) � u

���
(0)u

�����
(0) � 0, this implies that

H
�
(x) � 0 if 0 � x � ξ2. (6.35)

Thus H(0) � H(η1) � H(ξ2), and hence by (6.31), F(u(0)) � F(u(η1)) � F(u(ξ2)). This means
that u(ξ2) � 1. We also deduce from (6.35) that H

� � u
���
u
�����
� 0 at ξ2. Since u

���
(ξ2) � 0, we

conclude that u
�����

(ξ2) � 0. This completes the proof.
�

Thus, for α � (0, 1) sufficiently close to 1, we have u(ξ2) � 1 and u
�����

(ξ2) � 0. On the
other hand, whenα � M � , we have u(ξ2) � 1. Therefore, we can define the number

α2
� inf

�
α � 1 � u(ξ2) � 1 on (α, 1) �

and α2 � (M � ,α̃). Plainly, u(ξ2) � 1 and u
�����

(ξ2) � 0 at α2, so that u
�����

(ξ2) must have a zero
for some α �2 � (M � , 1), which yields the first of a family of even periodic solutions with
u
���
(0) � 0. As in the proof of Theorems 6.22 and 6.24, we can continue inductively and

prove the existence of two families of periodic solutions (see also Figure 6.27):
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Figure 6.27: Multi-bump periodic solutions with u
� �
(0) � 0 at q � 2: (a) N � 2, see The-

orem 6.28; (b) N � 3, see Theorem 6.29.

Theorem 6.28 Let � �
8 � q �

�
8. Then for any N � 2 there exists an even periodic

solution u of Equation (6.1) such that E
�
u � � 0 and u

���
(0) � 0, which is symmetric with

respect to ξN and has the properties:

u(ξk) � 1 for 2 � k � N � 1 if N � 3, and u(ξN) � 1.

Theorem 6.29 Let � �
8 � q �

�
8. Then for every N � 2 there exists an even periodic

solution u of Equation (6.1) such that E
�
u � � 0 and u

���
(0) � 0, which is symmetric with

respect to ηN and has the properties:

u(ξk) � 1 for 2 � k � N � 1 if N � 3, and u(ξN) � 1 and u(ηN) � 1.

6.5 Local analysis near u � 1
In order to extend the existence results of the previous section to the range q �

�
8, we

need to develop further analytical techniques. This is because Lemma 6.21 no longer
holds for q �

�
8. These techniques will rely on a detailed analysis of the local behaviour

of solutions near u � 1. Thus, we substitute u � 1 � εv into (6.1) and require that u(0) �
1 � ε After omitting the higher order terms in ε, we then obtain the linear equation

v(iv) � qv
��� � 2v � 0 (6.36a)

and at the origin, the initial conditions become

v(0) � � 1, v
�
(0) � 0, v

��� 2(0) � 2, and v
�����

(0) � 0. (6.36b)

The fact that v should be even implies that v
�

and v
�����

vanish at the origin, and the as-
sumption that the energy E is zero leads to the condition on v

��� 2. A detailed analysis of
this problem is given in Section 6.10 and in [121, Appendix B]. For easy reference, we give
here the main results of this analysis. As in Section 6.4, it is necessary to distinguish two
cases:

Case I: v
���
(0) � �

2 and Case II: v
���
(0) � � �

2,

and we denote the solution of problem (6.36) in these two cases by v � (x), so that v
���
� (0) �

� �
2.
The roots � λ and �

µ of the corresponding characteristic equation are defined by

λ � ia and µ � ib, (6.37a)

in which a � 0 and b � 0 are defined by

a2 � 1
2

(q
� � q2 � 8) and b2 � 1

2
(q � � q2 � 8). (6.37b)
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In what follows, the values of q at which resonance occurs (cf. [77], p. 397), i.e.
a
b

� n
m

, m, n ��� (n � m), (6.38)

will play a special role. These values are readily computed to be

qm,n
� �

2
�

n
m
� m

n
� . (6.39a)

For convenience we write qn
� q1,n, i.e.

qn
� �

2
�
n
� 1

n
� . (6.39b)

In the following two lemmas we state the main results about the solutions v � (x) of prob-
lem (6.36). In the first one we present the explicit expressions of these solutions.

Lemma 6.30 The solutions v � (x) of problem (6.36) are given by

v � (x) � A � cos(ax) � B � cos(bx),

where
A � � b2 � �

2
a2 � b2 and B � � � a2 � �

2
a2 � b2 .

In the second lemma we concentrate on the critical points of the solutions v � of prob-
lem (6.36). In particular, it will be important for our shooting arguments in Section 6.6
that we know the location of these point with respect to the v � 0 axis (above or below) and
the sign of the third derivative v

�����
� at these points.

Lemma 6.31 Letζ be a critical point of the solution v of problem (6.36), i.e. v
�
(ζ) � 0. Then

sin(aζ) � sin(bζ) � 0 in Case I,

sin(aζ) � sin(bζ) � 0 in Case II

and

v � (ζ) � a2 � �
2

a2 � b2

�
� b

a
cos(aζ) � cos(bζ) � ,

v
�����
� (ζ) � b(a2 � �

2) sin(bζ).

In both cases,
sign v(ζ) � � sign

�
cos(bζ) � ,

and
sign v

�����
(ζ) � sign

�
sin(bζ) � .

The proof of Lemma 6.31 is elementary, and makes use of the observation that A �
�

B � �
� b

�
a and that ab � �

2.

6.6 Even periodic solutions: � 8
�

q � q3
In this section, and in Section 6.8, we investigate the existence of even periodic solutions
for which E

�
u � � 0. As was explained in the introduction, we find it convenient to label

the solutions according to the number of monotone segments, or laps, that go in a half-
period. Thus, the solutions of Theorem 6.20 are called 1-lap solutions. In the subsequent
theorems of Section 6.4 we have shown that for every q � ( � �

8,
�

8) there exist n-lap
solutions for any n � 1.
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Numerical evidence suggest that the 1-lap solutions of Theorem 6.20 no longer exist
for q �

�
8, but that 2-lap solutions still exist for some values of q �

�
8, and that n-lap

solutions exist for n large enough. Specifically, we prove the following result. Let

qn
� �

2
�
n
� 1

n
� , n � 1.

Theorem 6.32 For each n � 2 there exist two families of even periodic n-lap solutions
when q � ( � �

8, qn). At the points of symmetry ζn we have u(ζn) � 1 for all n � 1.

Whereas in Section 6.4 we could use the properties of the functional H (u), when
q �

�
8 this is no longer possible. The main ingredients used in the proof will now be

the linear analysis given in Section 6.5, a powerful Comparison Lemma (Lemma 6.12)
valid for q � ( � �

8, q3) and, in Section 6.8, a counting argument which is reminiscent of a
topological degree argument.

The Comparison Lemma enables us to obtain information about the location of all
the critical values of the solutions with respect to the line u � 1. In the present section
we assume that � �

8 � q � q3, so that the Comparison Lemma holds. In Section 6.8 we
allow q to be arbitrary large, and develop the counting argument.

In the first result of this section we show that when � �
8 � q � q2, then there exist two

families of n-lap solutions with n � 2. We begin with a pair of 2-lap solutions.

Theorem 6.33 Let � �
8 � q � q2. Then there exist two even 2-lap periodic solutions u2a

and u2b of Equation (6.1) such that E
�
u2a � � 0 and E

�
u2b � � 0, with the following proper-

ties:
(a) The solution u2a is even with respect to ξ2, and u

���
2a(0) � 0, and u2a(ξ1) � 1.

(b) The solution u2b is even with respect to η1, and u
���
2b(0) � 0, and u2b(η1) � 1.

We denote the branches of these solutions by, respectively, Γ2a and Γ2b. These branches, as
well as graphs of two specific solutions u2a and u2b, are presented in Figure 6.28.

Proof. We first consider Part (b) and prove the existence of the solution u2b for which
u
���
(0) � 0 (Case I). For convenience we have dropped the subscript 2b. We distinguish

three cases:
(i)

�
8 � q � q3,5 (ii) q � q3,5, (iii) q3,5 � q � q2.

According to (6.38) and (6.39a), these cases correspond to

(i) 1 � a
b

� 5
3

, (ii)
a
b

� 5
3

, (iii)
5
3

� a
b

� 2.

Case (i): Recall from Section 6.5 that v denotes the solution of Equation (6.36a), the linear-
isation of Equation (6.1) around u � 1. It follows from Lemma 6.31 that in this case

v(ξ1) � 0 and v(η1) � 0.

Hence, it follows from continuity that there exists a δ � 0 such that

u(ξ1) � 1 and u(η1) � 1 for 1 � δ � α � 1.

Recall that u(ξ1) � M � � 1 whenα � � M � , and define

a1
� inf

�
α � 1 � u(ξ1) � 1 on (α, 1) � .
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Figure 6.28: The solutions obtained in Theorem 6.33: (a) the branches Γ2a and Γ2b and (b)
a blowup at q2; (c) graph of u2a and (d) of u2b, both at q � 0.5.

Then by Lemma 6.9, u(η1) � 1 for a1 � α � a1
�
ε for some small ε � 0. However, u(η1) � 1

for α close to 1. Therefore

b1
� sup

�
α � a1 � u(η1) � 1 on (a1,α) � � (a1, 1).

Plainly, at b1 we have u(η1) � 1 and by Lemma 6.4, u
�����

(η1) � 0. Since u
�����

(η1) � 0 at a1 and
u
�����

(η1) � 0 at b1, it follows that u
�����

(η1) has a zero for some α � � (a1, b1), and again we use
symmetry to conclude that u(x,α � ) is a periodic solution with the desired properties.
Case (iii): From Lemma 6.31 we see that in this case

v(ξ1) � v(η1) � 0 and v
�����

(η1) � 0.

Hence, there exists a δ � 0 such that

u(ξ1) � u(η1) � 1 and u
�����

(η1) � 0 for 1 � δ � α � 1. (6.41)

As before, we define
a1

� inf
�
α � 1 � u(ξ1) � 1 on (α, 1 � � .

and
b1

� sup
�
α � a1 � u(η1) � 1 on (a1,α) � � (a1, 1 � .

Recall that u
�����

(η1) � 0 at a1, so that b1 � a1 by Lemma 6.9. If b1
� 1, then (6.41) implies

that u
�����

(η1) � 0 for α near b1. On the other hand, if b1 � 1, then u
�����

(η1) � 0 at b1. Thus, in
both cases u

�����
(η1) changes sign on (a1, b1). Once again the existence of a periodic solution

of the desired type follows.
Case (ii): From Lemma 6.31 we see that in this case,

v(ξ1) � v(η1) � 0 and v
�����

(η1) � 0.

Thus, there exists a δ � 0 such that

u(ξ1) � 1 and u
�����

(η1) � 0 for 1 � δ � α � 1.
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Fixα � (1 � δ, 1). If, for this value ofα, one has u(η1) � 1 then the proof is completed as in
Case (i), and if u(η1) � 1, then one can complete it as in Case (iii). This finishes the proof
of Part (b).

Next, we prove Part (a). Recall that ξ2 denotes the first positive local maximum of u
since u

���
(0) � 0. From Lemma 6.31 we conclude that

v(η1) � 0 and v(ξ2) � 0, v
�����

(ξ2) � 0

for the entire interval q1 � q � q2. Hence, there exists a δ � 0 such that

u(η1) � 1 and u(ξ2) � 1 u
�����

(ξ2) � 0 for 1 � δ � α � 1. (6.42)

Set
a2

� inf
�
α � 1 � u(ξ2) � 1 on (α, 1) � .

Then M � � a2 � 1. Plainly, u
�����

(ξ2) � 0 at a2. Since by (6.42), u
�����

(ξ2) � 0 for α close to 1, it
follows that there exists a point α �2 � (a2, 1) such that u

�����
(ξ2) � 0 at α �2 , and hence u(x,α �2)

is an even periodic solution with period 2ξ2(α �2). Finally, u(ξ2,α �2) � 1 since a2 � α
�
2 � 1.

This completes the proof of Theorem 6.33.
�

Remark 6.34 We have now shown that the solutions u2a and u2b exist over the entire in-
terval ( � �

8, q2). Our numerical investigation (Figure 6.28a) indicates that u2b does not
exist past q2 although it appears that u2a does exist on a small q-interval beyond q2. Our
experiments also indicate that the branches Γ2a and Γ2b, on which these solutions lie, dis-
appear at q2 as a result of a bifurcation from the constant solution u � 1. In Section 6.7 we
shall give an explanation for the behaviour of the two branches Γ2a and Γ2b near the point
(q, M) � (q2, 1). �

Theorem 6.33, together with Lemma 6.12, enables us to establish the existence of two
families of even n-lap periodic solutions, for any n � 2.

Theorem 6.35 Let � �
8 � q � q2, and let n � 2. Then there exist two families of even

n-lap periodic solutions u of Equation (6.1) such that E
�
u � � 0, one for which u

���
(0) � 0

and one for which u
���
(0) � 0. They are symmetric with respect to the nth critical point ζn.

The critical values have the properties

u(ζk) � 1 if k � n � 2 (n � 3) and u(ζn) � 1,

and
u(ζn � 1) � 1 if ζn is a maximum,
u(ζn � 1) � 1 if ζn is a minimum.

Proof. The proof proceeds very much along the lines of the proofs of Theorems 6.22
and 6.24. To show how Lemma 6.12 is used, we give the proof for the 3-lap solution when
u
���
(0) � 0. This solution is symmetric with respect to ξ2. Otherwise, we leave the proof to

the reader. Let
α3

� sup
�
α � � M � � u(ξ1) � 1 on ( � M � α) � .

It follows from Theorem 6.33 that α3 � ( � M � , 1). In addition,

u(ξ1) � 1 and u
�����

(ξ1) � 0 at α3.

Thus, in view of Lemma 6.12,

u(ξ2) � 1 and u
�����

(ξ2) � 0 atα3.
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Figure 6.29: The solutions obtained in Theorem 6.35: (a) the branches Γ3a and Γ3b and (b)
a blowup at q3; (c) graph of u3a and (d) of u3b, both at q � 2.

Next, let
α̃3

� inf
�
α � α3 � u(ξ2) � 1 on (α,α3) � .

Then α̃3 � ( � M � ,α̃3), and

u(ξ2) � 1 and u
�����

(ξ2) � 0 at α̃3.

Therefore, u
�����

(ξ2) changes sign, and thus has a zero α �3 , on (α̃3,α3). It is clear from the
construction that the solution u(x,α �3) has the required properties.

�

Next, we turn our attention to the interval ( � �
8, q3), and show that n-lap solutions

continue to exist up to q3 for n � 3. We first focus on 3-lap solutions.

Theorem 6.36 Let � �
8 � q � q3. Then there exist two even 3-lap periodic solutions u3a

and u3b of Equation (6.1), such that E
�
u3a � � 0 and E

�
u3b � � 0, with the following proper-

ties:
(a) The solution u3a is even with respect to ξ2,

u
���
3a(0) � 0 and u3a(ξ1) � 1, u3a(ξ2) � 1.

(b) The solution u3b is even with respect to η2,

u
���
3b(0) � 0 and u3b(η2) � 1.

The branches Γ3a and Γ3b of these solutions, as well as graphs of the solutions u3a and u3b

at a specific value of q are presented in Figure 6.29.
Proof. For � �

8 � q � q2, the existence of solutions such as u3a and u3b has been es-
tablished in Theorems 6.22, 6.29 and 6.35. Thus, it suffices to prove Theorem 6.36 for
q2 � q � q3.

We begin with Part (a). Set

a1
� sup

�
α � � M � � u(ξ1) � 1 on ( � M � ,α) � .
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From Lemma 6.31 we know that when q2 � q � q3, then

v(ξ1) � 1 and v(η2) � 1.

Hence, by continuity, there exists a constant δ � 0 such that

u(ξ1) � 1 and u(η2) � 1 for 1 � δ � α � 1.

Therefore a1 � ( � M � , 1), and

u(ξ1) � 1, u
���
(ξ1) � 0 and u

�����
(ξ1) � 0 atα � a1.

This implies that u(ξ2) � 1 and, by Lemma 6.12, that u
�����

(ξ2) � 0. Let

a2
� inf

�
α � a1 � u(ξ2) � 1 on (α, a1) � .

Then
u(ξ2) � 1 and u

�����
(ξ2) � 0 atα � a2,

because u(η1) � u(ξ1) � 1. Therefore, u
�����

(ξ2) changes sign on (a2, a1), so that there exists
a point a �2 � (a2, a1) such that u

�����
(ξ2) � 0 at a �2, and u(x, a �2) is a periodic solution which is

symmetric with respect to ξ2. By construction u(ξ1, a �2) � 1 and u(ξ2, a �2) � 1, as required.
This ends the proof of Part (a).

Turning our attention to Part (b), we analyse the following three cases separately:

(i) q2 � q � q3,7 (ii) q � q3,7, (iii) q3,7 � q � q3.

Again, according to (6.38) and (6.39a), these cases correspond to

(i) 2 � a
b

� 7
3

, (ii)
a
b

� 7
3

, (iii)
7
3

� a
b

� 3.

Case (i): It follows from Lemma 6.31 that in this case

v(ξ2) � 0, v(η2) � 0 and v
�����

(η2) � 0,

so that for some small δ � 0,

u(ξ2) � 1 and u(η2) � 1 for 1 � δ � α � 1. (6.43)

Define
a1

� inf
�
α � 1 � u(ξ2) � 1 on (α, 1) � .

Because u(ξ2) � M � � 1 whenα � M � , it follows that M � � a1 � 1, and hence

u(ξ2) � 1 and u
�����

(ξ2) � 0 at a1,

since u(η1) � M � � 1 at a1. This means, according to Lemma 6.9, that u(η2) � 1 for a1 �
α � a1

�
ε where ε � 0 is some small constant. Define

b1
� sup

�
α � a1 � u(η2) � 1 on (a1,α) � . (6.44)

As we have seen in (6.43), u(η2) � 1 for α close to 1. Therefore b1 � (a1, 1). Since u(ξ2) � 1
at b1 it follows that u

�����
(η2) � 0 at b1. Hence, in view of (6.44), u

�����
(η2) changes sign, and

therefore has a zero at a point α �1 � (a1, b1). Thus, u(x,α �1) is an even periodic solution
which, by construction, is symmetric with respect to η2, and u(η2,α �1) � 1, as required.
Case (iii): In this case

v(ξ2) � 0, v(η2) � 0 and v
�����

(η2) � 0,

so that
u(ξ2) � 1, u(η2) � 1 and u

�����
(η2) � 0 for 1 � δ � α � 1 (6.45)
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when δ � 0 is sufficiently small. As before, we define

a2
� inf

�
α � 1 � u(ξ2) � 1 on (α, 1) � ,

and since u(ξ2) � M � when α � M � , it follows that a2 � (M � , 1). Because in this case,
u(η1) � α � 1 we deduce that

u(ξ2) � u(η2) � 1 and u
�����

(η2) � 0 ifα � a2. (6.46)

By Lemma 6.9, u(η2) � 1 in a right-neighbourhood of a2. Let

b2
� sup

�
α � a2 � u(η2) � 1 on (a2,α) � .

We claim that u
�����

(η2) changes sign on (a2, b2). If b2
� 1, then this assertion follows at once

from (6.45), (6.46), and continuity. If b2 � 1, then u(η2) � 1 at b2, and because u(ξ2) � 1 at
b2, it follows that u

�����
(η2) � 0, so that in view of (6.46), u

�����
(η2) also changes sign on (a2, b2).

Thus, there exists a point α �2 � (a2, b2) such that u(x, a �2) is an even periodic solution
which is symmetric with respect to η2, such that

u(η1) � 1, u(ξ2) � 1 and u(η2) � 1.

Case (ii): By Lemma 6.31,

v(ξ2) � 0, v(η2) � 0 and v
�����

(η2) � 0,

so that for some small δ � 0,

u(ξ2) � 1 and u
�����

(η2) � 0 for 1 � δ � α � 1. (6.47)

Fix α � (1 � δ, 1). If u(η2) � 1 we continue as in the proof of Case (i) and if u(η2) � 1 we
continue the proof as in Case (iii). This completes the proof of Theorem 6.36.

�

About the families of n-lap solutions we can repeat the claim of Theorem 6.35 for the
larger range of q-values: q � ( � �

8, q3). However, the minimum number of laps is now
raised from 2 to 3.

Until now we have studied branches of even multi-bump periodic solutions with E �
0 on intervals of the form ( � �

8, qn) for n � 1. These branches appear to bifurcate from the
points (qn, 1). In addition to these solutions there exist families of even periodic solutions
which exist on intervals of the form ( � �

8, qm,n), where qm,n is given in (6.6), and n � m � 2.
The corresponding branches appear to bifurcate from the points (qm,n, 1). We shall not go
into a general analysis of such solutions. Instead, we provide the details for one example,
and choose m � 2 and n � 3. We denote the two branches of even periodic solutions by
Γ2,3a and Γ2,3b, and the solutions that lie on these branches by u2,3a and u2,3b, respectively.
Two such solutions are presented in Figure 6.30b,c at q � 2.

We note that q2,3
� 13

6

�
2 � (q1, q2). Therefore, we may again use Lemma 6.12 to prove

the existence of these two new families of solutions.

Theorem 6.37 Let � �
8 � q � q2,3. Then there exist two even 3-lap periodic solutions

u2,3a and u2,3b of Equation (6.1) such that E
�
u2,3a � � 0 and E

�
u2,3b � � 0 with the following

properties:
(a) The solution u2,3a is symmetric with respect to η2, and

u2,3a(0) � 1, u
���
2,3a(0) � 0, u2,3a(ξ2) � 1, u2,3a(η2) � 1.
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Figure 6.30: The solutions obtained in Theorem 6.37: (a) the branches Γ2,3a and Γ2,3b;
(b) graph of u2,3a and (c) of u2,3b, both at q � 2.

(b) The solution u2,3b is symmetric with respect to ξ2, and

u2,3b(0) � 1, u
���
2,3b(0) � 0, u2,3b(η1) � 1, u2,3a(ξ2) � 1.

Proof. We start with Part (a). If q1 � q � q2,3, then, according to Lemma 6.31,

v(0) � � 1, v(η1) � 0, v(ξ2) � 0, v(η2) � 0 and v
�����

(η2) � 0.

Hence, for any q � (q1, q2,3) there exists by continuity a δ � 0 such that for α � (1 � δ, 1)

u(η1) � 1, u(ξ2) � 1, u(η2) � 1, and u
�����

(η2) � 0. (6.48)

Let
a1

� inf
�
α � 1 � u(ξ2) � 1 on (α, 1) � .

Because u(ξ2) � 1 whenα � M � , it follows that a1 � (M � , 1), and

u(ξ2) � 1 and u(η2) � 1 at a1.

Next, let
a2

� inf
�
α � 1 � u(η2) � 1 on (α, 1) � .

Then a2 � a1 by Lemma 6.9 and hence

u(η2) � 1, u(ξ2) � 1 and u
�����

(η2) � 0 at a2.

Remembering (6.48), we conclude that u
�����

(η2) changes sign on (a2, 1). Thus, by continuity
there exists an a �2 � (a2, 1) such that u

�����
(η2) � 0 at a �2. Therefore, u � (x) � u(x, a �2) is a periodic

solution which is symmetric with respect to η2 and has the properties

u � (0) � 1, u � (η1) � 1, u � (ξ2) � 1, u � (η2) � 1,

as required.
Next we prove Part (b). We now take u(0) � 1 and u

���
(0) � 0, as opposed to the state-

ment in the theorem (we will come back to this shortly). If q1 � q � q2,3, then we have to
analyse three different cases separately, as in the proof of Part (b) of Theorem 6.36 (in the
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present case q � q5,7 is the separating value). After some manipulations along the by now
usual lines of which we omit the details, we find anα � 1 such that

u(η1) � 1, u(ξ2) � 1, u(η2) � 1, and u
�����

(η2) � 0,

and thus u is symmetric with respect to x � 0 and x � η2. The shift ũ(x) � u(x � η2) is
now the solution desired in Part (b) of the theorem.

Proving that the solutions u2,3a and u2,3b exist for � �
8 � q � q1 as well is left to the

persevering reader.
�

6.7 Local behaviour near q2
In Figure 6.10 (or 6.28) we saw that the numerically computed branches Γ2a and Γ2b of
even 2-lap periodic solutions approach the bifurcation point (q2, 1) in the (q, M)-plane
from different directions. In this section we present a local analysis at the point (q2, 1),
and compute the angles θa and θb which these branches make with the positive q-axis at
the bifurcation point. Specifically we obtain the following result.

Proposition 6.38 . Let θa and θb be the angles with which the branches Γ2a and Γ2b ap-
proach (q2, 1). Then

tanθa
� 2

�
2

3
and tanθb

� �
�

2
3

.

We shall discuss the two branches in succession.

The branch Γ2a. The solutions that lie on Γ2a have the properties

u
���
(0) � 0 and u

�����
(ξ2) � 0,

and ξ2 is the first point of symmetry. We use ε � 1 � u(0) � 0 as a small parameter, and
we make the Ansatz:

u(ε) � 1 � εv
�
ε2w

�
O(ε3), (6.49a)

q(ε) � q0
�
εq1
�

O(ε2), (6.49b)

ξ(ε) � ξ0
�
εξ1
�

O(ε2). (6.49c)

To keep the notation simple, we have denoted the zeroth order terms in the expansion
of q and ξ2 by, respectively, q0 and ξ0. Thus, in this notation, q0

� q2 and ξ0
� ξ2 � ε � 0. We

recall that
q0

� 5�
2

and hence a � 23
�
4 and b � 2 � 1

�
4 (a � 2b),

and we obtain from Lemma 6.30 that

ξ0
� π

b
� 21

�
4π .

In this notation, we need to compute

tanθa
� v(ξ0)

q1
.

When we substitute the Ansatz (6.49) into Equation (6.1), use the initial conditions

u(0) � 1 � ε, u
�
(0) � 0, u

���
(0) � � 1�

2
(1 � u2), u

�����
(0) � 0,
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and equate terms of equal order in ε, we obtain���� v(iv) � q0v
��� � 2v � 0

v(0) � � 1, v
�
(0) � 0, v

���
(0) � � �

2, v
�����

(0) � 0,

(6.51a)

(6.51b)

and �
��
�

� w(iv) � q0w
��� � 2w � � q1v

���
(x) � 3v2(x)

w(0) � 0, w
�
(0) � 0, w

���
(0) � � 1�

2
, w

�����
(0) � 0.

(6.52a)

(6.52b)

The problem for v has been discussed in Section 6.5, where we found that

v(x) � cos(ax) � 2 cos(bx).

Note that v does not depend on the value of q1. For later use we note that

v(ξ0) � 3, v
�
(ξ0) � 0, v

���
(ξ0) � � 6b2, v

�����
(ξ0) � 0, v(iv)(ξ0) � 18b4. (6.53)

Thus, we find that

u(ξ ,ε, q) � 1 � εv(ξ0
�

O(ε)) � O(ε2)
� 1 � εv(ξ0) � O(ε2)
� 1 � 3ε � O(ε2). (6.54)

In order to compute ξ1 we write

u
�
(ξ ,ε, q) � εv

�
(ξ0
�
εξ1
�

O(ε2)) � ε2w
�
(ξ0
�

O(ε), q1) � O(ε3)
� εv

�
(ξ0)

�
ε2ξ1v

���
(ξ0)

�
ε2w

�
(ξ0, q1)

�
O(ε3) � 0.

Hence
ξ1

� � w
�
(ξ0, q1)

v
���
(ξ0)

. (6.55)

To compute q1 we observe that we can write

w(x, q1) � w0(x) � q1w1(x),

and an easy computation shows that

w0(x) � f (x) � 3g(x), (6.56)

where f is given by

f (x) � 1�
2(a2 � b2)

� � cos(ax) � cos(bx) � .

and g is given by

g(x) � 1
a2 � b2

� x

0
K(x � t)v2(t) dt,

in which
K(x) � sin(bx)

b
� sin(ax)

a
.

For w1(x) we find
w1(x) � � 1

a2 � b2

� x

0
K(x � t)v

���
(t) dt. (6.57)

We wish to choose q1 in such a way that u
�����

(ξ ,ε, q) � 0. Differentiating u we obtain

u
�����

(ξ ,ε, q) � ‘εv
�����

(ξ0) � ε2ξ1v(iv)(ξ0) � ε2
�
w
�����
0 (ξ0) � q1w

�����
1 (ξ0) � � O(ε3)

� ε2
�
ξ1v(iv)(ξ0) � w

�����
0 (ξ0) � q1w

�����
1 (ξ0) � � O(ε3), (6.58)
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because v
�����

(ξ0) � 0 by (6.53). Remembering from (6.55) the expression for ξ1 we write

ξ1v(iv)(ξ0) � � v(iv)(ξ0)
v
���
(ξ0)

�
w
�
0(ξ0) � q1w

�
1(ξ0) � . (6.59)

We saw in (6.53) that v(iv)(ξ0)
�
v
���
(ξ0) � � 3�

2
. When we use this in (6.59) and substitute the

result into (6.58), we find that

u
�����

(ξ ,ε, q) � ε2X(q1)
�

O(ε3),

where
X(q1) � w

�����
0 (ξ0) � 3�

2
w
�
0(ξ0) � q1

�
w
�����
1 (ξ0) � 3�

2
w
�
1(ξ0) � .

Thus we need to choose q1 so that X(q1) � 0. Using the expression for w0 given in (6.56)
and for w1 given in (6.57), we find that

w
�
0(ξ0) � 0 and w

�����
0 (ξ0) � � 3π

b

w
�
1(ξ0) � � π

3b
and w

�����
1 (ξ0) � 7π

3
b.

Therefore
X(q1) � � 3π

b
�

q1

�
7π
3

b � 3�
2
π

3b
� � � 3π

b
�

q1
4π
3

b,

so that X(q1) � 0 if

q1
� 9

4b2
� 9

2
�

2
.

Remembering (6.54), we conclude that the branch Γ2a leaves the point (q, M) � (q2, 1) un-
der an angle θa given by

tanθa
� 3

q1

� 2
�

2
3

.

The branch Γ2b. The solutions that lie on Γ2b have the properties

u
���
(0) � 0 and u

�����
(η1) � 0.

In the notation introduced in (6.49), we again need to compute

tanθb
� v(ξ0)

q1
,

where now ξ0 denotes the location of the first maximum of v when q � q0.
For solutions on this branch, η1 is the first point of symmetry. We expand u and q as

in (6.49) drop the subscript 1 from η1, and write

η(ε) � η0
�
εη1
�

O(ε2).

From Lemma 6.30 we find that

v(x) � � 1
3

�
cos(ax) � 2 cos(bx) � ,

and

ξ0
� π

3b
, η0

� π

b
, v(ξ0) � 1

2
, v

���
(η0) �

�
2

3
, v(iv)(η0) � � 7

3
,

so that
v(iv)(η0)
v
���
(η0)

� � 7�
2

.
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We now proceed exactly as in the previous case, and we find that

u
�����

(ξ ,ε, q) � ε2Y(q1) � O(ε3),

where
Y(q1) � w

�����
0 (η0) � 7�

2
w
�
0(η0) � q1

�
w
�����
1 (η0) � 7�

2
w
�
1(η0) � .

For w0 and w1 and their derivatives we obtain at η0:

w
�
0(η0) � 2π

9b3 and w
�����
0 (η0) � � 5π

9b
,

w
�
1(η0) � π

3b
and w

�����
1 (η0) � � πb.

Therefore
Y(q1) � π

b
�

q1
4π
3

b,

so that Y(q1) � 0 if
q1

� � 3
2

�
2

.

Since v(ξ0) � 1
2 , it follows that

tanθb
� 1

2
1
q1

� �
�

2
3

.

Near q � q2 and α � 1 (ε � 0), we may use (6.49a) and the information about v and w
obtained in this section to make the following observations.

1. There exists a δ � 0 such that in the case that u
���
(0) � 0 we have for q � q2

u(ξ2) � 1 and u
�����

(ξ2) � 0 for 1 � δ � α � 1.

Therefore, the proof of the existence of u2a in Theorem 6.32 also holds for q � q2
� 5�

2
.

2. Again in the case that u
���
(0) � 0, for every δ � 0 we have

u
�����

(ξ2) � 0 for q � q2
�
ε(q1

�
δ)

u
�����

(ξ2) � 0 for q � q2
�
ε(q1

� δ)

for ε � 0 sufficiently small. Hence, fixing δ � 0, there exists an ε0 � 0 such that for
q2 � q � q2

�
ε0 there are two periodic solutions u2a and ũ2a which are symmetric with

respect toξ2 and such that u(ξ2) � 1. The first one has 1 � q � q2
q1

� δ � α � 1 � q � q2
q1 � δ , and it is

found by varyingα between these values and searching for anα such that u
�����

(ξ2) � 0.
The second one hasα � 1 � q � q2

q1
� δ and can be found as in the proof of Theorem 6.32. A

similar statement holds for the solutions of type u2b, but there is only one solution of
this type. Continuity of the branches near q � q2 and α � 1 can be proved using the
Implicit Function Theorem, but we will not going into that here.

6.8 Even periodic solutions: q
�

q3
In Section 6.4 we have exhibited the existence of an even single bump, or 1-lap periodic
solution for � �

8 � q � q1
� �

8. In Section 6.6, we extended this result and showed that
there exist two even 2-lap periodic solutions for � �

8 � q � q2 and two even 3-lap periodic
solutions � �

8 � q � q3. One solution is convex at the origin (u
���
(0) � 0) and one solution

is concave at the origin (u
���
(0) � 0). The goal of this section is to extend these results to the
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parameter regime q � q3. It is important to note that the sharp qualitative results obtained
in Sections 6.4 and 6.6 were proved by means of Lemma 6.12. However, this lemma
no longer applies in the range q � q3. Thus, to determine the existence and qualitative
properties of periodic solutions, we shall develop further analytical techniques.

We recall that an even periodic solution u is called an n-lap periodic solution if it is
even, and symmetric with respect to its nth positive critical point ζn (and not symmetric
with respect to any of the critical points in between 0 andζn). In order to determine if an n-
lap periodic solution u attains a relative maximum or minimum at the point of symmetry,
one needs to know whether n is odd or even, as well as whether u

���
(0) is positive or

negative. For convenience we list the correspondence in the following table:

ζn
� ξ(n � 1)

�
2 when n is odd

ζn
� ηn

�
2 when n is even

�
if u

���
(0) � 0,

ζn
� ξ(n � 2)

�
2 when n is even

ζn
� η(n � 1)

�
2 when n is odd

�
if u

���
(0) � 0.

We will also always assume that u(0) � ( � 1, 1).
In the present section we extend the existence theorems to n-lap periodic solutions for

arbitrary n � 2.

Theorem 6.39 Let n � 2, and let
� �

8 � q � qn.

Then there exist two even n-lap periodic solutions, ua and ub, such that

ua,b(ζn) � 1 and u
�����
a,b(ζn) � 0, (6.60)

while u
���
a (0) � 0 and u

���
b (0) � 0, and ua,b(0) � ( � 1, 1).

We prove Theorem 6.39 in two steps: first, we establish the existence of n-lap solutions
which satisfy (6.60) in intervals of the form (q3,2n � 1, qn), and then we show that these n-lap
solutions exist on the whole interval ( � �

8, qn). Note that the following lemma does not
state that ζn is the first point of symmetry (this fact is postponed until Lemma 6.46).

Lemma 6.40 Let n � 2. Then for all q3,2n � 1 � q � qn there exist two even periodic solution
ua and ub which are symmetric with respect to their nth positive critical point ζn, such that

ua,b(ζn) � 1 and u
���
a (0) � 0, u

���
b (0) � 0.

Proof. For the cases n � 2 and n � 3 we refer to the stronger results of Section 6.6.
Thus, in the remainder of this proof we assume that n � 4. We only consider the case
where u

���
(0) � 0. The case u

���
(0) � 0 is analogous. Let u(x,α � ) be the small amplitude,

even, single bump periodic solution for which u
���
(0) � 0. Then α � � � M � , where M � �

� u( � ,α � ) ��� � 1. In particular, u(ξk(α � ),α � ) � 1 and u(ηk(α � ),α � ) � � 1 for all k � 1 (see
Figure 6.21).

Fix n � 4 and define m � (n
�

1)
�
2 if n is odd, and m � n

�
2 if n is even. We set

a � sup
�
α � α � � u(ξi(α),α) � 1 for i � 1, . . . , m � . (6.61)

We stress that this definition is completely different from the ones used so far. For all
α � a at least one of the maxima ξi with i � 1, 2, . . . m lies in the region

�
u � 1 � .

We assert that a � 1. To see this we study the behaviour of u(x,α) when α is close
to 1. Let v be the solution of the problem obtained by linearising around u � 1, which
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was introduced in Section 6.5. Then, according to Lemma 6.31,

v(ξm) � 0 and v
�����

(ξm) � 0 if q � (q3,2n � 1, qn).

Therefore, there exists a constant δ � 0 such that

u(ξm(α),α) � 1 and u
�����

(ξm(α),α) � 0 for 1 � δ � α � 1. (6.62)

From the first inequality in (6.62) we deduce that a � 1, as claimed.
It follows from the definition of a and Lemma 6.4 that

u(ξk(a), a) � 1 for k � 1, . . . , m � 1 and u(ξm(a), a) � 1. (6.63)

From (6.63) and the energy identity (6.5) it follows that u
�����

(ξm)
�� 0 at a. Because u(ηm � 1) �

u(ξm � 1) � 1 it follows that

u
�����

(ξm(a), a) � u
�����

(ηm(a), a) � u
�����

(ζn(a), a) � 0, (6.64)

where we remark that ζn
� ξm if n is odd, and ζn

� ηm if n is even. We now define

b � sup
�
α � (a, 1) � u(ζn) � 1 on (a,α) � , (6.65)

which is well-defined because of the definition of a, Equation (6.63) and Lemma 6.9. Be-
sides, we define (in view of (6.64))

c � sup
�
α � (a, 1) � u ����� (ζn) � 0 on (a,α) � .

We now first consider the case that ζn
� ξm (i.e. n odd). If b � 1, then it follows

from (6.62) that c � 1, thus u(x, c) is an even n-lap periodic solution which is symmet-
ric with respect to ξm and u(ξm) � 1.

If b � 1 then we use the following result to obtain a solution.

Lemma 6.41 Let a and b be defined as in (6.61) and (6.65). If b � 1, then u
�����

(ζn) � 0 at b.

We postpone the proof of Lemma 6.41 for a moment and first finish the proof of
Lemma 6.40. We conclude from Lemma 6.41 that c � b, and as we saw before, this implies
that there exists an even periodic solution which is symmetric with respect toξm such that
u(ξm) � 1.

The case that ζn
� ηm (i.e. n even) is dealt with in a similar manner, but we have to

distinguish three cases (the situation is similar to the proof of Part (b) of Theorem 6.33).
According to Lemma 6.31 we have

v
�����

(ηm) � 0 for all q � (q3,2n � 1, qn),

and
v(ηm) � 0 if q3,2n � 1 � q � qn,
v(ηm) � 0 if q � q3,2n � 1,
v(ηm) � 0 if q3,2n � 1 � q � q3,2n � 1.

If q3,2n � 1 � q � qn then the proof is finished in the same way as above. If q3,2n � 1 � q � q3,2n � 1

then b � 1 and the proof is finished with the help of Lemma 6.41. Finally, if q � q3,2n � 1

then we have, for δ � 0 small enough,

u(ξm) � 1 and u
�����

(ηm) � 0 for 1 � δ � α � 1.

We now choose an α � (1 � δ, 1). If u(ηm) � 1 then we finish the proof as in the case
where q3,2n � 1 � q � qn, whereas if u(ηm) � 1 then we finish the proof as in the case where
q3,2n � 1 � q � q3,2n � 1. This completes the proof of Lemma 6.40.

�
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Before we give the proof of Lemma 6.41 we introduce some notation. We define the
sets of maxima and minima in the region

�
u � 1 � by

C � � �
1 � k � m � 1 � u(ξk) � 1 � ,

C � � �
1 � k � m � 1 � u(ηk) � 1 � .

The following proposition shows that for all α �
�
a, b � we have u(ξk) � 1 if and only if

u(ηk) � 1. Besides, if u(ξ � ) � 1 for some 1 � � � m � 1 then u(ζ) � 1 for all critical points ζ
in between ξ � and ξm.

Proposition 6.42 For allα �
�
a, b � we have

C � � C � � � or C � � C � � � �
,

� � 1, . . . , m � 1 � for some
�
�
�
1, 2, . . . m � 1 � . (6.66)

Proof. We first notice that u(0) � 1 and u(ξm) � 1 for all α � (a, b) (note that u(ηm) � 1
implies that u(ξm) � 1). For α � a Equation (6.66) holds since C � � C � � � . It follows
from the definition of a and Lemma 6.9 that C � � C � � � for α � (a, a

�
δ) with δ � 0

sufficiently small. We now use a continuation argument inα to show that Equation (6.66)
holds for allα �

�
a, b). We define

α � � sup
�
α � (a, b) � Equation (6.66) holds on (a,α) � ,

and we suppose, by contradiction, that α � � b. Then at α � we have u(ξn) � 1 for some
1 � n � m � 1. There are now two possibilities: either u(ηn � 1) � 1 or u(ηn) � 1.

Concerning the first case, it follows from Lemma 6.4 that atα � α �
u(ξn � 1) � 1 and u(ηn) � 1, (6.67)

and by continuity (6.67) holds for α � (α � � δ,α � ) with δ � 0 sufficiently small. However,
using Lemma 6.9 one finds that this contradicts the fact that Equation (6.66) holds for all
α � (a,α � ). Thus atα � there is no k �

�
1, 2, . . . , m � 1 � such that u(ξk) � u(ηk � 1) � 1.

Therefore, we must have u(ξn) � u(ηn) � 1 atα � for some 1 � n � m � 1. As before, it
follows that

u(ξn � 1) � 1 and u(ηn � 1) � 1.

We assert that this implies that u(ξn � 1) � 1. Namely, the possibility u(ξn � 1) � 1 is excluded
by the definition ofα � and the fact that u(ηn � 1) � 1. Besides, u(ξn � 1) � 1 would imply that
u(ηn � 2) � 1 which has already been excluded above. Hence u(ξn � 1) � 1, and thus also
u(ηn � 2) � 1. A repeated argument shows that u(ξk) � 1 for all 1 � k � n � 1. Analogously
it is proved that u(ηk) � 1 for all n

�
1 � k � m � 1. By continuity this also holds for α

close to α � .
Finally, by the definition of α � there must exist a sequenceαi

�
α � such that

u(ξn(αi),αi) � 1 and u(ηn(αi),αi) � 1.

The existence of such a sequence is excluded by the proof of Lemma 6.9, which can be
found in [121, Lemma 6.13]. Hence, having obtained a contradiction, we have proved
that Equation (6.66) holds on the entire interval α �

�
a, b). The case α � b follows by

continuity.
�

Remark 6.43 It follows from the previous proposition that u(ξk) and u(ηk) can only enter
and leave the region

�
u � 1 � together. �
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Proof of Lemma 6.41. To prove Lemma 6.41 we argue by contradiction. Thus, suppose
that u

�����
(ζn) � 0 at b. Thenζn

� ξm
� ηm, and it follows that u(ηm � 1) � 1 atα � b. Therefore,

m � 1
�
� C � . By Proposition 6.42, this implies that u(ηk) � 1 for all 1 � k � m � 1, so that

C � � �
. Besides, since C � � C � by Proposition 6.42, this also implies that C � � �

. Thus,
we conclude that u(ξk) � 1 for all 1 � k � m � 1 and u(ξm) � u(ηm) � 1 atα � b. Since a was
defined as the largest value ofα for which this situation occurs, this situation is excluded
and we have reached a contradiction.

�

We recall the definition

c � sup
�
α � a � u ����� (ζn) � 0 on (a,α) � .

Clearly c � b � 1 by the proof of Lemma 6.40.

Proposition 6.44 For allα �
�
a, c � we have that

u
�����

(ξk) � 0 and u
�����

(ηk) � 0 for all k � C � � C � .

Proof. We first notice that since u(ξk) and u(ηk) only enter
�
u � 1 � together, we must

have u
�����

(ξk) � 0 and u
�����

(ηk) � 0 at the point of entry. Suppose now, by contradiction, that
there exists a smallestα �

�
a, c � , for which Proposition 6.44 does not hold: let

d � sup
�
α � a � u ����� (ξk) � 0, u

�����
(ηk) � 0 for all k � C � � ,

and suppose that d � c. Then atα � d there is a critical point ζ � (0,ζn) such that u(ζ) � 1
and u

�����
(ζ) � 0, i.e., ζ is a point of symmetry.

Since by Proposition 6.42 all the critical values between ζ and ζn lie above u � 1, it
follows that u(x) � 1 for x �

�
ζ ,ζn � . In fact, since ζ is a point of symmetry, we have

that u(x) � 1 for all x �
�
2ζ � ζn,ζn � . Since u(0) � 1, this means that 2ζ � ζn � 0. By

symmetry, 2ζ � ζn is a critical point, and from the definition of d we see that u
�����

(2ζ � ζn) �
0. Therefore, again by symmetry, u

�����
(ζn) � 0, so that from definition of c it follows that

c � d. Since by assumption, d � c, we conclude that d � c, and u
�����

(ζn) � 0. But then u is
symmetric with respect to both ζ and ζn. This means that u(x) � 1 for all x � � , which
contradicts the fact that u(0) � 1.

�

Remark 6.45 Another way of obtaining the final contradiction above, is via the observa-
tion that

(u
����� �

qu
�
)
� � u(1 � u2) � 0 on (ζ ,ζn).

Upon integrating over (ζ ,ζn) we obtain that u
�����

(ζn) � 0 at α � d, contradicting the as-
sumption that d � c. �

Lemma 6.46 Let n � 4. For every q �
�
qn � 1, qn) there exist two even n-lap solutions ua

and ub such that ua,b(ζn) � 1 and u
�����
a,b(ζn) � 0, while u

���
a (0) � 0 and u

���
b (0) � 0.

Proof. Since q3,2n � 1 � qn � 1 for n � 4, it follows immediately from Lemma 6.40 that
there exist two periodic solutions which are symmetric with respect to ζn, and such that
ua,b(ζn) � 1. We assert that ζn is the first point of symmetry. Proposition 6.44 ensures that
ζn is the first point of symmetry in the region

�
u � 1 � . Besides, there is no critical point

0 � ζ � ζn with u
�����

(ζ) � 0 in the region
�
u � 1 � , since that would imply (by Proposi-

tion 6.42 and the symmetry with respect to 0) that u(x) � 1 for all x � � , contradicting the
fact that u(ζn) � 1.

�



6.9. Proof of Lemma 6.12 219

The following Lemma is a reformulation of Theorem 6.39. It shows that the n-lap
solutions obtained in Lemma 6.46 exists for all q � ( � �

8, qn).

Lemma 6.47 Let n � 2 and let � �
8 � q � qn. For any N � n there exist two even N-lap

solutions ua and ub such that ua,b(ζN) � 1 and u
�����
a,b(ζN) � 0, while u

���
a (0) � 0 and u

���
b (0) � 0.

Proof. The range q � ( � �
8, q3) was already covered in Sections 6.4 and 6.6. For q ��

qn � 1, qn) with n � 4 we see from Lemma 6.46 that there exists two n-lap solutions. For
N � n we again restrict our attention to the case u

���
(0) � 0, the other case being completely

analogous. We can define a, b and c as before for both n and N. We have an � cn � bn � 1
and aN � cN � bN � 1. If cN � 1 then clearly we have an N-lap solution. Arguing by con-
tradiction we assume that cN

� 1. It follows directly from the definition of a and (6.63) that
aN � an. Proposition 6.44 shows that u

�����
(ζn) � 0 if u(ζn) � 1 for all α � (aN , 1 � . However,

u
�����

(ζn) � 0 for α � cn � an � aN , a contradiction.
�

6.9 Proof of Lemma 6.12
In this section we prove Lemma 6.12. We recall the setting: we assume that u is a solution
of Equation (6.1), and that a ��� is a critical point where u has the following properties:

u(a) � 1, u
�
(a) � 0, u

���
(a) � 0 and u

�����
(a) � 0. (6.68)

Then u
�
� 0 in a right-neighbourhood of a so that the point

b � sup
�
x � a � u � � 0 on (0, x) � (6.69)

is well defined. By Lemma 6.6, it is also finite.
Let us now recall Lemma 6.12

Lemma 6.48 Suppose that

� �
8 � q � q3

� �
2
�
3 � 1

3
� .

Let u be a solution of Equation (6.1) which at a point a � � has the properties listed
in (6.68). Then at its next critical point b defined by (6.69), we have

u(b) � 1, u
�
(b) � 0, u

���
(b) � 0 and u

�����
(b) � 0.

Proof. If � �
8 � q �

�
8 we use the function H introduced in Section 6.4. Since u � 1 on

(a, b), it follows that H
���
� 0 on (a, b). At critical points of u, we have by (6.24)

H
� � u

���
u
�����

.

Hence H
� � 0 at a, and therefore H

�
� 0 at b. Since u

���
(b) � 0, and even u

���
(b) � 0 by the

first integral, it follows that u
�����

(b) � 0, as asserted.
If q �

�
8 we can no longer prove that H

���
� 0 on (a, b) and we have to proceed differ-

ently. Without loss of generality we may assume that a � 0 and consider the initial value
problem ���� u(iv) � qu

��� �
u3 � u � 0,

u(0) � 1, u
�
(0) � 0, u

���
(0) � 0 u

�����
(0) � λ,

(6.70a)

(6.70b)

where the initial values are derived from (6.68) and λ is a positive number. We denote
the solution of problem (6.70) by u(x,λ), and its first critical point, corresponding to b, by
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ζ(λ):
ζ(λ) � sup

�
x � 0 � u � ( � ,λ) � 0 on (0, x) � .

We need to show that
u
�����

(ζ(λ),λ) � 0 for every λ � 0. (6.71)

As a first step we show that (6.71) is satisfied for λ large enough. This can be proved
by means of a simple scaling argument. With the variables

x � λ
� 1

�
5t and u(x,λ) � λ2

�
5w(t,λ), λ � 0,

the initial value problem (6.70) can be written as�
w(iv) � qλ � 2

�
5w
��� �

w3 � λ � 4
�
5w � 0,

w(0) � λ
� 2

�
5, w

�
(0) � 0, w

���
(0) � 0, w

�����
(0) � 1.

By standard ODE arguments, w(t,λ) � W(t) on compact intervals, as λ � � , where W is
the solution of the limit problem�

W(iv) � W3 � 0,
W(0) � 0, W

�
(0) � 0, W

���
(0) � 0, W

�����
(0) � 1.

Plainly,
T � sup

�
t � 0 � W �

� 0 on (0, t) � � �
and W

�����
(T) � 0. Hence, by continuity, for λ large enough, w

�����
( � ,λ) � 0 at the first zero of

w
�
( � ,λ). Thus, u

�����
(ζ(λ),λ) � 0 for λ large enough.

Proceeding with the proof of Lemma 6.48, we suppose that (6.71) is false and that
u
�����

(ζ(λ0),λ0) � 0 for some λ0 � 0. Then there exist a constant λ � �
�
λ0, � ) such that

u
�����

(ζ(λ � ),λ � ) � 0. At ζ � � ζ(λ � ) we then have

u
�
� 0 on (0,ζ � ), u

�
(ζ � ) � 0 and u

�����
(ζ � ) � 0. (6.72a)

This means that u( � ,λ � ) is symmetric with respect to ζ � and that

u
�

� 0 on (ζ � , 2ζ � ), u(2ζ � ) � 1 and u
�
(2ζ � ) � 0. (6.72b)

For further reference, we introduce the notation

u(ζ � ) � α � � 1 and hence u
���
(ζ � ) � 1�

2

�
1 � (α � )2 � . (6.72c)

In the remainder of the proof we show that if 1 � a
�
b � 3, where a and b have been

defined in (6.37b), i.e. if
�

8 � q � q3, then a solution u(x,λ � ) with the properties listed
in (6.72) cannot exist. We shift the origin to x � ζ

� and u � 1 and write

x � ζ
� � x̃ and u(x) � 1 � w(x̃).

Then w is the solution of the problem�
��
�

� w(iv) � qw
��� � 2w � � w2(3 � w),

w(0) � α � � 1, w
�
(0) � 0, w

���
(0) � 1�

2

�
1 � (α � )2 � , w

�����
(0) � 0,

(6.73a)

(6.73b)

where we used (6.72) and have dropped the tilde. We shall compare the solution w �
w(x,α � ) of problem (6.73) with the solution v of the linear problem�

��
�

� v(iv) � qv
��� � 2v � 0,

v(0) � α � 1, v
�
(0) � 0, v

���
(0) � 1�

2
(1 � α2), v

�����
(0) � 0,

(6.74a)

(6.74b)
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whereα � 1 is an arbitrary number, which eventually will be chosen equal to α � . We de-
note the solution of problem (6.74) by v(x) or v(x,α). An elementary computation shows
that v(x) can be written as

v(x) � A cos(ax) � B cos(bx), (6.75)

where we recall that a and b are the positive roots of the equation

k4 � qk2 � 2 � 0,

given by

a2 � 1
2

(q � � q2 � 8 ) and b2 � 1
2

(q � � q2 � 8 ). (6.76)

The coefficients A and B are given by

A � � b2(α � 1) � β
a2 � b2 and B � a2(α � 1) � β

a2 � b2 , β � � 1�
2

(α2 � 1). (6.77)

Let
x0(α) � sup

�
x � 0 � v( � ,α) � 0 on

�
0, x) � .

In order to proceed with our comparison argument we need the following result.

Lemma 6.49 Suppose that
�

8 � q � q3 or, equivalently, 1 � a
b � 3. Then for anyα � 1 we

have x0(α) � � and v
�
( � ,α) � 0 on (0, x0(α) � .

We postpone the proof of this lemma until after the proof of Lemma 6.48 has been com-
pleted.

We now continue with the proof of Lemma 6.48. Let

y0(α) � sup
�
x � 0 � w( � ,α) � 0 on

�
0, x) � .

Our goal is to prove that w
�
(y0(α),α) � 0 for any α � 0. Translating this result back to

the variables x and u, we find in particular that u
�
(2ζ � ) � 0, which contradicts (6.72b) and

completes the proof.
By the variation of constants formula, we find that

w(x) � v(x) � 1
a2 � b2

� x

0

� 1
b

sin(bt) � 1
a

sin(at)
�

h(x � t) dt,

where h(s) � w2(s)
�
3 � w(s) � � 0 as long as w � 0, i.e. on

�
0, y0 � . Note that

w
�
(x) � v

�
(x) � 1

a2 � b2

� x

0

�
cos(bt) � cos(at) � h(x � t) dt. (6.78)

At the first zero x0 of v (which exists by Lemma 6.49) we have

w(x0) � � 1
a2 � b2

� x

0

� 1
b

sin(bt) � 1
a

sin(at)
�

h(x0
� t) dt.

Hence, if
K(t) def� 1

b
sin(bt) � 1

a
sin(at) � 0 for 0 � t � x0, (6.79)

then w � v on (0, x0 � , and therefore y0 � x0. In addition, if

K
�
(t) � cos(bt) � cos(at) � 0 for 0 � t � x0, (6.80)

then w
� � v

� � 0 on (0, y0 � by (6.78). In particular, w
�
(y0) � 0, as asserted.
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The conclusion of the proof consists of a detailed analysis of the function K(t) to show
that (6.79) and (6.80) hold on (0, y0 � . An elementary computation shows that

K(0) � 0, K
�
(0) � 0, K

���
(0) � 0, K

�����
(0) � a2 � b2 � 0.

Hence K � 0 and K
�
� 0 in a right-neighbourhood of the origin. We set

t1
� sup

�
t � 0 � K � 0 on (0, t) � ,

and
t0

� sup
�
t � 0 � K � � 0 on (0, t) � .

Plainly 0 � t0 � t1 and K
�
(t1) � 0. We recall the assumption that

1 � a
b

� 3 �
π

2a
� π

2b
� 3π

2a
� 3π

2b
. (6.81)

Because a
�
b � 1, it follows from (6.79) and (6.81) that t1 � ( π2b , 3π

2b ), and hence, that t0 � 3π
2b .

On the other hand, since π
2a � π

2b it is clear that K
�
� 0 on (0, π2a � so that t0 � π

2a . Observe
that

cos(at) � 0 on
�
π
2a , 3π

2a � and cos(bt) � 0 on
�
0, π2b � .

Because a
�
b � 3 and hence 3π

2a �
π
2b , it follows that K

�
� 0 on

�
π
2a , π2b � , and we conclude that

π

2b
� t0 � 3π

2b
. (6.82)

The value of v at t0 can easily be computed by using the formula (6.80) for K
�

in the
expression (6.75) for v. We obtain

v(t0) � α � 1
a2 � b2 cos(bt0),

which, in view of (6.82), shows that v(t0) � 0. We conclude that x0 � t0 � t1, and hence
that the properties (6.79) and (6.80) of respectively K and K

�
are true. This completes the

proof of Lemma 6.48.
�

Proof of Lemma 6.49. We first show that the assertion is true for

α � q
�

2 � 1. (6.83)

Note that
(v
����� �

qv
�
)
� � � 2v � 0 as long as v � 0, (6.84)

and hence, still as long as v � 0,

v
���
(x) � qv(x) � v

���
(0) � qv(0) � (1 � α)

�
1 � α�

2
� q � .

Therefore, if (6.83) holds then

v
���

� � qv � 0 as long as v � 0,

so that x0(α) � � and v
�
( � ,α) � 0 for 0 � x � x0(α).

Let
α
� � inf

�
α̂ � 1 � x0(α) � � and v

�
( � ,α) � 0 for α̂ � α � � � .

Ifα � � 1, then the assertion is proved. Therefore, we suppose thatα � � 1. We distinguish
two cases:

(i) x0(α � ) � � and v
�
( � ,α � ) � 0 for 0 � x � � , or

(ii) x0(α � ) � � and v
�
(x1,α � ) � 0, for some x1 � x0(α � ).
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To keep the notation as simple as possible, we shall henceforth omit the asterisk when
referring to α � .
Case (i): Because v

� � 0 and v
����� � 0 at the origin, integration of (6.84) over (0, x) shows

that
v
�����

(x) � qv
�
(x) � 0 for x � 0.

Hence, integrating (6.84) again, but now over (1, x) we conclude that

(v
���
(x) � qv(x))

�
� v

�����
(1) � qv(1) � � δ for x � 1,

where δ is a positive constant. Hence

v
���
(x) � qv(x) � C � δ(x � 1) and therefore v

���
(x) � C � δ(x � 1) for x � 1,

where C � v
���
(1) � qv(1) is a constant. Thus v

���
(x) � � � as x � � , which implies that

x0(α) � � , a contradiction.
Case (ii): Suppose that x1 � x0(α). Then

v(x1) � 0, v
�
(x1) � 0 and v

���
(x1) � 0. (6.85)

When we multiply Equation (6.74a) by v
�
, integrate over (0, x) and use the initial condi-

tions, we obtain

v
�
v
����� � 1

2
(v
���
)2 � q

2
(v
�
)2 � v2 � (α � 1)2

�
1 � 1

4
(1 � α)2 � for x �

�
0, x0 � ,

Evaluating the left-hand side at x1, using the properties of v at x1 listed in (6.85), we obtain

v2(x1) � (α � 1)2
�

1 � 1
4

(1 � α)2 � . (6.86)

Since α � 1, the right-hand side of (6.86) is negative, while the left-hand side is nonneg-
ative, a contradiction.

It remains to consider the case that x1
� x0, so that

v(x0) � 0 and v
�
(x0) � 0. (6.87)

We begin with a preliminary result.

Lemma 6.50 Suppose that 1 � a
�
b � 3. Then, if the solution v of problem (6.74) has the

properties (6.87), the point x0 must lie in the interval (0, π2b ).

Proof. We recall the formula for v:

v(x) � A cos(ax) � B cos(bx), (6.88)

where a and b are given in (6.76) and A and B are given in (6.77). We discuss in succession
the three cases:

(i) A � 0, (ii) A � 0 and (iii) A � 0.

Case (i): A � 0. Since A
�

B � α � 1, it follows that in this case B � α � 1 and hence

v(x) � (α � 1) cos(bx).

Thus, x0
� π

2b . However, v
�
(x0) � 0, which contradicts (6.87), so that A cannot be zero.

Case (ii): A � 0. Observe that in this case

B cos(bx0) � � A � cos(ax0),

and B � α � 1 � A � α � 1 � � A � � � A � . Remembering that a � b, we conclude that

B cos(bx) � � A � cos(ax) � 0 if 0 � x � π

2a
.
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By assumption
π

2
� a

b
π

2
� 3π

2
. (6.89)

and hence
B cos(bx) � 0 � � A � cos(ax) if

π

2a
� x � π

2b
.

Therefore π
2b � x0 � 3π

2b . This implies that

v
��� �

a2v � (a2 � b2) cos(bx) � 0 on
� π
2b

, x0 � ,

and hence, because v
� � 0 on (0, x0),

�
(v
�
)2 � a2v2 � � � 2(v

��� �
a2v)v

�
� 0 on

� π
2b

, x0 � .

When we integrate this inequality over ( π2b , x0), and use (6.87), we find that
�
(v
�
)2 � a2v2 � �

π
�
2b � 0,

a contradiction, hence A � 0 cannot occur either.
Case (iii): A � 0. We have

v
� π
2b � � A cos

� a
b
π

2 � .

But, in view of (6.89), cos
�

a
b
π
2 � � 0. This means that v

�
π
2b � � 0, so that x0 � π

2b . Sum-
marising, we have found that the constant A in (6.88) must be positive, and hence, that
x0 � π

2b .
�

We continue the proof of Lemma 6.49. Using the explicit expression (6.88) for v, we
deduce from (6.87) that the constants A and B must satisfy the equations

A cos(ax0)
�

B cos(bx0) � 0 and aA sin(ax0)
�

bB sin(bx0) � 0. (6.90)

Since A
�

B � α � 1, they cannot both be equal to zero. Therefore, the determinant of the
system (6.90) of equations must be zero, and hence

a cos(bx0) sin(ax0) � b cos(ax0) sin(bx0). (6.91)

By Lemma 6.50, cos(bx0) � 0. Hence, if cos(ax0) � 0, then sin(ax0) � 0 as well, and this
is impossible. Thus, cos(ax0)

�� 0 and we may divide (6.91) by cos(ax0) cos(bx0). We thus
find that x0 must be a solution of the equation

tan(bx) � a
b

tan(ax) in
�
0,
π

2a � � � π
2a

,
π

2b � , (6.92)

because 3π
2a �

π
2b by assumption. With λ � a

�
b and bx � t, we can write (6.92) as

φ(t) def� λ tan(λt) � tan(t) � 0 in I def� �
0,
π

2λ � � � π
2λ

,
π

2 � . (6.93)

Thus, we seek a root τ � bx0 of Equation (6.93). However, the following Lemma shows
that such roots do not exist, which completes the proof of Lemma 6.49

�

Lemma 6.51 If 1 � λ � 3, then equationφ(t) � 0 has no roots in the set I.

Proof. Observe that
λ tan(λt) � tan(t) if 0 � t � π

2λ
(6.94a)

and
λ tan(λt) � 0 � tan(t) if

π

2λ
� t � π

λ
. (6.94b)
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If λ � 2, then π
�
2λ � π

�
2, so that it is immediately clear from (6.94) thatφ cannot have a

zero in I.
If 2 � λ � 3, then π

�
λ � π

�
2 � 3π

�
2λ and it follows that ifφ(t) has a zero in I, then it

must lie in the interval (π
λ

, π2 ), where both terms inφ(t) are positive. Plainly,

φ(
π

λ
) � � tan

�
π

λ

� � 0 and φ(t) � � � as t � π

2

�
. (6.95)

Suppose that φ(t) has a zero, and that t0 is the largest zero on (π
λ

, π2 ). Then (6.95) implies
thatφ

�
(t0) � 0. However, an easy computation shows that

φ
�
(t) � λ2 � 1 � 0 whenφ(t) � 0.

Thus, we have a contradiction, andφ(t) cannot have a zero in I. This completes the proof
of Lemma 6.51.

�

6.10 Linearisation
We linearise around the constant solution u � 1 of the equation

u(iv) � qu
��� �

u3 � u � 0.

Looking at the initial value problem (6.22), we write u � 1 � εv and α � 1 � ε. Omitting
higher order terms, we obtain�� � v(iv) � qv

��� � 2v � 0.

v(0) � � 1, v
�
(0) � 0, v

���
(0) � �

�
2, v

�����
(0) � 0.

(6.96a)

(6.96b)

We denote the corresponding solutions by v � (x). Substitution of v(x) � eλx yields the
characteristic equation

λ4 � qλ2 � 2 � 0. (6.97)

We distinguish two cases:

(i) � �
8 � q �

�
8 and (ii)

�
8 � q � � .

Case (i): Equation (6.97) has roots
λ � � a � ib (6.98a)

in which a � 0 and b � 0 are given by

a � 1
2
� �

8 � q and b � 1
2
� �

8 � q. (6.98b)

An elementary computation shows that the solutions v � (x) and v � (x) of problem (6.96)
are given by

v � (x) � � cosh(ax) cos(bx) � K � sinh(ax) sin(bx),

where

K � � a
b

�
�

8 � q�
8 � q

and K � � � b
a

.

Thus,
v
�
� (x) � (K � a

�
b) cosh(ax) sin(bx),

v
� � (x) � (K � b � a) sinh(ax) cos(bx).
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We see that for u(x,α) with u
���
(0) � 0 (i.e. corresponding to v � ) we obtain

η1(α) � π

� �
8 � q

and ξ2(α) � 3π

� �
8 � q

asα � 1.

and, since ε � 1 � α,

u � (η1(α),α) � 1 � (1 � α)
b
a

sinh
�
πa
2b
� asα � 1.

Case (ii): Equation (6.97) has roots

λ � � ia and λ � � ib,

where
a2 � 1

2
(q � � q2 � 8 ) and b2 � 1

2
(q � � q2 � 8 ).

For the solutions v � (x) of problem (6.96) we find

v � (x) � A � cos(ax) � B � cos(bx),

in which
A � � b2 � �

2
a2 � b2 and B � � � a2 � �

2
a2 � b2 .

Properties of the solutions v � (x) and their critical points and critical values are given in
Lemma 6.31.



Chapter 7

Second order Lagrangians
and Twist maps

7.1 Introduction
Various mathematical models for problems in nonlinear elasticity, nonlinear optics, solid
mechanics, etc. are derived from second order Lagrangian principles, i.e., the differential
equations are obtained as the Euler-Lagrange equations of a Lagrangian L that depends
on a state variable u, and its first and second order derivatives. The Euler-Lagrange dif-
ferential equations are fourth order and are of conservative nature.

In scalar models the Lagrangian action is defined by J
�
u � � 	 L(u, u

�
, u
���
) dt. A second

order Lagrangian system is, under suitable assumptions on the u
���
-dependence of L,

equivalent to a Hamiltonian system on � 4 . Trajectories of the Lagrangian system, and
thus Hamiltonian system, lie on three dimensional sets ME

def� �
H � E � , where H is the

Hamiltonian (conserved quantity). The sets ME are smooth manifolds for all regular E
values of H (i.e. � H � ME

�� 0), and are non-compact for all E � � . It turns out that for
Hamiltonian systems that come from second order Lagrangians, one can find a natural
two dimensional section

�
u
� � 0 � � ME which bounded trajectories have to intersect fi-

nitely or infinitely many times (possibly only in the limit) [96]. This section will be de-
noted by ΣE and ΣE

� NE � � , where NE is a one dimensional set defined by:

NE
� �

(u, u
���
)

�
�
�

∂L
∂u
��� u
��� � L(u, 0, u

���
) � E

�
(7.1)

(see Section 7.1.1 for more details). The Hamiltonian flow induces a return map to the
section ΣE, and closed trajectories (closed characteristics) correspond to fixed points of
iterates of this map. In many situations the return map is an analogue of a monotone
area-preserving Twist map (see e.g. [13, 102, 98]). The theory developed in this chapter
will be centred around this property. Lagrangian systems that allow such Twist maps
will be referred to as Twist systems. Definitions and a precise analysis will be given in the
forthcoming sections. This chapter will be concerned with the basic properties of Twist
systems and the study of simple closed characteristics. These are periodic trajectories that,
when represented in the (u, u

�
)-plane (configuration plane of the Lagrangian system), are

simple closed curves. In Chapter 8 we will investigate more elaborate types of closed
characteristics via a Morse type theory. One of the main results of this chapter is the
following.

Theorem 7.1 Consider a Twist system with Lagrangian L, and let E be a regular value. If
NE has a compact connected component ÑE, then there exists at least one simple closed
characteristic at energy level E with u(t) � π uÑE for all t � � (where πuÑE is the projection
of ÑE onto the u-coordinate).
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A precise statement of this result will be presented in Section 7.3.1 together with inform-
ation about the location and the Morse index of the trajectory (Theorem 7.11). The results
in this chapter are proved for Twist systems. We can safely conjecture that Theorem 7.1
remains true even without the Twist property. This can for example be achieved via con-
tinuation to a Twist system within the class of simple closed curves in the (u, u

�
)-plane.

This exploits the idea that no simple closed characteristics exist on the boundary of the
class of simple closed curves. Certain mild growth conditions on L are needed in this case
(also for the continuation). This idea will be subject of future study.

For singular energy levels a similar theorem can be proved (Theorem 7.13). The bot-
tom line is that under the same compactness assumptions there exists a simple closed
characteristic in the broader sense of the word, i.e., depending on possible singularities a
closed characteristics is either a regular simple closed trajectory, a simple homoclinic loop,
or a simple heteroclinic loop. We also explain how singularities can lead to multiplicity
of closed characteristics (this issue is addressed in full in Chapter 8).

In Section 7.4 we give some more background information on Twist maps including a
few observations deduced from numerical calculations. We also briefly discuss the ana-
logues of KAM-tori/circles for second order Lagrangian systems, and the issue of integ-
rability versus non-integrability.

Throughout the chapter specific examples of physical systems will be given such as the
Extended Fisher-Kolmogorov (EFK) and Swift-Hohenberg equations (u

������� � αu
��� �

F
�
(u) �

0 withα � � ). The theory developed in this chapter also applies to systems on M � S1 by
simply assuming L to be periodic in u.

The organisation of the chapter is as follows. We introduce the concepts that play a
major role in our analysis in Sections 7.1.1–7.1.3. The definition of the Twist property is
stated in Section 7.2.1. Some examples of Twist systems are given in Section 7.2.2 and in
Section 7.2.3 we explain to what extent the assumptions can be weakened. Subsequently,
we apply the theory to Twist systems on energy levels with (Sections 7.3.2 and 7.3.3) and
without singular points (Sections 7.3.1). We deal with non-compact interval components
in Section 7.3.4. In Section 7.4 we list some concluding remarks. Finally, Sections 7.5
and 7.6 are devoted to the classification of equilibrium points and the proof of the Twist
property for a specific class of second order Lagrangians.

7.1.1 Second order Lagrangians

Let L : � 3 � � be a C2-function of the variables u, v, w. For any smooth function u : I � � ,
I

� � , define the functional J
�
u � � 	

I L(u, u
�
, u
���
) dt, which is called is the (Lagrangian) action

of u. The function L may be regarded as a function on 2-jets on � , and is generally referred
to as the Lagrangian1. The pair (L, dt) is called a second order Lagrangian system on � .
The action J of the Lagrangian system is said to be stationary at a function u if δJ

�
u � � 0

1In the case of a general smooth 1-dimensional manifold M one defines L as a smooth function on 2-jet
space of M. The action is then defined by considering functions (u, u

�
, u

� �
) : I � J2 M.
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with respect to variations δu � C �c (I, � ), i.e.

δJ
�
u � � δ

�
I
L(u, u

�
, u
���
)dt �

�
I

�
∂L
∂u
δu
� ∂L

∂v
δu
� � ∂L

∂w
δu
�����

dt

�
�

I

�
∂L
∂u

� d
dt

∂L
∂v
� d2

dt2

∂L
∂w

�
δudt � 0.

A stationary function u thus satisfies the differential equation

∂L
∂u

� d
dt

∂L
∂u
�
� d2

dt2

∂L
∂u
��� � 0,

which is called the Euler-Lagrange equation of the Lagrangian system (L, dt). The Lagran-
gian action J is invariant under the � -action t �� t

�
c, which by Noether’s Theorem yields

the conservation law�
∂L
∂u
� � d

dt
∂L
∂u
���
� u
� � ∂L

∂u
��� u
��� � L(u, u

�
, u
���
) � constant (7.2)

(see for instance [100]). This conservation law is called the Hamiltonian.
If L is strictly convex in the w-variable then the Lagrangian system (L, dt) is equivalent

to a Hamiltonian system on � 4 with the standard symplectic structure. Therefore we
assume:

(H) ∂2
wL(u, v, w) � δ � 0 for all (u, v, w).

The correspondence between a Lagrangian system (L, dt) on � and a Hamiltonian sys-
tem (H,ω) on � 4 can be explained as follows. Let x � (pu, pv, u, v) be symplectic co-
ordinates for � 4 with the symplectic form given by ω � dpu � du

�
dpv � dv. Define the

Hamiltonian H(x) � puv
�

L � (u, v, pv), where L � (u, v, pv) � maxw � �
�

pvw � L(u, v, w) � is
the Legendre transform of L. Since L is strictly convex in w we have that L � is strictly
convex in pv. Moreover, ∂pv L � � �

∂wL � � 1(pv) � w, hence H(x) � puv
�

pv
�
∂wL � � 1(pv) �

L(u, v,
�
∂wL � � 1(pv)). For any function x : I � � the Hamiltonian action is defined by

A
�
x � � 	

I
� puu

� �
pvv

� � H(x)
�
dt. A function x is stationary for A if and only if the u-

coordinate is stationary for J. In particular, the Euler-Lagrange equations for A are of the
form x

� � XH(x), where XH
� J � H and J is defined by ω(x, J y) � �

x, y � (where
�
x, y �

is the standard inner product in � 4 ). XH is called the Hamiltonian vector field associ-
ated to H. The correspondence between u and its derivatives and x is given by: v � u

�
,

pu
� ∂u

� L � p
�
v, and pv

� ∂u
� � L. See for example [9] for more details on this correspondence.

The state space � 4 of the Hamiltonian system (H,ω) is often referred to as the phase space
and J1 � � � 2 is called the configuration space2.

If the Hamiltonian is sufficiently smooth then the Hamiltonian system x
� � XH(x) gen-

erates a local flow on � 4 . If we assume strict convexity of L in the w-variable then H is of
class C1. Under hypothesis (H) the Hamiltonian H(x) is a C2-function3, which in return
generates a local C1-flowφt

H on � 4 via the equation x
� � XH(x).

Stationary functions of J satisfy Equation (7.2), which is equivalent to H(x) � E � � .
For the associated Hamiltonian system (H,ω) this means that the stationary motions lie

2In the general case the configuration space is J1M and the phase space is TJ1 M.
3In order to study stationary points of A additional regularity for H is not required. One does usually

need proper growth conditions on H.
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on the 3-dimensional sets ME
� �

x � � 4 � H(x) � E � . If � H
�� 0 on ME then E is called

a regular value and ME is a smooth non-compact manifold without boundary. The vector
field XH restricted to ME is non-singular when E is a regular value. Indeed, the singular
points of the vector field XH, i.e. points x � such that XH(x � ) � 0, are exactly the critical
points of the Hamiltonian, and thus only occur at singular energy levels. Singular points
are of the form x � � (pu, pv, u, 0) and are given by: ∂uL(u, 0, 0) � 0, pu

� ∂vL(u, 0, 0) and
pv

� ∂wL(u, 0, 0). Equivalently, for a Lagrangian system an energy level E is said to be reg-
ular if and only if ∂L

∂u (u, 0, 0)
�� 0 for all points u � � that satisfy the relation � L(u, 0, 0) � E.

A bounded characteristic of a Lagrangian system (L, dt) is a function u � C2
b( � , � ) for

which δ 	 I L(u, u
�
, u
���
) dt � 0 with respect to variations δu � C2

c (I, � ) for any compact inter-
val I � � . Since the Lagrangian is a C2-function of the variables (u, v, w) it follows from the
Euler-Lagrange equations that u � C3

b( � , � ), ∂L
∂w ( � ) � C2

b( � , � ), and
�

d
dt

∂L
∂w

� ∂L
∂v � ( � ) � C2

b( � , � )
(regularity of critical points of L). This is equivalent to having a function x � C2

b( � , � 4 )
which is stationary for A

�
x � : a bounded characteristic for the associated Hamiltonian sys-

tem (H,ω).
The question now arises, given an energy value E, do there exist bounded and/or

closed characteristics (see Section 7.1.3 for a definition) on ME, and how many, and how
are these questions related to geometric and topological properties of ME.

7.1.2 Cross-sections and area-preserving maps
From (H) it follows that bounded solutions of the Euler-Lagrange equations only have
isolated extrema (well-posedness of the initial value problem for x

� � XH(x)). Therefore
a bounded characteristic has either finitely, or infinitely many isolated local extrema. For
the associated Hamiltonian system this means that a bounded trajectory always inter-
sects the section ΣE

� �
v � 0 � � ME

� �
(pu, pv, u, 0) � pu � � , pv

� ∂wL(u, 0, w), (u, w) � NE � ,
where NE is defined by (7.1)4. In the case that there are only finitely many (or zero) in-
tersections, x(t) must be asymptotic as t � � � to singular points of XH, and thus critical
points of H. If E is a regular value this possibility is excluded. A bounded solution u is
therefore a concatenation of monotone laps between extrema (an increasing lap followed
by a decreasing lap and vice versa), at least if we assume that u does not have critical
inflection points, i.e. ΣE is not intersected in a point where w � 0. In this context it is
important to note that if E is a regular value then critical inflection points can only occur
at the boundary of

πuNE
def� �

u � (u, w) � NE for some w ��� � � �
u � L(u, 0, 0) � E � 0 � .

The last equality follows from the definition of NE and the fact that ∂w(w∂wL � L) � w∂2
wL

in combination with hypothesis (H). We will be interested in bounded characteristics that
avoid critical inflection points. It will follow later on that at regular energy values critical
inflection points cannot occur (Lemma 7.7).

Recalling that w � ∂pv L � we define N �
E

� �
(u, pv) � NE � ∂pv L � (u, 0, pv) � 0 � , N �

E
�

�
(u, pv) � NE � ∂pv L � (u, 0, pv) � 0 � , and N0

E
� �

(u, pv) � NE � ∂pv L � (u, 0, pv) � 0 � . It follows
from hypothesis (H) that N �

E and N �
E are smooth graphs over the u-axis and π uN �

E
�

4It is sometimes convenient to define NE in terms of coordinates (u, pv) by using the formula pv
� ∂wL.
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Ω
�

Ω
�

Σ
�

Σ
�

π � π �

T �

T�
u

pu

u

pu

pv

Figure 7.1: The map T � , which is induced by the flow, and its projection T� .

πuN �
E . The sets Σ

�
E

� N
�
E � � are smooth surfaces over the (pu, u)-plane. Thus, the pro-

jections π � : Σ
�
E

�
πuN

�
E � � are invertible. For a given bounded trajectory x(t) we there-

fore only need to know the (pu, u)-coordinates of the intersections of x(t) with Σ
�
E . Con-

sequently, bounded characteristics can be identified with sequences of points (pui , ui) in
the (pu, u)-plane.

In the following we fix the energy level E and drop the subscript in the notation. The
vector field XH is transverse to the section Σ � �

Σ
� (non-transverse at Σ 0). It therefore

makes sense to consider the Poincaré return maps, i.e., maps from Σ � to Σ � and from Σ
�

to Σ � , by following the flowϕt
H starting at Σ � until it intersects Σ � . It may happen that

ϕt
H does not intersect Σ � at all. For the points in Σ � for which the flow does intersect Σ �

we have defined a map T � from Σ � to Σ � 5. The same can be done for the map T � map-
ping from Σ

� to Σ � . Since Σ
�

are graphs over the (pu, u)-plane the above defined maps
induce maps T� � π � T � π � 1� between open regions Ω

�
� π � Σ

�
, i.e. T� : Ω

� �
Ω
�

(see
also Figure 7.1). For any point (pu, u) � Ω

�
, T� is a local C1-diffeomorphism (since there

are no critical inflection points in N
�

).
Since bounded characteristics consist of increasing laps followed by decreasing laps

we seek fixed points of iterates of the composition map T � T � � T� (or T � T� � T � ).
Fixed points are contained in the set

Ω
� ���

n � �

�
T � � T� � n(Ω � ) � � 2 .

The maps T� are area-preserving maps with respect to the area formα � dpu � du. This
means that for any region U � Ω

�
it holds that 	 Uα � 	

T� U T �� α (locally area-preserving).
This was proved in [96] for the EFK-equation. We will give a different proof of this fact
here. Let (pu, u) � U � Ω � , and recall that ω � dpu � du

�
dpv � dv. Now T � maps

π
� 1� U � Σ � to T � π � 1� U � Σ

� . Since T � preservesω, and because Σ
�

�
�
v � 0 � it follows

that the 2-form α � dpu � du is preserved, and thus T� , as a map from Ω � to Ω � , is
area-preserving. This implies that

pu2 du2
� pu1 du1

� dS � (pu1 , u1), (7.3)

5In ODE theory the study of this map is often called a shooting method.
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where (pu1 , u1) � U and (pu2 , u2) � T� (pu1 , u1) � T� U, and S � is a C1-function of (pu1 , u1).
The map T� is a (local) Twist map if u2

� u2(pu1 , u1) is strictly increasing in � pu1 . It then
follows from (7.3) that there exists a C1-function SE(u1, u2) � S � (pu1(u1, u2), u1) such that
∂1SE

� � pu1 and ∂2SE
� pu2 . This function is called the generating function of the Twist

map. A similar construction can be carried out for T � . We refer to [9] for more details.
The function SE can be used to formulate a variational principle in terms of the ui-

variables. In the next chapter we will make a connection with the variational principle
for the Lagrangian action

JE
�
u � �

� τ

0

�
L(u, u

�
, u
���
) � E � dt,

where the integration over
�
0,τ � is between two consecutive extrema of u(t). In relation to

this connection we note the following (which does not depend on T� being a Twist map
or not).

Lemma 7.2 Let S � (pu1 , u1) � JE
�
u � , where u(t) is the trajectory starting at π � 1� (pu1 , u1) � Σ � ,

and τ � τ(pu1 , u1) is the first intersection time at Σ � . Then S � satisfies Equation (7.3).

Proof. Define the Hamiltonian action A E
�
x � � 	 T

0

�
puu

� �
pvv

� � H(x) � E � dt, and let

(pu1 , u1) � Ω � . Consider the trajectory
�
ϕt

H(π � 1� (pu1 , u1)) � t � τ(pu1 ,u1)
t � 0 , where τ(pu1 , u1) is the

first intersection time at Σ � . These trajectories vary smoothly with (pu1 , u1) � Ω � . We
now consider variations with respect to (pu1 , u1) � Ω � . Using the fact that (pu, pv, u, v)
obeys the Hamilton equations and v(τ(pu1 , u1)) � 0, we obtain

δA E
�
x � � puδu � τ0 � pvδv � τ0 � � puu

� �
pvv

� � H(x) � E
�
τ
δτ

� puδu(τ) � puδu(0) � pv
� δv(τ) � v

�
(τ)δτ

�
� pu2δu2

� pu1δu1,

where (pu2 , u2) � T� (pu1 , u1). It may be clear that A E
�
x � � JE

�
u � , which proves the lemma.

�

If T� is a Twist map then for JE this implies that there exists a local continuous family
u(t; u1, u2) of critical points (and τ(u1, u2) varies continuously). Conversely, we will show
in the next chapter that the continuity conditions on the family of critical points u(t; u1, u2)
imply the Twist property.

We remark that instead of studying the maps T� one can study a related area-pre-
serving map which is well defined when T� are Twist maps. From T� we construct the
map T̃ �

un � 1

un
� � T̃

�
un

un � 1
� , un � 1, un, un � 1 � πuNE.

For this map we can use the generating function SE(u1, u2) to retrieve the maps T� . We
refer to [6, 13] for more details.

7.1.3 Closed characteristics
A special class of bounded characteristics are closed characteristics. These are functions
u that are stationary for J

�
u � and are τ-periodic for some period τ . If we seek closed

characteristics at a given energy level E we can invoke the following variational principle:

Extremise
�

JE
�
u � � u � Ωper � , (7.4)
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where JE
�
u � � 	 τ

0 (L(u, u
�
, u
���
) � E) dt andΩper

� �
τ � 0C2(S1,τ). It may be clear that τ is also

a parameter in this problem. Problem (7.4) is equivalent to

Extremise
�

JE
�
v,τ � � (v,τ) � C2(S1, 1) � � � � , (7.5)

where JE
�
v,τ � � 	 1

0 (L(v, v
�
τ

, v
� �
τ2 ) � E)τds. This equivalent variational characterisation is con-

venient for technical purposes. Notice that the variations in τ guarantee that any critical
point of (7.4) has energy H(x) � E. The variational problem of finding closed characteris-
tics for a given energy value E can also be formulated in terms of unparametrised closed
curves in the configuration plane.

The Morse index of a closed characteristic u is defined as the number of negative
eigenvalues of the linear operator d2 JE

�
u � on TuΩper

� C2(S1, 1) � � . The nullity is the
dimension of the kernel of d2 JE

�
u � . The large Morse index is defined as the sum of the

Morse index and the nullity.

7.2 Twist systems

7.2.1 Generating functions
In this section we will introduce a class of Lagrangian systems which satisfy a variant of
the Twist property. Such systems can be studied via generating functions. We start with
systems for which the generating function is of class C2. In Section 7.2.2 we will give a
number of examples of such systems. In Section 7.2.3 we explain how the theory also
works with C1-generating functions which allows a weaker version of the Twist property
(see hypothesis (T’) in Section 7.2.3).

For a regular energy value E the set π uNE is a union of closed intervals. Connected
components of πuNE are denoted by IE and will be referred to as interval components.
Since E is regular it holds that L(u, 0, 0) � E � 0 for u � int(IE), and L(u, 0, 0) � E � 0 for
u � ∂IE. In terms of NE this means that connected components of NE topologically are
copies of � and/or S1. Let ∆ � �

(u1, u2) � IE � IE � u1
� u2 � be the diagonal, then for any

pair (u1, u2) � IE � IE
� ∆ we define

SE(u1, u2) � inf
u � Xτ
τ � � �

� τ

0

�
L(u, u

�
, u
���
) � E � dt, (7.6)

where Xτ
� Xτ (u1, u2) � �

u � C2(
�
0,τ � ) � u(0) � u1, u(τ) � u2, u

�
(0) � u

�
(τ) � 0, u

� � (0,τ) �
0 if u1 � u2 and u

� � (0,τ) � 0 if u1 � u2 � . We remark that the notation SE is slightly sug-
gestive since it is not a priori clear that this definition of SE is equivalent to the one in
Section 7.1.2 (however, compare Lemma 7.2). If there is no ambiguity about the choice
of E we simply write S(u1, u2). At this point it is not clear whether S is defined on all of
IE � IE

� ∆.
Collections of monotone pieces, or laps, of u from u1 to u2 that minimise 	 (L

�
E), are

the analogues of broken geodesics. Our goal now is to formulate a variational problem
in terms of the ui-coordinates of bounded characteristics replacing the ‘full’ variational
problem for JE

�
u � . This will be a direct analogue of the method of broken geodesics.

As in (7.5) there is an equivalent formulation of the variational problem above. In
view of this we consider the pair (v,τ), with v(s) � u(t) and s � t

�
τ . For the special points
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(u1, u2) � ∆ we define v(s) � u1 for all s �
�
0, 1 � and τ � 0 (and S(u1, u1) � 0). A Lagrangian

system (L, dt) is said to satisfy the Twist property on an interval component IE if (with E a
regular energy value):

(T) inf
�

JE
�
u � � u � Xτ (u1, u2), τ � � � � has a minimiser u(t; u1 , u2) for all (u1, u2) � IE � IE

� ∆,
and u and τ are C1-smooth functions of (u1, u2).

To be precise, by C1-smoothness we mean that (u1, u2) � (v,τ) is a C1-function from
int(IE � IE

� ∆) to C2(
�
0, 1 � ) � � � and a C0-function on IE � IE. The results presented in

this chapter will apply whenever the Twist property is satisfied on an interval compon-
ent IE

6.
If E is a singular energy level with non-degenerate critical points then we have the

same formulation of the Twist property with the following exceptions. First, C1-smooth-
ness is only required for all (u1, u2) � int(IE � IE

� ∆) such that u1 nor u2 is a critical point7.
Second, when an equilibrium point u � � IE is a saddle-focus or a center then τ(u1, u2) is not
continuous at (u � , u � )8. In the case that u1 and/or u2 is an equilibrium point of real saddle
type then τ can be � 9. We refer to Section 7.3.2 and Section 7.5 for more information on
singular energy levels and equilibrium points.

Definition 7.3 A Lagrangian system (L, dt) is called a Twist system on an interval com-
ponent IE if both hypotheses (H) and (T) are satisfied.

Using hypothesis (T) we can derive the following regularity properties for S.

Lemma 7.4 Let E be a regular value. If (L, dt) is a Twist system on an interval component
IE, then the function SE(u1, u2) is of class C2(int(IE � IE

� ∆)) � C1(IE � IE
� ∆) � C0(IE � IE).

Proof. Due to the smoothness assumption in (T) and the regularity of solutions of the
Euler-Lagrange equations (see Section 7.1.1), we have that u(t; u1 , u2) varies smoothly
with (u1, u2) with values in C2. It is easily seen that SE(u1, u2) � JE

�
u(t; u1 , u2) � is a C1-

function on IE � IE
� ∆. Lemma 7.2 and Equation (7.3) show that ∂1S(u1, u2) � � pu1 and

∂2S(u1, u2) � pu2 . It follows from the smoothness assumption in (T) and the fact that all
solutions obey (7.2) that pu1 and pu2 are C1-functions of (u1, u2)10, hence SE is a C2-function
on int(IE � IE

� ∆). Continuity of SE at the diagonal follows either via a simple estimate
in the variational problem, or by analysing the shooting map11.

�

If S is considered on I1
E � I2

E, where I i
E, i � 1, 2 are different connected components

of πuNE, then one does not expect SE to be defined on all of I1
E � I2

E. The next lemma

6Most of the results in this chapter also hold for slightly weaker conditions. For example, when we do
not require the family of solutions/extrema to be minimisers of JE(u1, u2) then we obtain the same results,
the information on the index excluded. For the case where the family is continuous but not C1 we refer to
Section 7.2.3.

7Singular energy levels connected components of πu NE can have internal critical points. This will be
discussed in Section 7.3.3.

8It still holds that JE
� u(t; u1, u2) � � 0 as (u1, u2) � (u � , u � ).

9We then consider u on either � 0, � ), ( � � , 0 � or
�

(whichever is appropriate) and require that u(t; u1, u2)
converges on compact sets as u1 and/or u2 tends to the critical point.
10At points t � (0,τ) we have pu

� ( � ∂L
∂u

� � u
� � � L � E) � u

�
which depends smoothly on (u1, u2) since u

���� 0 for
t � (0,τ). The smooth dependence of the initial value problem for the Hamiltonian flow now ensures that
pu(0) and pu(τ) depend smoothly on (u1, u2) as well.
11In both cases the corner points ∂∆ have to be dealt with separately.
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reveals some important properties of the generating function S. For the remainder of this
section we assume that E is a regular value and we consider interval components IE on
which (L, dt) is a Twist system.

Lemma 7.5 Let E be a regular value. Then
(a) ∂1S(u1, u2) � � pu1 and ∂2S(u1 , u2) � pu2 for all (u1, u2) � IE � IE

� ∆,
(b) ∂1∂2S(u1, u2) � 0 for all (u1, u2) � int(IE � IE

� ∆), and
(c) ∂n � S � int(∆)

� � � , where n � � ( � 1, � 1)T.12

Proof. Part (a) has been dealt with in the proof of Lemma 7.4. For Part (b) of this
lemma we argue as follows: ∂1∂2S(u1, u2) � ∂pu2

∂u1

� � ∂pu1
∂u2

. Because of the uniqueness of the
initial value problem for x

� � XH(x) the variable � pu1 is a strictly increasing function of
u2 (u1 fixed)13. In exactly the same way pu2 is a strictly increasing function of u1 (u2 fixed).
Therefore ∂1∂2S(u1, u2) � 0. On the other hand using the smooth dependence on initial
data for x

� � XH(x) and the smoothness of τ(u1, u2), it follows that both u2
� u2(u1, pu1)

and u1
� u1(u2, pu2) are smooth functions. This implies that ∂pu1

∂u2

�� 0 and ∂pu2
∂u1

�� 0, and thus
∂1∂2S(u1, u2) � 0.

As for Part (c) we only consider the derivative in the direction n � (the other case is
similar). We have that u

�����
(0), u

�����
(τ) � � � as u1

� u2 since u
���
(0), u

���
(τ)

�� 0 on int(∆).
For pu it holds that pu

� ∂vL(u, 0, w) � ∂2
vwL(u, 0, w)u

��� � ∂2
wL(u, 0, w)u

�����
and thus pui

� � ,
i � 1, 2.

�

The question of finding bounded characteristics for (L, dt) can now best be formulated
in terms of S. Extremising the action JE over a space of ‘broken geodesics’ now corres-
ponds to finding critical points of the formal sum � n � � S(un, un � 1). Formally we seek
critical points (bounded sequences) of the infinite sum

W( ����� , u � 1, u0, u1, ����� ) � �

i � �
S(ui , ui � 1).

Since this sum is usually not well-defined for bounded sequences (ui)i � � �
� � (
�

), we say
that a sequence is a critical sequence, or critical point of W, if:

∂2S(ui � 1, ui)
� ∂1S(ui , ui � 1) � 0, for all i �

�
. (7.7)

Such equations are called second order recurrence relations (see e.g. [13, 102] for related re-
currence relations in the context of Twist diffeomorphisms). If (7.7) is satisfied for all
i �
�

then u-laps can be glued to a C3-function for which all derivatives up to order three
match. Indeed, Equation (7.7) means that the third derivatives match14. Since every u-
lap satisfies the Euler-Lagrange equations we then get a C3

b-function u that is stationary
for J

�
u � . Of course, if we seek periodic sequences, i.e., sequences (ui)i � Z with ui � 2n

� ui,
where 2n is called the period, we may look for critical points of the restricted action
W2n

� � 2n
i � 1 S(ui , ui � 1) defined on I2n

E .15 This corresponds to finding closed characteris-

12This should be read as follows: when we approach a point (ũ, ũ) � int(∆) from within the region
�
u2

� u1 �
then ∂n � S � � as (u1, u2) � (ũ, ũ).
13It could also be strictly decreasing but this is excluded by Part (c) of the lemma
14It holds that ∂2S(ui � 1, ui)

� ∂1S(ui, ui
� 1) � ∂2

wL(ui, 0, u
� �
i )

� � u
� � �
i

� ũ
� � �
i � , where u

� � �
i is the third derivative on

the left and ũ
� � �
i is the third derivative on the right.

15The function W2n is continuous on I2n
E and is of class C2 on the set

�
(u1, ..., u2n) � int(I2n

E ) � ui
��

ui � 1 for all i � 1, .., 2n � , with u2n � 1 � u1.
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tics for (L, dt). The period can be linked to various topological properties of u and x (in
the Hamiltonian system (H,ω)) such as knotting and linking of closed characteristics.
Moreover, periodic sequences as critical points of W2n have a Morse index, which is ex-
actly the Morse index of a closed characteristic u as critical point of J � Ωper.

Lemma 7.6 Let E be a regular value. Let u � (ui)i � � �
� � (
�

) with ui � int(IE) be a periodic
sequence with period 2n, which is a stationary point of W2n with index µ(u) � 2n. Then
the associated closed characteristic u for (L, dt) is stationary for J

�
u � and the Morse index

of u is also µ(u), and vice versa.

Proof. Let u be stationary for W2n, i.e. dW2n(u) � 0. Concatenating the u-laps between the
consecutive extrema ui yields a τ-periodic C3-function u that satisfies the Euler-Lagrange
equations of (L, dt). It may be clear that the function u is a critical point of (7.4). The state-
ment concerning the Morse index µ(u) � µ(u) can be proved as follows. The assumption
that ui � int(IE) implies that u

��� �� 0 at extrema of u(t). This implies that the number of
monotone laps is conserved under small perturbations in Ωper

� �
τ � 0C2(S1,τ).

A function w in a small neighbourhood of u can be characterized by the heights of
the extrema u1, . . . , u2n (cylic), the distances between the extrema τ1, . . . ,τ2n, and the devi-
ations vi(t) � C2

0(
�
0, 1 � ) of the minimizing laps, namely

w(t) � u
�
τ(ui,ui � 1)

τi
(t � Ti); ui, ui � 1 � � vi

�
1
τi

(t � Ti) � for all t �
�
Ti, Ti � 1 � , i � 1, . . . , 2n,

where u(t; ui , ui � 1) and τ(ui, ui � 1) is the minimizing pair defined in hypothesis (T), and
Ti

� � i � 1
k � 1 τk. Consequently, TuΩper can be identified with (C2

0(
�
0, 1 � ) � � )2n � � 2n , seper-

ating the dependence on the heights of the extrema from the other contributions. The lin-
ear operator d2 JE

�
u � induces a linear operator on (C2

0(
�
0, 1 � ) � � )2n , which is non-negative.

Consequently the Morse index of d2 JE
�
u � is equal to the Morse index of the induced oper-

ator on � 2n . This induced operator is in fact d2W2n
�
u � (for more details see e.g. [103]: case

of broken geodesics).
�

For points on the boundary ∂IE additional information about S can be obtained. De-
note the left boundary point of IE by u � and right boundary point by u � .

Lemma 7.7 Let E be a regular value. Let u � � ∂IE (assuming that there exists a left
boundary point) then ∂1S(u � , ũ) � � ∂vL(u � , 0, 0) and ∂2S(ũ, u � ) � ∂vL(u � , 0, 0) for ũ � u � .
Similarly, if u � � ∂IE then ∂1S(u � , ũ) � � ∂vL(u � , 0, 0) and ∂2S(ũ, u � ) � ∂vL(u � , 0, 0) for all
ũ � u � .

Proof. Let us prove the above inequalities for ∂1S as the case for ∂2S leads to an ana-
logous argument. We start with the left boundary point u � . We seek an increasing lap
from u � to ũ. At u1

� u � it holds that � L(u � , 0, 0) � E, u
���
1

� 0 and ∂uL(u � , 0, 0) � 0, which
implies that u

�����
1 (0) � 0. By contradiction, suppose that u

�
(0) � u

���
(0) � u

�����
(0) � 0. On one

hand we have p
�
v

� ∂vL � pu and on the other hand p
�
v

� ∂2
uwLu

� � ∂2
vwLu

��� � ∂2
wLu

�����
. From

the former and the Euler-Lagrange equation we see that p
���
v (0) � � ∂uL(0) � 0, so that

lim
ε

� 0

(∂2
uwLu

� � ∂2
vwLu

��� � ∂2
wLu

�����
)(ε)

ε
� lim

ε
� 0

∂2
wLu

�����
(ε)

ε
� � ∂uL(0) � 0.

We conclude (using condition (H)) that u
�����

(t) � 0 in a right neighbourhood of 0, which
contradicts the fact that we are dealing with an increasing lap.
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It now follows that pu1
� ∂vL(u � , 0, 0) � ∂2

wL(u � , 0, 0)u
�����
1 (0) � ∂vL(u � , 0, 0). Therefore

∂1S(u � , ũ) � � pu � � � ∂vL(u � , 0, 0). For the right boundary point u � we get ∂1S(u � , ũ) �
� pu

� � � ∂vL(u � , 0, 0), since u is a decreasing lap.
�

7.2.2 Examples of Twist systems
An example of a class of Lagrangians for which we can verify the Twist property in vari-
ous cases is given by L(u, u

�
, u
���
) � 1

2 u
��� 2 � K(u, u

�
). Most of the fourth order equations

coming from physical models are derived from Lagrangians of this form. We could tag
such systems as fourth order mechanical systems based on the analogy with second order
mechanical systems given by Lagrangians of the form L(u, u

�
) � 1

2 u
� 2 � K(u) (integrable

systems). The Lagrangian L clearly satisfies hypothesis (H) and (L, dt) is thus equival-
ent to the Hamiltonian system (H,ω) with ω the standard symplectic form on � 4 (see
Section 7.1.1) and H(x) � puv

� 1
2 p2

v
� K(u, v). For a regular energy value E the set π uNE

is given by πuNE
� �

u � K(u, 0) � E � 0 � . If E is regular it holds that K(u, 0) � E � 0 for
u � int(IE), and K(u, 0) � E � 0 for u � ∂IE.

Lemma 7.8 Let IE a connected component of πuNE (E not necessarily regular16). Assume
that
(a) ∂K

∂v v � K(u, v) � E � 0 for all u � IE and v ��� ,

(b) ∂2K
∂v2 v2 � 5

2

� ∂K
∂v v � K(u, v) � E � � 0 for all u � IE and v ��� .

Then for any pair (u1, u2) � IE � IE
� ∆ Problem (7.6) has a unique minimiser (u,τ) � Xτ �

� � (in fact the only critical point), and the minimiser u(t; u1, u2) depends C1-smoothly on
(u1, u2) for (u1, u2) � int(IE � IE

� ∆)17.

For the proof of this lemma we refer to Section 7.6.
At this point we are not able to prove that the Twist property holds for more gen-

eral systems under some mild growth conditions on K without assuming (a) and (b).
However, numerical experiments (see Section 7.4.1) for various Lagrangians suggest that
Lemma 7.8 is still valid, although we do not have a proof of this fact. Milder conditions
on K sometimes only allow the existence of a continuous family u(t; u1 , u2). We come
back to this case in Section 7.2.3. The conditions given in Lemma 7.8 already allow for
a large variety of Lagrangians that occur in various physical models. We will give a few
examples of such systems now.

7.2.2.1 The EFK/Swift-Hohenberg system

The EFK/Swift-Hohenberg Lagrangian is given by L(u, u
�
, u
���
) � 1

2 u
��� 2 � α

2 u
� 2 � F(u), where

α � � and F is a smooth potential function18. The Hamiltonian in this case is H(x) � puv
�

1
2 p2

v
� α

2 v2 � F(u). Connected components of πuNE are sets of the from
�
u � F(u) � E � 0 � .

In the case that α � 0 this L is referred to as the EFK-Lagrangian (see e.g. [90, 89, 88]),
and in the caseα � 0 it is usually referred to as the Swift-Hohenberg Lagrangian [106, 23,

16If E is a singular energy level then we require the critical points to be non-degenerate.
17If E is a singular energy level then C1-regularity holds for all (u1, u2) � int(IE

� IE
�
∆) for which u1 nor u2

is a critical point.
18Note that in this chapter the potential F(u) is defined with the opposite sign compared to Chapter 1.
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137]. For example, F(u) � 1
4 (u2 � 1)2 is the classical EFK/Swift-Hohenberg potential [117,

120], F(u) � 1
3 u3 � 1

2 u2 gives the water-wave model [35], F(u) � � 1
4 (u2 � 1)2 is the potential

of a nonlinear optics model [1].
If α � 0 then the conditions (a) and (b) are satisfied for any interval component IE.

The Swift-Hohenberg systems is therefore a Twist system for all interval components.
For α � 0 this is not immediately clear (conditions (a) and (b) are not satisfied)19. More
details on EFK/Swift-Hohenberg systems are given in Section 7.3.4.

7.2.2.2 The suspension-bridge model

The suspension bridge model is a special case of the Swift-Hohenberg equation, namely
L(u, u

�
, u
���
) � 1

2 u
��� 2 � c2

2 u
� 2 � F(u), with F(u) � eu � u � 1 (see [121]). Clearly, the suspension

bridge model is a Twist system for all c � � . For more details see Section 7.3.4. This model
is particularly intriguing due to the specific form of the potential function F. The growth
of F for u � � is essentially different from the growth for u � � � which has far reaching
consequences for the set of closed characteristics.

7.2.2.3 The fifth order KdV equation

Consider L(u, u
�
, u
���
) � 1

2 u
��� 2 � K(u, u

�
), where K(u, u

�
) � 1

2 (α
�

2µu)u
� 2 � F(u), with F(u) �

κ
3 u3 � σ

2 u2, which describes travelling waves in a fifth order Korteweg-de Vries equation
(see e.g. [40, 115]). In order for the theory to be applicable the conditions in Lemma 7.8
on K imply that α � 2µu � 0 for u � IE. The case µ � 0 is the Swift-Hohenberg equation
again. Let us assume for example that κ,σ � 0, then one finds compact intervals IE for
values � σ3

6κ2 � E � 0. These intervals are contained in
� � 3σ

2κ , 0 � . For µ � 0 the condition
becomes u � � α

2µ , which is for instance satisfied for all u � IE ifα � 0. For µ � 0 the condi-
tion becomes u � � α

2µ , which is satisfied for all u � IE ifα � 2σµ
κ

. Many more combination
can be found by also varying the signs of κ and σ .

7.2.3 The C0-Twist property
As we already remarked before, the theory developed in this chapter can be adjusted
for C1-generating functions. We will point out the difficulties and how the theory has to
be adjusted at the end of this section. First we start with a weaker version of the Twist
property that ensures the existence of C1-generating functions.

(T’) inf
�

JE
�
u � � u � Xτ (u1, u2), τ � � � � has a minimiser u(t; u1 , u2) for all (u1, u2) � IE � IE

� ∆,
and u and τ are continuous functions of (u1, u2).

Hypothesis (T’) is often easier to verify than the stronger hypothesis (T). Let IE be an in-
terval component and (L, dt) is a Twist system on IE with respect to hypothesis (T’). Then
pu2(u1, u2) is strictly increasing in u1 and � pu2(u1, u2) is strictly increasing in u2, and both
are continuous in (u1, u2). The maps T� as described in Section 7.1.2 are therefore mono-
tone (C1-) Twist maps, which have a C1-generating function SE(u1, u2) � JE

�
u(t; u1 , u2) � .

19J. Kwapisz [95] proves that the C0-Twist property (T’) (see Section 7.2.3) is satisfied for the EFK-
Lagrangian (α � 0) on interval components IE for which F(u) � E has at most one internal extremum (a
maximum).
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Lemma 7.9 Let IE be an interval component. If (L, dt) is a Twist system with respect to
hypothesis (T’), then SE is a C1-generating function on IE � IE

� ∆.

Part (b) of Lemma 7.5 is now replaced by the property that ∂1S and ∂2S are increasing
functions of u1 and u2 respectively. The difficulties in working with C1-generating func-
tions are the definition of the Morse index and the gradient flow of W � �

i S(ui , ui � 1).
In Section 7.3 we use the gradient flow of W to find other critical points besides minima
and maxima. One way to deal with this problem is to approximate S by C2-functions.
A C1-Morse/Conley index can then be defined (see for instance [17, 18]). An analogue
of Lemma 7.6 can also be proved now. Other properties of S that we use in this chapter,
such as construction of isolating neighbourhoods, do not need the C2-regularity. For this
reason we will continue with C2-function keeping in mind that all result carry over to the
C1-case.

7.3 Existence

7.3.1 Simple closed characteristics for compact sections NE

The properties of S listed in the Section 7.2.1 can be used to derive an existence result for
simple closed characteristics. Before stating the theorem we need to introduce some addi-
tional notation: IE � IE

� ∆ � D �
E

�
D �

E , where D �
E

� �
(u1, u2) � IE � IE

� ∆ � u2 � u1 � , and
D �

E is defined analogously. The function W2(u1, u2) � S(u1, u2) � S(u2, u1) is a C2-function
on int(IE � IE

� ∆). Since W2(u1, u2) � W2(u2, u1) we can restrict our analysis to D �
E .

Throughout this section we again assume that E is regular and (L, dt) is a Twist system
on IE.

Lemma 7.10 Assume that π uNE contains a compact interval component IE. Then W2 has
at least one maximum on D �

E
20.

Proof. We have that W2 � ∆ � 0 and W2 is strictly positive near int(∆) by Lemma 7.5c.
Since the set D

�
E is compact, W2 must attain a maximum on set D

�
E . It follows that

max(u1,u2) � D
�
E

W2(u1, u2) � 0.
Writing IE

� �
u � , u � � we denote by n1

� (1, 0)T the inward pointing normal on the left
boundary B1

� �
(u � , u2) � u2 � IE � and by n2

� (0, � 1)T the inward pointing normal on
B2

� �
(u1, u � ) � u1 � IE � . Using Lemma 7.7 we can now compute ∂W2

∂n1
and ∂W2

∂n2
. For example

let u1
� u � , then

∂W2

∂n1

� ∂1S(u � , u2) � ∂2S(u2, u � ) � � ∂vL(u � , 0, 0) � ∂vL(u � , 0, 0) � 0.

Similarly, using Lemma 7.7, we derive that ∂W2
∂n2
� B2 � 0. Since both ∂W2

∂n1
� B1 � 0, ∂W2

∂n2
� B2 � 0,

and W2 � ∆ � 0, the maximum is attained in int(D �
E ) (see also Figure 7.2).

�

If we study W2n, n � 1 we do not necessarily find new closed characteristics for (L, dt).
i.e. critical points of W2n of higher index may be the same closed characteristic traversed
more than once. In the next sections we will describe some mechanisms that yield more
geometrically distinct closed characteristics.

20From straightforward Morse theory for W2 on D
�
E we obtain in addition that b0 
 0, b1

� b0 
 0 and
b2
� b1

� b0
� 1, where bi is the number of critical points of index i (in the case that W2 is a Morse function).
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D �
E

u2
� u �

u 1

� u

�

u 1

� u 2

Figure 7.2: A picture of D �E . The arrows denote the direction of the gradient � W2
schematically (of course the gradient is not perpendicular to the boundary everywhere).
Clearly the maximum of W2 is attained in the interior of D �E .

The above lemma can be slightly rephrased for Lagrangian systems (see Lemma 7.6).
We do not have information about the nullity of d2 JE(u1, u2), so that the large Morse in-
dex21 of the solutions may be greater than 2, but the Morse index is certainly smaller than
or equal to 2.

Theorem 7.11 Assume that π uNE contains a compact interval component IE. Then (L, dt)
contains at least one simple closed characteristic u(t) � int(IE) with large Morse index
greater than or equal to 2 and Morse index less than or equal to 2.

Theorem 7.11 states that the associated Hamiltonian system (H,ω) has at least one
closed characteristic on ME. The above theorem is reminiscent of first order Lagran-
gian systems: L(u, u

�
) with Euler-Lagrange equation ∂L

∂u
� d

dt
∂L
∂u

� � 0. Such systems may be
labeled as mechanical systems if ∂u

� L � 0. On the compact components of
�
(u, u

�
) � ∂L

∂u
� u � �

L(u, u
�
) � E � closed characteristics exist (integrable system).

If L is invariant with respect to t �� � t, then it holds that L(u, v, w) � L(u, � v, w) for
all (u, v, w) � � 3 . A consequence of this symmetry is that S(u1, u2) � S(u2 , u1) which im-
plies that we can study just S (instead of W2) to find simple closed characteristics in this
case. Moreover, this symmetry of L carries over to the simple closed characteristic: u(t) is
symmetric with respect to its extrema. Some Lagrangian systems are also invariant under
the symmetry u �� � u which yields the relation L(u, v, w) � L( � u, � v, � w). If 0 � π uNE

then there is at least one closed characteristic on the anti-diagonal u1
� � u2. If the global

maximum of W2 is not on the anti-diagonal u1
� � u2 then there are at least 2 more closed

characteristics (by symmetry).
If we consider non-compact interval components IE there is no topological restriction

that forces the existence of closed characteristics, and there need not exist any. In order to
deal with this case (in forthcoming sections) more information about L is needed: asymp-
totic behaviour (see Section 7.3.4).

7.3.2 Singular energy levels
If E is a singular energy level then there exist points u � π uNE for which ∂uL(u, 0, 0) �
0 and L(u, 0, 0) � E � 0. For a singular value E the connected components of NE are

21The large Morse index is defined as the sum of the Morse index and the nullity.
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either smooth manifolds ( � or S1), or they are characterised as: Nc
E

� ( � � )S1 � ����� �
S1( � � ). The points in � 2 on which NE fails to be a manifold lie on the u-axis, and are
exactly the points u for which ∂uL(u, 0, 0) � 0 and L(u, 0, 0) � E � 0. The set of such critical
points is denoted by C (IE). As before, πuNE is a union of closed intervals. An interval
component IE is defined as a subset of πuNE such that L(u, 0, 0) � E � 0 for all u � int(IE)
and L(u, 0, 0)

�
E � 0 for u � ∂IE. Since E is singular two interval components I1

E and I2
E

may have non-empty intersection, i.e. I1
E � I2

E
� �

one point � � C (IE). Concatenations of
interval components are discussed in Section 7.3.3. If we consider interval components
with critical points geometric properties come into play. We assume that (L, dt) is a Twist
system for the interval components that we consider.

Let IE be an interval component for which u � � ∂IE is a critical point. In order to
prove the analogue of Lemma 7.7 we need to know whether u

�����
(0) is zero or not. This is

determined by τ(u � , u2), i.e. if τ(u � , u2) � � then u
�����

(0) � 0 (assuming u2 � u � ), and if
τ(u � , u2) � � then u

�����
( � � ) � 0 (in the case that τ � � we consider u on

� � τ , 0 � using
translation invariance). These two cases can be distinguished by studying the singularity
at u � . We can compute the spectrum of u � which we will denote byσ(u � ). We assume that
we are dealing with non-degenerate singular points, i.e. 0

�
� σ(u � ). Critical points on the

boundary of interval components obey ∂2
uL(u, 0, 0) � 0. It is shown in Section 7.5 that there

are three possible behaviours forσ(u � ): σ(u � ) � � , σ(u � ) � i � , orσ(u � ) �
� � �

� �
i � � . In

the latter case there is one eigenvalue in each quadrant. The three possible behaviours are
categorised as real saddle, center and saddle-focus respectively. If σ(u � ) �

� � � (center or
saddle-focus), then τ(u � , u2) � � for all u2 � IE. It is immediately clear that Theorem 7.11
is still valid in that case. Also, if both u � and u � are critical points and have their spectrum
in

� � � , Theorem 7.11 remains true.

Theorem 7.12 Let E be a singular value and assume that σ(C (IE)) �
� � � . Then (L, dt)

contains at least one simple closed characteristic u(t) � int(IE) with large Morse index
greater than or equal to 2 and Morse index less than or equal to 2.

The way to attack the problem of finding closed characteristics at singular energy levels in
general is to again consider the function W2(u1, u2) � S(u1, u2) � S(u2, u1). Since W2 � ∆ � 0
and strictly positive near ∆, W2 attains its global maximum in IE � IE

� ∆. As was already
pointed out before, the maximum is attained in the interior of IE � IE

� ∆ if there are no
critical points of L(u, 0, 0) in ∂IE, or if critical points of L(u, 0, 0) have complex spectrum
(Theorem 7.12). Thus in order for W2 to attain its global maximum on the boundary, the
interval component ∂IE needs to contain at least one critical point of L(u, 0, 0) with real
spectrum.

The next question is: suppose W2 attains its maximum at ∂(IE � IE
� ∆), does this

maximum correspond to a simple closed trajectory for (L, dt)? Again from the previous
we know that at a point (u1, u2) � ∂(IE � IE

� ∆) it holds that ∂1W2 � 0 if u1
� u � and

∂2W2 � 0 if u2
� u � . A boundary maximum for which u1

� u � and u2
� u � is called a co-

dimension 2 point, and the remaining boundary points are called co-dimension 1 points.
It is clear that at a co-dimension 1 point, for example at u1

� u � , it holds that ∂2W2
� 0.

Since we are assuming that this point is a maximum, and because ∂1W2 � 0 it follows
that the maximum is in fact a critical point. The same holds for a co-dimension 1 point
at u2

� u � . Such points correspond to solutions u(t) for which u
�����

( � � ) � u
�����

( � ) � 0,
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and u( � � ) � u( � ) � u � , and u(t) is thus a homoclinic orbit. By the same reasoning co-
dimension 2 points are also critical points. Such a point corresponds to a heteroclinic loop
(two heteroclinic connections that form a loop).

Summarising, we can introduce the notion of closed characteristic in the broad sense
of the word: a simple closed periodic orbit, a simple homoclinic loop, or a simple hetero-
clinic loop (they all form a simple closed loop in the configuration plane). If we use this
definition we obtain the following theorem.

Theorem 7.13 Assume that π uNE has a compact interval component IE then (L, dt) has at
least one simple closed characteristic in the broad sense.

It is clear from the previous that a necessary condition for (L, dt) to have a simple
homoclinic loop to u � is that u � is a critical point of L(u, 0, 0) that has real spectrum (real
saddle). The same holds for u � . A necessary condition to find a simple heteroclinic loop
between u � and u � is that both u � and u � are real saddles. Unfortunately, these condi-
tions need not be sufficient22.

One way to guarantee the existence of a simple homoclinic loop to u � � C (IE) is
that τ(u � , u2) � τ(u2, u � ) � � for all u2 � IE

23, and either u � �
� C (IE) or u � has com-

plex spectrum. In that case ∂1S(u � , u2) � � ∂vL(u � , 0, 0) for all u2 � IE. In terms of W2

this yields that ∂1W2(u � , u2) � 0 for all u2 � IE. We can now restrict W2 to the line-
segment

�
u1

� u � � � IE. Define W1(u) � W2 � � u1 � u ��� � IE
� S(u � , u)

�
S(u, u � ). It easily fol-

lows that (compare Lemma 7.7) W1(u � ) � 0, W1(u � �
ε) � 0 for ε � 0 sufficiently small24

and W
�
1(u � ) � 0, and thus W1 has at least one global maximum u � on (u � , u � ). The point

u � corresponds to a homoclinic orbit to u � u � .
Regarding the Morse index of this point/orbit we note the following. If u � is a (local)

maximum of W2 on D �
E then the large Morse index is again equal to 2. The corresponding

homoclinic orbit has large Morse index greater than or equal to 2 and Morse index less
than or equal to 2. However, restricted to the class of functions that are homoclinic to
u � it has large Morse greater than or equal to 1 and Morse index less than or equal to 1
(mountain-pass critical point)25.

7.3.3 Concatenation of interval components
Up to this point we have only considered single interval components IE. When E is a
singular value then two interval components I1

E and I2
E may have a common boundary

point. This boundary point is then necessarily a critical point. The concatenation of the
interval components I i

E, i � 1, 2, will be denoted by I#
E, and the critical point in I1

E � I2
E is

denoted by u � . If (L, dt) is a Twist system on both interval components I1
E and I2

E it does

22For the EFK Lagrangian with F(u) � 1
4 (u2 � 1)2 it has been shown that the simple closed characteristic

found in Theorem 7.13 corresponds to a heteroclinic loop if and only if the equilibrium points are real
saddles (see Chapter 2 and [117, 96]).
23It follows from Lemma 7.5b that it in fact suffices that τ(u � , u

�
) � τ(u

�
, u � ) � � .

24It follows from the linearisation around u � that pu2 � 0 for u � � u2 � u � �
ε when ε is small enough.

25For the EFK Lagrangian with Fa(u) ��� u
1 (s2 � 1)(s � a)ds, 0

�
a � 1 andα 
 2

�
2(1 � a) the Twist property

is satisfied on the interval component I0
� � u � , 1 � and τ(u � , 1) � � . Therefore there exists a homoclinic

loop is this case. The existence of such solutions for this problem was first proved in [116] by means of a
different method. If the case a � 0 is considered one obtains a heteroclinic loop (see e.g. [89]).
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D �
E,1

D �
E,2

D �
E,3

u2
� u �

u 1

� u

�

u 1

� u 2

� (u�
,u�

)

Figure 7.3: The triangle D �E when a connected component of πuNE consists of two com-
pact interval components. The arrows denote (schematically) the direction of the gradi-
ent � W2. Clearly W2 has maximum in D �E,1 and D �E,2 and a saddle point in D �E,3.

not necessarily mean that (L, dt) is a Twist system on the concatenated interval I#
E. One

can easily give examples where (L, dt) fails to satisfy the Twist property on I#
E.26 However,

if (L, dt) is Twist system on I#
E, and this is indeed true in many cases, then more solutions

can be found. In order to study this case we will use the gradient flow of W2:
du1

dt
� ∂2S(u2, u1) � ∂1S(u1, u2), (7.8a)

du2

dt
� ∂2S(u1, u2) � ∂1S(u2, u1), (7.8b)

with ui � int(I#
E) for i � 1, 2.

As before we can restrict our analysis to D �
E . Define D �

E,1
� �

(u1, u2) � I1
E � I1

E � u2 � u1 � ,
D �

E,2
� �

(u1, u2) � I2
E � I2

E � u2 � u1 � , and D �
E,3

� I1
E � I2

E
� (u � , u � ). On the domains D �

E,1

and D �
E,2 one can again apply Theorem 7.13 which yields the existence of maxima on

each of these components. Note that this is independent of the type of u � (spectrum
σ(u � )). The following theorem will crucially use the fact that u � is a critical point for
which σ(u � ) �

� � �
� �

i � � , i.e. a saddle-focus.

Lemma 7.14 Let I#
E be a concatenation of two compact interval components I1

E and I2
E and

assume that the critical point u � � I1
E � I2

E is a saddle-focus. Then W2 has at least one
maximum on each of the components D �

E,i, i � 1, 2 and W2 has a saddle point (critical
point with large Morse index equal to 1) on the component D �

E,3.

Proof. The existence of at least one maximum on each of the components D �
E,i, i � 1, 2,

follows directly from Theorem 7.14. As for the existence of saddle points we argue
as follows (see also Figure 7.3). Applying Lemma 7.7 we obtain that ∂1W2 � ∂I1

E
� I2

E
� 0

and ∂2W2 � I1
E

� ∂I2
E
� 0. In order to successfully apply Conley’s Morse theory we need to

choose an appropriate subset of DE,3 which will serve as an isolating neighbourhood.
Near (u1, u2) � (u � , u � ) we can find a small solution of the Euler-Lagrangian equation
by perturbing from a linear solution. Consider the unique monotone lap u(t) for which
u(0) � u1

� u � � δ and u(τ) � u �
�
δ. Since u � is critical point of saddle-focus type,

26For example consider the EFK Lagrangian with F(u) � 1
4 (u2 � 1)2. Take E � 0, then πu N0

� �
is the

concatenation of three intervals. Ifα 
 2
�

2 then (L, dt) is not a Twist system on I#
0
� �

. However forα
�

0
the Twist property is satisfied on

�
, and numerical experiments indicate the same for 2

�
2 �

α
� 0. This is

related to the behaviour of the singularities u ��� 1 (see Section 7.4.1).
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it follows that u
�����

(0) � 0 and u
�����

(τ) � 0 for δ sufficiently small27. Straightforward cal-
culation shows that ∂1∂2W2

� ∂1∂2S(u1, u2) � ∂1∂2S(u2, u1) � 0. These two facts com-
bined show that ∂1W2(u � � δ, u2) � 0 for all u2 � u �

�
δ, and ∂2W2(u1, u �

�
δ) � 0 for all

u1 � u � � δ. Define Nδ
� D �

E,3
� �

(u1, u2) � u � � δ � u1 � u � , u �
�
δ � u2 � u � � . The set

Nδ is a closed subset of D �
E,3 and is isolating with respect to the gradient flow of W2.28

The next step is to compute the Conley index of the maximal invariant set Inv(Nδ) � Nδ.
It suffices here to compute the homological index (see [48]) of Inv(Nδ). In order to do
so we need to find an index pair for Inv(Nδ). Let ∂I1

E
� �

a �
1 , a �

1 � , ∂I2
E

� �
a �

2 , a �
2 � . Let

N �
δ

� �
u1

� u � , u �
�
δ � u2 � a �

2 � � �
a �

1 � u1 � u � � δ, u2
� u � � , then (Nδ, N �

δ ) is an index
pair for Inv(Nδ), and CH � (Inv(Nδ)) � H � (Nδ, N �

δ ). Consequently CH1(Inv(Nδ))
�
�

and
CHk(Inv(Nδ)) � 0 for k

�� 1. The fact that the homological Conley index is non trivial for
k � 1 and because (7.8) is a gradient flow we conclude that there exists at least one critical
point of W2 in Nδ with large Morse index equal to 1.

�

With regard to the relative position of the extrema of W2 we note the following. Let
(bi, ci) be the maximum in D �

E,i for i � 1, 2. Since � W2(bi, ci) � 0 it follows from Lemma 7.5b
that ∂1W2(b1, u2) � 0 for all u2 � c1 and ∂2W2(u1, c2) � 0 for all u1 � b2. Therefore, we may
as well use D̃ �

E,3
� �

b1 � u1 � u � , u � � u2 � c2 � � (u � , u � ) instead of D �
E,3. We then obtain a

saddle point (b3, c3) � D̃ �
E,3 with b1 � b3 � b2 and c1 � c3 � c2.

In terms of closed characteristics for a Lagrangian systems the above lemma yields

Theorem 7.15 Let πuNE contain a concatenation I#
E of two compact intervals I1

E and I2
E,

and assume that (L, dt) is a Twist system on I#
E. If u � � I1

E � I2
E is of saddle-focus type, then

there exist at least 3 geometrically distinct closed characteristics.

An analogue of the above theorem can also be proved for concatenations of more than
two interval components. We leave this to the interested reader.

7.3.4 Non-compact interval components
As already indicated in the previous sections the theory developed in this chapter is ap-
plicable to various model equations that we know from physics, such as the EFK/Swift-
Hohenberg type equations, fifth order KdV equations, suspension bridge model, etc.
(see Section 7.2.2). In this section we will take a closer look at the class of EFK/Swift-
Hohenberg type equations. This family of equations is given by a Lagrangian of the form:
L(u, u

�
, u
���
) � 1

2 u
��� 2 � α

2 u
� 2 � F(u), where F is the potential, which is an arbitrary C2-function

of u. We have already proved that such Lagrangian systems are always Twist systems if
α � 0 (and we believe the same to be true also forα � 0 (Twist property on interval com-
ponents)). The results obtained in this chapter prove that for any energy level E for which
the set

�
u � F(u) � E � 0 � contains a compact interval component IE, there exist a simple

closed characteristic u(t) � int(IE). Let us by means of example consider a double equal-
well potential F (like 1

4 (u2 � 1)2) with minu F(u) � 0. In this case the set
�
u � F(u) � E � 0 �

always contains non-compact interval components. Without further geometric know-

27This follows for example from an explicit calculation of the solution for the linearised problem.
28The flow is not well-defined on the boundary of DE3, but we can choose a slightly smaller isolating
neighbourhood inside DE,3 with the same Conley index (alternatively we can use the Morse index for C1-
functions (see also Section 7.2.3)).
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ledge of the energy manifold ME a general topological result proving existence of closed
characteristics does not seem likely. Therefore we will consider a specific example here.
Consider the energy level E � 0, then I0

def� πuN0
� � , and I0 is a concatenation of three

interval components. The Lagrangian system withα � 0 is a Twist system on I0 and there-
fore S is well-defined on � 2 . One way to deal with this non-compact case is to compactify
the system (see Chapter 5). This however requires detailed information about the asymp-
totic behaviour of F. There is a weaker assumption that one can use in order to restrict
the analysis of W2 to a compact subset of D �

E . This boils down to the following geometric
property:

(D) There exists a pair (u �1 , u �2) � D �
E (with � u �1 � and � u �2 � large) such that u

�����
a,b(0) � 0 and

u
�����
a,b(τ) � 0 for the unique minimisers ua

� u(t; u �1 , u �2) and ub
� u(t; u �2 , u �1) of (7.6)29.

If (L, dt) satisfies hypothesis (D) on a (non-compact) interval component IE, then the sys-
tem is said to be dissipative on I �E

� �
u �1 , u �2 � .

Lemma 7.16 If a Lagrangian system is dissipative on I �E, then it holds that ∂1W2(u �1 , u2) � 0
for all u2 � (u �1 , u �2 � and ∂2W2(u1, u �2) � 0 for all u1 �

�
u �1 , u �2).

Proof. It follows from (D) that ∂1W2(u �1 , u �2) � 0. Lemma 7.5b implies that ∂1W2(u �1, u2) is
increasing as a function of u2. It easily follows that ∂1W2(u �1 , u2) � 0 for all u2 � u �2. The
other assertion is proved in exactly the same way.

�

For many nonlinearities F(u) it can be proved that the EFK/Swift-Hohenberg system
is dissipative on some interval I �E

� �
u �1, u �2 � with u �1 � � 1 and u �2 �

� 1 30. Notice that S
need not have any critical points, for example for E � 0 (see Chapter 5). For E � 0 there
are two equilibrium points which will force S to have critical points.

Lemma 7.17 If the Swift-Hohenberg Lagrangian is dissipative on I �0 (with
� � 1 � � C (I �0 ))

then it has at least two geometrically distinct simple closed characteristics (large and small
amplitude). Moreover, if u � � 1 are both saddle-foci then there exist two more geomet-
rically distinct simple closed characteristics.

Proof. We consider the function W2 on I �E � I �E and as before we define D �
E

� I �E �
I �E �

�
u2 � u1 � (see also Figure 7.4). Define A1

� � � 1 � u1 � u2 � 1 � and A2
� D �

E ��
u1 � � 1, u2 � 1 � . As in the proof of Lemma 7.10 we have that ∂1W2( � 1, u2) � 0 and

∂2W2(u1, � 1) � 0. We now see from Lemma 7.16 that the gradient of W2 points outwards
on ∂A2 and inwards on ∂A1. Hence, on A1 the function W2 attains a maximum and on
A2 the function W2 attains a minimum (index 2 and index 0 points respectively), which
proves the first part of the lemma.

As for the second part we argue as in the proof of Lemma 7.12. Since u � � 1 are
saddle-foci one finds index 1 saddle points in both A3

� D �
E �

� � 1 � u1 � 1, u2 � 1 � and
A4

� D �
E �

�
u1 � � 1, � 1 � u2 � 1 � .

�

Concerning the relative position of the extrema of W2, the same reasoning as at the end
of Section 7.3.3 can be followed. Denoting by (bi, ci) the extremum in Ai (for i � 1, 2, 3, 4)

29Notice that ua(t) � u
�
2
� ub(τ � t) if L(u, v, w) is symmetric in v.

30For example, when F(u) � � u � n as � u � � � for some n � 2 then this follows from a scaling argument.
After scaling the Euler-Lagrange equation tends to u

� � � � � � � u � un � 2. For this equation it is easy to see that
u(0) � u1 � 0, u

� � �
(0) � 0 implies that u(τ) � u2

� 0 and u
� � �

(τ) � 0. A perturbation argument then shows
that (D) is satisfied for the original equation for some (u

�
1, u

�
2) with � u

�
1 and u

�
2 large.
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A1

A2 A3

A4

u2
� u �2

u 1

� u

� 1

u 1

� u 2

�

�

(1, 1)

( �
1, �

1)

Figure 7.4: The triangle D �E � I
�

E
�

I
�

E
� �

u2 � u1 � for the case of a double-well potential.
The arrows denote (schematically) the direction of the gradient � W2. Clearly W2 has at
least one maximum and one minimum. Additionally, when the equilibrium points are
saddle-foci then W2 has two saddle points.

we find that b2 � b4 � b1 � b3 and c4 � c1 � c3 � c2.
The result proved above have already been found in Chapter 6 and [106] for the spe-

cial case F(u) � 1
4 (u2 � 1)2 without information about the index of the solutions. Many

more examples can be considered with non-compact interval components. A rather tricky
system is the suspension bridge model (see Section 7.2.2.2). The Lagrangian is given
by L(u, u

�
, u
���
) � 1

2 u
��� 2 � c2

2 u
� 2 � F(u), where F(u) � eu � u � 1. This nonlinearity is espe-

cially hard to deal with when trying to compactify D �
E . In this context it is interesting

to note that there is no a priori L � bound on the set of bounded solutions (see [121]) as
opposed to nonlinearities with super-quadratic growth. From the analysis in [121] it fol-
lows that there exists a point (u �1 , u �2) � D �

E such that ∂1S(u �1 , u �2) � 0, ∂2S(u �1 , u �2) � 0, and
∂1S(u �1 , u2) � 0 for all u2 � 0. This is a different dissipativity condition. Upon examin-
ing W2 (for E � 0) on I �E � I �E we find at least one index 1 simple closed characteristic for
the suspension bridge problem (this was already proved in [121], without information on
the Morse index). In order for the argument to work the equilibrium point 0 has to be
a saddle-focus. Moreover, for the dissipativity condition to be satisfied the coefficient in
front of the second term in the Lagrangian has to be strictly positive. In [121] more com-
plicated closed characteristics are also found. This will be subjected to a further study.

7.4 Concluding remarks

7.4.1 Numerical evidence for the Twist property

In Lemma 7.8 we prove the Twist property for a class of Lagrangians including the well-
known Swift-Hohenberg Lagrangian. Numerical evidence suggests that the Twist prop-
erty holds for a large class of other Lagrangians as well. As an example we depict in
Figure 7.5 solutions of the EFK equation (i.e., the EFK Lagrangian with F(u) � 1

4 (u2 � 1)2).
For α � 0 the Twist property is always satisfied by Lemma 7.8. Numerical evidence sug-
gests that the Twist property is satisfied for all E � 0 and all α � � (with IE

� � ). At the
singular energy level E � 0 there are (for α � 0) two different cases, namely where the
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Figure 7.5: For fixed u1
� � 1.1 characteristics in the energy level E � 0 of the EFK

Lagrangian are shown (in the (u, u
�
)-plane). On the left the equilibrium points u � � 1

are real saddles (α � 5). Notice the different scales needed to obtain an overall picture
of the situation. The Twist property is only satisfied for u2

� (u1, � 1). On the right the
equilibrium points are saddle-foci (α � 1). In this case the Twist property seemingly
holds for all u2 � u1.

equilibrium points are real saddles and saddle-foci. While the Twist property certainly is
not satisfied on the whole of � (it is satisfied on the interval component

� � 1, 1 � ) for the real
saddle case, we conjecture that the Twist property holds on � as long as the equilibrium
points are saddle-foci.

We also performed numerical calculations on the fifth order KdV equation (see Sec-
tion 7.2.2.3) and it seems that the same is true for this system. It is of course impossible
to make statements about the rich class of second order Lagrangians as a whole, but the
Twist property appears to hold for a large subclass.

7.4.2 Local behaviour near equilibrium points
In Section 7.3.2 we indicated that the critical points u � with ∂2

uL(u � , 0, 0) � 0 can be cat-
egorised into three classes: σ(u � ) � � �

λ1, � λ2 � (real saddle), σ(u � ) � � � a � bi � (saddle-
focus), and σ(u � ) � � � ai, � bi � (center). The fourth possibility, which occurs for equilib-
rium points with ∂2

uL(u � , 0, 0) � 0, is σ(u � ) � � �
λ, � ai � (saddle-center). Such points do

not occur as boundary points of interval components and one may ask how they fit in.
Consider a compact interval component IE, then L(u, 0, 0)

�
E � 0 for all u � int(IE)

and ∂uL � ∂IE � 0 (if ∂uL � 0 at a boundary point then necessarily ∂2
uL � 0). There exists a

point u � � int(IE) such that ∂uL(u � , 0, 0) � 0 and ∂2
uL(u � , 0, 0) � 0. As a matter of fact there

may be many minima and maxima. Now let E decrease until the next singular level is
reached. If the extremum in this level is a minimum then IE splits into two components,
and if this extremum is a maximum then IE simply shrinks to the point u � . Conversely, if
u � is a saddle-center equilibrium point at energy level E � , then there exists an ε � 0 such
that πuNE � � ε contains a compact interval component IE � � ε which shrinks to u � as ε � 0.

The local theory for saddle-centers reveals the existence of a family of closed charac-
teristics on IE � � ε parametrised by ε (Lyapunov Center Theorem). Our theory not only
provides the existence of closed characteristics for E � � E � E �

�
ε but also guarantees

the existence of closed characteristics for all E � E � as long as the interval component IE con-
taining u � remains compact. We should emphasise again the resemblance with the classical
mechanical system ∂L(u,u

�
)

∂u
� d

dt
∂L(u,u

�
)

∂u
� � 0.
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7.4.3 KAM theory
For the Lagrangian systems that we study in this chapter one may wonder whether such
systems can be completely integrable. A Lagrangian system (L, dt) is said to completely
integrable if the associated Hamiltonian system (H,ω) is completely integrable31. Many
of the examples that we consider such as the EFK/Swift-Hohenberg system withα � 0 are
far from being integrable. An example of an integrable system is given by the Lagrangian
L(u, u

�
, u
���
) � 1

2 u
��� 2 � 1

4 u4 (see Chapter 5 for a proof). Integrability can also be addressed
at the level of the Twist maps in the Lagrangian systems. Without going into too much
detail let us look at a specific example. Consider again the EFK/Swift-Hohenberg family
defined by the L(u, u

�
, u
���
) � 1

2 u
��� 2 � α

2 u
� 2 � 1

4 (u2 � 1)2, α � 0. Now let E � 0 and consider
the area-preserving map T on � 2 as discussed in Section 7.3.3. It follows from the compac-
tification results in Chapter 5 that � 2 � Br(0) contains only invariant curves for the map T
for r � 0 sufficiently large. Inside the ball Br(0) the map T can be chaotic (depending on
the character of the equilibrium points). The invariant curves in � 2 � Br(0) can be inter-
preted as the invariant tori/circles of an integrable system, comparable to the conserved
invariant tori in KAM theory. To get a feel for integrability of the map T on compact in-
terval components we can look at the quadratic Lagrangian L(u, u

�
, u
���
) � 1

2 u
��� 2 � 1

2 u2. We
will leave this to the interested reader.

The question of integrability versus non-integrability for second order Lagrangian sys-
tems may be fairly complex. The results in [89, 88] and those proved in Section 7.3.3 seem
to suggest that equilibrium points of saddle-focus and center type in combination with
geometric and topological conditions on the system create regions of non-integrability.
With the techniques presented in this chapter and the methods in Chapter 8 we are trying
to understand some of the dynamics of the system in this case. These questions will be
subject of future study.

7.5 Classification of equilibrium points
The equilibrium solutions of the Euler-Lagrange equation

∂L
∂u

� d
dt

∂L
∂u
�
� d2

dt2

∂L
∂u
��� � 0,

are given by the relation ∂L
∂u (u � , 0, 0) � 0. The sign of ∂2L

∂u2 (u � , 0, 0) divides the behaviours
of the equilibrium points onto two groups. We will not consider the case ∂2L

∂u2 (u � , 0, 0) � 0
which requires information on higher order derivatives. Equilibrium points for which
∂2L
∂u2 (u � , 0, 0)

�� 0 are usually called non-degenerate. In order to study the local structure
of singular points we need to consider the second variation of J

�
u � around an equilib-

rium solution u(t) � u � . This yields the following linear differential equation for the vari-
ationsϕ:

∂2L
∂u2ϕ

�
�
2

∂2L
∂u∂u

��� � ∂2L
∂u
� 2
�
ϕ
��� � ∂2L

∂u
��� 2ϕ

������� � 0,

where all partial derivatives of L are evaluated at (u, u
�
, u
���
) � (u � , 0, 0). The characteristic

equation is given by ∂2
uL
� �

2∂2
uu

� � L � ∂2
u

� L � λ2 � �
∂2

u
� � L � λ4 � 0. For non-degenerate equilib-

31Note that for a system to be completely integrable it is not necessary that one is able to write down all the
conserved quantities explicitly.
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rium solutions the following classification holds:

Lemma 7.18 Let u(t) � u � be an equilibrium solution.
(a) If ∂2

uL � 0, then σ(u � ) � � �
λ, � ai � (saddle-center).

(b) If ∂2
uL � 0, then σ(u � ) � � �

λ1, � λ2 � , σ(u � ) � � � ai, � bi � , or σ(u � ) � � � a � bi � (real
saddle, center, and saddle-focus respectively) depending on ∂2

uu
� � L and ∂2

u
� L.

Here a, b,λ,λ1 ,λ2 � 0.

Proof. From the characteristic equation we derive

λ2� � � �
2∂2

uu
� � L � ∂2

u
� L � �

�
D

2∂2
u

� � L , where D � �
2∂2

uu
� � L � ∂2

u
� L � 2 � 4

�
∂2

u
� � L �

�
∂2

uL �
Clearly if ∂2

uL � 0, then
�

D � � 2∂2
uu

� � L � ∂2
u

� L � and thus λ2� � 0 and λ2� � 0. This forces
the spectrum to be

� �
λ, � ai � . If ∂2

uL � 0, then
� �D � � � 2∂2

uu
� � L � ∂2

u
� L � and there are three

possibilities:

1. D � 0, then
�

D � � 2∂2
uu

� � L � ∂2
u

� L � and λ2� are both positive or negative. This de-
pends on ∂2

uu
� � L and ∂2

u
� L. If both eigenvalues are negative the spectrum is given by� � ai, � bi � , and if both eigenvalues are positive the spectrum is

� �
λ1, � λ2 � .

2. D � 0, then the same possibilities as in the previous case hold, with the additional
property that the eigenvalues all have multiplicity two.

3. D � 0, then λ2� �
� � � and there for the spectrum is

� � a � bi � .

This proves the lemma.
�

As indicated before we do not study the case ∂2
uL � 0. In order to analyse degenerate

equilibrium solutions a normal form analysis is required. An example of such type of
analysis for a nonlinear saddle-focus can be found in Chapter 5. The results proved in
Chapter 5 for nonlinear saddle-foci would suffice for the purposes of the present chapter.

7.6 The proof of Lemma 7.8
Stationary functions of the action functional JE

�
u � , with L(u, u

�
, u
���
) � 1

2 u
��� 2 � K(u, u

�
), sat-

isfy the equation

u
������� � d

dt
∂K
∂u
�
� ∂K

∂u
� 0. (7.9)

Solutions of (7.9) satisfy the Hamiltonian relation � u
�
u
����� � 1

2 u
��� 2 � ∂K

∂u
� u � � K(u, u

�
) � E � 0.

For an increasing lap from u1 to u2 the derivative u
�
can be represented as a function of u.

Set z(u) � u
� �

u
�
(see for example [10, 117] were similar transformations are used). Using

the Hamiltonian relation we find that z satisfies the equation�
��
�

� d2z
du2

� g(u, z)
z(u) � 0 for u � (u1, u2)
z(u1) � z(u2) � 0,

where g(u, z) � 3
2

∂K
∂u

� u � � K(u, u
�
) � E

z5
�
3 .

The same holds for decreasing laps (z � 0). If

∂K
∂u
� u
� � K(u, u

�
) � E � 0 and

∂2K
∂u
� 2 u

� 2 � 5
2

�
∂K
∂u
� u
� � K(u, u

�
) � E � � 0,
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for all u � IE, and z � 0 (condition (a) and (b) in Lemma 7.8), then g(u, z) � 0 and ∂g
∂z (u, z) �

0 respectively.
It follows from results in [51] that the boundary value problem for the z-equation has

a unique strictly concave positive solution. Consequently the u-laps from u1 to u2 are
unique, and we thus obtain a family u(t; u1, u2). These functions are global minimisers of
JE

32. From the smooth dependence of the initial value problem of (7.9) we deduce that
these functions depend continuously on λ � (u1, u2) � Λ def� IE � IE

� ∆, and that the time
τ(u1, u2) it takes for u to (monotonically) go from u1 to u2 depends continuously on u1 and
u2 as well33 and τ(u1, u2) � � for all (u1, u2) � Λ34.

The remainder of this proof will be concerned with showing that u(t;λ) varies smooth-
ly with respect to λ for all λ � int(Λ) that are away from possible equilibrium points.
Rescale the u-variable as s � u � u1

u2
� u1

and set y(s) � z(u). From the z-equation we obtain the
following equation for y:

y
��� � g̃(s, y;λ), y(0) � y(1) � 0, y � 0 on (0, 1).

Moreover g̃ � 0 and ∂g̃
∂y � 0, and we can write g̃(s, u;λ) � h(s,y;λ)

y5 � 3 with h(s, y;λ) a continuous
function.

In order to obtain smooth dependence on the parameter λ we first consider the fol-
lowing equation: y

���
ε

� g̃(s, yε;λ), yε(0) � yε(1) � ε and yε � ε on (0, 1). It follows from
the maximum principle that 0 � yε � y0 � ε. For the yε-problem it is not difficult to
show that yε( � ;λ) depends smoothly on λ. To prove this we consider the map F(yε,λ) �
y
���
ε

� g(s, yε;λ), where F maps from Xε � Λ (with Xε � ε
�

H1
0(0, 1)) to H � 1(0, 1), and

F � C1(Xε � Λ , H � 1). From the Implicit Function Theorem we derive that

d
dλ

yε( � ;λ) � � �
Fy(yε,λ) � � 1Fλ(yε,λ) � C(Λ , Xε).

Our goal now is to derive a similar expression for d
dλ y0( � ;λ). We cannot apply the Implicit

Function Theorem to y0 directly because of the singularity of g̃ at y � 0.
We defineΦε(λ) def� Fy(yε( � ;λ),λ) � d2

ds2
� ∂g

∂y (s, yε;λ) � d2

ds2
� k(s,yε;λ)

y8 � 3
ε

, where k is a continu-

ous function. For λ � Λ away from the equilibrium points the asymptotic behaviour of
y0 at s � 0, 1 is y0(s) � O(s3

�
4) as s

�
0 and y0(s) � O((1 � s)3

�
4) as s

�
1. We now conclude

from Hardy’s inequality thatΦ0(λ) � B(H1
0 , H � 1) for all λ � Λ.

It holds that Φε(λ) �
Φ0(λ) in B(H1

0 , H � 1) as ε � 0, and the same holds for the in-
verses in B(H � 1, H1

0) since Φε(λ) is uniformly bounded in ε. We obtain that (writing
kε � k( � , yε;λ))

� Φε(λ) � Φ0(λ) � � C � kε � y0

yε
� 8

3 � k0 � L2 .

From the L � -convergence of yε to y0 we then conclude that Φε(λ) �
Φ0(λ) as ε � 0. In

order to obtain the above inequality we again used Hardy’s inequality in combination

32In z-variables we have JE
� � u2

u1

�
2
9 z

� 2 � K(u,z2 � 3) � E
z2 � 3 � du. The condition ∂g

∂z 
 0 implies that this functional is
convex.
33Away from equilibrium points this is obvious. At equilibrium points this follows either by taking limits
and using the uniqueness, or from the local analysis performed in [120, Lemma 5.8].
34It follows from g

�
0 and the analysis in Section 7.5 that equilibrium points (which are non-degenerate

by assumption) can only be of saddle-focus or center type.
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with the asymptotic behaviour of y0 at s � 0, 135.
We now assert that Fλ(yε,λ) � Fλ(y0,λ) in H � 1 as ε � 0. We find that

� Fλ(yε,λ) � Fλ(y0,λ) � H � 1 � C � ∂hε
∂λ

�
y0

yε
� 5

3 � ∂h0

∂λ
� L2 .

As before, due to the L � -convergence of yε to y0 the assertion follows.
We conclude that d

dλ yε( � ;λ) converges to
�
Fy(y0,λ) � � 1Fλ(y0,λ) def� ζλ. The next step is

to consider the difference quotient Dhy( � ;λ) � y( � ;λ � h) � y( � ;λ)
h . We have that Dhyε

� Dhy0

in L � as ε � 0, and Dhyε
� d

dλ yε( � ;λ) as h � 0 for ε � 0. Combining these facts we
obtain � ζλ � Dhy0 � L � � � ζλ � d

dλ yε( � ;λ) � L �
� � d

dλ yε( � ;λ) � Dhyε � L �
� � Dhyε � Dhy0 � L �

� 0
as ε, h � 0. This gives

d
dλ

y0( � ;λ) � � �
Fy(y0,λ) � � 1Fλ(y0,λ) � H1

0(0, 1), for all λ � int(Λ).

Finally, an estimate similar to the ones above shows that d
dλ y0( � ;λ) depends continu-

ously on λ for all λ � int(Λ) that are away from equilibrium points. It then follows from
the differential equation that y

�
0(s;λ) and y

���
0 (s;λ) are C1-functions of λ for all s � (0, 1), i.e.,

y0( � ;λ) is continuously differentiable as a C2-function on any compact subset of (0, 1). This
implies that u( � ;λ) is continuously differentiable as a C3-function (at least away from its
extrema). Finally, a simple application of the Implicit Function Theorem shows that τ(λ)
is continuously differentiable for all λ � int(Λ) that are away from equilibrium points.

35If k has a zero at s � 0 or s � 1 the asymptotic behaviour of y0 will be different (i.e. y0
� O(s) near s � 0).

In this case a slightly different inequality holds which proves the same statement.
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Chapter 8

Braided closed characteristics

8.1 Introduction
This chapter extends the investigation of periodic solutions of second order Lagrangians,
which was started in Chapter 7. There simple closed characteristics were studied, whereas
in this chapter the focus is on so-called braided closed characteristics. The main idea is to
reduce the variational problem to a finite dimensional setting where only the extrema of a
profile are varied. A Twist property ensures the uniqueness of the monotone laps between
the extrema. For simple closed characteristics the new setting is two dimensional, which
greatly simplifies the analysis. The reduced problem for non-simple closed characteristics
is set in a higher dimensional phase space. Since the analysis of the (equilibria of the)
associated gradient flow is quite complex, one is forced to introduce a new perspective:
braid diagrams (we come back to this shortly). In this chapter we give an overview of the
method; for a complete treatment we refer to [74].

We summarise the machinery introduced in Chapter 7. Consider a second order
Lagrangian system (L, dt), where L � L(u, u

�
, u
���
) is the Lagrangian. Assume that L �

C2( � 3 ; � ) satisfies the non-degeneracy hypothesis ∂2
wL(u, v, w) � δ � 0. Our aim is to find

bounded functions, or bounded characteristics, u : � � � , which are stationary for the ac-
tion integral J

�
u � � 	 L(u, u

�
, u
���
) dt. Such stationary points u are bounded solutions of the

Euler-Lagrange equation
d2

dt2

∂L
∂u
��� � d

dt
∂L
∂u
�
� ∂L

∂u
� 0. (8.1)

Solutions of (8.1) satisfy the energy constraint�
∂L
∂u
� � d

dt
∂L
∂u
���
� u
� � ∂L

∂u
��� u
��� � L(u, u

�
, u
���
) � E � constant.

By transforming to a Hamiltonian context, one finds that characteristics reside on non-
compact three-dimensional energy surfaces in � 4 .

An energy value E is called regular if ∂L
∂u (u, 0, 0)

�� 0 for all u that satisfy L(u, 0, 0) � E �
0. For a fixed regular energy value E the extrema of a characteristic are contained in
the closed set

�
u � L(u, 0, 0) � E � 0 � . The connected components IE of this set are called

interval components. In order to set up a variational principle for bounded characteristics
in terms of the extrema of u, the following Twist hypothesis was introduced in Chapter 7:

(T) inf
�

JE
�
u � � 	 τ0

�
L(u, u

�
, u
���
) � E � dt � u � Xτ (u1, u2), τ � � � � has a minimiser u(t; u1, u2)

for all
�
(u1, u2) � IE � IE � u1

�� u2 � , and u and τ are C1-smooth functions of (u1, u2).

Here Xτ
� Xτ (u1, u2) � �

u � C2(
�
0,τ � ) � u(0) � u1, u(τ) � u2, u

�
(0) � u

�
(τ) � 0, and u

� � (0,τ) �
0 if u1 � u2, and u

� � (0,τ) � 0 if u1 � u2 � . It may be convenient to think of Hypothesis (T)
as an assumption on the uniqueness of the monotone laps between minima and maxima,
although the uniqueness assumption is not completely equivalent to hypothesis (T). In
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Chapter 7 it has been proved that hypothesis (T) holds for a large class of Lagrangians L,
including the Swift-Hohenberg Lagrangian L(u, u

�
, u
���
) � 1

2 u
��� 2 � β

2 u
� 2 � F(u) with β � 0,

and numerics suggest that (T) is more generally satisfied on interval components of reg-
ular energy surfaces.

We recast the problem of finding periodic orbits for a given energy level E into solving
second order recurrence relations. This is accomplished via a method comparable to that
of broken geodesics, which in the present context are concatenations of the monotone laps
given by (T) (see Chapter 7). In this introduction we want to give a concise survey of the
method, and therefore we do not go into full detail, but in subsequent sections precise
definitions are given.

A closed characteristic u at energy level E is a (C2-smooth) function u :
�
0,τ � � � , 0 �

τ � � , which is stationary for the action JE
�
u � with respect to variations δu � C2

per(
�
0,τ � ),

and δτ � � � . The Twist hypothesis (T) allows one to encode a characteristic by its extrema�
ui � . A broken geodesic u :

�
0,τ � � IE is a closed characteristic at a regular energy level

E if and only if the sequence of its extrema (ui) satisfies � W2p(ui, . . . , ui � 2p) � 0, where
2p is the number of extrema in one period, W2p

� � 2p � 1
i � 0 S(ui , ui � 1), and S(ui , ui � 1) is the

action of the lap connecting ui and ui � 1. This function S is a generating function and the
functional W2p is a discrete action defined on the space of 2p-periodic sequences.

The problem of finding critical points of W2p can be rephrased via the recurrence rela-
tion

R (ui � 1, ui, ui � 1) def� ∂2S(ui � 1, ui)
� ∂1S(ui , ui � 1) � 0. (8.2)

The analysis of (8.2) is facilitated by the study of the gradient flow u
�
i

� R (ui � 1, ui, ui � 1) �
� W on a space of sequences. We may assume, without loss of generality, that ( � 1)iui �
( � 1)iui � 1, with ui, ui � 1 � IE. In this context, the Twist hypothesis (T) translates into the
Twist property for R :

∂1R � 0 and ∂3R � 0. (8.3)

In order to have a smooth flow on a compact space we consider two natural boundary
conditions for the generating function S, which are derived from the behaviour of S near
∂(IE � IE). In the compact case we can find a compact interval I � IE such that ∂(I � I) is
repelling, and in case IE

� � we assume (the natural condition) that there exists a compact
interval I � � such that ∂(I � I) is attracting (dissipativity assumption):

(C) compact: large amplitudes are repelling;
(D) dissipative: large amplitudes are attracting.

For the third possibility, that of mixed boundary conditions, we refer to [74].
As mentioned before, the Twist hypothesis (T) allows one to encode a characteristic

by its extrema
�
ui � , and without loss of generality we take u0 to be a local minimum. We

can construct a piecewise linear graph by connecting the consecutive points (i, ui) � � 2

by straight line segments (see Figure 8.1a,b). If u is a closed characteristics then its critical
points are encoded by a finite sequence

�
ui � 2p � 1

i � 0 , where 2p is the discrete period. The
piecewise linear graph, called a strand, is really cyclic: one restricts to 0 � i � 2p and
identifies the end points abstractly. A collection of n closed characteristics of period 2p
then gives rise to a collection of n strands. We place on these diagrams a braid struc-
ture by assigning a crossing type (positive) to every transverse intersection of the graphs:
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Figure 8.1: (a) A periodic function and (b) its piecewise linear graph; (c) a braid consist-
ing of 3 strands.

larger slope crosses over smaller slope (see Figure 8.1c). We thus represent periodic se-
quences of extrema in the space of closed, positive, piecewise linear braid diagrams. Since
for bounded characteristics local minima and maxima occur alternately, we require that
( � 1)i(ui

�
1

� ui) � 0: the (natural) up-down restriction. This space of up-down piecewise
linear braids is denoted by E n

2p, where 2p is the period and n is the number of strands. The
completion En

2p includes singular braid diagrams. Definitions are provided in Section 8.2.
Notice that the problem is invariant under even shifts of the index i.

The gradient flow of W2p(u0, . . . , u2p � 1) on 2p-periodic sequences immediately trans-
lates to a flow on En

2p. The Twist property (T) or, equivalently, property (8.3), appends ad-
ditional structure to the gradient flow on the piecewise linear braid diagrams; the gradi-
ent flow associated to Equation (8.2) is tightly linked with the braid structure. Namely,
the complexity of braid diagrams or, more precisely, the number of intersections in the
braid diagram, decreases along the flow. This property is the discrete analogue of the
lap number theorem for second order parabolic equations. The strategy is to construct
isolating neighbourhoods for the gradient flow of W2p on En

2p and compute its Conley
homology. Nontrivial Conley homology implies the existence of closed characteristics.

Consider the special situation of (n
�

1)-strand braid diagrams where n designated
strands, the skeleton, corresponds to a collection of closed characteristics. Since these
closed characteristics are stationary for the gradient flow of W2p, it induces a flow on a (2p-
dimensional) invariant subset of E n � 1

2p , the relative braid diagrams: only one of the strands
exhibits dynamics under the gradient flow of W2p. The space En � 1

2p is partitioned into braid
classes by co-dimension 1 ‘walls’ of singular braids. This also induces a partitioning of
the relative braid diagrams. These equivalence classes of braid types are candidates for
isolating neighbourhoods.

Under either of the boundary conditions (C) or (D), consider a braid class for which the
(n � 1)st strand is non-isotopic to any of the strands of the skeleton (i.e., none of the strands
of the skeleton is contained in the boundary). The fact that the number of intersections
decreases along the flow implies that the closure of such a braid class is a proper isolating
neighbourhood for the induced flow. Consequently the Conley homology is well-defined.

We carry out the above construction for two special braid classes depicted in Fig-
ure 8.2. In the compact case we consider a skeleton of two linked strands with period 2p
and non-zero linking number r (i.e. crossing number 2r), where 0 � r � p. The third
strand (dashed) has linking number q � r with the skeleton. We denote this braid class by
Xq

p,r. In the dissipative case we consider a skeleton of two strands of period 2p with non-
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(a) (b)

Figure 8.2: Two examples of relative braid classes (dashed) whose Conley homology
with respect to the fixed strands (solid) is nontrivial. (a) Compact boundary conditions:
Xr

p,q with p � 6, r � 3, q � 2; (b) dissipative boundary conditions: Yr
p,q with p � 6, r � 1,

q � 4.

maximal linking number 0 � r � p. The third strand (dashed) has linking number q � r
with the skeleton. We denote this braid class by Yq

p,r.

Theorem 8.1 Consider the braid classes Xq
p,r (with 0 � q � r � p) and Yq

p,r (with 0 � r �
q � p) given in Figure 8.2. The Conley homology of the gradient flow of W2p on these
braid classes is well-defined and given by

CHk(X
q
p,r) �

� �
k � 2q � 1 or 2q,

0 else.
CHk(Y

q
p,r) �

� �
k � 2q or 2q

�
1,

0 else.

Nontrivial Conley homology of a braid class, together with the gradient nature of
the flow, implies the existence of a critical point in that class. One easily constructs an
infinite family of closed characteristics with distinct braid types forced by the pair of
non-maximally linked (including unlinked) orbits for dissipative boundary conditions or
linked orbits for compact boundary conditions, by taking higher covers of the base orbits
(i.e., taking multiples of p and r) and applying Theorem 8.1 iteratively (see Section 8.5).

Theorem 8.2 Consider Equation (8.1) for a regular energy level E under the Twist hy-
pothesis (T). The following are sufficient conditions for the existence of infinitely many
distinct (in particular having distinct braid types) closed characteristics:
(a) a compact interval component IE and the existence of a pair of closed orbits whose

braid representations are linked.
(b) an interval component IE

� � with dissipative asymptotic behaviour and the exis-
tence of a pair of closed orbits whose braid representations are unlinked or non-
maximally linked.

Note that in both cases the existence of a single non-simple closed characteristic u is a
sufficient condition. Indeed, two even shifts of the braid representation of u yield a 2-
strand braid that is necessarily linked but not maximally linked.

The outline of this chapter is as follows. In Section 8.2 we introduce the necessary
definitions of braid classes. Next, in Section 8.3 we introduce a class of flows that respect
the braid structure. The Conley index of braid classes with respect to such flows is defined
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Figure 8.3: (a) A braid with representation σ1σ3σ � 2
2 σ1, where the positive and negative

crossings are marked by
�

and � respectively. (b) A piecewise linear braid in D 4
5 .

in Section 8.4. Finally, in Section 8.5 we apply the theory to second order Lagrangian sys-
tems and, after a calculation of the Conley index (Theorem 8.1) we obtain the existence
results of Theorem 8.2. We only give an outline of the techniques here; a complete de-
scription can be found in [74], as well as generalisations in various directions.

8.2 Spaces of closed braid diagrams
Recall the definition of a braid (see [27] for a detailed introduction). A (geometric) braidβ
on n strands is a collection of embeddings

�
βk :

�
0, 1 � � � 3 � n

k � 1 with disjoint images such
that

1. βk(0) � (0, 0, k);
2. βk(1) � (0, 0,τ(k)) for some permutation τ ;
3. ∂

∂sβ
k(s) � 0 for all s �

�
0, 1 � .

The last condition implies that the braid is to be ‘read’ from left to right. Two such braids
are said to be equivalent, or of the same topological braid type, if they are homotopic in
the space of braids. In particular, no intersections are permitted; the strands must remain
disjoint. There is a natural group structure on the space of braids with n strands, Bn, given
by concatenation. Using generators σk which interchange the kth and (k � 1)st strands
(with a positive crossing) yields the representation:

Bn
�

�
σ1, . . . ,σn � 1

�
�
�
�

σiσ j
� σ jσi ; � i � j � � 1

σiσi � 1σi
� σi � 1σiσi � 1 ; i � n � 1 � .

Any braid can be written in terms of generators σi (see Figure 8.3a for an example).
Braids find their greatest applications in knot theory via taking their closures. Algeb-

raically, the closed braids on n strands can be defined as the group of conjugacy classes
in Bn. Geometrically, in closing the braids one quotients out the range of the braid em-
beddings via the equivalence relation (0, y, z) � (1, y, z) (i.e., identifying begin- and end-
points), and alters the restriction on the position of the endpoints to be βk(0) � βτ(k)(1).
Thus, a closed braid is a collection of disjoint embedded loops in S1 � � 2 which are every-
where transverse to the � 2 -planes.

The specification of a braid type may be accomplished unambiguously by a labelled
projection to the (x, y)-plane: a braid diagram. Any braid may be perturbed slightly so that
all strand crossings in the projection are pairwise transversal; in this case, a marking of
( � ) or ( � ) serves to indicate whether the crossing is ‘right over left’ or ‘left over right’
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respectively (see also Figure 8.3a).

In the sequel we will restrict to a special type of braid diagrams: piecewise linear (or
discretised) braid diagrams, which we will now define (see also Figure 8.3b).

Definition 8.3 Denote by D n
d the space of all closed piecewise linear braid diagrams (PL-

braid diagrams) on n strands with period d. That is, the space of all (unordered) collec-
tions β � �

βk � n
k � 1 of continuous maps βk :

�
0, 1 � � � such that

(a) βk is affine linear on
� i
d , i � 1

d � for all k and for all i � 0, . . . , d � 1;
(b) βk(0) � βτ(k)(1) for some permutation τ ;
(c) for any s such thatβk(s) � βl(s) with k

�� l, the crossing is transversal: forε sufficiently
small �

βk(s � ε) � βl(s � ε) �
�
βk(s � ε) � βl(s � ε) � � 0;

(d) any such crossing is marked with a (
�

) crossing sign.

In our applications the permutation τ in property (b) will generally be the identity, so
that each strand forms a closed loop. Notice that any PL-braid is of course completely
determined by the points βk( i

d ), which we denote by uk
i , and we will alternate between

the notation β and u � (uk
i ) for a PL-braid diagram throughout.

By definition all crossings of the strands occur at isolated points, and that path com-
ponents of Dn

d comprise closed braid types
�
β � ; one cannot change the braid type by a

continuous deformation through diagrams in D n
d . In order to define proper topological

invariants for the path components of D n
d we need to know how these components fit

together. This can be achieved by considering ‘singular’ braid diagrams. The singular
diagrams act as gates between the path components of D n

d .

Definition 8.4 Denote by Dn
d the space of all PL-braid diagrams β which satisfy proper-

ties (a) and (b) of Definition 8.3 (strong closure). On the subset D n
d � Dn

d retain the (
�

)
crossing convention. Denote by Σ � D n

d
� Dn

d the set of singular braid diagrams.

The set Σ is a variety in D n
d consisting of numerous co-dimension one walls which mutu-

ally intersect along higher co-dimension faces.
Definition 8.4 implies that singular braid diagrams do not satisfy condition (3) of

Definition 8.3. To be more precise, for any singular braidβ � Σ there exist times t �
� k

d � d
k � 0

and indices i
�� j such that βi(s) � β j(s), and�

βi(s � ε) � β j(s � ε) �
�
βi(s � ε) � β j(s � ε) � � 0,

for sufficiently small ε � 0. The number of such distinct occurrences is the co-dimension
of the singular braid diagram β � Σ .

For singular braids of sufficiently high co-dimension entire components of the braid
diagram can coalesce. We define these collapsed singularities Σ � as follows:

Σ
� � �

β � Σ � βk(s) � βl(s) for all s and some k
�� l � .

Clearly the co-dimension of singularities in Σ � is at least d. Since for braid diagrams
in Σ � the number of strands reduces, such singularities consist of the spaces D n

�
d , n

� � n,
i.e. Σ � � �

n
� � n Dn

�
d . If n � 1 then Σ � � � .
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Given β0 � Dn
d and β1 � Dm

d the union β0
�
β1 � Dn � m

d is naturally defined. We can
now introduce the notion of relative braid type in D n � m

d . Given β1 � Dm
d define

Dn
d rel β1

� �
β0

�
β1 � β0 � Dn

d � � Dn � m
d

The path components of D n
d rel β1 comprise the relative braid types

�
β0 rel β1 � , which gives

a partitioning of Dn
d (β1-dependent). The braid β1 is called the skeleton in this setting. The

set of singular braids Σ rel β1 are those singular braids in Σ � Dn � m
d of the form β0

�
β1,

β1 fixed. The associated collapsed singular braids are denoted by Σ � rel β1. As before,
the set Dn

d rel β1
�
Σ rel β1 is the closure of D n

d rel β1, and is denoted by Dn
d rel β1. Two

relative braid types
�
β0 rel β1 � and

�
β
�
0 rel β

�
1 � in Dn

d rel β1 and Dn
d rel β

�
1 respectively, are

called equivalent, notation
�
β0 rel β1 � � �

β
�
0 rel β

�
1 � , if

�
β1 � � �

β
�
1 � and

�
β0

�
β1 � � �

β
�
0

�
β
�
1 � .

Later on we will assign a topological invariant to the type
�
β0 rel

�
β1 � � .

Let us now define the subclass of up-down braid diagrams. The reason for this con-
struction is that closed characteristics (i.e., periodic solutions of Equation (8.1)) consist of
an alternation of decreasing and decreasing laps.

Definition 8.5 The space E n
2p of up-down PL-braid diagrams on n strands with period 2p

is the subset of Dn
2p determined by the relation ( � 1)i(uk

i � 1
� uk

i ) � 0, for k � 1, . . . , n and
i � 0, . . . , 2p � 1, where uk

i
� βk( i

2p ).

In this definition we choose the first lap to be increasing. Let E n
2p be the subset of all braid

diagrams in Dn
2p satisfying ( � 1)i(uk

i � 1
� uk

i ) � 0. As before the singular braid diagrams
are defined as Σ � E n

2p
� En

2p. The path components in E n
2p comprise the up-down braid

types
�
u � E , where u � (uk

i ). The path components in E n
2p rel v make up the relative up-

down braid types
�
u rel v � E .

In contrast to Dn
d , the set En

2p is a subset of � 2pn with boundary (which is given by
∂En

2p
� cl

�
En

2p � � En
2p). The boundary ∂E n

2p can be characterised as follows:

∂E n
2p

� �
u � En

2p � uk
i

� uk
i � 1 for at least one i and k � .

Such boundary braids are called horizontal singularities.

8.3 Parabolic flows and recurrence relations
In this section we will introduce a class of recurrence relations which we will use to define
particular types of flows on the spaces Dn

d . The recurrence relations in this section are
defined for general domains and we will specify particular choices of domains where
needed.

Let Ω be the sequence space Ω � � �

; an element in Ω is denoted by u � (ui)i � � .
Define the recurrence relation R � (R i)i � � , with the sequence of functions R i satisfying
the following axioms:

(A1) smoothness: R i
� R i(ui � 1, ui, ui � 1) � C1( � 3 ) for all i �

�
.

(A2) monotonicity: ∂1R i � 0 and ∂3R i � 0 for all u � Ω and all i �
�

; or
∂1R i � 0 and ∂3R i � 0 for all u � Ω and all i �

�
.

(A3) periodicity: for some d ��� , R i � d
� R i for all i �

�
.
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The choice d � � in Axiom (A3) means no periodicity requirements. Now consider the
recurrence relation

R i(ui � 1, ui, ui � 1) � 0, (ui)i � � � Ω , i �
�

. (8.4)

If Axioms (A1)-(A3) are met then (8.4) is called a parabolic recurrence relation.

For applications to Lagrangian dynamics a variational structure needs to be present.
At the level of recurrence relations this implies that R is a gradient. This property is
captured by the following axiom:

(A4) exactness: there exist functions Si � C2( � 2 ) such that

R i(ui � 1, ui, ui � 1) � ∂2Si � 1(ui � 1, ui)
� ∂1Si(ui, ui � 1) for all u � Ω and i �

�
.

The functions Si are called the generating functions. In Lagrangian problems the action
functional naturally defines the functions Si. We can also define the formal action in this
case: W(u) � �

i Si(ui, ui � 1), and R � � W. Recurrence relations that satisfy (A1)-(A4) are
called exact parabolic recurrence relations.

In order to define parabolic flows we regard R as a vector field on Ω , and consider
the differential equations

dui

dt
� R i(ui � 1, ui, ui � 1), u � Ω . (8.5)

If Axioms (A1)-(A2) are satisfied one can show with some effort that Equation (8.5) defines
a C1-flow ψt on X(Ω ) (see [5] for details). For our purpose we can restrict to the flow on
the spaces of periodic sequences

Ωkd
� �

u � Ω � ui � kd
� ui for all i �

� � .

If Axiom (A3) is satisfied then (8.5) defines a flow on Ωkd for any k � � . We will use the
notations ψt(u(0)) � u(t) � (ui(t)) interchangeably.

For a pair of sequences u and v in Xkd one can define the intersection number I(u, v)
as follows. Consider u and v as piecewise linear graphs βu and βv. If the two piecewise
linear graphs βu and βv intersect transversely the intersection number is defined as the
number of intersections over one period kd. Clearly the intersection number is even.

Axiom (A2) implies that a parabolic flow ψt acts in a natural way with respect to the
intersection number. The following result is a direct consequence of a result by J. Smil-
lie [135] for specific tridiagonal systems of ordinary differential equations. We will use
extensions of this result as given in [8, 70].

Lemma 8.6 Let ψt be the parabolic flow on Xkd defined by (8.5). Then for any u
�� v �

Xkd, the set of t-values for which ψt(u) and ψt(v) do not intersect transversely is discrete.
Ifψt(u) andψt(u) are non-transverse at t � t0, then I(ψt(u),ψt(v)) � t � t �

0
� I(ψt(u),ψt(v)) � t � t

�
0
,

i.e., I(ψt(u),ψt(v)) is a non-increasing function of t for any pair u
�� v.

It is this property (which is analogous to the lap number theorem for second order
parabolic partial differential equations) that inspires us to attach the name ‘parabolic’ to
these flows.

Our objective now is to define flows on the finite dimensional spaces of PL-braids D n
d .

Recall that elementsβ of Dn
d are also denoted by u � (uk

i ), where uk
i

� βk( i
d ). One considers



8.4. The Conley index for braids 261

the same equations as (8.5):

duk
i

dt
� R i(uk

i � 1, uk
i , uk

i � 1), u � Dn
d . (8.6)

The flow on Dn
d generated by (8.6) is denoted by Ψ t, and it is called a parabolic flow on

PL-braid diagrams.
The behaviour of ψt with respect to the intersection number (see Lemma 8.6) now

transfers to Ψ t. This can be described in terms of the word metric for braids in D n
d . A

PL-braid diagram can be expressed in terms of the positive generators
�
σ j � n

j � 1. While this
word is not necessarily unique (since only positive generators are considered), the length
of the word is unique, and this length is the word metric. This word metric now acts as a
Lyapunov function on Dn

d : it is non-increasing along the flow.

Lemma 8.7 Let Ψ t be a parabolic flow on Dn
d .

(a) For each point u � Σ � Σ � the local orbit
�
Ψ t(u) � t � � � ε,ε � � intersects Σ uniquely at

u for all ε sufficiently small.
(b) For any u � Σ � Σ � the word metric of Ψ t(u) for t � 0 is strictly less than that of Ψ t(u)

for t � 0.

The above construction carries over to the class of up-down braid diagrams E n
2p. The

recurrence relations defined in (8.4) define a parabolic flow Ψ t via (8.5) on the space E n
2p.

As before, Ψ t is topologically transverse to Σ � Σ � and Ψ t acts on Σ � Σ � as to strictly
decrease the word metric. Besides, we will assume (since this holds in our applications)
that the horizontal singularities are repelling, i.e., R i satisfies

lim
ui

�
ui � 1

R i(ui � 1, ui, ui � 1) � � � if i is odd, (8.7a)

lim
ui � ui � 1

R i(ui � 1, ui, ui � 1) � � � if i is even. (8.7b)

This guarantees that Ψ t behaves is a favourable way near horizontal singularities, i.e., Ψ t

respects the up-down restriction in forward time.

8.4 The Conley index for braids
Consider a relative braid class

�
β0 rel β1 � . Let Ψ t be a parabolic flow such that Ψ t(β1) � β1

(one can prove that such a flow exists, see [74]). We now want to define the Conley index
of the braid types

�
β0 rel β1 � with respect to Ψ t.

Let us recall the notion of isolating neighbourhood as was introduced by Conley [48].
A compact set N is an isolating neighbourhood for a flow Ψ t if the maximal invariant
set M(N) � �

x � N � cl
�
Ψ t(x) � t � � � N � is contained in the interior of N. The invariant

set M(N) is then called a compact isolated invariant set for Ψ t. In [48] Conley proves that
every compact isolated invariant set M admits a pair (N, N � ), such that (following the
definitions given in [104])

1. M � M(cl(N � N � )), and N � N � is neighbourhood of M;
2. N � is positively invariant in N;
3. N � is an exit set for N.1

1The set N � is an exit set for N if every orbit that leaves N in forward time, leaves N through/via N � .
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Such a pair is called an index pair for M. The Conley index h(M) is then defined as the
homotopy type of the pointed space

�
N

�
N � ,

�
N � � � , which is denoted by � N �

N � � . This
definition is independent of the choice of the index pair. The Conley index is stable under
perturbations, and invariant under continuation. Since the homotopy type of a space is
notoriously difficult to compute, one often passes to homology. The homological Conley
index CH � (N) (or CH � (M)) is defined as the relative homology H � (N, N � ). Most import-
ant for our purposes is the following property of the homological Conley index, which is
in direct analogy with the Morse index (and the degree): if CH � (N)

�� 0, then there exists
a nontrivial invariant set of Ψ t within the interior of N. Besides, in the case that Ψ t is
a gradient flow, i.e., when R satisfies Axiom (A4), then if CH � (N)

�� 0 there must be a
stationary point in N.

Let β1 � Dm
d (skeleton), and consider the relative braid class

�
β0 rel β1 � in Dn

d rel β1.
Not all braid classes are isolating neighbourhoods for the flow Ψ t. The situation to avoid
is when a component of the braid diagram collapses. In other words, the set of collapsed
braid diagrams Σ � � Σ is an invariant set under the flow and thus forms an obstruction
to obtaining isolation. We therefore restrict our attention to braid types of the following
form.

Definition 8.8 A relative braid type
�
β0 rel β1 � is called proper if:

(a) cl
�
β0 rel β1 � � Σ � rel β1

� � ; and
(b)

�
β0 rel β1 � � Dn

d rel β1 is bounded.

The first condition precisely excludes the possibility of two strands collapsing as dis-
cussed above. The second condition is a compactness condition. We now have the fol-
lowing theorem.

Theorem 8.9 Let
�
β0 rel β1 � be a proper relative braid type and let Ψ t be a parabolic flow

for which β1 is stationary. Then
(a) N � cl

�
β0 rel β1 � is an isolating neighbourhood for the flow Ψ t, which thus yields a

well-defined Conley index h(β0 rel β1).
(b) The index h(β0 rel β1) is independent of the choice of the parabolic flow Ψ t (as long

as Ψ t(β1) � β1).
(c) The index h(β0 rel β1) is independent of the choice of β1 within its PL-braid class

�
β1 � .

The Conley index of any proper relative braid type
�
β0 rel β1 � can in fact be defined in-

trinsically, independent of any notion of parabolic flows, see [74].

Since these concepts may be somewhat hard to grasp, let us give two low-dimensional
examples. Consider the proper 2-periodic braid illustrated in Figure 8.4a. There is exactly
one free strand, so that the configuration space D 1

2 rel β1 is two-dimensional. The point in
the middle, u1, is free to move vertically between the fixed points on the skeleton. When
u1 meets a point of the skeleton, one has a singular braid in Σ which is on the exit set,
since a slight perturbation sends this singular braid to a different braid class with fewer
crossings. The end critical point, u0 ( � u2) can freely move vertically in between the two
fixed points on the skeleton. The singular boundaries are in this case not on the exit set,
since pushing u0 across the skeleton increases the number of crossings. Since the points u0

and u1 can be moved independently, the configuration space N in this case is the product
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Figure 8.4: (a) A proper braid class with a skeleton consisting of four strands and one
free strand (grey); (b) the associated configuration space with parabolic flow; (c) an
expanded view of D1

2 rel β1.
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Figure 8.5: (a) A proper 3-periodic braid type with in (b) the associated configuration
space N.

of two compact intervals. The exit set N � consists of those points on ∂N for which u1

is a boundary point, see Figure 8.4b. Thus, the homotopy index of this relative braid is�
N

�
N � � � S1. In Figure 8.4c an expanded view of D 1

2 rel β1 is depicted, where the fixed
points of the flow correspond to the four fixed strands in the skeletonβ1. The braid classes
adjacent to these fixed points are not proper.

A second example is the proper relative braid presented in Figure 8.5a. Since there is
one free strand of period three, the configuration space N is determined by the position
vector (u0, u1, u2). This example differs greatly from the previous example. For instance,
the point u0

� u3 (as represented in the figure) may pass through the nearest strand of
the skeleton above and below without changing the braid type. The points u1 and u2

may not pass through any strands of the skeleton without changing the braid type unless
u0 has already passed through. In this case, either u1 or u2 (depending on whether the
upper or lower strand is crossed) becomes free to move. To simplify the analysis, consider
(u0, u1, u2) as all of � 3 (allowing for the moment singular braids and other braid classes
as well). The position of the skeleton induces a cubical partition of � 3 by planes, the
equations being ui

� vk
i for the various strands vk of the skeleton v (corresponding to β1).

The braid class N is thus some collection of cubes in � 3 . In Figure 8.5b we illustrate this
cube complex. It is homeomorphic to D2 � S1. In this case, the exit set N � happens to be
the entire boundary ∂N.

Via the results of the previous section, the homotopy index is an invariant of the
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Figure 8.6: An example of two non-free PL-braids which are of the same topological
braid type but define disjoint PL-braid classes.

PL-braid type: keeping the period fixed and moving within a connected component of
the space of relative PL-braids leaves the index invariant. The topological braid type, as
defined in Section 8.2, does not have an implicit notion of period. The effect of changing
the discretisation of a topological closed braid is not obvious: not only does the dimension
of the index pair change, the homotopy types of the isolating neighbourhood and the exit
set often change as well under changing the discretisation. It is thus perhaps remarkable
that any changes are correlated under the quotient operation

�
N

�
N � � : the homotopy in-

dex is in many cases an invariant of the topological closed braid type, as will become clear
in the following. On the other hand, given a complicated braid, it is intuitively clear that
a certain number of discretisation points are necessary to capture the topology correctly.
If the period d is too small, then D n

d rel β1 may contain more than one path component
with the same topological braid type.

Definition 8.10 A relative braid type
�
β0 rel β1 � in Dn

d rel β1 is called free if any other PL-
braid in Dn

d rel β1 which has the same topological braid type as β0 rel β1, is in
�
β0 rel β1 � .

In our applications we will generally only encounter free braid types. However, not all
PL-braid types are free, see Figure 8.6 for an example of a non-free braid type.

Define the extension map Φ : D n
d

� Dn
d � 1 via concatenation with the trivial braid of

period one:

(Φβ)k
i

def�
�

uk
i for i � 0, . . . , d,

uk
d for i � d

� 1.
(8.8)

The reader may note (though not without some effort) that the non-free braids of Fig-
ure 8.6 become free under the image ofΦ.

It is a pleasant surprise thatΦ preserves the homotopy index of a free, proper braid.

Theorem 8.11 If
�
β0 rel β1 � and

�
Φβ0 relΦβ1 � define free proper braid types, then the

Conley homotopy indices are equivalent:

h(Φβ0 relΦβ1) � h(β0 rel β1).

Theorem 8.11 is an important tool in the calculation of the (homological) Conley index of
braid types. The proof comes from a recasting of the situation as a singular perturbation
problem.

Finally, we turn our attention to the class of up-down braids. The definition of a proper
relative braid type in this context is the same as in Definition 8.8, but now with relative
braids in En

2p instead of Dn
2p. From the considerations in Section 8.3 (in particular the

behaviour near horizontal singularities) it follows, as in Theorem 8.9a, that for proper
braid types the set N � clE

�
u rel v � E is an isolating neighbourhood. Thus, for any para-
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bolic flow Ψ t induced by a parabolic recurrence relations which satisfies (8.7), the Conley
index h(u rel v, E) of the maximal invariant set M � M(N) is well-defined.

We now make a connection between the Conley index of the up-down braid type
h(u rel v, E) and the Conley index of a (regular) PL-braid type. For v � E m

2p define an
augmented braid v � as follows. Choose two strands v � and v � , v

�
i

� v �
�

( � 1)i � 1δwith v �

large and δ � 0 small enough, so that v �
i � vk

i � v �
i , for all k and i. Let v � � v � �

v � �
v, i.e.

v � � Em � 2
2p . When

�
u rel v � E is a proper braid type in E n

2p rel v, then
�
u rel v � � E corresponds

precisely to the subset of E n
2p defined by

�
u rel v � E , and clearly

�
u rel v � � E is a proper braid

type in En
2p rel v � .

Let
�
u rel v � � � �

u rel v � � D be the path component in D n
2p rel v � containing

�
u rel v � � E .

It now follows that
�
u rel v � � is a proper (regular) PL-braid type. The Conley index of�

u rel v � E can be related to that of
�
u rel v � � :

Theorem 8.12 For any proper up-down braid type
�
u rel v � E we have

h(u rel v, E) � h(u rel v � ).

Since the strands v
�

only serve to retain compactness when the up-down restriction is
lifted (i.e., when extending from E to D), no strands need to be added to v if there are
already strands in v which lie completely above and below all other strands. In that case
one may take v � � v.

8.5 Second order Lagrangian systems
As was already indicated in Section 8.1, our main application of the theory in the pre-
ceding sections is derived from the problem of finding periodic solutions of second order
Lagrangian systems. An important motivation for studying such systems comes from the
stationary Swift-Hohenberg model [137, 52], which is described by the fourth order equation�

1 � d2

dt2 � 2

u � αu
�

u3 � 0, α ��� . (8.9)

More generally, our results apply to a broad class of second order Lagrangian systems L �
L(u, u

�
, u
���
). As explained in Section 8.1 and Chapter 7, the variational principle for finding

closed characteristics in a fixed energy level can be discretised when the Lagrangian L
satisfies the Twist hypothesis (T). The variational principle, i.e., finding critical points of
J � 	 L in some function space, is then reduced to a finite dimensional setting. Namely,
one searches for critical points of W2p(u0, . . . , u2p � 1) � � 2p � 1

i � 0 S(ui , ui � 1), with u2p
� u0. Here

the ui correspond to the extrema of the function u, and S(ui , ui � 1) � 	 L(u(t), u
�
(t), u

���
(t)) dt

is the action of the (unique) monotone lap u(t) from ui to ui � 1.
This generating function S satisfies a number of properties as was proved in Chapter 7.

Let I � (u � , u � ) � IE be any open sub-interval of IE
2. Define the diagonal ∆ � �

(u1, u2) �
I � I � u1

� u2 � . The generating function S has the following properties:

1. smoothness: S � C2(I � I � ∆).
2. monotonicity: ∂1∂2S(u1, u2) � 0 for all u1

�� u2 � I.

2Recall from Section 8.1 that IE is a connected component of
�
u � L(u, 0, 0) � E 
 0 � .
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3. diagonal singularity:

lim
u1 � u2

� ∂1S(u1 , u2) � lim
u2

�
u1

∂2S(u1, u2) � lim
u1

�
u2

∂1S(u1, u2) � lim
u2 � u1

� ∂2S(u1, u2) � � .

Critical points of W2p satisfy the recurrence relation

R i(ui � 1, ui, ui � 1) def� ∂2S(ui � 1, ui)
� ∂1S(ui , ui � 1) � 0,

where R i(ui � 1, ui, ui � 1) is defined on

Ωi
� �

(ui � 1, ui, ui � 1) � I3 � ( � 1)i(ui
�

1
� ui) � 0 � .

Here we have chosen u0 to corresponds to a local minimum. The properties of S imply
that R satisfies Axioms (A1)-(A4) with d � 2, i.e., R is an exact parabolic recurrence
relation. The fact that R i is defined on the domains Ωi, subjects sequences (ui) to the
constraint ( � 1)i(ui

�
1

� ui) � 0. This (natural) up-down restriction is the reason that we
need the concept of up-down braids. The properties of the generating function S listed
above yield that the gradient flow Ψ t associated to R (see (8.6)) is a parabolic flow which
respects the up-down restriction in forward time.

Theorem 8.12 will be used to find a family of up-down braid types with non-trivial
Conley homology. These braid classes then necessarily contain critical points, i.e. closed
characteristics. We consider two cases: compact interval components, and non-compact
interval components IE

� � with a certain asymptotic behaviour3.
Before stating our main theorems, we introduce some notions of complexity for braids

and closed characteristics, see Figure 8.7 for examples. Two closed characteristics u1 and
u2 (and the braid diagram formed by the pair) are said to be unlinked if the associated
strands in the PL-braid diagram are strictly ordered. We say that two closed character-
istics are linked, if the stands form a non-trivial braid diagram (i.e., when they are not
unlinked). Note that u2, seen as a strand, may be an even shift of u1 (and one could refer
to this case as self-linking). In either case their braid diagram is said to contain a (non-
trivial) link. Closed characteristics can also be represented as closed curves in the (u, u

�
)-

plane. A closed characteristic is simple if its representation in the (u, u
�
)-plane is a simple

closed curve. A non-simple closed characteristic also yields a braid diagram which is
(non-trivially) linked by considering the braid which has all its even translates as strands.
Finally, two closed characteristics of period d form a maximal link if the associated braid
diagram is described by the braid-word σ d

1 .

Let L satisfy the Twist property (T), and let E be a regular energy level for which there
exists a compact interval component IE.

Theorem 8.13 Suppose IE contains a link. Then there exists an infinity of non-simple,
geometrically distinct, closed characteristics in IE.

In the proof of this theorem we will see what the nature of the infinite family of links is,
how they relate, what their Morse index are, etcetera.

The idea of the proof is the following (see [74] for full details). Let
�
v1, v2 � be a non-

trivial braid in E2
2p for some p � � , i.e., v1 and v2 form a link. In order to avoid problems

3For analogous results on the third possibility, a semi-infinite interval, we refer to [74].
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Figure 8.7: On the left examples of braid diagrams which are (a) unlinked, (b) linked,
and (c) maximally linked. On the right representations in the (u, u

�
)-plane of closed

characteristics which are (d) simple, and (e) non-simple.

near the boundary of IE
� �

u � , u � � and near the diagonal ui
� ui � 1, we choose

Ω δ
i

� �
(ui � 1, ui, ui � 1) � I3

E � u � � δ � ui
�

1 � ui
� δ � u � � 2δ � for i odd,

Ω δ
i

� �
(ui � 1, ui, ui � 1) � I3

E � u � � 2δ � ui
�
δ � ui

�
1 � u � � δ � for i even.

(8.10)

The set Ω2p is now the set of 2p periodic sequences (ui) such that (ui � 1, ui, ui � 1) � Ω δ
i .

Here we choose δ � 0 sufficiently small, so that the vector field R � (R i) is everywhere
transverse to ∂Ω2p, and moreover points inwards. Hence Ω2p is positively invariant for
the induced parabolic flow.

Define

C � � �
(ui) � Ω2p � ui � vk

i for k � 1, 2 and all i � 0, . . . , 2p � ,

C � � �
(ui) � Ω2p � ui � vk

i for k � 1, 2 and all i � 0, . . . , 2p � .

The two sets C � can be interpreted as subsets of the set of relative up-down braid dia-
grams E1

2p rel β1, where β1 is the braid formed by v1 and v2. The fact that the braid dia-
gram β1 contains a (non-trivial) link and the properties of parabolic flows, imply that
on the boundaries of the C � and C � , the vector field R i is everywhere transverse and
pointing inwards. Thus, C � and C � are positively invariant with respect to the parabolic
flow Ψ t. Consequently, W2p has global maxima v � and v � on int(C � ) and int(C � ) respect-
ively. The maxima v � and v � have the property that v �

i � v1,2
i � v �

i . Seen as a braid
diagram, v � �

v1, v2, v � , v � � is a stationary skeleton for the induced parabolic flow Ψ t.
Consider the relative braid classes

�
u rel v � E which are presented in Figure 8.8a, and

which are indicated by Xq
p,r � E1

2p rel v. Here r is the linking number of v1 and v2, i.e., 2r is
the number of crossings of v1 and v2. Since v1 and v2 are linked one has 0 � 2r � 2p. The
strand u is chosen to cross the strands v1,2 2q times, whereas it does not cross v

�
. While

this description does not completely characterise the braid class, Figure 8.8a indeed fixes
the braid type under consideration. An important restriction is that 0 � q � r.

The relative up-down braid type Xq
p,r is a proper free braid type, provided 0 � q � r.

It follows from Theorem 8.12 that h(Xq
p,r, E) � h(Xq

p,r), i.e., the up-down restriction may be
disregarded. The homology of h(Xq

p,r) can now be calculated.

Lemma 8.14 The Conley homology of h � h(Xq
p,r) is given by:

CHk(X
q
p,r) �

� �
k � 2q � 1 or 2q,

0 else.

The proof of Lemma 8.14 relies on Lemma 8.11 and the continuation (which leaves the
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Figure 8.8: Two up-down braid types (a) Xq
p,r with p � 5, r � 3, q � 2, and (b) Yq

p,r with
p � 5, r � 2, q � 3. All crossings are positive, i.e., the larger slope crosses on top of the
smaller slope.

Conley index invariant) to a system for which one can calculate the invariant set com-
pletely (an ‘integrable’ system).

Since the Conley homology is non-trivial, we obtain the existence of a critical point
in Xq

p,r. In fact (see for example [6, Section 6]), we derive from Morse theory that there exist
at least two distinct critical points (generically of index 2q and 2q � 1), for each q satisfying
0 � q � r � p. This way the number of solutions depends on r and p. In order to find
infinitely many closed characteristics, we consider all multiples of 2p, i.e., let the skeleton
be contained in E4

2pm, m � 1. Now q must satisfy 0 � q � rm � pm. By choosing triples
(q, p, m) such that q and pm are relative prime, we obtain the same Conley homology
as above, and therefore an infinity of pairs of geometrically distinct critical points of W,
corresponding to stationary point of the action J. Let q

�
be the linking number around

the v1,2, and let p
�

be the period, then admissible ratios q
�

p
� for closed characteristics are

determined by the relation

0 � q
�

p
� � r

p
.

Thus if v1 and v2 are maximally linked, i.e. r � p, then closed characteristics exist for all
ratios in

	 � (0, 1). Finally, note that v
�

correspond to the case q
� � 0.

On non-compact interval components W2p need not have any critical points. In or-
der to obtain more insight in non-compact interval components, some knowledge about
asymptotic behaviour of the system seems to be necessary. In Chapter 7 this issue was
addressed, and the dissipativity condition introduced there reads as follows: there exists a
(large) pair (u �1 , u �2) such that

∂1S(u �1 , u �2) � 0 and ∂2S(u �1 , u �2) � 0. (8.11)

An example of a sufficient condition on L so that the above dissipativity hypothesis holds,
is the following asymptotic behaviour (for all (u, v, w)):

lim
λ

� � λ � sL
�
λu,λ(s � 2)

�
4v,λs

�
2w � � c1w2 � c2 � u � s for some s � 2 and c1, c2 � 0.

For dissipative Lagrangians we can prove the following general result. Let L satisfy the
Twist property (T) and the dissipativity condition (8.11), and let E be a regular energy
value such that IE

� � .

Theorem 8.15 Suppose that IE
� � contains a non-maximal link. Then there exists an

infinity of non-simple, geometrically distinct, closed characteristics in IE.
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Figure 8.9: Solutions of (8.13) with energy E � 0 corresponding to the braid type Y1
13,0

for (a) Q � 0, and (b) Q � 10.

The proof is very similar to that of Theorem 8.13. Let
�
v1, v2 � form a non-maximally

linked braid in E2
2p for some p � � , i.e., having linking number 0 � r � p. Choose Ω δ

i as
in (8.10) with IE replaced by

�
u �1 , u �2 � (see (8.11)). Define

C � �
u � Ω2p � u is maximally linked with v1,2 � .

As before, the set C can be interpreted as a subset of the relative up-down braid dia-
grams E1

2p rel β1, where β1 is the braid formed by v1 and v2. Since v1 and v2 are not
maximally linked, the vector field R i is transverse to the boundary ∂C, and is pointing
outwards on ∂C. Therefore C is negatively invariant for the induced parabolic flow Ψ t,
and consequently there exists a global minimum v3 � int(C). Define the skeleton v to be
v � �

v1, v2, v3 � . Now consider the relative up-down braid type
�
u rel v � E depicted in Fig-

ure 8.8b, denoted by Yq
p,r. It can be described as follows. The linking number of v1 and v2

is r, where 0 � r � p. The strand u � Yq
p,r satisfies ( � 1)iui � ( � 1)iv3

i for all i, and u has
linking number q with the strands v1,2. For r � q � p, Yq

p,r is a proper free braid type. By
Theorem 8.12 we have that h(Yq

p,r) � h(u rel v, E) � h(u rel v � ).

Lemma 8.16 The Conley homology of h � h(Yq
p,r) is given by:

CHk(Y
q
p,r) �

� �
k � 2q or 2q

� 1,
0 else.

In the same manner as in the proof of Theorem 8.13 infinitely many solutions are found.
The relation for the admissible ratios here reads

r
p

� q
�

p
� � 1. (8.12)

Hence if v1 and v2 are unlinked, i.e. r � 0, then closed characteristics exist for all ratios in
	 � (0, 1). Finally, note that v3 corresponds to the case q

� � p
�
.

As an example, we apply Theorem 8.15 to Equation (8.9) forα � 1. After rescaling we
obtain

u
������� �

Qu
��� � u

�
u3 � 0, with Q � 2�

α � 1
. (8.13)

The corresponding Lagrangian is given by L(u, u
�
, u
���
) � 1

2 u
��� 2 � Q

2 u
� 2 � 1

4 (u2 � 1)2. It is
shown in Chapter 7 that the Swift-Hohenberg model satisfies the Twist property (T) for
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all Q � 0 (i.e. all α � 1). The potential4 F(u) � 1
4 (u2 � 1)2 has two non-degenerate global

minima, at (singular) energy level E � 0. For each regular E � (0,ε) with ε sufficiently
small, there exist at least two unlinked simple closed characteristics5. For all E � 0 one
has that IE

� � , and the dissipative boundary conditions are met for any sufficiently large
subinterval I ��� . Theorem 8.15 now yields an infinity of non-simple closed characteris-
tics for all E � (0,ε). A periodic solution exists for any ratio q

�
p

� � 	 � (0, 1), see (8.12). These
characteristics still exist in the limit E � 0. In the limit E � 0 the two unlinked simple peri-
odic solutions may collapse onto the two equilibrium points. Nevertheless, because all
the solutions produced by Theorem 8.15 link around both simple closed characteristics,
the infinite family of solutions still exists in the limit E � 0. Since the singular level E � 0
contains singular points, oscillations of closed characteristics may coalesce. However, it
is not difficult to show the extrema of these solutions may coalesce only in pairs at the
equilibrium points. Notice that the nature of the equilibrium points is not important for
this result: it holds both when the equilibria u � � 1 are saddle-foci (0 � Q �

�
8), and

when they are centers (Q �
�

8). A solution corresponding to q � 1 and p � 13 is shown
in Figure 8.9 for both Q � 0 and Q � 10. Observe that although there is a big difference
in shape, the braid type is the same.

4Note that the potential F(u) is defined with the opposite sign compared to Chapter 1.
5With some effort this can be deduced this from the analysis in Section 7.3.4.
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Moskou, Ser. Internat. Sec. A 1 (1937), 1–25.

[95] J. Kwapisz, personal communication.

[96] J. Kwapisz, Uniqueness of the stationary wave for the Extended Fisher Kolmogorov equa-
tion, J. Differential Equations 165 (2000), 235–253.

[97] A.C. Lazer and P.J. McKenna, Large-amplitude oscillations in suspension bridges: some
new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537–578.
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Samenvatting

Dit proefschrift gaat over de dynamica en evenwichtstoestanden die beschreven worden
door vierde orde differentiaalvergelijkingen. Het uitgangspunt hierbij is wiskundig, maar
dit soort vergelijkingen is van belang bij de beschrijving van vele fysische verschijnselen.

De taal waarin natuurwetten worden geformuleerd is wiskundig. Omdat deze wetten
de verandering van bepaalde grootheden beschrijven, is het te verwachten dat differen-
tiaalvergelijkingen hierbij een grote rol spelen. Een bekend voorbeeld is de wet van New-
ton in de klassieke mechanica, die de versnelling van een voorwerp of deeltje relateert aan
de kracht die erop wordt uitgeoefend. De versnelling is de tweede afgeleide van de plaats
(de eerste afgeleide is de snelheid), zodat dit een tweede orde differentiaalvergelijking is.

Net als zulke fundamentele natuurwetten, worden vele natuurkundige verschijnse-
len gemodelleerd met behulp van differentiaalvergelijkingen. Een voorbeeld hiervan is
de warmte-vergelijking, die de verandering van temperatuur als functie van plaats en tijd
beschrijft. Dit is ook een tweede orde differentiaalvergelijking, maar hij is van een heel
andere aard dan de wet van Newton. Die laatste is namelijk een gewone differentiaalver-
gelijking (de positie hangt van één variabele af: de tijd), terwijl de warmte-vergelijking
een partiële differentiaalvergelijking is (de temperatuur varieert zowel in de tijd als in de
ruimte).

Ondanks de verschillen hebben deze twee voorbeelden van differentiaalvergelijkin-
gen een gemeenschappelijk kenmerk: wanneer de begintoestand bekend is, wordt de
toekomstige evolutie, of dynamica, van het systeem volledig bepaald door de differen-
tiaalvergelijking. Dit is karakteristiek voor wat in de wiskunde een dynamisch systeem
genoemd wordt. Het feit dat de gebeurtenissen in zo’n systeem volledig vastliggen wan-
neer de beginsituatie bekend is, impliceert dat we te maken hebben met een determinis-
tisch proces. Dat wil echter niet zeggen dat we altijd precies kunnen voorspellen wat er
gaat gebeuren, want de beginsituatie is nooit exact bekend. Een zeer kleine afwijking in
de beginsituatie kan na verloop van tijd tot geheel andere gevolgen leiden. Determinis-
tische processen kunnen daarom toch chaotische verschijnselen veroorzaken. Een goed
voorbeeld daarvan zijn weersvoorspellingen, maar ook bijvoorbeeld de trekking van de
lottoballetjes, die volledig beschreven wordt door de wet van Newton, maar die toch een
‘willekeurige’ uitkomst heeft.

De natuurkunde is niet de enige wetenschap waarin differentiaalvergelijkingen een
prominente rol vervullen. Zij worden op vele gebieden toegepast als model voor het te
bestuderen probleem. Om een paar voorbeelden te noemen: de reacties en verspreiding
van chemicaliën, de groei en afname van populaties in de biologie, de ontwikkeling en
behandeling van ziektes in de geneeskunde, en de stroming van een gas of vloeistof,
waarbij de toepassingen variëren van fundamentele sterrenkunde tot weersvoorspellin-
gen tot industriële processen.
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Naast deze toepassingsmogelijkheden is er nog een andere reden om differentiaalver-
gelijkingen te bestuderen: de wiskundige uitdaging. De theorie van differentiaalvergelij-
kingen heeft connecties met vele takken binnen de wiskunde. Een verdere ontwikkeling
van de theorie maakt daarom niet alleen de toepasbaarheid groter, maar vergroot ook het
inzicht in de structuur van de wiskunde die eraan ten grondslag ligt. En uiteindelijk is dat
toch de grootste motivatie voor het onderzoek dat in dit proefschrift beschreven wordt:
proberen de onderliggende structuur van een wiskundig probleem te begrijpen.

We gaan nu dieper op het onderwerp van dit proefschrift in; het is uiteraard onver-
mijdelijk dat daarbij enige wiskundige notatie om de hoek komt kijken. De vierde orde
partiële differentiaalvergelijking waar het in dit proefschrift om draait is

∂ f
∂t

� � γ ∂4 f
∂x4
�
β

∂2 f
∂x2
�

f � f 3 γ � 0, β ��� . (A)

De functie f hangt van de tijd t en de plaats x af, en de betekenis van f is afhankelijk
van de toepassing waarin men geı̈nteresseerd is (we komen daar zo op terug). In de
differentiaalvergelijking staan twee getallen β en γ, de parameters (ook daar komen we
later op terug). Overigens is vergelijking (A) slechts een voorbeeld van een brede klasse
van vergelijkingen die in dit proefschrift wordt bestudeerd.

Wanneer een oplossing f van deze differentiaalvergelijking niet verandert in de tijd,
dan noemen we dat een stationaire oplossing of ook wel een evenwichtsoplossing. Zo’n
stationaire oplossing varieert dus alleen in de ruimte en niet in de tijd, oftewel de functie f
hangt alleen van x af. Zulke stationaire oplossingen voldoen aan de gewone differentiaal
vergelijking

� γ d4 f
dx4
�
β

d2 f
dx2

�
f � f 3 � 0, γ � 0, β ��� . (B)

Het feit dat er in de vergelijkingen (A) en (B) een derde macht van f voorkomt, impliceert
dat zij niet-lineair zijn. Dit is in feite de belangrijkste reden dat deze vergelijkingen vanuit
wiskundig oogpunt interessant zijn. Het zorgt ervoor dat we de oplossingen van deze
vergelijkingen in het algemeen niet expliciet kunnen bepalen. We kunnen ze wel (met
de computer) benaderen, maar we kunnen ze bijna nooit als formule opschrijven. Het is
echter vaak wel mogelijk om uitspraken te doen over kwalitatieve eigenschappen van de
oplossingen van zulke niet-lineaire vergelijkingen.

Vierde orde differentiaalvergelijkingen van bovenstaand type komen naar voren in
zeer uiteenlopende toepassingen, zoals de vibraties in het wegdek van een hangbrug, de
vorming van geologische patronen in aardlagen, het zenden van een lichtpuls door een
glasfiber, of de voortbeweging van een golf in een ondiep kanaal. Maar er zijn ook minder
tastbare toepassingen, zoals in de beschrijving van fase-overgangen (het smelten van ijs
is een voorbeeld van een fase-overgang) en de stroming van een vloeistof tussen twee
parallel geplaatste platen met verschillend temperatuur. De betekenis van de grootheid f
is bijvoorbeeld de temperatuur van een gas, de hoogte van een oppervlak of de intensiteit
van een lichtstraal.

We zien verder dat er in bovenstaande vergelijkingen twee parameters voorkomen:
β en γ. Wanneer deze parameters worden veranderd kunnen de oplossingen van de ver-
gelijkingen ander gedrag vertonen. Het doel van het onderzoek is om te bestuderen hoe
de oplossingen zich gedragen voor alle mogelijke parameterwaarden. In toepassingen
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komt het variëren van de parameters overeen met het kiezen van een andere tempera-
tuur, andere afmetingen of een ander materiaal, kortom het instellen van alle factoren die
het proces beı̈nvloeden.

De differentiaalvergelijkingen (A) en (B) kunnen worden beschouwd als vierde orde
uitbreidingen van respectievelijk de eerder genoemde warmte-vergelijking en de wet van
Newton. Wanneer weγ � 0 nemen dan reduceren de vergelijkingen tot tweede orde diffe-
rentiaalvergelijkingen. Het is dus te begrijpen dat een van de resultaten in dit proefschrift
is dat voor kleine waarden van γ de oplossingen van de vierde orde vergelijking erg op
die van de tweede orde vergelijking lijken.

We gaan nu iets verder in op de verschillen tussen tweede en vierde orde vergelij-
kingen, en daarbij beperken we ons voor de eenvoud tot de gewone differentiaalverge-
lijking (B), hoewel er ook voor de partiële differentiaalvergelijking essentiële verschillen
zijn. Het grote verschil tussen een tweede en een vierde orde differentiaalvergelijking is
dat een tweede orde differentiaalvergelijking geen chaotisch gedrag kan vertonen en een
vierde orde differentiaalvergelijking wel. Dat wil zeggen dat de oplossingen van tweede
orde differentiaalvergelijkingen zich altijd heel gestructureerd en geordend gedragen, ter-
wijl voor vierde orde differentiaalvergelijkingen er de meest wilde verschijnselen kunnen
optreden.

Oplossingen kunnen worden voorgesteld als banen in de ruimte; voor tweede orde
vergelijkingen zijn dit banen in een twee-dimensionale ruimte en voor vierde orde verge-
lijkingen in een vier-dimensionale ruimte. In twee dimensies (het platte vlak) is er voor
de oplossingen niet genoeg bewegingsvrijheid om al te gecompliceerd gedrag te verto-
nen, terwijl daar in vier dimensies wel voldoende ruimte voor is. Men zou dit kunnen
vergelijken met het feit dat zoveel meer auto’s op elkaar botsen dan vliegtuigen, die im-
mers een dimensie extra hebben om zich in te bewegen. Of, om het probleem nog wat
verder te simplificeren, op een smalle weg kunnen auto’s elkaar niet inhalen en moeten
zij dus allemaal ordelijk achter elkaar blijven rijden, terwijl zij elkaar op een snelweg links
(en rechts) kunnen passeren zodat het er veel chaotischer aan toe kan gaan.

Bij het bestuderen van differentiaalvergelijkingen zijn er veel verschillende soorten
oplossingen waarin men geı̈nteresseerd is; dit hangt vaak ook van de toepassing af. Men
kan zich bijvoorbeeld beperken tot tijdonafhankelijke oplossingen (ook al omdat het pro-
bleem dan minder moeilijk is). Ook kan men bijvoorbeeld op zoek gaan naar periodieke
(oscillerende) oplossingen, of juist naar oplossingen die alleen maar stijgen. Overigens
beperkt men zich bij een dergelijk wiskundig probleem vaak niet tot één van deze moge-
lijkheden. Meestal is het als het volgen van een weg waarvan je niet precies weet of hij
wel ergens naar toe gaat, laat staan waar hij precies naar toe gaat.

In dit proefschrift worden dan ook verschillende soorten oplossingen bestudeerd. De
manier waarop dat gebeurt varieert sterk en hangt niet alleen af van het soort oplossin-
gen, maar ook van de waarden van de parameters β en γ. Laat ons kort een beschrijving
geven van de twee belangrijkste technieken: schietmethoden en variationele methoden.

Bij een schietmethode kiezen we eerst een beginsituatie. Zoals eerder beschreven is,
wordt de dynamica dan volledig bepaald door de differentiaalvergelijking. We proberen
vervolgens te bepalen hoe de oplossing er uitziet. Omdat de vergelijkingen niet-lineair
zijn kunnen we dat nooit precies berekenen, maar we kunnen vaak wel het kwalitatieve
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gedrag begrijpen. Wanneer dit gedrag niet het gewenste gedrag is dan veranderen we de
beginsituatie een klein beetje en kijken of het er beter op wordt. Door dit proces op een
systematische manier te herhalen vinden we uiteindelijk een oplossing met de gewenste
karakteristieken. Of niet natuurlijk, want de oplossingen van een differentiaalvergelijking
doen wat de differentiaalvergelijking hen oplegt, dus we kunnen niet verwachten dat er
oplossingen zijn die voldoen aan alle mogelijke voorwaarden die we kunnen verzinnen.
Soms bestaan er bijvoorbeeld geen periodieke oplossingen, of gaan alle oplossingen naar
oneindig, zodat het zoeken naar een oplossing die eindig blijft hopeloos is. Niettemin
verschaft de bevinding dat een bepaald soort oplossing niet kan bestaan natuurlijk ook
veel inzicht.

Een variationele methode is op een totaal ander leest geschoeid. We bekijken nu func-
ties die al het gewenste gedrag hebben, maar die niet noodzakelijkerwijs oplossingen van
de differentiaalvergelijking zijn. Vervolgens gebruiken we het feit dat veel fysische syste-
men zich zo gedragen dat zij een toestand proberen te bereiken met een zo laag mogelijke
energie. Het wonderbaarlijke is nu dat die functie waarvoor de bijbehorende energie de
laagst mogelijke is, een oplossing van de differentiaalvergelijking is. Dit principe heet het
variationele principe, en het wordt veelvuldig gebruikt om oplossingen met een bepaald
gezocht gedrag te vinden. In tegenstelling tot een schietmethode speelt een variationele
methode zich af in een oneindig dimensionale ruimte. Hoewel dat enige moeilijkheden
met zich meebrengt, is men er vaak toch op aangewezen om bepaalde extra informatie
over oplossingen te verkrijgen, of omdat een schietmethode eenvoudigweg niet werkt.

We behandelen nu zeer kort de inhoud van de verschillende hoofdstukken. We bena-
drukken dat dit proefschrift voor het overgrote deel bestaat uit bewijzen van wiskundige
stellingen, en dat toepassingen een minder belangrijke rol spelen.

Na een inleidende hoofdstuk wordt in hoofdstuk 2 aangetoond dat, voor positieve
waarden van β en niet al te grote waarden van γ (om precies te zijn γ � β2

8 ), de begrensde
oplossingen van de vierde orde gewone differentiaalvergelijking (B) precies correspon-
deren met die van de tweede orde vergelijking. De parameterwaarden γ � β2

8 komen
in hoofdstuk 3 aan de orde, waar met behulp van variationele methoden periodieke en
chaotische oplossingen worden bestudeerd. In hoofdstuk 4 ligt de nadruk op de partiële
differentiaalvergelijking (A), met name op stabiliteit van stationaire oplossingen. We on-
derzoeken dus wat er gebeurt wanneer een evenwichtsoplossing een klein beetje ver-
stoord wordt. Er wordt bewezen dat, als we een eindig ruimtelijk gebied bekijken met
zogenaamde ‘vrije’ randvoorwaarden, er voor γ � β2

8 altijd precies twee stabiele even-
wichtstoestanden zijn, terwijl voor γ � β2

8 het aantal stabiele toestanden exponentieel
groeit wanneer het gebied dat we beschouwen groter wordt. Uit deze drie hoofdstukken
blijkt dat er een scherpe overgang is tussen de parameterwaarden waarvoor de vergelij-
king zich tam gedraagt, en de parameterwaarden waarvoor het gedrag chaotisch is. Het
is uitzonderlijk dat deze overgang zo nauwkeurig in kaart kan worden gebracht.

Hoofdstuk 5 gaat over een heel ander soort oplossingen van vergelijking (A), name-
lijk over zogenaamde lopende golven. Deze oplossingen hebben een onveranderlijke vorm,
maar dit vaste profiel beweegt zich met een constante snelheid van links naar rechts (of
andersom). In hoofdstuk 6 komen negatieve waarden van de parameter β aan bod. Met
behulp van een schietmethode worden verschillende families van periodieke oplossingen
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bestudeerd. De schietmethode en de variationele methode worden in hoofdstuk 7 tot een
geheel gesmeed. In dit hoofdstuk worden voornamelijk eenvoudig periodieke oplossin-
gen bestudeerd, terwijl in hoofdstuk 8 meer gecompliceerde vormen aan bod komen. In
dit afsluitende hoofdstuk worden periodieke oplossingen geı̈nterpreteerd als knopen in
een drie-dimensionale ruimte.
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Nawoord

Dit proefschrift was niet geworden wat het is zonder de inbreng en steun van vele vrien-
den, collega’s en bekenden. Allereerst wil ik de personen noemen die direct bij de tot-
standkoming van dit proefschrift betrokken zijn geweest. Zij vinden zichzelf terug in het
voorwoord. Verschillende leden van de promotiecommissie hebben door hun opmerkin-
gen en vragen de presentatie van de resultaten overzichtelijker gemaakt en het aantal
fouten en onnauwkeurigheden verminderd. Daarnaast ben ik ook enkele (anonieme) re-
ferees erkentelijk.

Financiële ondersteuning voor congres- en werkbezoek heb ik gekregen van NWO en
via het TMR programma ‘Nonlinear Parabolic PDEs: Methods and Applications’. Het
Mathematisch Instituut heeft mij alle vrijheid gegeven om ongestoord te doen wat ik
wilde; het was misschien soms zelfs iets te rustig. Gelukkig liepen er dan altijd wel een
paar collega’s rond met wie ik tijdens de lunch de discussie aan kon gaan.

Velen, wiskundigen en niet-wiskundigen, hebben mij van inspiratie voorzien en daar-
door aan dit proefschrift bijgedragen, vaak ook zonder dat zij zich ervan bewust zijn.
Eveline, Roderick en vooral Heleen hebben, als huisgenoten en vrienden, mij vele ple-
zierige jaren bezorgd. De leden van Christiaan Huygens hebben zowel mijn blikveld
verruimd, als voor vrolijke avonden vol samenhorigheid gezorgd. Van Berend heb ik bij-
voorbeeld niet alleen voor het eerst over de kwadratuur van de cirkel gehoord, maar ook
hebben onze gesprekken veel aan mijn zelfkennis bijgedragen. De ontspanning die ik bij
tijd en wijle vond in het huis van de familie Flinterman, zelfs al was het voor een dag,
heeft mij altijd zeer veel goed gedaan.

In de anderhalf jaar die ik bij de vakgroep ‘Moleculen in Aangeslagen Toestand’ heb
doorgebracht, heb ik ontzettend veel geleerd, maar ben ik vooral ook onder de indruk ge-
raakt van de manier waarop aan die onderzoeksgroep vorm wordt gegeven. Het jaar dat
Barbera en Fernando als post-docs in Leiden doorbrachten heeft een blijvende invloed op
mij gehad. Hun relativeringsvermogen en sympathie heb ik als bijzonder prettig ervaren.
Hoewel Didier geen Nederlands wenst te spreken of verstaan, heeft onze samenwerking
in Parijs mij erg veel plezier en energie gebracht.

Willem is waarschijnlijk mijn enige vriend buiten de wiskunde die iets van de inhoud
van dit proefschrift begrijpt. Maar meer nog waardeer ik de avonden waarop we dis-
cussiëren over het leven, en ik hoop dat dat nog lang zo mag blijven. De etentjes met
Frouke, Ella en Michelle zijn altijd een hoogtepunt; hun vriendschap is hartverwarmend.

De onvoorwaardelijk steun van Els, Emiel, Annette en Pieter is voor mij van onschat-
bare waarde. En tenslotte, Heleen laat mij elke dag weer zien dat het leven de moeite
meer dan waard is.
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