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Abstract

We study the hole filling problem for the porous medium equa-
tion uy = %Aum with m > 1 in two space dimensions. It is well-
known to admit a radially symmetric self-similar focussing solution
u =t~ F(|z|t?), and we establish that the self-similarity exponent
B is a monotone function of the parameter m. We subsequently use
this information to examine in detail the stability of the radial self-
similar solution. We show that it is unstable for any m > 1 against
perturbations with 2-fold symmetry. Besides, we prove that as m is
varied there are bifurcations from the radial solution to self-similar
solutions with k-fold symmetry for each k = 3,4,5,.... These bifur-
cations are simple and occur at values mg > mg4 > ms > --- — 1.

1 Introduction

In this paper we consider the hole-filling Aronson-Gravelau (AG) solutions
of the porous medium equation

mu, = Au™, (1.1)

which we shall write in terms of the pressure variable

umfl
V=
m—1
as
vy = (m — 1)vAv + |Vu % (1.2)

Here m is a fixed real and usually positive number. The space dimension is
denoted by N.

Equation (1.1) arises in several applications and references go back as far
as [22] in the context of gas flows in porous media (m > 2), from which the
equation derives its name. It also arises in the context of high temperature
hydrodynamics (with various values of m) [25], mathematical biology [15],
superconductors (with sign changing solutions) [14], differential geometry
(m < 0) [12] and in the study of flows of thin viscous films (m = 4) [11]. It is
a prototypical nonlinear extension of the linear diffusion equation u; = Au.
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We restrict our attention to m > 1 and nonnegative (weak) solutions. Our
main interest is in the behaviour of the support of the solution. The Zel’do-
vich-Kompaneetz-Barenblatt (ZKB) point source solutions [24, 8], which, in
terms of v, are given by

1

B o
m—1)N+2’ F(ﬂ):(C—g\ﬂ\ )+

v 1) =), n=, f=
show that weak solutions have supports which propagate with a finite speed
[5] given by the length of the gradient of v at the boundary. Formally this
behaviour is explained by dropping the first term on the right hand side of
(1.2) at the boundary of the support.

Using ZKB-solutions as subsolutions and the comparison principle for
weak solutions, one shows that the support of a solution eventually reaches
every point in space. This means that any holes in the support which may
exist initially, disappear in finite time. Assuming that such a hole vanishes
at time ¢ = T in one point x = zy one can try to describe this process by
zooming in at (zg,7") using self-similar variables

r — 2y

’U(éL‘,t) = (T_t)2ﬂ_1w(77’7-)’ n= ma

T=—log(T—t). (1.3)

In the new variables the pressure equation (1.2) reads
w, = (m — DwAw + |Vw|* — 8n- Vw + (28 — 1)w. (1.4)

The AG-solutions are characterised by two properties: (i) they are radially
symmetric equilibria F'(|n|) of (1.4) supported on the complement of a ball;
(ii) they define self-similar solutions of (1.2) having a trace at ¢t = T" (so that
the solution may be continued for ¢ > T').

The first property implies that F'(r) is a solution of the ordinary differ-
ential equation

(m —1)F(F" + ?F') +F? —BrF' + (28— 1)F =0, (1.5a)

supported on an interval [rg,o00) with F(r) — 0 as r — ry. Formally, for a
well-behaved solution we will have F'(ry) = Brq. In fact the weaker condition
that F'(r) is positive and sub-linear as  — ry already defines a unique local
solution F'(r) which only depends on 7y and this solution may be obtained



by scaling the solution with r; = 1. Thus we need only consider the solution
of (1.5a) with
F(1)=0; F'(1%)=p. (1.5b)

With m > 1 fixed this solution F(r) depends only on the similarity expo-
nent [.

The second property imposes an algebraic growth condition on F(r) as
r = |n| = oo, namely F(r) ~ Cr® with ¢ defined in (1.6) below. As we
explain in Section 2, there is only one (positive) value of 3, for which the
solution of (1.5) has this property. The phase plane reduction we use to
analyse (1.5a) is different from the one used in [7], where the existence of a
unique [ and corresponding self-similar solution was first proved.

Since the exponent 3 is not explicitly determined from a conserved quan-
tity of solutions (as in the case of the ZKB-solutions), the AG-solutions are
self-similar solutions of the second kind. For N > 1 we have the bounds
$ < B <1 (see [7]), and in the limit ¢ 1T

28 — 1
p

Consequently solutions v of (1.2) may not be Lipschitz continuous in space
as long as they have holes in their supports. We note that g =1if N = 1.
In [6] it is shown that ¢ — 0 as m — oo and ¢ — 1 as m — 1. Here we
prove that e, and thus (3, is a strictly decreasing function of m. Moreover,
we prove that the leading term asymptotics of € are given by

v(z,T) =Clz — x9|°, where 0<e= <1 and C>0. (1.6)

1 2 2
—N—exp(—v——) as m — oQ,
m € €

where o
v = —/ exp(—s)logsds
0
is Euler’s constant, and

-1
l—stT as m — 1.

In [1] it has been shown that for radial solutions of (1.2) supported on
a region between two concentric spheres, the inner sphere disappears as t
increases to some finite 7' with a rate proportional to (T —t)?. Moreover, in



the variables (1.3), the solution converges to F' or one of its scalings. This
phenomenon is called radial focussing.

It was conjectured that the AG-solutions describe the generic disappear-
ance of holes in the supports of nonradial solutions and, in particular, that
the AG-profiles are essentially stable. A first step in attempting to prove this
conjecture is the linearised stability analysis of the AG-profiles F' as solutions
of the partial differential equation (1.4). Roughly speaking, the self-similar
variables (1.3) do not “see” what is happening away from the focusing point
(x9,T) and so they do not see solutions which focus at other points in space-
time. Any linearisation of (1.4) around F' will therefore have positive eigen-
values. Differentiating the AG-solutions with respect to 7" and xy one may
identify a priori the unstable eigenvalues w = 1 and w = (3, even before find-
ing the appropriate linearisation. Moreover, since the AG-solutions contain
an additional free parameter ry we will also have an eigenvalue w = 0. The
corresponding instabilities and neutral stability are unavoidable, and we say
that the AG-profiles are essentially stable if there are no additional positive
eigenvalues.

The two-dimensional hole filling problem is studied numerically in [3]
and [4]. The results give clear evidence of the instability of the Graveleau
interface with respect to elongated perturbations (i.e., to perturbations with
wave number £ = 2). In addition, they clearly indicate the possibility of
self-similar nonradial focusing with k-fold symmetry for k¥ = 3 and m fairly
close to 1, with £ = 4,5,6, ... emerging as possible symmetries as m — 1.
The existence of these bifurcations is proved in [2] for sufficiently large wave
numbers k. The analysis in [2] is independent of the number of space dimen-
sions V. The net result of these investigations is the fact that the Graveleau
profiles are not essentially stable. Here we investigate this instability in more
detail for planar flows, and, in particular, answer several of the questions left
open in [2].

In the appendix of [3] a linearisation around the radially symmetric AG-
solution is derived. Introducing polar coordinates z; = rcosf and z, =
rsin @ the solution w is represented as a graph

p=w(r0,7)

in the (r, p)-plane, parametrised by 6 and 7. The relation between p and r
is then inverted and written as

r=_S(p,0,71),
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and the equation for S(p, 6, 7), which reads

(55,)?Sr = (m —1)p (S*Spp, — SS; + SppSy — 25,59Sps + S6S7)

1.7

+B5°S7 — 525, — SpS; — (28 — 1)pS*S, 0D
is linearised around ¥ = F~!. This produces a linear second order equation
of the form

& = Lé

with coefficients independent of § and 7 and singularities in p = 0 and p = o0
(see Section 2). Separation of variables yields solutions of the form

&ki(p, 0, 7) = exp(wriT) Ai(p) coskf, k,i=0,1,2,...,

where £ is the wave number and ¢ is the number of sign changes of the radial
part Agi(p).

Our main interest is in the eigenvalues {wg;(m)}. The a priori consider-
ations explained above give

woo(m) =1, wer(m) =0, and wip(m) = B(m) for all m € (1, 00).

As shown in [2], for each fixed m the eigenvalues are monotone in both k
and 7. Thus the only eigenvalues which can be positive (or nonnegative) are
the wgo(m) for £ > 1. The corresponding radial part of the eigenfunctions
Ago(p) does not change sign. One of the main results of this investigation is
that

wao(m) >0 for all m € (1, 00).

Thus the AG-profiles are not essentially stable for any value of m.
Besides, for each £ > 2 we may find the values m = my for which the
stability changes by solving

wro(m) = 0. (1.8)

As explained and proved in [2], each such value of m leads to the bifurcation
from the radial branch of self-similar focusing solutions with k-fold symmetry.
Although we are essentially only interested in integer values of the wave
number k, it enters the equation for A as a real parameter. We prove that
equation (1.8) defines a smooth function k = k(m) with

k(m) - 00 as m—1, and k(m) -2 as m — oo.



Moreover, k(m) is strictly monotone and hence invertible, so that my, is well-
defined (single-valued). It also implies that d;"r’;" (myg) > 0, hence as m is
varied a simple bifurcation from the radial selfsimilar profile occurs at each

of the values ms > my > ms > mg > - -.

Let us briefly indicate the methods we use. We first reduce the ODE
(1.5a) for F' to a quadratic system of first order equations for the new un-
known dependent variables

rF’ Br?
X=—, YV="—"7-—
F’ (m—1)F
as functions of logr. Starting from the resulting system for X and Y we
obtain detailed information about the relation between the AG-exponent (8
and the exponent m in (1.2). In terms of ¢ as given in (1.6) and

1
0= ey (1.9)
we obtain that ¢ is a strictly increasing function of € and show that
§ ~ 2 exp(—’y - 2) as € —0, (1.10)
€ €
and .
40 ~ -, ®» ¢&— 1. (1.11)

All this is done in Section 2 and relies on the analysis of one (non-auto-
nomous) first order equation derived from the (autonomous) system for X
and Y.

Next, in Section 3 we reduce the equation for A = Ay;(p) to a single first
order equation which may be appended to the system for
P v Y B

and 7 =—=——0V

X =
F pV’ X m-1

as functions of logr = log ¥, where W is the inverse of F'. The appropriate

variable is
B WA

WA
Note that A has no sign changes if 7 = 0.




From the equation for U we can deduce the behaviour of well-behaved
solutions at p = 0 and p = oo, and give a direct ODE proof of the existence
of a simple first eigenvalue wyy for every k. The positivity of wyy is easily
established. Moreover, setting wyo(m) = 0 we prove monotonicity of my, for
k> 2.

The first order equation for the “eigenfunction” U naturally involves the
profile of the self-similar solution about which one linearises. To analyse this
equation we shall need qualitative information about the profile. Similarly, to
study the dependence of the eigenvalues on m, we need detailed information
about the solution of the U-equation. This means that in the next sections
the theorems often include qualitative properties of solutions which may not
seem relevant at first glance, but which are crucial to the subsequent analysis.

2 The AG-solution in the phase plane

In this section we analyse the ODE
1
(m —1)F(F"+ =F)+ F? - BrF' + (28— 1)F = 0, (2.1a)
r

for the AG-profiles. Here we have already restricted attention to space di-
mension N = 2. The AG-profiles are all scalings of a solution F'(r) with

F(1)=0, F(1")=8, F>0on(l,), lLmF(r)rs >0. (21b)
In [7] equation (2.1a) is transformed into a two-dimensional autonomous
system and the AG-profiles are identified as corresponding to a connection
between a saddle and a saddle-node which is shown to exist for a unique
[, which lies between % and 1. The analysis here is based on a different
transformation which also leads to a two-dimensional quadratic autonomous

system. Setting

rF’ Br? 1 26 —1
o (m—1F t=logr, 9 — 71 € 5 (2.2)
we obtain
X=-0+1D)X24+Y(X —¢) Y =Y(2-X), (2.3)



where we restrict the attention to orbits with Y > 0. The parameter 6 > 0
ranges from zero (m — 00) to infinity (m — 1). The other parameter € must
satisfy 0 < € < 2 in view of § > % We note that for N # 2 the right hand
side of the X-equation would also contain the term (2 — N)X.

Transformations of this type have been used in [17], [21], [19], [20] and [18].
The resulting reduction requires a scaling invariance of the original second
order equation (or system of equations). The transformations may be de-
rived by introducing an X as in (2.2) for each unknown F in the system. For
higher order equations one has to introduce also @ etc. (see e.g. [9]).

We briefly recall the phase-plane analysis of the system (2.3), see [17],
[19] and [7]. There are two finite critical points, namely

(X,Y)=0=(0,00 and (X,Y)=P=(2 449

2—¢

The origin O is a saddle-node. The only orbits coming out with ¥ > 0 are
contained in the second quadrant and escape to infinity in finite time with
¢ — m in terms of polar coordinates X = Rcos¢, Y = Rsin¢. The corre-
sponding solutions F'(r) all hit zero with infinite slope and this disqualifies
them as possible solutions of (2.1). This includes the solutions of (2.1a) with
finite F'(0) > 0 which are contained in the orbit corresponding to the eigen-
value 2. The other orbits coming out of O contain solutions of (2.1a) which
are singular in r = 0.

The point P is a source for 1 < ¢ < 2 but as € drops below 1 it undergoes
a Hopf bifurcation with an unstable periodic orbit emerging, see [7]. Whether
or not this periodic orbit is unique is not relevant here. Orbits going into P
or possibly a periodic orbit around P contain solutions F' which grow too
fast for (2.1b) to hold and orbits coming out exist globally backwards in ¢
and can therefore not contain solutions F' with F'(1) = 0.

There are four critical points at infinity, characterised by R = oo and,

respectively,
0

¢=0, tan¢ =4, ¢:§, ¢ =m. (2.4)

All these points may be found and classified using either a Poincaré transfor-

mation (see [23]) or rewriting (2.3) as a system for p and ¢ where R = ;%

(see [17]). The points with ¢ = 0 and ¢ = 7 are respectively a source and

a sink with orbits coming in/going out in finite time containing solutions F
hitting zero with infinite slope.

The two relevant points at infinity are the ones with tan¢ = ¢ and ¢ = 7.

The first one is a saddle with one orbit coming out of infinity in finite time.
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Figure 1: This figure shows two orbits close to the connection in the (X,Y)-
phase plane for m = 3 (§ = 2). We have taken e related to § by (1.11), i.e.
¢ = £, and solved starting from X = 8 with ¥’ = 15.3165 and ¥ = 15.3169.

Normalising the ¢ at which it leaves infinity by ¢ = 0 it follows from (2.2)

that the corresponding F' has F(1) = 0 and F'(1%) = 3. The second one is

a saddle-node with one unique orbit going in and this is the only orbit that

escapes slowly to infinity, meaning as t — co. The corresponding solutions F'

have the appropriate algebraic growth required in (2.1b). This follows from

X(t) = ¢, Y(t) — oo and some additional manipulations that we omit here.
In terms of (2.3) the result in [7] may now be reformulated as

Theorem 2.1 Let § > 0. For every 0 < € < 2 there is a unique orbit of
(2.3) coming out of infinity in the first quadrant with Y ~ 06X and a unique
orbit going into infinity in the first quadrant with X — €. There is a unique €
for which these two orbits coincide. This € satisfies 0 < & < 1. The solutions
contained in the connection exist on an interval (ty,00), where ty is a free
parameter. Setting to = 0 we obtain the solution of (2.1).

The statement of this theorem is illustrated in Figure 1 which shows

10



a picture of the phase plane for m = 2 with § and e related by (1.11).
The connection is situated in the vicinity of the two orbits drawn. In the

subsections below we examine properties of the relation between € and 9.

2.1 Monotonicity

The orbit of (2.3) representing the AG-profiles has a monotone X-component
so we may use X as the independent variable in a first order equation for Y.
Since Y is unbounded it is convenient to introduce a new dependent variable
which is bounded. In fact, setting

V(X —¢) X 2

—0=14+ -, 7=, (2.5)

V=
X2 X2’ X

we arrive at

av o+V vV 1-V 2 268
—=—(1-—— h A=—-—=—— 2.
dr 1—V( T )\—7')’ Where e 26-1 (2.6a)
with boundary conditions
V(OH) =limV(r)=0, V(A)=lmV(r)=1. (2.6b)

710 TTA

Note that % < f < 1 implies oo > A > 2.

The first condition in (2.6b) is immediate from X — oo, Y/X — 6 and
(2.5). As for the second condition, V(1) is defined for all 0 < 7 < A and the
monotonicity of X implies that V(7) < 1 in view of (2.5). In view of the
right hand side of of (2.6a) such a solution either converges to 1 or to —oco
as 7 T A. The latter is excluded because combined with X () — ¢ it would
follow from (2.5) that X (¢) — —oo as t — 00, and this is impossible.

The equation for V is singular in 7 = 0, 7 = A and V' = 1. The orbits
mentioned in the first statement of Theorem 2.1 correspond to locally defined
solutions of (2.6a) respectively starting from 7 = 0 and ending at 7 = A. We
reformulate Theorem 2.1 in terms of (2.6a) and give a direct proof.

Theorem 2.2 Let § > 0 and X\ > 1. There exists a unique solution V =
Vi(T) of (2.6a) with V;(0) = 0 defined in a right neighbourhood of T = 0. This

solution has 5 1
VI0T) = ——(1—2). 2.

11



Also there ezists a unique solution V- =V, (1) with V() = 1 defined in a left
neighbourhood of T = A. This solution has

1
VIAT)=1-—.
’I”( ) )\
For each A > 2 there exists a unique 6 = §(\) > 0 such that (2.6) has a
solution, i.e. V; =V,. This solution has V' > 0 on [0, \]. Finally, 6()\) is a
decreasing function of .

PROOF. To prove local existence and uniqueness on the left we rewrite
(2.6a) as

)00 D

av 1 )

Al S -1-0)V =6(1-

dr + ()\ —T + T (

which implies, for any solution with V' (7) bounded as 7 — 0, that

V(r) = /T p(140)(1=9) (f)”‘ -7 [5(1 _ 1 ) +(1+6)(1- E)LS)Z} ds
0 7/ A—s A—s s71-V(s)l

(2.8)
Local existence of a unique solution V(7) of (2.8) follows from a standard
contraction argument in a small ball centered around the origin in Cy((0, T)

(the space of bounded continuous functions on (0,7]) with T sufficiently
small. The contraction estimate uses the fact that

/T SL)(=s) (f)“ T~ —— / e(1+0)(r=2) (f)M —rds 1
0 T/ A—s d+1 0 T/ A=—ss 0

(2.9)

as 7 — 0.
Next we note that any solution V(7) which remains bounded as 7 — 0
has a well-defined limit V/(0). Taking 7 — 0 in (2.8) this limit satisfies

140 V(0)?

V) =-——1- V(0)’

whence either V' (0) = 0 or V(0) = —4. The smallness condition on the ball
Cy((0,7T]) needed to make the right hand side of (2.8) a contraction excludes
the possibility of V(0) = —0 for the fixed point solution. In fact, V(0) = —0
corresponds to Y/X — 0, i.e. to the source ¢ =0 in (2.4).

12



Moreover, the part of the integral on the right hand side of (2.8) contain-
ing V is o(V(7)) as 7 — 0 while the part not containing V' is asymptotic

v 5 1
— (1=-=
51T
as 7 — 0. Thus V satisfies (2.7). By the implicit function theorem, it
depends smoothly on all parameters.

For the solution on the right we turn the picture around by setting

V=1-W, o=A-r1, (2.10)

and obtain

1 — 1—
dW: +6 W(l— W_E>’ (2.11)

do W

with initial condition W (0) = 0. Clearly the right hand side of (2.11) suggests
that

A—o0O o

1
w'(0)=1- v (2.12)
So we set 1
W)= (1- X)O‘(l - G(0)),
whence
dG 140 (1+6)A 2X— A +94
— + (- — + - — 5 G
do A=1)°c (A-1)o A=1)"(A—o0)
GQ
= a(o) + b(a)1 —G
_ 1 A2—3A—A5+3+25+(A—2)(+/\—2—5)
T (A—1)? o A—o
N 1+0 l_)\()\—l) 1 G?
A—=1)* \o o? A—0)1-G
The integrating factor for this equation is
O'_ﬁ ()\ — 0') 2(>\)\—7>\1)-2i-5 e ((;\ti))i,
so, assuming G(o) bounded as o — 0, we have
o 146 22=2245 9
= [ (E)F (AT B ) b(s)G(s)*
G(a)_/o (0) ()\—0) e als) + 1-G(s) ds.
(2.13)

13



Here we leave it to the reader to verify that solutions with G(¢) unbounded
as 0 — 0 cannot qualify to give solutions W (o) with W (0) = 0.
In (2.13) we have

with A(s) and B(s) smooth near s = 0. We observe that, for any o > 0 and

B8 >0,
[ayaentes [Qrag-;

as 0 — 0 (cf. (2.9)). As a consequence, local existence of a unique solution
G (o) of (2.13) follows again from a standard contraction argument in a small
ball centered around the origin in Cy((0, 7’]) with T sufficiently small. Taking
o — 0 in (2.13) and reasoning as above this solution satisfies

. _ . B(0) G(0? _ G(0)
lim Glo) = G(0) = =g~ G0) 1-G(0)

whence G(0) = 0. Thus, in addition to W(0) = 0, W satisfies (2.12).

To obtain the connection, we fix A > 2 and shoot from the left with the
solution V(1) = V(7;4), § > 0 being the shooting parameter. Examining
the (7, V)-plane, the isocline V' = 0 is given by

TA=1-—1)

V =
A—21

(2.14)
which consist of two branches, one to the left and one to the right of 27 = A.
Note that a connection must have V' > 0 on (0, \). If V(7) does not connect
to V(X)) = 1 it has to follow one of two scenarios: either it hits V' = 1 before
T = A, or it crosses the right branch of (2.14) (after which it must hit V' =0
before 7 = A). By standard continuity arguments these two scenarios occur
for, respectively, ¢ sufficiently large and ¢ sufficiently small, and the sets of
0-values for which they occur are open. Thus there must exist at least one
0 > 0 for which neither of the two occurs. For such ¢ the solution must
connect to V/(\) = 1.

Suppose that there exists another d-value for which the connection exists.
It follows immediately from (2.6a) that the connection with the larger ¢,

14
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Figure 2: Two solutions close to the connection in the (7,V)-plane, ¢ = %
The values of § used in the computation were 1.095 - dy and 1.096 - §y with g
given by the asymptotic formula (1.10).

which starts with a larger slope, cannot cross the other connection. Consider
the flow of (2.6a) with the larger §. All solutions between the two connections
are trapped and converge to V =1 as 7 — ), contradicting the uniqueness
result for solutions of (2.6a) with V(A\) = 1. Thus ¢ is unique and depends
only on A.

We finish by showing that § = d()) is a decreasing function. Let A >
Ao > 2 and let § > §(N\g). In view of (2.7) and (2.6a), the corresponding
solution of (2.6a) with V(0) = 0 starts above and cannot cross the connection
corresponding to Ag. In particular, it cannot connect to V(A) = 1. Thus
d(A) < 6(XAo). This completes the proof of Theorem 2.2.

In Figure 2 we show a plot of two solutions of (2.6a) with ¢ = 1 and two
values of ¢ close to the value given by (1.10). The actual connection lies close
to the two graphs drawn and connects (0,0) to (A, 1).

A direct consequence of Theorem 2.2 is

15



Corollary 2.3 The AG-exponent (3 is an increasing function of m.

There is also a monotonicity of the profiles but to see it we have to
consider the problem on a fixed interval. Setting

T=X, V(r)=0v(t), (2.15)
we consider the AG-profiles as corresponding to the solution of

,_dv_d+w
dt 1—w

v (,\ L “) . w(0)=0, v(1)=1.  (2.16)

t 1—t

We first list some properties of the solution of (2.16) for A > 2 fixed, which
will be very useful later on.

Proposition 2.4 Let A > 2. For 6 = 6(\) > 0 as in Theorem 2.2 the
solution of (2.16) satisfies

o (O0F) = %(A ~1), (1) =A-1. (2.17)

V() >0, O<w(t)<t (0<t<1). (2.18)
Moreover, the function A(t) defined by

Alt) = v(t) N 1—wv(t)

2.19
; T (2.19)

satisfies

A0 =" (0")+1= A=1+1, A1) =4(1)+1=2) (2.20)

1494
At)>0 (0<t<1). (2.21)

PROOF. From Theorem 2.2 we have (2.17), as well as 1 > v > 0 and
v' > 0on (0,1). To prove v(t) < t we note that

I+t 1-0(A—2)

— (A =2 1 2.22
l—t(/\ )>1 <= t> 1 (2.22)

U"v:t =

We claim that 5
"oH)y=——M\—-1 1. 2.2
() (0 ) 1 6()\ ) < ( 3)
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Suppose not, then 6(A —2) > 1 and, by (2.22), v'|,=¢ > 1 for 0 < t < 1.
Thus the solution with v(0) = 0 can intersect v = ¢ at most once. If it does
so then it has to be below v =t for ¢ small, whence all solutions between it
and v = t are trapped as ¢t — 0, and therefore come out of v(0) = 0. This
contradicts the uniqueness of the solution starting at v(0) = 0. Thus the
solution with v(0) = 0 does not intersect v = t and by the same argument
it has to be above v = t. However, then the connection has v’(1) < 1 which
is impossible in view of (2.17) and A > 2. This proves (2.23) which implies
that v(t) starts below v = t. Now suppose it crosses v = ¢t. Then by (2.22)
it stays above v = ¢, which is again impossible. This proves (2.18).

As for A(t), from its definition and (2.17) we have (2.20). To prove (2.21)
we note that A'(1) =4 > 0, that v'(¢) > 0 implies that A(t) < A, and that
in any point where A'(t) < 0, we necessarily have v”(¢) > 0. On the other
hand, a direct computation shows that the level curves of

1—v
1—t’

A=-+ (2.24)
see Figure 3, are strictly concave in 0 < v <t < 1. For t < % we have A < 2
and increasing A increases v, while for ¢ > % we have A > 2 and increasing
A decreases v.

Suppose A'(tg) = 0 for some 5 < t5 < 1. Then the graph of v(t) and the
level curve A = A(tg) touch in ¢ = ¢5. The strict concavity of A = A(ty)
and v"(ty) > 0 imply that A”(¢y) < 0 whence A’(t) < 0 on some interval
(to,t1). If A'(t1) = 0 and t; < 1, we repeat this argument and conclude
that A”(t;) < 0 and A’(t) < 0 on some second interval (t1, ) as well as on
(to, t1). This is impossible so it follows that A'(t) < 0 and A(t) < A(tg) < A
on (ty, 1), contradicting (2.20). Thus ¢, cannot exist and A’ >0 on [3,1).

Likewise suppose A'(ty) = 0 for some 0 < t5 < % By the same reasoning
as above we now conclude that A”(¢y) > 0 and that A" < 0 on (0,%p). Hence
the graph of v, which starts in the origin, where also the level curves of A
with A < 2 start, must intersect a level curve of A with A = A; < A(0)
for some t; € (0,tp). But then the graph of v lies above this level curve for
t € (0,t1), while the first is convex (v” > 0 where A" < () and the latter
concave. This is impossible, so again we conclude that ¢y, cannot exist and

A" > 0 also on (0, 3). This completes the proof of Proposition 2.4.
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t

Figure 3: Level curves of A. The two straight lines correspond to A = 2. The
curves without extrema have A > 2, the curves with extrema have A < 2.

Proposition 2.5 Let 6 = 6(\) and v = v(t; ) be the solution of (2.16).
Then 6 and v are smooth functions of \. Moreover, denoting derivatives
with respect to X by subscripts, we have 6y < 0 and vy(t) < 0.

PROOF. We noted in the proof of Theorem 2.2 that the solutions starting
on the left and on the right depend smoothly on § and A. Standard implicit
function theorem arguments (see also below) applied to these two solutions
at any A with corresponding ¢ and any t € (0, 1), imply that 6 = 6(\) and
v = v(t; A) are smooth in A and that

146 1 1 1 1 v 1—w o0+
! R - - - - -
= <(1—u)2(A P 1—t) AR g (A ) 1—t>5’\+1—v’

(2.25)

with
vA(0) = vx(1) = 0. (2.26)

Note that the coefficient of ¢, is of fixed sign. This is in fact what guarantees
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that the invertibility condition holds in the implicit function theorem appli-
cation mentioned above, whereby 0 is smooth in A. The sign of the coefficient
of 0, coincides with that of v’ which is positive. The last term in (2.25) also
being positive we conclude that §, has to be negative because otherwise the
whole inhomogeneous term in (2.25) is positive, impossible in view of (2.26).

Next we use the monotonicity of A(t) in Proposition 2.4. Writing the
inhomogeneous term in (2.25) as Fy(t)/(1 — v(t)) with

Fi(t) = (A= A(2)d\ + 6 + v(t),

we see that F7(t) > 0 so that F;(¢) has at most one sign change. In view
of (2.26) again it cannot be of fixed sign so we conclude that there exists
t* € (0,1) such that F; < 0 on (0,t*) and F; > 0 on (t*,1). Solving (2.25)
from the left and from the right we find vy < 0 on both (0,¢*] and [t*,1).
This completes the proof of Proposition 2.5.

2.2 Behaviour as m — 1

We continue the analysis in terms of the solutions of (2.16). Note that in
view of (2.23)
d(A—2) < 1.

Proposition 2.6 Let § = 6()\) and v = v(t; A) be the solutions of (2.16).
Then §(A) T oo as A | 2.

Corollary 2.7 In terms of m and (8 this means 811 asm | 1.

PROOF. Suppose the assertion is false. Then § 1 6* < oo. Taking the
limit in (2.16) we obtain a solution v = v* of

* 1_
v’—dv—5+”(2—9— ”), v(0)=0, (1) =1,

Tdt 1-vw t 1—t

satisfying also

10+ 5* 11—\ —
v'(0 )—5*_’_1 <1, J(17)=1.
Starting from ¢ = 0 we see that v*(tf) < ¢ for all 0 < ¢t < 1 while starting
from t = 1 we find v*(¢t) > ¢t. This contradiction completes the proof of
Proposition 2.6.
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Proposition 2.8 Let § = 6(A\) and v = v(t; A) be the solutions of (2.16).
Then v(t; A) 1t uniformly on [0,1] as A | 2.

PROOF. By Proposition 2.5 the solutions v(¢; \) increase to a limit as
Al 2. Let A be defined by (2.24) (and A(¢) by (2.19)). The monotonicity,
(2.17) and Proposition 2.6 imply that

V(O0T) 1L A(0) T2, ©A7)11, A1) 12

as A | 2. Since the graph of v is above all the level curves of A with respec-
tively A = A(0) for 0 < ¢ < 3 and A = A(1) for 5 < t < 1, it follows that
v(t; \) 1t for every t # %, and thus, in view of v'(¢; A) > 0, also for t = %
The convergence is uniform in view of Dini’s theorem. This completes the

proof of Theorem 2.8.

Proposition 2.9 Let § = 6(\) and v = v(t; \) be the solutions of (2.16).
Then 26(\ — 2) — as A — 2.

Corollary 2.10 1 -~ (m —1)/4 as m — 1.

PROOF. Recall the ODE for v in (2.16),

dv gt 0+ v 1—w
!
V=g == (’\ / l—t)

The assertion in the proposition is equivalent to ®(3, 3) = (26+1)(A—2) — 1.
Suppose this is false, then there exists a sequence A — 2 (dropping the index
of the sequence from the notation) such that ®(3,3) stays away from 1.
Observing that

0+
T 1—vw

P A=4), A=2 Att)=A(,v) =2,

2

we see that, by continuity, ®(¢,v) stays away from 1 in one of the two inter-
sections O N {A < 2} or O N{A > 2} where O is small neighbourhood of
(3,3)- Clearly this makes it impossible to have v(t; \) — ¢ as A — 2. This
contradiction completes the proof of Proposition 2.9.
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2.3 Behaviour as m — o

In view of Corollary 2.3, (1.9) and (2.6a), m — oo corresponds to § — 0 and
A — oo. We compute the asymptotic behaviour of 6 and V' in Theorem 2.2
as A — 0o in two steps. First we compute a nontrivial limit for the solution
and then we use the limit solution to describe the asymptotics of 4.

For the first step we turn the picture around as in the proof of Theorem
2.2 by (2.10), i.e. set V. =1—W, 0 = X — 7, and consider (2.11):

dW  14+6-W 1-w W
do W )

From Theorem 2.2 we know that
W(0) =0, W'(O) =1-—, (2.27)

and 5 .

We recall that in (2.27) and (2.28) the second condition for the derivative
follows from the first condition.

W) =1, W)

Proposition 2.11 As § — 0 and A — oo the solution W = W(0; A, 6) of
(2.11) with (2.27) converges to the unique solution W (o) of

A

do W

o

v _1-W (1 _ E), W(0) = 0. (2.29)

The convergence is uniform on bounded intervals [0, T].

Rewriting (2.13) with a parameter dependence on % the proof of Proposi-
tion 2.11 is straightforward and left to the reader. The limit problem (2.29)
is solvable by integration. Setting

1—-W = oy,

we write an equation for o as function of y giving

1
—=0——, oy—1 as y— oo. (2.30)
dy y
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The boundary condition at infinity follows from W (0) = 0. Problem (2.30)
has the unique explicit solution

o0 d o
o= exp(y)/ exp(—s)?s =—logy + exp(y)/ exp(—s) log sds,
y y
so that o
o+logy — / exp(—s)logsds = —y as y — 0,
0
whence

1—W(o)~oexp(—y—0) as 0 — 0. (2.31)
Now that we have a nontrivial limit for the profile, we use it to derive
the asymptotics of §. In order to be able to use the limit solution for the
asymptotics of § we change the equations slightly before taking the limit.
This is done by setting
- 1 . -

whence, omitting the tildes,

aw 1-W 1-6—-W W
= 1— - 2.
do w ( A—o o ) ’ (2:33)
and the AG-connection has
W(0)=0 and W(A)=1-4. (2.34)

The limit equation is the same as before (and also Proposition 2.5 carries
over with a slightly different proof). From (2.31) and (2.34) we guess that

§=1=WQ)~1=W()~ Xexp(—y — A).
Theorem 2.12

lim dexp(y+ A)

=1.
A—00 A

The limit is for & and X but translating back to 8 and \ the formula remains
the same.
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PROOF. We compare the solution W (o) with the solution 1 (o) of (2.29)
and the solution Wy (o; A) of (2.33) with § = 0 and WW;(0) = 0. In view of the
monotonicity of the right hand side of (2.33) with respect to A and ¢ we have,
by reasoning analogous to the proof of Theorem 2.2, that Wi(o) < W(o) <
W (o) for 0 < 0 < A. The first inequality holds until W;(o) hits zero. This
happens after it has achieved a maximum in some o, between o = A — 1 and

o = ) at the intersection with the isocline

1-W w
=14 —. 2.
=l (2.35)
Thus
1-WA\) <d=1-W) <1=W(oy) <1—Wi(oxA). (2.36)

A

In (2.36) we have from (2.31) that 1 — W (A\) ~ dexp(—y—\) as A = oo. To
finish the proof we have to show that also

limsup (1 — Wi(ox;\)) exp()
A—00 A

< exp(—7). (2.37)

For (2.37) we need o to get close to A which will follow from
Wi(oaA) — 1. (2.38)

To prove (2.38), let € > 0. Then there exists T > 0 such that 0 < 1—W (o) <
€ for all 0 > T because W(U) 171 as 0 — oo. But then, since Proposition
2.11 applies to W1(T; \), which, being below W = 1 — 4, increases with ),
there also exists A > 0 such that 0 < W(T) — W;(T; \) < e for all X > A.
Thus, if also A —1 > T, we have 0 < 1 — Wi(ox;A) < 1 = Wi(T; ) <
1 — W(T)+ W(T) — Wy(T; ) < 2. This proves (2.38). As a consequence
we have in, view of (2.35), that

A—oy—=0 as A — oo. (2.39)
Next we introduce
A(0,)) = eXpa(") (1= Wi, N)),
which satisfies
o e (et o
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In view of (2.39) we have for every fixed b > 0 the existence of a A such that
oy > A—bforall A\ > A. In (2.37) we may then use

(1= W, (o A))exli\()\) A—2b

< Ai(A—b; N

exp(b).

Since b > 0 may be chosen arbitrarily small it remains to show that
Ar(A = b; A) = exp(—7).

Note that for fixed o

Ai(o,\) = A(o) = eXI;(") (1—W(0)).

and X
A(o) — exp(—7y) as o — oo.
Now fix € > 0. There exists T > 0 such that |A(c) — exp(—y)| < € for all
o > T. Subsequently there also exists A such that |A;(T;\) — A(T)| < € for
all A > A. Thus
|A1(T; \) — exp(—7)| < 2e. (2.41)

For every A > A let T\, < XA — b be the maximal value of ¢ such that

|A1(0;A) — exp(—7)| < 3e on the interval [T, T)]. Then on this interval

Ai(o;0)? (v +3¢)° <M

1—ocexp(—0)Ai(o;A) — 1 —Texp(-T)(y+3¢) =

for some M > 0. We may take M to be fixed as we take smaller e- and larger
T-values. It follows from (2.40) and (2.42) that

(2.42)

Ar (0 A) — Ai(T, )] < M(% L)+ exp(=T),  (243)

for every T < o < Ty. On the right hand side of (2.43) M and b are
independent of 7" so we may a priori adjust the choice of 7" above to ensure
that also

M(% +1)(T + 1) exp(-T) < e. (2.44)
From (2.41), (2.43) and (2.44) we then conclude for every A > A that
[A1(05 A) — exp(=7)| < 3e,
for every T < o < T, = A — b, and in particular that
|A1(A — b; A) — exp(—7)]| < 3e.

This establishes the limit in Theorem 2.12. Inverting (2.32) this formula does
not change and thus the proof is complete.
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3 The eigenvalue problem

In this section we consider the linearisation of (1.7) around the steady state
U(p) and analyse solutions of the form

&(p, 0, 7) = exp(wt)A(p) cos(k0), k=0,1,2,....

Here w is the eigenvalue. Throughout this section S (and hence ¢) is the
exponent corresponding to the AG-solution and W¥(p) is the inverse function
of the solution F' of (2.1).

The radial part A(p) is a solution of the linear second order ODE

(m _ 1)p\Il2A”
+ 28030 — U2 — 2(m — 1)pU¥ — 3(28 — )p(¥¥)2]4"  (3.1)
+ [(m=1)(1 = k*)p + (8 — w)¥?] (¥')?A = 0.

The coefficients contain the inverse AG-solution ¥ and its derivative U'. As
explained in [3] the eigenfunctions A(p) should satisfy the conditions

- B
ﬁQ
For each £ =0,1,2,... this gives a decreasing sequence of real eigenvalues w,
of which we only have to consider the first one and its corresponding positive
eigenfunction A(p).

We analyse the system consisting of the nonlinear second order ODE for
U(p) and (3.1) using the independent variables

A1) =22FA0),  Ap) ~Cp¥T (pooo). (32)

rF’ v Y o] VA

“F o TTx T Vo

as functions of the new independent variable logr = log ¥. With
5ol L 2 21w
m—1 A g’ B’

we obtain a system of three equations:
X=-X((1+)X-Z(X—-¢); Z=Z(2+6X-Z(X—-¢)); (3.3)
U=k (U—-124eZ(u—14+U)+Z(X —¢)(u—1-1). (3.4)

In terms of X and Z the AG-solution (see Theorem 2.1) corresponds to a
solution of (3.3) with

X(0)=o00, Z(0)=94 X(c0)=¢, Z(x)=c.



Proposition 3.1 Let w be an eigenvalue with a positive eigenfunction A(p).
Then the corresponding solution U(s) of (3.4) satisfies

U0)=p—1, U(co)=1-p. (3.5)

PROOF. The boundary condition at s = 0 follows immediately from (3.2)
and (2.1b). Note that any solution U(s) not satisfying U(0) = p—1 converges
to oo as s — 0 because X (s) ~ 1/s and Z(s) — ¢ for the AG-connection.
Likewise, if U(s) does not satisfy U(oco) = 1 — p, it must converge to +oo
as § — 0o because X(s) — ¢ and Z(s) — oo. But then also pA'/A — +o0
which excludes algebraic behaviour. Thus we conclude that U(oc) =1 —u
and pA'/A — (1 — p)/e, i.e. we have algebraic behaviour as p — oo. The
additional argument giving the stronger statement that A(p) ~ CpU—H/¢ ig
omitted.

3.1 The first eigenvalue

The first eigenvalue corresponds to the unique p-value for which (3.4) has a
solution satisfying (3.5). As in Theorem 2.1 this p-value may be obtained by
shooting from the left and from the right. We will use the variables v and
t = & introduced in (2.15), with the AG-solution being a solution of (2.16),

1.e.
dv 6+ v 1—w
E‘l—u(’\_E_1—t)’ (3.62)

with boundary conditions

v(0) =0, ov(1)=1. (3.6b)
Equation (3.4) transforms into

aw 1 <k2—(1—U)2/\_(v+5)(U—u+1+1—u—U)>,

dt 1-w 2 t 1—t
(3.7a)
the boundary conditions being
U0)=pu—-1, Ul)=1-p. (3.7b)

We now prove the existence of a unique first eigenvalue uy for all £ > 0
and obtain the bounds 2 — k < p; < 1 for £ > 1. Besides, we establish some
properties of the “eigenfunction” U; in particular, we put some effort into
proving that p —1 < U <1 — p, which will be very useful in what follows.
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Theorem 3.2 Let 6 = 0()\) as in Theorem 2.2, let v(t) be the solution of
(3.6) and let pn and k > 0 be real numbers. There exists a unique solution
U = Ult) of (3.7a) with Uy(0) = u — 1 defined in a right neighbourhood of
t = 0. This solution has

(K = 2—=mw)A _ 200 —p)d

rin+y _
G(07) = 2(6 +1) d+1

Also there ezists a unique solution U = U, (t) with U,(1) = 1 — u defined in
a left neighbourhood of t = 1. This solution has
k* — u®)A
Ul(17) = (K" = 1A —2(1— p).

For each k > 0 there ezists a unique p = py such that (3.7) has a solution,
ie. Uy = U,. This pg is between p = 1 and p = 2 — k if k > 1. This
solution U lies between its boundary values p — 1 and 1 — pu. Finally, py s
monotonically decreasing in k.

Corollary 3.3 (instability of the AG-solution) pg > 0.

PROOF. The local existence and uniqueness from both sides is proved
along the same lines as in the proof of Theorem 2.2. The value of the deriva-
tive in ¢t = 1 follows because the second factor on the right hand side of (3.7a)
must vanish as ¢ — 1. This occurs because the first factor is proportional
to a multiple of 1/(1 —¢) as t — 1. The value of the derivative at ¢t = 0 is
immedediate from taking the limit ¢ — 1 in (3.7a). By monotonicity argu-
ments, U, is increasing in p while U, is decreasing in u. This gives uniqueness
of the p-value for which the two coincide.

To see that such a p-value must exist, we first assume that £ > 1. If y =1
the right hand side of (3.7a) is positive at U = 1—p = 0, and also U] (0") > 0
and U/(17) > 0. This guarantees that, for as long as they exist, U; > 0 > U,
on (0,1). In particular U; > U, and clearly the set of u for which this is
the case is open. To find p such that the other inequality holds we choose
i = 2—k, making the right hand side of (3.7a) negativeat U = p—1=1—k%
and U/(07) < 0,s0 Uy <1—k < 0 < U,. Again the set of p-values for
which U; < U, holds is open. Thus there must exist a 4 € (2 — &, 1) such
that U; and U, are not ordered which is only possible if they coincide. This
completes the proof for k > 1.
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For £ =1 the solution is simply =1 and U = 0. Concerning 0 < k < 1
we note that all the signs in the argument above are reversed so now the
existence of p € (1,2 — k) for which U; and U, coincide follows.

Following the similar arguments as for the monotonicity of §(A) in A
(Proposition 2.5), it is not difficult to show that % < 0.

Finally, we prove the solution U lies between its boundary values. We
consider the case k£ > 1 (k < 1 is analogous). The function

K —(2—p)?

. A= (u(t) +8) L4

1-1¢

is increasing in ¢. Hence the right hand side of (3.7a) at U = p — 1 changes
sign at most once on [0,1) (from positive to negative). It follows that the
solution U > p — 1, and in particular U'(0+) > 0, or equivalently

(K = p)A 2 4(1 = p)(3 +A). (3.8)

The argument to show that U < 1 — p on [0, 1] is more involved. First,
we note that it follows from (3.8) that

(k* — p*)A

v = 2(6 + 1)

—2(1—p)>0.
Next, we assert that the right hand side of (3.7a) at U = 1 — u change sign
exactly once for ¢ € (0, 1), from positive to negative. This claim implies that
the solution U <1 — g on [0, 1].

Consider

k* — u? v(t) +6
o _
P(t)_4(1—ﬂ))\ P

Clearly the right hand side of (3.7a) at U = 1 — p is zero if and only if
P = 0. Notice that P(0) = —oo and P(1) > 0. Setting P = 0 one obtains

%)\t =wv+J < t+ 0, which shows that P(t) can only have zeros for
) J
t < < 3.9
—k2_u2)\_1—)\+5_15 ( )
4(1—p)

where we have used (3.8).
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We now prove that if P(t) = 0 then P’(t) > 0, from which we infer that
P has at most and hence precisely one zero. In fact P'(t) > 0 for ¢ < 2

A+o—17
the bound on zeros of P derived above. Differentiation gives
voov+4 v+0
()= ~%+ " = G gyp (A~ AW +1-),
where A(?) = T+ 11%’; Qualitative properties of A were obtained in Propo-
sition 2.4. Define
o (1 —0)t?
Q) = ﬂP'(t) =—tA—A{t)]+1—w.

v+0
Using the surprisingly useful property A(t) > A(0) = 6%1()\— 1)+1 we obtain
Q) > —tA —A@)] +1—t>1— {1+ — A(0)] = l—t[/\—(sj—l(/\—l)]
and using (3.9) we continue the estimate

o [/\ 0 A—1

— 7 =1 = .
A+d0-1 5+1(/\ ) >0

Q) >1- A+0-1)6+1)

Hence P'(t) > 0 and the proof of the assertion is finished. This also completes
the proof of Theorem 3.2.

3.2 Dependence on m of the eigenvalues
We first examine the behaviour of the eigenvalues for large m.
Proposition 3.4 Let uy be as in Theorem 3.2. Then ur, — 2—k as A — oo.

PROOF. We turn to the time variable o = A(1 —t). We note that, as
A — oo and p — fi, the solution U,(¢) = U,(1—0/)) converges to the unique
solution of

U 1 (1-=0)2—k L 1—p=U . X
L ISP AN T 7 7o Sl it U0)=1-4. (3.10
. ( : + ( ) S , U(0) fi. (3.10)

Here W(o) is the function defined in Proposition 2.11. Suppose the theorem
is false for £ > 1. Then there must exists a sequence A\ — oo along which
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fx converges to a limit /i contained in (2 — k,1] and the solution U(s) =
U(1—0o/X) converges to the solution of (3.10), uniformly on compact intervals
contained in the maximum interval on which U exists. This limit solution is
casily seen to have U(c) - 1 —k < p—1 as 0 — oo and this forces U(o)
to drop below i — 1 before o reaches A, provided A is large, in contradiction
with Theorem 3.2.

For 0 < k < 1 the argument is similar, the only difference being that the
limit solution blows up in finite time if 4 is in [1,2 — k). This completes the
proof of Proposition 3.4.

Corollary 3.5
k

lim wpy=1-— —.
m—00 2
Before we examine the other limit m — 1 we note that changes in stability
can only occur when y; = 0 for some integer £ and m > 1. However, in (3.7a),
there is no reason to restrict £ to the integers. Thus we consider (3.7a) with
p =0 for all real k£ > 0, and write u = (U + 1) to simplify notation:

W [(%2—(1—u)2)A—(v+5)(%+1_u)]. (3.11a)

C1-w 1—-1¢
The boundary conditions are
u(0) =0 and u(l) = 1. (3.11Db)

Theorem 3.6 Let § = 0()\) as in Theorem 2.2, let v(t) be the solution of
(3.6). Then there exists a unique k = k(\) > 2 such that (3.11) has a
solution. This solution u lies between its boundary values 0 and 1. The
function k(X) is smooth, k(X)) — 2 as A\ = oo and k()\) = 00 as A — 2.

PROOQOF. Existence and uniqueness of k£ are proved along the lines of the
proof of Theorem 3.2, the right hand side of (3.11a) being monotone in k.
With y = 0 we have that u; < 0 if £ < 2, u; and u, are monotone in k, and
choosing k large u; has to grow above 1. That u lies between its boundary
values 0 and 1 follows from Theorem 3.2. The smoothness of k(\) follows
again from the implicit function theorem (cf. Proposition 2.5). The limit
A — oo is similar to Proposition 3.4. For the other limit A — 2 we argue
by contradiction and assume k remains bounded along a subsequence. Since
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d — oo and, in view of Proposition 2.8, v(t) — ¢, it follows that the right
hand side of (3.11a) goes to +o0, uniformly on sets where u stays away from
u = 1. This makes it impossible for v to connect from v =0 to u = 1 if A is
close to 2, and this is a contradiction.

Remark 3.7 Since both k£ and ¢ tend to infinity as A — 2, in this limit
the terms in the right hand side of (3.11a) with £ and § must balance. This
implies that k? ~ 24, i.e.

2

k2~71 as m— 1.
m_

Finally, we prove that the function £()) defined in Theorem 3.6 is mono-
tone, i.e. % < 0 for A € (2,00). This implies that it is invertible and % < 0.

Besides, since u(A, k(\)) = 0, we have % = —g—‘é% < 0at pu=0. A trans-
formation to the original parameter m (i.e. ‘fi—g'f = —§725, > 0) finishes the

proof of the assertions at the end of Section 1.
Theorem 3.8 Let k()\) be as in Theorem 3.6. Then % < 0 for X € (2,00).

PROOF. We denote differentiation with respect to A by subscripts. We
recall that vy < 0 and 0, < 0 by Proposition 2.5. Differentiating equation
(3.11a) with respect to A gives

uh = ! v [u,_<g+1—u”_5(g+l—u)
AT 1\ t "1t Mr T 1ot

+(§141—mﬂ+ka+mp“ﬁ,

(3.12)

where the dots represent the u-derivative of the second factor in the right
hand side of (3.11a). The boundary conditions are u,(0) = 0 and u,(1) =0,
and

, . k2 1 0y Ox Kk
uy(0) = <Z_1>(5+1_(5+1)2>_(5+1)2+2(5+1)’
‘1) — k2 1 Oy kky A

n(l) = Z(5+1_(&+UJ 20+ 1)

Now suppose by contradiction that k) > 0 for some A. Then u(0) > 0
and u) (1) > 0, hence u,(t) has a zero where it goes from positive to negative.
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At this point the fifth term in the right hand side of (3.12) is zero, the second
and third are positive and the fourth is nonnegative. If we show that

, u 11— u)
— = <0 3.13
“ <t 1) S (313)
then we conclude that v, > 0, a contradiction.

We thus study

def (Y 1—u
Hit)=u (t+1—t)'
Clearly H(0) = —1 and H(1) = —1. We claim that H(t) < 0, i.e. (3.13)
holds. Arguing by contradiction, we suppose H(t) > 0 for some ¢, and we
define

to = inf{t | H(t) > 0}
and
t1 = sup{f > to | H(t) > 0 on (to,1)}.
We have 0 < ¢ty < t; < 1 and H has the following properties: H(ty) =
H(t;) =0, H(t) > 0 on (tg,t1), H'(to) > 0 and H'(¢;) < 0.
Using the differential equation we obtain

o= (-0 (120

e =50 (5 -0 -w7) - (3 129),

All the properties of H listed above naturally carry over to G.
Differentiate:

&0 =20 -0 = | (§ - T ) = 5+ g

and in the points ¢y and ¢; one has u' = ¥ + 11%1;, hence

Define

, u 1—u
G'(t;) = 2(1—u)%+5(;+1_t.>

1 1 u l—u U 1—u
GG ) e Ay
_ 2(1_U)Lu(1_ti)+ti(1_“)_ 1—2u
1+o ti(1 —t;) ti(1 —t;)

32



for =0, 1. Here

B(t) £2(1 — u) 35 [u(l — ) + t(1 — u)] +2u—1,

and the properties of G imply that B(¢,) > 0 and B(t;) < 0. However, we
will show that this leads to a contradiction.
First we note that since H(t) > 0 on (¢, t1), we have u'(t) > 0 on [tg, t1].
Also, notice that B(t) > 0 if u(t) > 1, i.e. B(¢) < 0 implies u(t) < 3.
Differentiate again:

B'(t) = 2(1 —u)$25(1 — 2u)

+ 2u/(t) [1 + 25 (—u( =) —t(1 —u) + (1 —u)(1 - 2t))]

= 2(1 — u)225(1 — 2u) + 2u/(1) [1 + 2 (4tu — 2u — 3t + 1)}.

We use the fact that £=% +1 = ﬁ(—éltu + 2u + 2t) to rewrite

(3.14)

B—-u
1+0 1+ :

B'(t) = 2(1 — u) 2 (1 — 2u) + 2u/(¢) [4(1 —t) - T—

Now either B(ty) > 0, or B(ty) = 0 hence u(ty) < 3 and B'(to) > 0 (just
substitute B = 0 above and use that u/(t;) > 0). In both cases B is positive
in a right neighbourhood of ¢, and

ty = sup{t > to | B(t) > 0}

is well-defined. Since B(t;) < 0, one has B(t;) = 0, hence u(t2) < 5, and
B'(ty) < 0. Moreover, to < t; and thus u'(t2) > 0. Evaluating (3.14) in ¢,
and using this information, we obtain a contradiction.

We have thus proved (3.13) and conclude that k) < 0.

4 Conclusion

Our results on the parameter dependence of the AG-exponent [ settles the
long standing question of its monotonicity. The asymptotic behaviour of £
for m — 1 and m — oo was computed in [13] using formal PDE methods.
Their results are confirmed by our ODE computation and proof.

Several questions concerning the parameter dependence of the critical
eigenvalues of the linearisation of the porous medium pressure equation about
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the AG-profiles are raised in the concluding remarks to [2]. This paper an-
swers these questions for two spatial dimensions. First, concerning the lin-
earised stability with respect to perturbations with wave number k£ = 2, we
have shown that the AG-solutions are unstable with respect to such pertur-
bations for all m € (1,00). Thus there are no self-similar focusing solutions
with 2-fold symmetry bifurcating from the circular AG-branch, and as shown
in [2], there are also no further radially symmetric branches. Solutions whose
support is the complement of an elongated hole are studied in [4].

As for the bifurcations with higher wave number, our analysis show that
all of them indeed occur, that the bifurcations are simple and that they occur
for a sequence

M3 > My > Mg > Mg > - — 1,

as was suggested by the numerical results in [3].

Although the bifurcation problem was studied in [2] for arbitrary dimen-
sion N > 2, most of the analysis of the properties of the AG-solutions has
been limited to N = 2, which, as far as the parameter dependence is con-
cerned, is a little exceptional because the X-equation derived by setting (2.2)
contains a term with coefficient 2 — N. We conjecture though that the main
results of this paper may be proved in exactly the same fashion for N > 2.

Finally we mention that other degenerate nonlinear diffusion equations
give rise to similar questions, see e.g. [6] for the case of the p-Laplacian equa-
tion. Our ODE-reduction of the linear stability question may be expected
to be applicable to any equation with a scaling invariance similar to that
of (1.1).
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