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Abstract. We present a rigorous numerical method for proving the existence of a localised
radially symmetric solution for a Ginzburg-Landau type equation. This has a direct application
to the problem of finding spots in the Swift-Hohenberg equation. The method is more generally
applicable to finding radially symmetric solutions of stationary PDEs on the entire space. One
can rewrite such a problem in the form of a singular ODE. We transform this ODE to a finite
domain and use a Green’s function approach to formulate an appropriate integral equation. We then
construct a mapping whose fixed points coincide with solutions to the ODE, and show via computer-
aided analytic estimates that the mapping is contracting on a small neighbourhood of a numerically
determined approximate solution.
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1. Introduction. Computer-assisted proofs in dynamical systems have a long
tradition, going back to the proof of universality of the Feigenbaum constant [10].
Confirming the existence of the chaotic attractor in the Lorenz system [18] is another,
more recent, pinnacle of this approach. The past decade has seen structural advances
in the techniques for the rigorous computer-aided study of systems of ordinary dif-
ferential equations (ODEs), see e.g. [3, 1, 9] (and the references therein), as well as
the survey paper [2]. Nevertheless, relatively little attention has gone to the study
of solutions on unbounded domains for non-autonomous ODEs. Such problems, for
example, appear naturally when considering radially symmetric solutions of partial
differential equations (PDEs). In this paper we develop a technique that combines an-
alytical estimates and numerical computations to provide a rigorous existence result
for the non-autonomous problem

A′′(s) +
1

s
A′(s)−

1

4s2
A(s) −A(s) +A(s)3 = 0, for s ∈ (0,∞),(1.1)

with A(0) = 0 and lims→∞ A(s) = 0. The present work answers the open question
raised in [12]. The equation is of Ginzburg-Landau type, a family of problems that is
ubiquitous in the study of pattern formation, see e.g. [16] and the references therein.

Before discussing the origin of equation (1.1) in detail, we remark that it fits
into a larger class of problems stemming from PDEs posed on the entire space. The
problem of proving the existence of stationary radially symmetric solutions of PDEs
on the entire space remains a challenge, despite numerous advances both in analytic
and numerical techniques. In particular, a gap remains between what is feasible in the
realm of rigorous proofs using purely analytic methods on the one hand, and what is
observed in numerical simulations of complex pattern forming systems on the other.
The novel computer-assisted method developed in this paper contributes to filling this
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gap. While we apply the method to (1.1), it can be used more generally to obtain
existence results for radially symmetric solutions to PDEs on the entire space. As an
example, consider the 3-dimensional stationary Schrödinger equation∆ψ−ψ+ψ3 = 0.
When one looks for radially symmetric solutions, the problem reduces to

u′′ +
2

r
u′ − u+ u3 = 0,(1.2)

with r ∈ (0,∞) and ψ(x) = u(|x|). As we shall see in Remark 2.1, equation (1.2) can
be rewritten in a way that closely resembles (1.1). As a consequence, our methods
are applicable to equation (1.2) as well. We note that (1.2) has already been studied
intensively (see e.g. [8] for an overview). In particular, a positive “ground state”
solution was proven to exist [13], as well as a countable family of sign changing
solutions [15]. Instead of using our method to (re)prove the existence of the ground
state solution of (1.2), we shall apply our techniques to the yet unsolved, but similar,
problem given by (1.1).

The main motivation for studying equation (1.1) comes from another stationary
radially symmetric PDE problem, presented in [12]. In this paper, McCalla and
Sandstede consider the planar Swift-Hohenberg equation

ut = −(1 +∆)2u− µu+ νu2 − u3.(1.3)

This equation was first considered by Swift and Hohenberg in the context of thermal
convection [17]. The dependent variable u, which depends on time and space, is an
order parameter for the fluid velocity, while the parameter µ encodes how far the tem-
perature of the system is from the threshold temperature at which convection occurs.
The parameter ν breaks the symmetry of the system, which allows the appearance
of an even larger variety of patterns. Since its derivation in the 1970’s, this equation
has served as a model for pattern forming processes.

In [12], McCalla and Sandstede specifically study the existence of spots of the
Swift-Hohenberg equations: radially symmetric localised stationary solutions which
“concentrate” near the origin. It was already shown in [11] that one such spot exists
for every ν > 0 and every sufficiently small 0 < µ ≪ 1. The amplitude of this spot
scales as µ1/2 as µ tends to zero. In [12], the authors provide a construction for a
second spot whenever ν >

√
27/38 and 0 < µ ≪ 1, of which the amplitude scales

as µ3/8.
We will now explain how (1.1) comes up in the analysis of the existence of the

second spot for the Swift-Hohenberg equation (1.3). Restricting to radially symmetric
stationary solutions, equation (1.3) becomes

0 = −

(
1 + ∂2r +

1

r
∂r

)2

u− µu+ νu2 − u3.

The next step is rewriting this ODE as a five-dimensional first order autonomous
system:

(1.4)
d

dr

⎛

⎜⎜⎜⎜⎝

u1

u2

u3

u4

α

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

u3

u4

−u1 − αu3 + u2

−u2 − αu4 − µu1 + νu2
1 − u3

1

−α2

⎞

⎟⎟⎟⎟⎠
.



Friday 19th September, 2014 3

Fig. 1. A simplified version of Figure 2 from [12], representing schematically the dynamics of
the five-dimensional system (1.4). The red line line represents the desired (new) spot, the blue line
represents the original spot and the dotted line represents the solution to (1.1). The equilibria in the
far field depend on the parameter µ.

Spots are described by a connecting orbit between the two-dimensional manifold of
small solutions that stay bounded as r → 0 (the “core” solutions) and the two-
dimensional manifold of solutions that decay as r → ∞ (the “far” solutions). In the
(singular) limit µ → 0, the construction of the second spot requires a connecting orbit
that is described by a reduced equation, namely (1.1). In particular, equation (1.1)
is derived by changing to complex coordinates, considering the singular limit µ → 0
and one further change of coordinates. The details of these transformations can be
found in [11]. The resulting (complex) second-order ODE is then given by

(1.5) A′′(s) +
1

s
A′(s)−

1

4s2
A(s)−A(s) = c|A(s)|2A(s)3,

where c = 3
4 −

19
18ν

2 and c < 0 exactly when ν >
√
27/38. A localised solution to this

equation provides us, through the asymptotic analysis in [11], with a corresponding
connecting orbit of the five-dimensional system (1.4) for small µ, as illustrated in
Figure 1. Equation (1.1) is obtained from (1.5) by scaling out the constant c and by
restricting to real solutions.

Since the new (second) spot is basically obtained by perturbing localised solutions
of (1.1), two facts need to be checked to complete a rigorous proof of its existence.
First, it needs to be shown that a localised solution Â to (1.1) indeed exists. Second,
this solution needs to be non-degenerate (hence “robust” under perturbations in µ)
in the sense that the only bounded solution of the linearisation of (1.1) around Â is
the trivial solution.

These two requirements are not trivial and the authors of [12] point out the fallacy
in an earlier proof. Because of this, McCalla and Sandstede present the existence, as
well as the assumption on the linearisation, as a hypothesis. This hypothesis, which
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we will state in the form of a theorem that we prove in this paper, states the following.
Theorem 1.1. The ODE

A′′(s) +
1

s
A′(s)−

1

4s2
A(s)−A(s) = A(s)3(1.6)

has a bounded non-trivial localised solution on [0,∞) with the property that the lin-
earisation of (1.6) around this solution does not have a non-trivial uniformly bounded
solution. In addition, the constructed solution is positive on (0,∞) and decays as e−s

as s → ∞.
Our proof is computer-aided and based on the functional analytic setting and

associated techniques developed in [22, 23]. There is by now a substantial literature
on this approach, see [9, 19] and the references therein. We point out that there is
a complementary computer-assisted method based on careful rigorous integration of
the ODE (e.g. using the CAPD software package [1]), which may also be employed
to construct a proof of the theorem. It is largely a matter of taste which of these
computer-assisted techniques is preferable. The proof presented in this paper is “el-
ementary” in the sense that we analytically derive a set of inequalities that need to
be checked by a computer-aided computation. This latter step requires no special
software except the interval arithmetic package Intlab [14] for Matlab. The files con-
taining the numerical approximation of the solutions, as well as the code for checking
the final step of the proof of Theorem 1.1 can be found in [20].

We shall start, in Section 2, by rewriting the problem (1.6), which is posed on an
unbounded domain, in terms of an equivalent integral formulation on the bounded in-
terval [0, 1]. This is obviously advantageous from a computational point of view, and
in Section 3 we discuss the discretization that leads to a numerically obtained approxi-
mate solution. In Section 4 we construct the fixed point map T that critically involves
information obtained from our numerical approximation. By the Banach fixed-point
theorem, it then suffices to show that this map is a contraction, which requires an-
alytic estimates on the derivative of T . In Section 5 we prove that our technique
“automatically” guarantees that the linearised equation mentioned in Theorem 1.1
has no non-trivial bounded solutions. In Section 6 we show how to evaluate certain
logarithmic integrals that come up in our formulation using interval arithmetic. This
evaluation is then used in Sections 7 and 8, where we derive all the necessary ana-
lytic estimates needed to show that T is a contraction. To evaluate these estimates
explicitly we need the aid of a computer, and in Section 9 it is outlined how this then
indeed leads to a proof of Theorem 1.1.

2. Construction of the integral equation. Our main goal in this section is
to rewrite (1.6), which is posed on the half-line, as an integral equation on a finite
interval, to which we can then apply a fixed point argument in order to prove the
existence of a solution. We shall first rescale A to arrive at a simpler equation. By
then making the substitution t = e−s, we arrive at an ODE on the interval (0, 1).
Finally, we use one additional rescaling and a Green’s function method to obtain an
integral equation on the interval [0, 1] with “free” boundary conditions, i.e., posed on
C[0, 1] without any additional boundary conditions.

The first transformation of (1.6) was already observed in [12] and is obtained by
writing u(s) = s1/2A(s), leading to

u′′(s) = u(s)−
1

s
u(s)3.(2.1)
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Remark 2.1. It is worth noting that this equation is very similar to (1.2) in the
sense that by substituting u(s) = f(s)/s in (1.2) we arrive at f ′′(s) = f(s)− 1

s2 f(s)
3,

which differs from (2.1) by a power of s in the nonlinearity only. Because of this
similarity, our proof of the existence of solutions of (1.6) can, with minor alterations
to the code, be adapted to also show the existence of a radially symmetric localised
solution to (1.2).

Turning our attention back to (2.1), we define v on (0, 1] by v(e−s) = u(s), which
satisfies

t2v′′(t) + tv′(t)− v(t) =
v(t)3

log t
,(2.2)

where t ∈ (0, 1). Since we want u (and A) to be localised, we need to supplement
equation (2.2) with the boundary conditions v(0) = 0 and v(1) = 0 (the latter follows
directly from the singularity in the equation at t = 1). But we can say a little
more. We expect that as s → ∞, equation (2.1) reduces to u′′(s) = u(s), hence we
anticipate u to scale as e−s. Furthermore, asymptotically balancing terms in equation
(2.1) suggests that bounded solutions behave linearly as s → 0. In terms of v we thus
expect the solution to be linear at both boundaries t = 0 and t = 1. Because of this,
we write v(t) = t(1− t)w(t), for some bounded function w on [0, 1], which satisfies

(2.3)
d

dt

(
(1 − t)2t3

dw

dt
(t)

)
− 3(1− t)t2w(t) =

(1 − t)4t3w(t)3

log t
.

The main advantage of this formulation is that we no longer need to specify any
boundary conditions.

The homogeneous equation, obtained by setting the right hand side of (2.3) to
zero, has solutions 1

1−t and 1+t
2t2 (these are just the solutions e−s and es − e−s of the

linear part of (2.1) transformed to the (t, w) variables). This allows us to calculate
the corresponding Green’s function and we arrive at the integral equation

(2.4)

w(t) =−
1

2

1 + t

t2

∫ t

0

s3(1− s)3

log s
w(s)3ds

−
1

2

1

1− t

∫ 1

t

s(1 + s)(1− s)4

log s
w(s)3ds.

Note that it follows from a direct estimate that, for every w ∈ C[0, 1],

lim
t→0

1 + t

t2

∫ t

0

s3(1 − s)3

log s
w(s)3ds = 0,(2.5a)

lim
t→1

1

1− t

∫ 1

t

s(1 + s)(1 − s)4

log s
w(s)3ds = 0.(2.5b)

Hence, the right-hand side of (2.4) indeed defines an element of C[0, 1].
By going back through the transformations, we conclude that if w(t) is a bounded

solution of (2.4), then

(2.6) A(s) = s−1/2(1− e−s)e−sw(e−s)

is a bounded localised solution of (1.6). In conclusion, we see that in order to show
that there exists a non-trivial bounded solution of (1.6), it suffices to find a non-trivial
bounded solution of (2.4). This is formalized in the following lemma.
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Lemma 2.2. Define the map G : C[0, 1] → C[0, 1] by

(2.7)

G(w) : t &→ w(t) +
1

2

1 + t

t2

∫ t

0

s3(1− s)3

log s
w(s)3ds

+
1

2

1

1− t

∫ 1

t

s(1 + s)(1 − s)4

log s
w(s)3ds.

If there exists a ŵ ∈ C[0, 1] such that G(ŵ) = 0, then this corresponds via (2.6) to a
localised solution Â of (1.6). If ŵ is positive, then so is Â (with Â(0) = 0).

3. Finite dimensional approximation. The problem of finding bounded so-
lutions to (1.6) is now reduced to finding zeroes of the map G defined in (2.7). In the
remainder of this paper, we prove the existence of this zero by first using numerical
methods to construct an approximation of this solution, and then showing the exis-
tence of a continuous (hence smooth) solution close to this approximation by means
of a fixed point argument.

In order to obtain a numerical approximation, we split the map G into a finite
dimensional part, which we can use to find a numerical approximate solution, and the
corresponding infinite dimensional remainder, which we need to control analytically.
We start by defining the mesh

∆m
def
= {0 = t0 < t1 < . . . < tm = 1},

where 0 = t0 < . . . < tm = 1. As we shall remark upon in Section 9, we choose a
uniform mesh in the proof of Theorem 1.1. Nevertheless, we consider a general mesh
throughout, since the estimates do not simplify significantly for the special case of a
uniform mesh. Using this mesh, we define Sm ⊂ C[0, 1] as the space of linear splines
(continuous piecewise linear functions) with base-points in ∆m. Note that we will
trivially identify Sm and Rm+1. We define a projection Πm : C[0, 1] → Sm, by

Πm : w &→ Πmw = (w(t0), . . . , w(tm)) ∈ Rm+1 ≃ Sm,

and its complementary projection Π∞
def
= I −Πm.

For w ∈ C[0, 1] we denote Πmw by wm. Since Πm is a projection, we can decom-
pose C[0, 1] as

C[0, 1] = ΠmC[0, 1]⊕Π∞C[0, 1] = Sm ⊕ S∞,

where S∞
def
= (1 −Πm)C[0, 1]. It can easily be seen that the spaces Sm, S∞ ⊆ C[0, 1]

are closed with respect to the usual supremum norm on C[0, 1] and are therefore
Banach spaces. Using this notation, we define a family of closed neighbourhoods of 0
by setting

Bω(r)
def
= {w ∈ C[0, 1] : ∥Πmw∥∞ ≤ r and ∥Π∞w∥∞ ≤ ωr}.

In this definition, ω > 0 is a control parameter that we can alter to adapt the radius
of the “tail”. In the following, we will assume that ω > 0 is a fixed constant (to be
chosen later) and treat r as a variable parameter.

Using the above finite-dimensional reduction, we define a map Gm : Sm → Sm ≃
Rm+1 by Gm : w &→ (ΠmG)(wm). Explicitly, the k-th component of Gm(w) is given
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by

Gm(w)k = w(tk) +
1

2

1 + tk
t2k

∫ tk

0

s3(1 − s)3

log s
w(s)3ds

+
1

2

1

1− tk

∫ 1

tk

s(1 + s)(1 − s)4

log s
w(s)3ds.

Note that by the limits in (2.5), the terms for k = 0,m are also well defined.

By first using standard ODE shooting methods, we find a numerical approximate
solution to (2.2). We then change variables and apply Newton iterations to Gm in
order to refine this result, giving us an approximate zero ŵm. It is close to this
approximate solution that we will find our rigorous solution to G(w) = 0.

Remark 3.1. As is turns out, ŵm is positive. This leads to the positivity result
in Theorem 1.1, see Lemma 4.3. Moreover, we will use this fact to slightly simplify
the estimates in what follows, but this is not at all a restriction on the method.

4. Radii polynomials. Using our approximate zero ŵm, we shall construct a
new map T whose fixed points coincide with zeros of G. We then prove the existence
of a fixed point of T , and therefore a zero of G, by means of contraction argument.

Since we obtained ŵm by means of a Newton method, we expect the corresponding
Newton map to be contracting near ŵm, hence we shall base the construction of T on
this map. Since the Newton map requires an inverse of the derivative, we calculate
numerically an approximate inverse A†

m of the Jacobian DGm(ŵm) of Gm at ŵm.

Using the approximate zero ŵm and the approximate inverse A†
m, we define the

map T : C[0, 1] → C[0, 1] by (see also [22, 23])

T (w)
def
= (Πm −A†

mΠmG)(w) +Π∞(w −G(w)).(4.1)

Note that the first term of T is indeed similar to a Newton map for Gm, while in the
second term we have basically approximated the linearization in the “tail” of G by
the identity (since it turns out the tail parts of integral terms in (2.7) are relatively
small).

Our aim is to find a closed neighbourhood ŵm + Bω(r) of ŵm on which the
map T is a contraction, implying that T has a unique fixed point in ŵm + Bω(r).
Furthermore, if T is a contraction, then we must have ∥DT (w)∥ < 1 on ŵm +Bω(r),
hence I −DT (w) is invertible for each w in this neighbourhood. Since

I −DT (w) = A†
mΠmDG(w) +Π∞DG(w),

the operator I−DT (w) can only be injective if A†
m is injective, implying that T (w) =

w if and only if G(w) = 0 (this is easily derived from (4.1)). This means that if T is a
contraction, then T has a unique fixed point in ŵm + Bω(r) corresponding to a zero
of G.

The most important step in constructing estimates on the balls ŵm+Bω(r), r > 0,
is defining a finite set of polynomials, called the radii polynomials [21, 9]. In order
to construct these polynomials, we need bounds Y0, . . . , Ym and Y∞, and polynomials
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Z0, . . . , Zm and Z∞ such that the following hold:

| (Πm(T (ŵm)− ŵm)k | ≤ Yk, for k = 0, . . . ,m(4.2a)

∥Π∞(T (ŵm)− ŵm)∥∞ ≤ Y∞(4.2b)

sup
w1,w2∈Bω(r)

| (ΠmDT (ŵm + w1)w2)k | ≤ Zk(r), for k = 0, . . . ,m(4.2c)

sup
w1,w2∈Bω(r)

∥Π∞DT (ŵm + w1)w2∥∞ ≤ Z∞(r).(4.2d)

Expressions for these bounds will be derived explicitly in Sections 7 and 8. Based on
the bounds above we define the radii polynomials as follows.

Definition 4.1. Let Yk, Y∞, Zk(r), and Z∞(r) be as in (4.2), then we define
the radii polynomials by

pk(r)
def
= Yk + Zk(r) − r, k = 0, . . . ,m

p∞(r)
def
= Y∞ + Z∞(r) − ωr.

Note that the ω used in this definition is the same “fixed” ω that we use in
Bω(r). The radii polynomials are a crucial tool in our contraction argument. Indeed,
the above definitions and considerations lead to the following existence and uniqueness
theorem (details of the proof can be found in [7, 6]), which is based on [23].

Theorem 4.2. Let r > 0 be such that pk(r) < 0 for all 0 ≤ k ≤ m and p∞(r) < 0.
Then the map T is a contraction on ŵm +Bω(r). Consequently, G has a unique zero
inside ŵm +Bω(r).

For the radii polynomials to all be negative for some r > 0, we need our Y -bounds
and Z-bounds to be suitably small. The parameter ω allows us to shift the intervals
on which our polynomials are negative, with the purpose of finding an interval on
which all of them are negative. In order for our computations to be rigorous, we use
interval arithmetic both to evaluate Y and Z, and to check that p(r) < 0.

To prove the final assertion in Theorem 1.1 we need a little bit more than the
fact that ŵm > 0 (see Remark 3.1).

Lemma 4.3. Assume that the assumptions of Theorem 4.2 are satisfied. Suppose
that min ŵm > r(1+ω). Then the zero ŵ of G found in Theorem 4.2 is strictly positive
on [0, 1], and the corresponding solution Â of (1.6) is strictly positive on (0,∞).

Proof. Since ŵ − ŵm ∈ Bω(r), we obtain, for all t ∈ [0, 1],

ŵ(t) ≥ ŵm(t)− |ŵ(t)− ŵm(t)| ≥ min ŵm − ∥ŵ − ŵm∥∞ ≥ min ŵm − r(1 + ω) > 0.

The positivity of Â then follows from Lemma 2.2.

5. The linearised equation. The previous sections outline the framework in
which we will prove the existence of a solution Â to (1.6). We also need to prove the
second part of Theorem 1.1, namely that the linearisation of (1.6) around Â does not
have any non-trivial bounded solutions. Fortunately, this follows almost directly from
our proof of the existence of Â. Roughly, the reason is that a contraction method can
only have a successful outcome for non-degenerate (“transversal”) problems. We give
the details of the argument below.

Our starting point is a solution ŵ ∈ C[0, 1], from which we obtain Â through
(2.6). The linearised version of (1.6) is

Ã′′(s) = −
1

s
Ã′(s) +

(
1

4s2
+ 1− 3Â(s)2

)
Ã(s),(5.1)
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and the linearisation of (2.4) is given by

(5.2)

w̃(t) =−
1

2

1 + t

t2

∫ t

0

s3(1− s)3

log s
3ŵ(s)2w̃(s)ds

−
1

2

1

1− t

∫ 1

t

s(1 + s)(1− s)4

log s
3ŵ(s)2w̃(s)ds.

Since the transformation described in (2.6) is linear, Ã and w̃ also satisfy

Ã(s) = s−1/2(1 − e−s)e−sw̃(e−s).(5.3)

We now wish to prove that (5.1) does not have any non-trivial bounded solutions. We
argue by contradiction. Hence we assume that a non-trivial bounded solution to (5.1)
does exist. Furthermore, suppose that we have proven the first part of Theorem 1.1
using Theorem 4.2, i.e., by showing the existence of an r > 0 such that all radii
polynomials are negative.

We proceed by showing that the assumption that (5.1) has a non-trivial bounded
solution implies that (5.2) also has a non-trivial bounded solution. Since the fac-
tor s1/2es/(1 − e−s) in (5.3) is not bounded on (0,∞), this requires some work, in
particular in the limits s → 0 and s → ∞.

Lemma 5.1. Suppose that there exists a bounded non-trivial solution to (5.1),
then there exists a bounded non-trivial solution to (5.2).

Proof. Let Ã(s) be a bounded solution to (5.1), then the function ũ(s) = s1/2Ã(s)
satisfies |ũ(s)| ≤ Cs1/2 for some C > 0 and all s ∈ [0,∞). Furthermore, ũ solves the
linearisation of (2.1), given by

ũ′′(s) = ũ(s)

(
1−

3û2

s

)
,(5.4)

where û(s) = s1/2Â(s) = (1 − e−s)e−sŵ(e−s). Since ŵ is bounded, we see that
|û(s)| ≤ ĉe−s for some ĉ > 0 and all s, and |û(s)| ≤ c0s for some c0 > 0 and all
sufficiently small s.

Using the function ũ, we define w̃ by w̃(e−s) = ũ(s) es/(1 − e−s), which solves
(5.2). It remains to show that w̃ is bounded, i.e., we need to show that, first, ũ decays
as e−s, and second, ũ is linear near s = 0. The former follows from an exponential
dichotomy. Indeed, since |ũ(s)| ≤ Cs1/2, it follows from Lemma A.2 in the Appendix
that esũ(s) is bounded as s → ∞.

Finally, we need to show that |ũ(s)| ≤ c1s for some c1 > 0 and all sufficiently
small s. From (5.4) we observe that ũ′′(s) is uniformly bounded for sufficiently small
s, since ũ is bounded and |û(s)| ≤ c0s. Hence, u′(0) is well defined (bounded). Since
ũ(0) = 0, it follows that ũ(s)/s is uniformly bounded for sufficiently small s.

Using the previous lemma, we now give the proof of the second assertion of
Theorem 1.1.

Lemma 5.2. Let r > 0 be such that all radii polynomials are negative, and let
ŵ be the unique zero of G in the ball ŵm + Bω(r) obtained in Theorem 4.2. Let
Â(s) = s−1/2(1− e−s)e−sŵ(e−s). Then any bounded solution to (5.1) is trivial.

Proof. We argue by contradiction. Suppose that a non-trivial bounded solution
to (5.1) exists, then by the Lemma 5.1 there exists a non-trivial bounded solution w̃
to (5.2). Any bounded solution to (5.2) satisfies DG(ŵ)w̃ = 0, where DG denotes
the Fréchet derivative of the map G defined in (2.7). Since all radii polynomials
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are negative, the map T is a contraction on ŵm + Bω(r). In particular, since ŵ ∈
ŵm +Bω(r), we have that ∥DT (ŵ)∥ < 1, which implies that I −DT (ŵ) is invertible.
Now note that

I −DT (ŵ) = A†
mΠmDG(ŵ) +Π∞DG(ŵ).

This means that if DG(ŵ)w̃ = 0, then also (I −DT (ŵ))w̃ = 0. Since I −DT (ŵ) is
invertible, its kernel is trivial, hence w̃ = 0. This contradicts that w̃ is non-trivial.

6. Interval arithmetic evaluation of logarithmic integrals. This section
deals with the central technical aspect of our estimates. In particular, we introduce
the notation for “evaluating” certain integrals in an interval arithmetic sense. Indeed,

a crucial part of our estimates consists of estimating terms of the form
∫ b
a

p(s)
log(s)ds

for polynomials p and 0 ≤ a < b ≤ 1. Since ŵm is piecewise linear, it is immediate
that evaluating Gm can be reduced to calculating such integrals. Furthermore, most
of our estimates involve Gm and its derivatives in some way and hence also contain
these types of integrals, see e.g. Lemmas 7.2, 8.1 and 8.2. In order to make our
estimates sufficiently sharp, it will be crucial that these terms can be evaluated with
high precision, especially in the context of interval arithmetic.

These “logarithmic integrals” can be easily decomposed as linear combinations of∫ b
a

sn

log sds, for n ≥ 0. It suffice to obtain a good estimate for such “monomial” terms,
unless b = 1, in which case we will have to be more careful, see (6.5).

First we note that these integrals can be written in two distinct ways, namely

∫ t

0

sn

log s
ds = Ei(log tn+1),(6.1a)

∫ t

0

sn

log s
ds = −Γ(0,− log tn+1).(6.1b)

Here Ei denotes the exponential integral function, while Γ denotes the incomplete
gamma function. We need to evaluate the integrals both for t near 0, where (6.1b) is
convenient, and for t near 1, where (6.1a) is convenient.

One well known expansion of the exponential integral is given by

Ei(x) = γ + log |x|+
∞∑

k=1

xk

kk!
,(6.2)

where γ ≈ 0.577216 denotes the Euler-Mascheroni constant. This expansion converges
rapidly for small |x| ≠ 0. For t = ex/(n+1) close to 1, truncating the series thus
provides us with a good approximation. Furthermore, since x = log tn+1 is negative
for t < 1, this series is alternating, hence the error bounds are simply given by two
consecutive partial sums of the series.

For t close to 0, the value of log tn+1 is very large, and (6.2) is not suitable.
Instead we use (6.1b). We express the incomplete gamma function by means of a
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continued fraction due to Legendre, given by

Γ(0, z) =
e−z

z +
1

1 +
1

z +
2

1 +
2

z +
3

1 +
.. .

(6.3)

It can be shown that this continued fraction indeed converges rapidly for large values of
|z| and that the truncated fractions alternate around the limit, hence the true value
of Γ(0, z) must always lie between consecutive values in the sequence of truncated
expansions [5].

We write f1(z)
def
= e−z/z, f2(z)

def
= e−z/(z + (1/1)) and so on for the partial

continued fractions of (6.3). Then we define Lm1,m2
: [0, 1) → R by

Lm1,m2
(t)

def
=

⎧
⎪⎨

⎪⎩

0 for t = 0,

−fm2
(− log t) for 0 < t < e−1,

γ + log | log t|+
∑m1

k=1
(log t)k

kk! for e−1 ≤ t < 1,

which, for large m1,m2 approximates the logarithmic integral. For simplicity, we
have chosen t = e−1 as the boundary between “small” and “large” values of t in this
definition.

By our previous remarks, the given expansions for Ei and Γ alternate around their
limit, hence we can use this to define bounds L±

m1,m2
: [0, 1) → R that estimate the

logarithmic integrals:

L−
m1,m2

(t)
def
= min{Lm1,m2

(t), Lm1+1,m2+1(t)},

L+
m1,m2

(t)
def
= max{Lm1,m2

(t), Lm1+1,m2+1(t)}.

These allow us to make the following estimate.
Lemma 6.1. Let t ∈ [0, 1), then for all n,m1,m2 ≥ 0 we have

L−
m1,m2

(
tn+1

)
≤

∫ t

0

sn

log s
ds ≤ L+

m1,m2

(
tn+1

)
.

While Lemma 6.1 provides us with an estimate for logarithmic integrals contain-
ing monomials, we shall mainly need estimates of logarithmic integrals that contain
polynomial terms. For this reason we introduce for all m1,m2 > 0 and all polynomial
functions p(t) = a0 + . . .+ aN tN maps L±

m1,m2
[p] : [0, 1) → R defined by

L±
m1,m2

[p](t)
def
=

∑

0≤j≤N
aj ̸=0

ajL
± sign(aj)
m1,m2

(tj+1).(6.4)

This map is not well-defined if t = 1. However, for the logarithmic integrals that we
encounter, p(s) always contains a factor (1 − s), and it can therefore be written as
p(s) = (1 − s)p0(s) for some other polynomial p0(s) = b0 + . . . + bN−1sN−1, with
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the relation aj = bj − bj−1. Since (1 − s)/ log s is bounded on (0, 1), the logarithmic
integrals containing these polynomials will in fact be well-defined for t = 1. This
allows us to extend our definition of L±

m1,m2
[p] by setting

L±
m1,m2

[p](1)
def
=

∫ 1

0

(1 − s)p0(s)

log s
ds =

N−1∑

j=0

bj log
1 + j

2 + j
,(6.5)

which thus complements the expression (6.4), which is defined for 0 ≤ t < 1. These
definitions allow us to formulate the following general result.

Corollary 6.2. Let p be a polynomial containing a factor (1− s). Then for all
m1,m2 ≥ 1 we have

L−
m1,m2

[p](t2)− L+
m1,m2

[p](t1) ≤

∫ t2

t1

p(s)

log s
ds ≤ L+

m1,m2
[p](t2)− L−

m1,m2
[p](t1)

for all 0 ≤ t1 < t2 ≤ 1.
These estimates give high accuracy rigorous enclosures of the logarithmic inte-

grals, which can be established through the use of interval arithmetic. It is worth
noting that in practice we use L±

30,260, which, for the mesh that we choose, yields an
accuracy of the same order of magnitude as machine precision (ϵ ≃ 10−16).

In our constructions of the Y -bounds and Z-bounds, we shall repeatedly make
use of the estimate provided in Corollary 6.2. As the notation for this evaluation
quickly becomes cumbersome, we shall only present the details for the function

f(t) =
1

tl

∫ t

0

s3(1− s)3

log s
ŵm(s)3ds,(6.6)

where ŵm ∈ Sm and t ∈ [0, 1] and l ≤ 4. This function appears for example in the
second term in the definition of G in (2.7).

First note that on each interval [tk, tk+1] the function ŵm ∈ Sm is linear, hence
we can define pk as the polynomial defined on each interval [tk, tk+1] by

pk(s)
def
= s3(1− s)3(ŵm|[tk,tk+1](s))

3.

In general we need to make two different types of estimates. First, we want to estimate
f(tk), and second, we want to to estimate f(t) uniformly for t ∈ [tk, tk+1].

The first estimate follows almost directly from Corollary 6.2, although the esti-
mate at t0 = 0 requires a small observation. Namely, since ŵm is bounded, and l ≤ 4,
we have that limt→0 f(t) = 0. Hence if we set E±

0 (f) = 0 and

E±
k (f)

def
=

1

tlk

k−1∑

j=0

(
L±
m1,m2

[pj ](tj+1)− L∓
m1,m2

[pj ](tj)
)
,(6.7)

for 1 ≤ k ≤ m, then

E−
k (f) ≤ f(tk) ≤ E+

k (f),

for all k = 0, . . . ,m.
The second estimate is constructed primarily from the first one and the mean

value theorem. In particular, we have that for t ∈ [tk, tk+1],

f(t) =
1

tl

∫ tk

0

pk+1(s)

log s
ds+

1

tl

∫ t

tk

pk+1(s)

log s
ds.(6.8)
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The first term can be accurately estimated by

min

{
E−
k (tlf(t))

tlk
,
E−
k (tlf(t))

tlk+1

}

≤
1

tl

∫ tk

0

pk+1(s)

log s
≤ max

{
E+
k (tlf(t))

tlk
,
E+
k (tlf(t))

tlk+1

}

,

where for k = 0 one should interpret these bounds as being 0, since E±
0 = 0.

For the second term in (6.8) we obtain from the mean value theorem that for
k = 1, . . . ,m− 2 (i.e., excluding the first and last interval)

(t− tk)

tl
inf

s∈[tk,t]

pk+1(s)

log s
≤

1

tl

∫ t

tk

pk+1(s)

log s
ds ≤

(t− tk)

tl
sup

s∈[tk,t]

pk+1(s)

log s
,

from which we infer the uniform bound (for t ∈ [tk, tk+1])

(tk+1 − tk)

tlk
min

{
0, inf

s∈[tk,tk+1]

pk+1(s)

log s

}
≤

1

tl

∫ t

tk

pk+1(s)

log s
ds

1

tl

∫ t

tk

pk+1(s)

log s
ds ≤

(tk+1 − tk)

tlk
max

{

0, sup
s∈[tk,tk+1]

pk+1(s)

log s

}

.

In our specific setting ŵm is positive, see Remark 3.1, hence all pk are positive. The
above estimate then reduces to

(tk+1 − tk)

tlk
inf

s∈[tk,tk+1]

pk+1(s)

log s
≤

1

tl

∫ t

tk

pk+1(s)

log s
ds ≤ 0.

In practice we compute the infimum in the lower bound by evaluating pk+1(t)
log t on

[tk, tk+1] using interval arithmetic.
Remark 6.3. The estimate above cannot be evaluated on the intervals [0, t1]

and [tm−1, 1]. We consider these intervals separately, where, to reduce the size of the
expressions, we use that ŵm is positive (see Remark 3.1). For t ∈ [0, t1], we have that

0 ≥
1

tl

∫ t

0

pk+1(s)

log s
ds ≥

1

tl

∫ t

0

s3

log t1
max{ŵm(0)3, ŵm(t1)

3}ds

≥
1

4

t4−l
1

log t1
max{ŵm(0)3, ŵm(t1)

3}.

Similarly, since −1 ≤ (1− s)/ log s ≤ 0 for s ∈ (0, 1), we have that for t ∈ [tm−1, 1],

0 ≥
1

tl

∫ t

tm−1

pk+1(s)

log s
ds ≥ −

1

tl

∫ t

tm−1

(1 − s)2 max{ŵm(tm−1)
3, ŵm(1)3}ds

≥ −
1

3

(1− tm−1)3

tlm−1

max{ŵm(tm−1)
3, ŵm(1)3}.

From the above considerations we conclude that if we set

E−
[tk,tk+1]

(f)
def
= min

{
E−
k (tlf(t))

tlk
,
E−
k (tlf(t))

tlk+1

}

+
tk+1 − tk

tlk
inf

t∈[tk,tk+1]

pk+1(t)

log t

E+
[tk,tk+1]

(f)
def
= max

{
E+
k (tlf(t))

tlk
,
E+
k (tlf(t))

tlk+1

}

,
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for k = 1, . . . ,m− 2, and

E−
[0,t1]

(f)
def
=

1

4

t4−l
1

log t1
max{ŵm(0)3, ŵm(t1)

3}

E+
[0,t1]

(f)
def
= 0

E−
[tm−1,1]

(f)
def
= min

{
E−
m(tlf(t))

tlm−1

, E−
m(tlf(t))

}
−

1

3

(1− tm−1)3

tlm−1

max{ŵm(tm−1)
3, ŵm(1)3}

E+
[tm−1,1]

(f)
def
= max

{
E+
m(tlf(t))

tlm−1

, E+
m(tlf(t))

}
,

then

E−
[tk,tk+1]

(f) ≤ f(t) ≤ E+
[tk,tk+1]

(f),

for all t ∈ [tk, tk+1], with k = 0, . . . ,m− 1.
The E±

[tk,tk+1]
notation can also be used for more general functions than those

defined by f in (6.6). In particular, we have computed and implemented completely
analogous estimates for integrals of the form

1

(1 − t)l

∫ 1

t

(1 − s)p0(s)

log s
ds.

The details are repetitive and therefore we skip them here. We will use the notation
E±
k and E±

[tk,tk+1]
for these type of integrals as well.

Finally, the estimates generalize in an obvious way to linear combinations of
logarithmic integrals, namely by simply taking the appropriate linear combinations
of the upper and lower bounds, depending on whether the coefficients are positive or
negative, see (6.4). Henceforth, we will use the interval notation

Ek(F )
def
=
[
E−
k , E+

k

]
and E[tk,tk+1](F )

def
=
[
E−
[tk,tk+1]

, E+
[tk,tk+1]

]
,

where F (t) is a logarithmic integral (or a linear combination of such integrals). In
particular, for any k = 0, . . . ,m− 1

F (tk) ∈ Ek(F ),

F (t) ∈ E[tk,tk+1](F ) for all t ∈ [tk, tk+1].

We call these enclosures the interval arithmetic evaluation of a logarithmic integral.

7. Explicit construction of the Y -bounds. We begin our estimates by show-
ing how to compute the Y -bounds (4.2a) and (4.2b). As mentioned above, all com-
putations in this section will have to be made using interval arithmetic. In order to
simplify many of the expressions that we shall encounter in this section, we introduce
the twice continuously differentiable function g : [0, 1] → R defined by

(7.1)

g(t)
def
=
1

2

1 + t

t2

∫ t

0

s3(1− s)3

log s
ŵm(s)3ds

+
1

2

1

1− t

∫ 1

t

s(1 + s)(1− s)4

log s
ŵm(s)3ds,
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so that G(ŵm) = ŵm + g.
As it turns out, the Yk bounds are relatively easy to obtain using the interval

arithmetic evaluation introduced in Section 6. Let E(g) be the vector of intervals
given by (E(g))k

def
= Ek(g), k = 0, . . . ,m. We set

Yk
def
= sup

∣∣(A†
m[ŵm + E(g)])k

∣∣,(7.2)

where matrix multiplication is performed using interval arithmetic. The sup in (7.2)
is just the right endpoint of the interval. Since G(ŵm) = ŵm + g, the bounds Yk will
be small when ŵm is a good approximation of a zero of Gm.

Lemma 7.1. With Yk as defined in (7.2) we have

| (Πm(T (ŵm)− ŵm)k | = |(A†
m[ŵm +Πmg])k| ≤ Yk.

The Y∞-bound requires a little more work. We observe that

∥Π∞(T (ŵm)− ŵm)∥∞ = ∥(I −Πm)g∥∞,

hence we need a way to estimate ∥(I − Πm)g∥∞ = ∥Π∞g∥∞ for g ∈ C2[0, 1]. A
standard estimate can be used to show that, for all t ∈ [tk, tk+1],

|g(t)− (Πmg)(t)| ≤
1

8
|tk+1 − tk|

2 sup
s∈[tk,tk+1]

|g′′(s)|.(7.3)

Here g′′ can be written as g′′(t) = h1(t) + h2(t) + h3(t), with

h1(t)
def
=

3 + t

t4

∫ t

0

s3(1− s)3

log s
ŵm(s)3ds(7.4a)

h2(t)
def
=

1

(1− t)3

∫ 1

t

s(1 + s)(1 − s)4

log s
ŵm(s)3ds(7.4b)

h3(t)
def
= −

(1− t)2

log t
ŵm(t)3.(7.4c)

The first two terms are estimated using the interval arithmetic evaluation from Sec-
tion 6. The final term is simply evaluated using interval arithmetic on each interval
[tk, tk+1], k = 1, . . .m − 2, whereas the intervals [t0, t1] and [tm−1, 1] are dealt with
in an analogous (but simpler) manner to the arguments used in Remark 6.3. For the
estimates thus obtained we use the notation h3(t) ∈ F[tk,tk+1](h3) for t ∈ [tk, tk+1].
This then gives us the following result.

Lemma 7.2. Define Y∞ as

Y∞
def
= max

0≤k≤m−1

{
1

8
|tk+1 − tk|

2 · sup
∣∣∣E[tk,tk+1](h1 + h2) + F[tk,tk+1](h3)

∣∣∣
}
,

then

∥Π∞(T (ŵm)− ŵm)∥∞ ≤ Y∞.
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8. Explicit construction of the Z-bounds. In this section we make the
estimates (4.2c) and (4.2d) explicit. For notational convenience we introduce, for
w1, w2 ∈ Bω(r),

z(w1, w2)
def
= DT (ŵm + w1)w2.

We wish to estimate | (Πmz(w1, w2))k | for w1, w2 ∈ Bω(r) as a function of r. Writing
wi = rw̃i, where w̃i ∈ Bω(1), we have

Πmz(w1, w2) = Πm(DT (ŵm + w1)w2) = rΠmw̃2 − rA†
mΠmDG(ŵm + rw̃1)w̃2

= r
(
Im −A†

mDΠmG(ŵm)
)
Πmw̃2

+ rA†
m

(
DΠmG(ŵm)Πmw̃2 −DΠmG(ŵm + rw̃1)w̃2

)

= r
(
Im −A†

mDGm(ŵm)
)
Πmw̃2 − rA†

mη
′(0),

where the auxiliary term η is given by

η(τ) : = ΠmG(ŵm + rw̃1 + τw̃2)−ΠmG(ŵm + τΠmw̃2).

We start by showing how to estimate the
(
Im −A†

mDGm(ŵm)
)
Πmw̃2 term above.

Viewing DGm(ŵm) as an (m + 1) × (m + 1)-matrix, we distinguish three cases. If
k1 = k2, then

DGm(ŵm)k1,k2
= φ0(tk1

, tk2
)

def
= 1 +

1

2

1 + tk1

t2k1

∫ tk2

tk2−1

s3(1− s)3

log s
3ŵm(s)2

s− tk2−1

tk2
− tk2−1

ds

+
1

2

1

1− tk1

∫ tk2+1

tk2

s(1 + s)(1 − s)4

log s
3ŵm(s)2

tk2+1 − s

tk2+1 − tk2

ds;

if k1 < k2, then

DGm(ŵm)k1,k2
= φ−1(tk1

, tk2
)

def
=

1

2

1

1− tk1

∫ tk2

tk2−1

s(1 + s)(1− s)4

log s
3ŵm(s)2

s− tk2−1

tk2
− tk2−1

ds

+
1

2

1

1− tk1

∫ tk2+1

tk2

s(1 + s)(1 − s)4

log s
3ŵm(s)2

tk2+1 − s

tk2+1 − tk2

ds;

if k1 > k2, then

DGm(ŵm)k1,k2
= φ+1(tk1

, tk2
)

def
=

1

2

1 + tk1

t2k1

∫ tk2

tk2−1

s3(1 − s)3

log s
3ŵm(s)2

s− tk2−1

tk2
− tk2−1

ds

+
1

2

1 + tk1

t2k1

∫ tk2+1

tk2

s3(1− s)3

log s
3ŵm(s)2

tk2+1 − s

tk2+1 − tk2

ds.

Here, any integral with domain of integration outside [0, 1] should be read as 0. Let
M(φ) be the matrix of intervals given by

M(φ)k1,k2

def
= Ẽ

(
φsign(k1−k2)(tk1

, tk2
)
)
,
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where Ẽ denotes interval arithmetic evaluation following the methodology from Sec-
tion 6, which is somewhat simpler here since the sum in (6.7) reduces to a single term
per integral in the expressions for φ. Combining this with the fact that |(Πmw̃2)k| ≤ 1,
and using the notation 1 = (1, 1, . . . , 1) ∈ Rm+1, the term

(
Im −A†

mDGm(ŵm)
)
Πmw̃2

can then be estimated by
∣∣∣
((

Im −A†
mDGm(ŵm)

)
Πmw̃2

)

k

∣∣∣ ≤ sup
(∣∣Im −A†

mM(φ)
∣∣ 1
)

k
,(8.1)

where the absolute value on the right-hand side is taken element-wise for the matrix
of intervals Im −A†

mM(φ).
Next, we can express η(τ) ∈ Sm as

η(τ)k = rw̃1(tk) +
1

2

1 + tk
t2k

∫ tk

0

s3(1− s)3

log s
ζs(τ)ds

+
1

2

1

1− tk

∫ 1

tk

s(1 + s)(1 − s)4

log s
ζs(τ)ds,

where ζs(τ) is given by

ζs(τ)
def
= (ŵm(s) + rw̃1(s) + τw̃2(s))

3 − (ŵm(s) + τ(Πmw̃2)(s))
3.

Furthermore, note that for w̃1, w̃2 ∈ Bω(1) we have that

|ζ′s(0)| = |3(ŵm(s) + rw̃1(s))
2w̃2(s)− 3ŵm(s)2(Πmw̃2)(s)|

≤ 3ω|ŵm(s)|2 + 6(1 + ω)2|ŵm(s)| r + 3(1 + ω)3 r2.(8.2)

We again use the fact that ŵm is positive (see Remark 3.1) to slightly simplify the
estimates and notation (the estimates can be adapted to the general case in a straight-
forward manner). Namely, we infer from (8.2) that

|ζ′s(0)| ≤ 3ωŵm(s)2 + 6(1 + ω)2ŵm(s) r + 3(1 + ω)3 r2.

Using the interval arithmetic evaluation of logarithmic integrals from Section 6 we
thus find that

|η′(0)k| ≤ V 1
k + V 2

k r + V 3
k r

2,

where the coefficients V i
k > 0 are given by

V 1
k

def
= sup Ek

(
− 3ω(1+t)

2t2

∫ t
0

s3(1−s)3

log s ŵm(s)2ds− 3ω
2(1−t)

∫ 1
t

s(1+s)(1−s)4

log s ŵm(s)2ds
)

V 2
k

def
= sup Ek

(
− 6(1+ω)2(1+t)

t2

∫ t
0

s3(1−s)3

log s ŵm(s)ds− 6(1+ω)2

1−t

∫ 1
t

s(1+s)(1−s)4

log s ŵm(s)ds
)

V 3
k

def
= sup Ek

(
− 3(1+ω)3(1+t)

2t2

∫ t
0

s3(1−s)3

log s ds− 3(1+ω)3

2(1−t)

∫ 1
t

s(1+s)(1−s)4

log s ds
)
.

By combining the above estimates, we obtain the following result.
Lemma 8.1. Let V i

k be as above, and define the vector-valued Z(r) ∈ Rm+1 by

Z(r)
def
=
(
sup

∣∣Im −A†
mM(φ)

∣∣ 1+ |A†
m|V 1

)
r + |A†

m|V 2r2 + |A†
m|V 3r3,

then for all w1, w2 ∈ Bω(r)

| (Πmz(w1, w2))k | = |DT (ŵm + w1)w2| ≤ Zk(r) for k = 0, . . . ,m.
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Finally, it remains to derive a bound Z∞ on ∥Π∞(T (ŵm) − ŵm)∥∞. Similar to
(7.3), we observe that

∥Π∞z(w1, w2)∥∞ = r∥Π∞D(I −G)(ŵm + rw̃1)w̃2∥∞

= r sup
t∈[0,1]

|Π∞∂1η̂(0, t)|

≤ r max
0≤k≤m−1

{
1

8
(tk+1 − tk) sup

t∈[tk,tk+1]
|∂1∂

2
2 η̂(0, t)|

}

,

where η̂(τ, t) is given by

η̂(τ, t) = (I −G)(ŵm(t) + rw̃1(t) + τw̃2(t))

= −
1

2

1 + t

t2

∫ t

0

s3(1− s)3

log s
ξs(τ)ds

−
1

2

1

1− t

∫ 1

t

s(1 + s)(1− s)4

log s
ξs(τ)ds,

with ξs(τ) = (ŵm(s) + rw̃1(s) + τw̃2(s))3. Now note that

|ξ′s(0)| = |3(ŵm(s) + rw̃1(s))
2w̃2(s)| ≤ χ(r, s),

with

χ(r, s)
def
= 3(1 + ω)ŵm(s)2 + 6(1 + ω)2ŵm(s) r + 3(1 + ω)3 r2

def
= χ0(s) + χ1(s) r + χ2(s) r2.

Here we have used once again the fact that ŵm is positive to slightly simplify the
estimates. It is straightforward to arrive at the estimate

|∂1∂
2
2η(0, t)| ≤

2∑

i=0

ri
[
ĥi
1(t) + ĥi

2(t) + ĥi
3(t)

]

with (cf. (7.4))

ĥi
1(t)

def
= −

3 + t

t4

∫ t

0

s3(1− s)3

log s
χi(s)ds

ĥi
2(t)

def
= −

1

(1− t)3

∫ 1

t

s(1 + s)(1− s)4

log s
χi(s)ds

ĥi
3(t)

def
= −

(1− t)2

log t
χi(t).

For ĥi
1 and ĥi

2 we use the interval arithmetic evaluation of logarithmic integrals,
whereas to estimate ĥi

3 we use the same arguments as those used to estimate h3

in Section 7. In particular, we use the notation ĥi
3(t) ∈ F[tk,tk+1](ĥ

i
3) for t ∈ [tk, tk+1].

The resulting estimate is summarized in the following lemma.
Lemma 8.2. Let Z∞(r) be defined by

Z∞(r)
def
=

2∑

i=0

ri+1 max
0≤k≤m−1

{
1

8
|tk+1 − tk|

2 · sup
∣∣∣E[tk,tk+1](ĥ

i
1 + ĥi

2) + F[tk,tk+1](ĥ
i
3)
∣∣∣
}
,
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then

∥Π∞(T (ŵm)− ŵm)∥∞ ≤ Z∞(r).

9. Computational aspects of the proof of Theorem 1.1. In Lemmas 7.1,
7.2, 8.1 and 8.2 we have provided estimates that we can use in order to calculate
the radii polynomials. However, we still need to show that the resulting polynomials
indeed become simultaneously negative for some r > 0. Note that in order to do
so, it is crucial that the constant terms of these polynomials are small and that the
coefficients of the linear terms are negative, i.e., the Y -bounds and the first term of
the Z-bounds must be close to zero.

We first determine a suitable approximate solution ŵm. We have found it most
convenient to apply a standard ODE shooting method to the equation for ṽ(t) =

(1− t)w(t) = v(t)/t, i.e., to ṽ′′+ 3
t ṽ

′ = ṽ3

log t , see the mathematica file Mesh.nb in [20].
Via the change of variables w(t) = ṽ(t)/(1 − t) this leads to an approximate solution
of (2.3).

The next step in establishing our computer-aided proof is to construct an appro-
priate mesh, ∆m = {tk}0≤k≤m. As it turns out, a uniform mesh of 700 points is
enough to complete the proof. By increasing the number of points, a higher accuracy,
and thus a smaller r, can be achieved at the cost of increased computing time. In the
code [20] used for the proof of Theorem 1.1, we take 1001 mesh points, i.e. m = 1000.

In general, one may reduce the number of necessary mesh points by choosing a
non-uniform grid. In practice, it is the Y∞ bound, which is obtained via a bound
on g′′(t) (see (7.3) and Lemma 7.2), that poses the largest obstacle to completing
the proof. Hence, by choosing a non-uniform mesh that is finest for those parts
of the domain where |g′′(t)| is largest, a similar accuracy could be obtained at a
decreased computing time. However, a uniform grid works fine for the specific problem
considered in the present paper.

Now that we have chosen a grid, we evaluate the approximation solution at the
mesh points to find an approximate solution toGm(w) = 0, see again the Mathematica
file Mesh.nb [20]. Next, we refine the approximate solution using a standard Newton
method Newton.m in [20], in order to find an approximate zero ŵm of Gm. This
piecewise linear approximation ŵm has been stored in the file data1001.mat in [20].
The graph of ŵm, as well as the corresponding approximate solution to (1.6), can be
found in Figure 2.

As mentioned earlier, we fix the parameter ω that we use to define our closed
balls Bω(r) in C[0, 1]. By means of trial and error, we have established that taking
ω ∈ [0.012, 0.024] allows us to complete the proof. In particular, we choose ω = 0.02.

The remainder of the proof is now given in the form of a MATLAB program
GLProof.m that can be found in [20] (it uses the Intlab package [14]). In this code,
Gm(ŵm), DGm(ŵm), A†

m, Yk and Y∞ are determined using interval arithmetic, as
are the coefficients of Zk(r) and Z∞(r).

This program computes (guaranteed by interval arithmetic) that for r = 1.88·10−2

all radii polynomials are (simultaneously) negative. It follows from Theorem 4.2 that
the first part of Theorem 1.1 holds and by Lemma 5.2 that the second part also holds.
It should be noted that although the code chooses a relatively small r to verify the
negativity of the radii-polynomials, this is not the only value of r for which the proof
goes through. Indeed, all r ∈ [1.87·10−2, 2.27·10−2] are suitable. A smaller value of r
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Fig. 2. On the left the graph of the approximate solution ŵm ∈ Sm as a function of t. On the
right the graph of the approximate solution of (1.6) corresponding to ŵm through (2.6).

yields slightly more information about how close the solution lies to the numerical,
piecewise linear approximation.

Finally, we prove the final assertion of Theorem 1.1, i.e., we check that ŵ is positive
by invoking Lemma 4.3 and by having the code verify that min ŵm > r(1 + ω) using
interval arithmetic.

Appendix. Exponential dichotomy.

For completeness we present a detailed proof of the exponential dichotomy for
(5.4) in this Appendix. We will use that ŵ is bounded, hence û(s) ≤ ĉe−s for some
ĉ > 0 (in fact any rate of exponential decay suffices). We start with a preliminary
lemma.

Lemma A.1. Let û be bounded and let ũ be a solution of

ũ′′(s) = ũ(s)

(
1−

3û2

s

)
, s > 0.(A.1)

Then either ũ is bounded as s → ∞ and satisfies, for all ϵ > 0,

lim
s→∞

|ũ(s)|e(1−ϵ)s = 0 and lim
s→∞

|ũ′(s)|e(1−ϵ)s = 0,

or for all ϵ > 0 there exist c > 0 and s0 > 0 such that

|ũ(s)| ≥ ce(1−ϵ)s for all s > s0.

Proof. We fix 0 < ϵ < 1. First note that we can rewrite (5.4) as a two-dimensional
first order system

x′(s) = M(s)x(s), where M(s)
def
=

(
0 1

1− 3û(s)2

s 0

)

.(A.2)

Note that since 3û(s)2

s → 0 as s → ∞, for all 0 < ϵ < 1 there exists an s0 such that if
λ±(s) denotes the (time-dependent) eigenvalues of M(s), then

λ+(s) > (1 − ϵ) > 0 and λ−(s) < −(1− ϵ) < 0,

for all s > s0. Furthermore, we have for any matrix norm that ∥M(s)∥ < C as
s → ∞ for some constant C > 0 (dependent on the norm used). It follows from [4,
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proposition 1] that there exist s′0 > 0, 0 < ϵ′ < ϵ, constants k1, k2 > 0 and a
fundamental matrix X(s) for (A.2), such that for all s > s′0

∥X(s)PX−1(s′0)∥ ≤ k1e
−(1−ϵ′)(s−s′0)

∥X(s′0)(1 − P )X−1(s)∥ ≤ k2e
−(1−ϵ′)(s−s′0),

where P =
(
1 0
0 0

)
. From the second inequality it follows that for ξ ∈ R2

|X(s′0)(1 − P )ξ| = |X(s′0)(1 − P )X−1(s)X(s)(1− P )ξ|

≤ |X(s′0)(1 − P )X−1(s)||X(s)(1− P )ξ|

≤ k2e
−(1−ϵ′)(s−s′0)|X(s)(1− P )ξ|.

We infer that for all ξ ∈ R2 there exist constants c1, c2 ≥ 0 such that

|X(s)P ξ| ≤ c1e
−(1−ϵ′)s,

|X(s)(1− P )ξ| ≥ c2e
(1−ϵ′)s,

and if (1− P )ξ ̸= 0, then c2 > 0.
Since any solution of (A.2) corresponds to X(s)ξ for some ξ ∈ R2, we see that

any bounded (as s → ∞) solution must correspond to a ξ that satisfies (1− P )ξ = 0.
Hence, any such bounded solution satisfies |x(s)|e(1−ϵ)s ≤ c1e−(ϵ−ϵ′)s for some c1 > 0
and all s > s′0, therefore lims→∞ |x(s)|e(1−ϵ)s = 0. On the other hand, we see that
unbounded (as s → ∞) solutions to (A.2) must satisfy |x(s)| ≥ c2e(1−ϵ)s = 0 for some
c2 > 0 and all s > s′0.

This exponential dichotomy can be strengthened as follows.
Lemma A.2. Let û(s) ≤ ĉe−s for some ĉ > 0, and let ũ be a solution of (A.1)

such that for some ϵ0 > 0, c0 > 0 and s0 > 0

|ũ(s)| ≤ c0e
(1−ϵ0)s for all s > s0.(A.3)

Then there exists a constant C ∈ R such that

lim
s→∞

ũ(s)es = C.

Proof. First we note that there exists a k > 0 such that 3û(s)2

s ≤ ke−2s for
sufficiently large s. Define the (a priori possibly unbounded) function p(s) = esũ(s),
which satisfies

d

ds
e−2sp′(s) = −e−2s 3û(s)

2

s
p(s).

Choose 0 < ϵ < 1 fixed, then by (A.3) and Lemma A.1 there exists a constant c > 0
such that p(s) ≤ ceϵs. Moreover, by Lemma A.1, ũ(s)e(1−ϵ)s → 0 and ũ′(s)e(1−ϵ)s → 0
as s → ∞. From the identity p′(s) = ũ′(s)es+ũ(s)es we then infer that p′(s)e−ϵs → 0,
hence p′(s)e−2s → 0 as s → ∞. This allows us to write

e−2sp′(s) = −

∫ ∞

s

d

ds̃
e−2s̃p′(s̃)ds̃ =

∫ ∞

s
e−2s̃ 3û(s̃)

2

s̃
p(s̃)ds̃,
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hence

|p′(s)| ≤ e2s
∫ ∞

s
e−2s̃ 3û(s̃)

2

s̃
p(s̃)ds̃ ≤ e2s

∫ ∞

s
e−2s̃ · ke−2s̃ · ceϵs̃ds̃ ≤ Ke(−2+ϵ)s,

for some constant K > 0. Next, note that for b > a

|p(b)− p(a)| ≤

∫ b

a
|p′(s̃)|ds̃ ≤ K

∫ b

a
e(−2+ϵ)s̃ds ≤

K

2− ϵ

(
e(−2+ϵ)a − e(−2+ϵ)b

)
.

It follows that when sn is a strictly increasing sequence with sn → ∞, then p(sn) is
a Cauchy sequence with limit C

def
= limn→∞ p(sn). Now let ϵ′ > 0 be arbitrary and

choose sϵ′ such that K
2−ϵe

(−2+ϵ)sϵ′ < 1
2ϵ

′, and n such that sn > sϵ′ and |p(sn)− C| ≤
1
2ϵ

′. Then we have that

|p(s)− C| ≤ |p(s)− p(sn)|+ |p(sn)− C| <
K

2− ϵ
e(−2+ϵ)sn +

1

2
ϵ′ < ϵ′,

for all s > sn > sϵ′ . Since ϵ′ > 0 is arbitrary, the result follows.
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