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ABSTRACT: We establish the existence of homoclinic solutions for a class of fourth
order equations which includes the Swift-Hohenberg model and the suspension bridge
equation. In the first case, the nonlinearity has three zeros, corresponding to a
double-well potential, while in the second case the nonlinearity is asymptotically
constant on one side. The Swift-Hohenberg model is a higher order extension of
the classical Fisher-Kolmogorov model. Its more complicated dynamics give rise
to further possibilities of pattern formation. The suspension bridge equation was
studied by Chen and McKenna in [4]; we give a positive answer to an open question
raised by the authors.

1 Introduction

We investigate a class of fourth order equations possessing a variational structure.
These are the Euler-Lagrange equations derived from second order Lagrangian prin-
ciple. The Lagrangian densities that will be considered are of the form

1
Dl o= P = D4 v (),

where 8 € R, and the potential V' has to satisfy some appropriate conditions.
Typical examples are the double-well potential V'(u) = ;(u? — 1)?, the water wave
model V (u) = zu®— Su?, and the suspension bridge model V' (u) = €* —u—1. When
the parameter [ is negative, the corresponding Euler-Lagrange equation

uIIII + B’UIH + Vl(u) — 0 (1)
is called the extended Fisher-Kolmogorov (eFK) equation, whereas for positive 3

Equation (1) is referred to as the Swift-Hohenberg equation. Both are considered
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as models for studying nonlinear phenomena like phase transition in various fields:
hydrodynamics [24], elasticity and solid mechanics [4], nonlinear optics [1], etcetera.
For example, in the suspension bridge model, solutions of (1) with positive 3 cor-
respond to travelling waves in the suspended structure of the bridge, which travel

with speed /J3.

In some sense, the Fisher-Kolmogorov situation (8 < 0) is simpler to deal with,
since all the terms in the Lagrangian density appear with a positive sign. Instead,
the negative sign in front of the |u/|? term in the Swift-Hohenberg case is rather
tricky to manage.

These equations have drawn much attention in recent years, and many different
methods have proved to be successful. Concerning the eFK equation, the situation
is rather deeply understood. Existence of heteroclinics [15, 9, 10], homoclinics [9, 10]
and periodic solutions [18, 11] was proved together with additional features like
multibump “chaotic” behaviour. For more background we also refer to the papers
3, 25, 12, 14, 16, 17].

Much less rigorous results exist for the Swift-Hohenberg case g > 0. Existence of
(multibump) periodic solutions was proved by Peletier and Troy [19] in the suspen-
sion bridge model, and by Peletier, Troy and van den Berg [20] for the double-well
potential, see also [26, 5]. An existence result concerning homoclinic solutions to
the suspension bridge equation (corresponding to localised travelling waves in the
bridge) was obtained by Chen and McKenna [4] (see also [13]). However, they need
to assume rather restrictive conditions on V' excluding for example V (u) = e*—u—1.
Existence in this later case was raised as an open question by the authors. Finally,
we refer to [21] for homoclinics found in a related constrained minimisation problem,
where (3 acts as the Lagrange multiplier.

In this paper we will prove existence results for homoclinic solutions in Swift-
Hohenberg type systems and for localised travelling waves in suspension bridge
models. In particular, we will treat the cases V (u) = e*—u—1and V (u) = (u?—1)%

The methods we use are variational in nature. The solutions are obtained by per-
forming a mountain-pass procedure to the action functional

1
J(u) = /R §|u"\2 — g\u'\Q +V(u).

The Palais-Smale condition is of course not satisfied by J, the first reason being
translation invariance. The situation is much worse however, not only because of
the negative term in the Lagrangian, but also due to the particular shape of V.
Moreover, we have numerical evidence that homoclinics with negative energy (La-
grangian action) do exist, ruling out standard arguments often used. We will avoid
these later homoclinics by using a modified problem, and the non-superquadratic
shape will be overcome using the monotonicity trick of Struwe [22] (see also [23]).
Nevertheless, as the nonlinearity V'(u) in Equation (1) may have multiple zeros,
abstract results like those developed by Jeanjean [8, 7] cannot be applied. Finally,
we mention that in the special case where V(u) = —%u” + %uQ for some n > 2, the



Figure 1: Typical shapes of potentials under consideration.

Palais-Smale condition can be established fairly directly, see [2], but this method
seems restricted to this exceptional class of potentials, or at least to those for which
oV (u) —V'(u)u has the right constant sign for some ¢ > 2 (this is sometimes called
the Rabinowitz condition).

The linearised equation around the bottom well(s) of V' plays a crucial role in pass-
ing to the limit. As expected, we restrict our analysis to the solutions which are
homoclinic to an equilibrium of saddle-focus character, as centers will in general not
allow homoclinic solutions. We treat nonlinearities V'(u) with one, two and three
zeros, typical examples of the shapes of the potentials being depicted in Figure 1.

In all cases we prove the existence of a homoclinic solution for almost all positive
values of 3 for which the equilibrium point is of saddle-focus type. For a precise
formulation of the results and the conditions on the potentials/nonlinearities we refer
to Sections 4 to 6. Although our results give a clear insight in the generality of the
existence of homoclinic solutions to saddle-foci, several questions remain open. First,
one would like to fill the gap of measure zero in the set of 3 values for which existence
has been established. Second, numerics show that there are multiple solutions and it
would certainly be nice to be able to prove this, thus obtaining more understanding
of the global picture.

In Section 2 we present the method of proof on the basis of the example V(u) =
%(u2 — 1)%. The general statement of this result for nonlinearities with three zeros
is formulated in Section 3, while Section 4 deals with double-well potentials where
only one of the minima is a saddle-focus (and the other one is a center). Finally, in

Sections 5 and 6 we consider nonlinearities with two zeros and one zero respectively.
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2 The Swift-Hohenberg equation

This section is devoted to the proof of existence of homoclinics for the classical Swift-
Hohenberg equation. The result extends to equations with similar nonlinearities, as
will be made precise in Theorems 7 and 8.

To begin with, we recall the equation to be solved, and we introduce the functional
settings associated with it. The equation

W B V) =0, V() = g~ 1) @)
has three stationary solutions: 0, 1 and —1. The last two are the bottom wells
of the potential V. The potential energy has been normalised so that the bottom
wells have zero energy. The solutions that will be found are homoclinic to either 1
or —1. By symmetry, it is sufficient to consider the case where the limit is 1. For
convenience, we perform the change of variable v — v — 1. In the new variable, the
equation becomes

0" + Bu" + v® 4+ 3v® 4 20 = 0. (3)

Numerics indicates that this equation possesses various families of homoclinics or-
bits, together with heteroclinic connections. Due to this complicated structure, we
will need to modify the potential V' in order to single out a particular family. Ba-
sically, the family that we obtain does not pass through the second bottom well at
v = —2, so that we can assume that

1,4 3 2
R B e o Ve o) ifv> -2
Viv) = { 0 otherwise.

Note that this new potential V' (v) is of class C'. We introduce the action functional

s = [ G- v,

on the Hilbert space H?(R), equipped with the standard norm.

Lemma 1. The functional Jg is of class C* on H*(R), and if v € H*(R), v > —2,
is a critical point of Jg, then v is a classical solution of equation (3) such that

!_.m 1 m2 /8 n2 .
v/ _§(U) +§(v) +V(w)=0 (4)

tdentically.

Proof. The regularity part of the functional is quite standard, as well as the fact
that any critical point is a classical solution of the Euler-Lagrange equation. The
only thing that needs to be checked is Equation (4).

First notice that from Equation (3) we infer that for any critical point v, one has,
for some C > 0,
0" |72 < C (J0"[72 + [v]Z2)
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Figure 2: Eigenvalues for the linearisation.

so that in fact v € H*(R). By the Sobolev embedding theorem, v, v’,v" and v" tend
to zero as t tends to +oc.

Multiplying Equation (3) by v’ yields:

d 1. 1 "2 ﬂ "2 _
o (vv 2(1}) +2(v) +V(v) | =0, (5)
so that the left hand side of Equation (4) is constant. Taking its limit as ¢ tends to

plus or minus infinity, one finds that this constant is zero. This ends the proof. [I

Remark 2. Notice that the left hand side of Equation (4) is nothing but the Hamil-
tonian for the Hamiltonian system corresponding to the Lagrangian density, and
Equation (5) is the conservation law for the Hamiltonian.

The linearisation of Equation (3) around each of the bottom wells gives
UIIII + ﬁvll + 2v — 0’

whose characteristic eigenvalues satisfy

4 BE/PE
/75

Thus, the threshold 5 = /8 corresponds to the upper limit for saddle-focus equilib-
ria. The complete picture of the linearised equation is depicted in Figure 2.

In the following, we will restrict to the case 0 < 8 < /8.

Lemma 3. There exist constants € > 0 and § > 0 such that
Js(v) > ello||* for || <6,

with a uniform lower bound on & and § for B in compact subsets of [0,/8).



Proof. Let a > 0 such that 32 < 4(2 — a). There exists an r > 0 such that |v| < r
implies V (v) > %%|v[%. By the Sobolev embedding theorem, there exists a § > 0
such that

lv]] <6 = |v|p= < 7.

Denote by F the Fourier transform. Then, if ||v|| < 6, one has for some small € > 0

Js(v) > /R %@”)Lé@’)?ﬂ%%?di

:.Aéghﬁ%ﬁHQ—wxf@D%%

Ad€+n%ﬂmf@

> ellvll?,

v

where ¢ can be chosen independently of 5 as long as  does not approach v/8. This
is the required estimate. 0

Lemma 4. There exists an e € H*(R), ||e|| > §, such that Jg(e) < 0 . Moreover, e
can be chosen independently of B for 3 in compact subsets of (0,/8].

Proof. Let f € C§°(R) be any nowhere positive function, f # 0. Define f)(z) :=
f(Az) so that

far=xfume ana o [@r=a oy

Thus, if A > 0 is sufficiently small,

1
[ 5802= 5857 =—a <o

and, thanks to the cut-off of V, for fixed A one has
Js(Cfr) = —ag C* + O(1), as C — oo,

which ends the proof. Clearly, C' and A can be chosen independently of 8 as long as
[ does not tend to zero. O

Following Lemmas 3 and 4, we see that Jz has the so-called mountain pass geometry
(see e.g. [27]). We thus define the mountain pass levels:

:= inf t
¢ = Inf max J5(v(t)),
where I' = {7 : [0,1] = H?(R) such that v(0) = 0 and v(1) = e}.
Clearly, the function 8 — cg is positive and decreasing. It is thus almost everywhere
differentiable. The derivative of cg with respect to § is denoted by cj.

By a Palais-Smale sequence for Js we mean a sequence wy, such that Jg(w,) — 0
strongly, and such that Jz(w,) is bounded.



Proposition 5. Let 0 < 8 < /8 such that 023 exists. Then there exists a Palais-
Smale sequence (vy,) for Jg which satisfies the estimates:

1. 5lvpl3. < =g+ 1;
2. 5lunl3. < g — By + B+o0(1), asn— oo;
3. Jg(vn) =cg+o0(1), asn— oo.

Proof. First observe that by definition of J3, estimate 2 is a direct consequence of
estimates 1 and 3 and the positivity of V. Define

1 1
S = {u € H?*(R) such that §‘UI‘%2 < —cp+ 5} :

If the assertion is false, then clearly there exists 0 < & < ¢g/2 such that
1
Yu € H*(R), (CIB — 2e < Jg(u) < ¢ + 2¢ and dist(u, S) < 5) = || J5(u)]| > 32e.

Indeed, otherwise, as € goes to zero, one would obtain a Palais-Smale sequence
satisfying 1,2 and 3.

Using the quantitative deformation lemma in [27] (Lemma 1.14 with 6 = 1/4), we
obtain a flow € C([0,1] x H(R), H*(R)) such that:

(a) n(s,u) =uifs=0orifu¢ Jﬁ_l(cﬂ — 2¢, ¢ + 2¢) or if dist(u, S) > 1/2;
(b) Jg(n(s,u)) is decreasing in s;

(¢) (ue S and Jg(u) <cg+e)= Jzg(n(l,u)) <cg—e.

Take an increasing sequence (3, /8 and choose n sufficiently large so that

CBn—CB ol 1
* 55 S %t

o cg, +5(8—Bn) <cpte

Let v,(-) be a path in T' (see above for the definition) satisfying:

1
< — — .
max Jg, (1 (1)) < c5, + (6~ )

Such a path obviously exists by definition of cg,. If ¢ € [0, 1] is such that Jg(7,(t)) >
¢ — (8 — By) then (by the definition of J)

1

()

_ s (n(®) = Js(m(®) _ cpn =
/B_ﬁn B B_Bn

+

Y

N | —

< —cz+

A~ =



so that v,(t) € S. Also,

Js(1(t)) < Jp, (7a(t)) < 5, + %(ﬁ —Ba) < cs+e.

Let 7,(t) = n(1,7(t)). Clearly, 7,(0) = n(1,0) = 0 and 7,(1) = n(l,e) =
because of € < ¢3/2 and property (a). Thus 7, € I'.
Using property (c) and the fact that %(ﬁ — Bn) < €, we infer that

1
max Js(Vu(t)) < 5 — g(ﬁ — Bn),

which contradicts the definition of cg. This ends the proof. O

We will now construct a homoclinic solution thanks to the Palais-Smale sequence
constructed above.

First, observe that it is impossible for (v,) to converge uniformly to 0. Otherwise,
one would have

s
2
= Js(vn) + o(1)|va]32 as n — oo,

1
0. < Sl — S0t B + [oal2s

and for B8 < /8 this would imply that (v,) is bounded in H?(R). But then, since
Jy(vn) = 0,

0< c5 = Jo(v,) — %(Jg(vn),vn> +o(1)
= [ W) = 3V + o)

=o0(1), asn— o0,

which clearly is a contradiction.

Assume that (the other case will be dealt with shortly)

lim sup(min v, (z)) > —1.
n—oo TER

Then, as V (v) > (v?)/4 for v > —1, we deduce from Proposition 5 that sup |v,|2, <
0o, and (v,) is bounded in H?(R). Let 7, € R such that |v,(7,)| = maxeg |v,(7)]
and define w,(x) := v,(1, + x). Clearly, (w,) is a bounded Palais-Smale sequence,
so that, going to a subsequence if necessary, we get w, — w, w € H*(R). Since
J'(w) = 0 (as weak convergence in H? implies uniform convergence on compact
sets), we conclude that w is a nontrivial homoclinic solution of Equation (3). Notice
that w is nontrivial because w(0) = lim, o w,(0) # 0 as (v,) does not uniformly
converge to zero.

Hence we are left to study the case

lim sup(min v, (z)) < —1.
n—oco ZE



Let 7, € R be the points such that v,(7,) = —1 and v,(x) > —1 for < 7,. Then
Wy (x) := vu(Ty + x) satisfies w,(0) = —1. Besides, define z,(z) := w,(z) + 1. By
Proposition 5, the sequence (z,) is bounded in the Hilbert space

Z :={z € H,,.(R) such that 2(0) =0, 2’ € L*(R), 2" € L*(R)}.

As in the previous case, we also know that (w,) is bounded in H?(—o0,0). Thus,
there exist a common subsequence (still denoted with n’s) and z € Z such that
2, — zin Z and w, — z—1in H?(—00,0). Again, it is easily seen that w := z—1is a
solution of Equation (3). ;From Equation (3), we infer that indeed, w"” € L?(—oc, 0)
so that w € H*(—o0,0) and

I/ 1 m?2 /6 n2 J—
w'w —E(w) +§(w) +V(w)=0 (6)

(to see this take the limit in —oo and use H* C C}).

We assert that w > —2. Assume, by contradiction, that w has a local minimum
below —2 at a certain ¢*. Then by (6), w'(t*) = w”(¢*) = 0. Since it is a minimum,
necessarily w”(t*) = 0. By uniqueness of the Cauchy problem, this implies that
w = w(t*), which is a contradiction. Hence w > —2.

As weak convergence in Z implies uniform convergence on compact sets, for each
R > 0 we have, V being non-negative,

[ v =pm [ viw) <o [ Vi) <o

R n—o0 _R neN

for some C > 0, hence

/]R V(w) < oo.

Since V' is non-negative and [V (w) and [ |w'|* are bounded, we conclude that either
w(t) — 0 as t — oo, in which case we are done, or w(t) — —2. In the latter case,
we infer from Equation (3) that w+ 2 € H*(R"), so that in phase space

(w(t), w'(t), w"(t),w" (t)) = (—=2,0,0,0) as t — oo.

But because (—2,0,0,0) is an equilibria of saddle-focus type, from he Hartman-
Grobman Theorem [6] on the conjugacy of linear and nonlinear flows, we get that
there exists t* such that w(t*) < —2. This contradicts the previous claim that
w(t) > —2 for all ¢.

Summarising, we have the following:
Theorem 6. For almost every 5 € |0, \/g], there exists a pair of solutions homo-

clinic to +1 and —1 respectively for the classical Swift-Hohenberg equation (2). The
homoclinic to —1 does not pass through +1 and vice versa.



3 The case of two saddle-foci

It appears from the proof above that the particular shape of V is not essential.
Indeed, only the double well behaviour with two saddle-foci equilibria was used.
With a very similar proof one thus obtains:

Theorem 7. Assume that V € C? satisfies the following hypotheses:

1. V(0) =V'(0) = 0 and V"(0) = ap > 0;
2. V(u*) =V"(u*) =0 and V"(u*) = ay > 0 for some u* < 0;
3. V(u) > 0 for each u € (u*,0) U (0, 00);

4. liminf, o u?V (u) > 0.

Then, for almost every 8 € [0, 8*], there exists a solution homoclinic to 0 for the

generalised Swift-Hohenberg equation, where * := /4 min(ay, a1).

Hypotheses 1 and 2 ensure that the equilibrium points 0 and u* are non-degenerate.
Hypothesis 4 prevents functions with [ /> and [V (u) bounded from tending to co.
Of course the statement of the previous theorem is trivially adapted in case u* > 0.

4 The case of two minima but only one saddle-
focus

It turns out that for the existence of a homoclinic solution (say to 0), the type of
the second equilibrium (u* in the previous section) does not matter. The Hartman-
Grobman Theorem concerning the conjugacy of the nonlinear flow with the linear
one close to the equilibrium is no longer at hand. Nevertheless, a careful estimate
will allow us to conclude as in the previous section.

Theorem 8. Assume that V € C? satisfies the following hypotheses:
1. V(0)=V'(0) =0 and V"(0) = a > 0;
2. V(u*) =V'(u*) =0 and V"(u*) > 0 for some u* < 0;
3. V(u) >0 for each u € (u*,0) U (0, 00);

4. liminf, o u?V (u) > 0.

Then, for almost every § € [0, 8*], there exists a solution homoclinic to 0 for the
generalised Swift-Hohenberg equation (1), where 5* := v/4a.

10



Proof. Everything goes the same way as in the proof of Theorem 6 until we used
Hartman-Grobman Theorem. Using the notation of Section 2, we only have to prove
that the alternative w(t) — —2 as t — oo (while w(t) > —2 for all ¢) is excluded in
order to conclude the proof. This is done in the next lemma. O

Lemma 9. Under the hypotheses of Theorem 8, there exists a neighbourhood U
of (u*,0,0,0) in phase space such that every solution u of the generalised Swift-
Hohenberg equation that enters U satisfies infeg u(t) < u*.

Proof. The case of a saddle-focus was treated before, the only remaining one is then
when (u*,0,0,0) is a center. Let +017 and +05¢ be the eigenvalues of the linearised
equation at (u*,0,0,0). Consider the case o1 # 02. We choose a T* > 0 such that
|exp(io1T*) + 1| < € and |exp(iooT™) + 1| < € for some small € that will be fixed
later. The linearised equation around u* can be rewritten in the form X = AX,
where

0 1 0 0
0 0 1 0

A= 0 0 0 1
—V'u) 0 -8 0

Let § := (2T*elMIT™)~1, There exists a constant r > 0 such that
lu—u*| <r=|V'(u)—V"(u)(uv—u)| <dlu—u.

We claim that the ball U := B((u*,0,0,0),r/K) fulfils the assertion of the lemma,
where we choose K > 1 so large that any orbit entering the ball I/ stays in the ball
B((u*,0,0,0),r) for at least a time 27* (such a K exists since u* is an equilibrium
point).

Let u be a solution of the generalised Swift-Hohenberg equation which enters U at,
say, t = 0. Let t* € [0,27™] be a point such that |u(t*) —u*| = maxcjo o7+ |u(t) —u*|.
In case u(t*) < 0 there is nothing left to prove, so let us assume that u(¢*) > 0.
Then, up to reversing the time, one has that the orbit stays in B((u*,0,0,0),7r)
for ¢t between t* and t* + T*. After translation we may write t* = 0. Clearly
lu(t) — u*| < |u(0) — u*| for t € [0,T7].

Write y := v —v*, and Y = (y,¢',9",y"). Let W be the solution of the linear
equation W = AW with W(0) = Y(0). Define Z :=Y — W, so that

Z(t) = AZ(t) + C(t).
For ¢t € [0,7*] one has
[C@)]rs = [V (u(t)) = V" (w)y ()] < Sly(t)] < 6]y (0)]-

Thus, for 0 <t < T,

t
2| < / 1A Z(5) s ds + 5Ty (0),

11



and by Gronwall’s inequality, for 0 <t < T™,
2(8) s < 5T I1y(0)] < 2 1y(0)
Finally, using the fact that w(0) = y(0), one obtains
y(T7) < w(T) + |y(T7) — w(T™)| < w(T”) + [2(T7)]
< ~(1 - c(e))u(0) + 5u(0),

where c¢(¢) — 0 as ¢ — 0. Hence, choosing ¢ sufficiently small we conclude that
y(T*) is negative.

The case 07 = 05 can be dealt with in an analogous manner, and we will not give
the details here because, being a non-generic situation, it does not influence the
statement of Theorem 8. O

5 The case of two equilibria

In this section we solve the case where possibly just two equilibrium points exists,
one of which is a local minimum of the potential. More precisely, we assume that

1. V(0) =0 and V'(0) > 0;

2. V(u*) =V'(u*) =0 and V"(u*) = a > 0 for some u* > 0;
3. V(u) > 0 for each u € (0,u*) U (u*, 00);

4. liminf, o u?V (u) > 0.

We look for homoclinics to u* (notice the change of notation compared to the pre-
vious sections). Again, the choice we make of the relative positions of the two zeros
is completely arbitrary. We assume that uv* is an equilibrium of saddle-focus type,
ie. 0 < f < B*:=+4a. We are going to find solutions of the Equation (1) that are
homoclinic to u* for almost all values of 5 in this range.

Define the smooth cut-off function

0 ifu<—A,
We(u) =< Z=(u+A)? ifue[-A,¢]
V(u) if u> e,

with B
S+ AP =V(E) and Bue+A)=V'(e),
or explicitly:

2V (¢e)
V'(e)

—e=¢+0(? and B, = V() = V10) +O(1).

A= 2V (¢) 2

12



This way W, € C'. By the results of the previous sections, for almost every 3 €
[0, 8*] there exists a sequence u. (for some € — 0) of solutions of

ul” + Bul + Wl(ue) =0,

with u.(z) > —A. for all x € R Without loss of generality we take a global
minimum at the origin. If there exists an ¢ > 0 such that u.(0) > &, then u. is a
solution of the non-truncated equation and we have finished. If not, then

u(0) € (=Asye), wl(0)=0, uf(0)=v/B.(u(0)+A), u(0)<0.

The value of u”(0) comes from the energy, and we have u!(0) < 0 after possibly
inverting z. We will show that this leads to a contradiction by investigating the
limit € — 0.

Define v, = %ﬁ. Then v, satisfies
€

UII”+6U”+

1
Ag +8f8(lu) - Oa

where one calculates that

0 ifv<0
fe(v) =< V(e if v € [0,1]
V(A +e)v—A,) ifv>1.

R0 €0,1), v0)=0, v(0)=Bu(0), +(0) =2 <

A +e¢
We distinguish two cases (possibly after taking a subsequence)
m mn
(2) ;% is bounded, (i7) {4/% — —oo0 ase — 0.
Case (7): Use the rescaling
we(y) = ve(x) ith ! x
€ = Ug W =  —/——.
Y VT VA te
One obtains
w! + /A + efuw! + fo(w.) =0,
and (since \/B:(A. +¢) = /V'(¢))
! n m uIEII(O)
we(0) € (0,1),  wz(0) =0, w(0)=+/V'(e)w:(0), w(0)=—-7== € (-C,0],

VA, + ¢

13



for some C' > 0 (since we are in Case (7)). Taking a converging subsequence w, — w
we obtain in the limit

0 ifw<0
w" + f(w) =0, with f(w) =< V'(0)w ifw €[0,1]
V'(0) if w>1,

and
w(0) € [0,1], w'(0) =0, w"(0)=+/V'(0)w(0), w"(0)e (—C,0].

If w(0) # 0 then, since w™ < 0 as long as w > 0, this implies that w becomes
negative, a contradiction (w is a limit of positive functions). If w(0) = 0 then w,
stays close to 0 for very long times for small . On the other hand w,. oscillates
(since it is close to a saddle-focus) with a frequency of approximately /V’(0)/2 for
small €, so that w, becomes negative (cf. Section 2), a contradiction.

Case (i7): Use the rescaling

wy) =vle) with y= (M) e

Ac+¢

1/3 1/3
Write &k, = (|£,€,‘('8€)|> , then k, = (lvz;f‘,?(;f) VA, +& — 0ase— 0. One obtains

Wl + k2w + K fu(w.) = 0,
and

w.(0) € (0,1), wl(0) =0, w!(0)=+v/Beklw.(0), w!(0)=-L.

Taking a converging subsequence w. — w we obtain in the limit w™”

by assumption (we are in Case (7))

VB = A (Y - i (VAT

|u(0)] |u"(0)]

= 0, and, since

one has
w(0) € [0,1], «'(0)=0, w"(0)=0, w"(0)=-1.

Clearly w becomes negative, a contradiction.

Remark 10. When V(0) = V'(0) = 0 and the potential has a zero on either side
of 0, then the method developed in Sections 2 to 5 can be applied as well. To
be precise, suppose there are points u; < 0 < ug such that V(u1) = V(ug) = 0
and V(u) > 0 on (ui,us) \{0}, and the non-degeneracy conditions V'(u1) > 0 or
V"(ur) > 0 and V'(ug) < 0 or V"(ug) > 0 are satisfied. Then for almost all 8 > 0
for which 0 is of saddle-focus character there exists a homoclinic solution to 0.

14



6 The suspension bridge equation

Travelling waves localised in space for the suspension bridge equation,

0u 0*u ,
Tl ——@‘FV(U), (7)

were studied by Chen and McKenna in [4]. The Ansatz u(t,z) = v(z — ct) yields
the profile equation:
U”” + CZ,UII + V’(U) — 0’

which has the same form as those studied in the previous section. Existence of
solutions was proved in [4] under the the following assumptions:

1. V e C*(R), V'(u) = max{0,u} — 1 + g(u);

3. (u—1)¢"(u) <0 for all u # 0;
4. 3Ky > 0 such that |g"(u)| < K for all u # 0.

There, the authors asked if one could remove these limitations, as numerical evidence
suggests. In particular, can one have V' (u) = e* —u — 1, which is the potential used
in [4] for the numerics.

Indeed, the analysis of Section 2 still applies here. The absence of a second well
even makes things simpler, since the bound on the L? norm for v, readily follows
from that on |v]|z2, [v|z2 and Jg.

We obtain:

Theorem 11. Assume that V satisfies the following hypotheses:
1. V(0) =V'(0) =0 and V"(0) = a > 0;
2. limsup,_,_, V(u)/|u|? = 0;
3. V(u) > 0 for each u # 0;

4. liminf, 4o u?V (u) > 0.

then for almost all ¢ € [—v/4a,v/4al, there exists a travelling wave solution for
Equation (7), with profile in H*(R).

Proof. The proof follows the same lines as that of Theorem 6; just notice that the
equivalent of Lemma 4 still holds thanks to assumption 2 above. O
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