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Abstract

We investigate periodic and chaotic solutions of Hamilonsystems ifiR* which
arise in the study of stationary solutions of a class of blstavolution equations. Under
very mild hypotheses, variational technigues are useddw $hat, in the presence of two
saddle-focus equilibria, minimizing solutions respea: tbpology of the configuration
plane punctured at these points. By considering curvesprogpiate covering spaces of
this doubly punctured plane, we prove that minimizers ofyth®motopy type exist and
characterize their topological properties.

1 Introduction

This work is a continuation of [5] where we developed a constrained minimizatshad to
study heteroclinic and homoclinic local minimizers of the action functional

nlul = [ staidatyde = [[Tre 4 Sl + Fw)ar (L.1)
7 L2 2
which are solutions of the equation
yu™ — Bu" + F'(u) =0 (1.2)

with v, 8 > 0. This equation with a double-well potentiéllhas been proposed in connection

with certain models of phase transitions. For brevity we will omit a dedaieckground of

this problem and refer only to those sources required in the proofs of the resultrédA m

extensive history and reference list are provided in [5], to which we teéinterested reader.
The above equation is Hamiltonian with

é|ul|2

H:_ mn._ 1 1 "2
YU u+2\u\ t3

— F(u). (1.3)

The configuration space of the system is theu')-plane, and solutions t@.2) can be rep-
resented as curves in this plane. Initially these curves do not appear tetheted in any
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way. However, the central idea presented here is that, \ithér0) are saddle-foci, the min-
imizers of J respect the topology of this plane punctured at these two points, which allows
for a rich set of minimizers to exist. Using the topology of the doubly -punctured plashe a
its covering spaces, we describe the structure of all possible types of mémgnincluding
those which are periodic and chaotic. Since the action of the minimizers ofldiegeypes
is infinite, a different notion of minimizer is required that is reminiscenth& minimizing
(Class A) geodesics of Morse [8]. Such minimizers have been intensiveliedtin the con-
text of geodesic flows on compact manifolds or the Aubry-Mather theory (see e.g. [1] for a
introduction). A crucial difference is that we are dealing with a non-mechbsyséem on
a non-compact space. Nevertheless, we are able to emulate many of Moigi@al argu-
ments about how the minimizers can intersect with themselves and eachfha precise
statement of the main results we refer to Theorem 4.2 and Theorem 6.8. Fed netak on
mechanical Hamiltonian systems we refer to [9, 2] and the referencesrther

Another important aspect of the techniques employed here and in [5] is the mildness of
the hypotheses. In particular, our approach requires no transversality or non-degeosr-
ditions, such as those found in other variational methods and dynamical systems skeeory
[5]. Specifically, we will assume the following hypothesis Bn

(H): F € C?, F(£1) = F'(£1) =0, F"(£1) > 0, andF(u) > 0 for u # +£1.
Moreover there are constants andc, such thatF'(u) > —c; + cou?.

We will also assume for simplicity of the formulation thatis even, but many analogous
results will hold for nonsymmetric potentials, c.f. [5]. Finally, we assuha the parameters
v and g3 are such that. = +1 are saddle-foci, i.edy/3? > 1/F"(+1). An example of a
nonlinearity satisfying these conditions i) = (u? — 1)?/4, in which case (1.2) is the
stationary version of the so-called extended Fisher-Kolmogorov (EFK) equati

In [5] we classify heteroclinic and homoclinic minimizers by a finite sequefceven
integers which represent the number of times a minimizer crasses+1. More general
minimizers can be similarly classified by infinite and bi-infinite sequsnas described in
Section 2. A more general notion of minimizer for these types is defined in S&;taond in
Section 4 we prove that such minimizers exist.

In Sections 5 and 6 we show that many properties of these symbol sequences such as s
metry and periodicity are reflected in the corresponding minimizers. licpkar, we show
that for any periodic type, there exists a periodic minimizer of that type. Trssifzation
of minimizers by symbol sequences has other properties in common with symbolic dynam-
ics; for example, if a type is asymptotically periodic in both directions, tlmemet exists a
minimizer of that type which is a heteroclinic connection between two periogiomzers.

The minimizers discussed here all lie in the 3-dimensional ‘energy-manifdld’ =
{(u, v, u", ") | H((u,u',u",u") = 0}. Exploiting certain properties of minimizers that
are established in this paper, we can deduce various linking and knotting chatasterhen
they are represented as smooth curvesfin However, we will not address this issue in this
paper. The minimizers found in this paper are also used in [13] to construct petherns for
the evolutionary EFK equation on a bounded interval.

Some notation used in this paper was introduced previously in [5]. While we have at-
tempted to present a self-contained analysis, we have avoided reproduciteypatticularly
in Section 5.1) which are not central to the ideas presented here, and whittoermeghly
explained in [5].



2 Types and function classes

A functionu : R — R can be represented as a curve in theu')—plane, and the asso-
ciated curve will be denoted bly(u). Removing the equilibrium point&t1, 0) from the

(u, u")—plane (the configuration space) creates a space with nontrivial topology, denoted by
P = R?\{(£1,0)}. In P we can represent functiomswhich have the property that # 0

whenu = 41, and various equivalence classes of curves can be distinguished. For example,
in [5] we considered classes of curves that terminate at the equilibrium geint®). An-

other important class consists of closed curve® jnvhich represent periodic functions. We
now give a systematic description of all classes to be considered.

Definition 2.1 A type is a sequencg = (g;)icz With g; € 2N U {oo}, whereco acts as a
terminator. To be precisg satisfies one of the following conditions:

i) Z = Z, andg € 2N? is referred to as ai-infinite type.
i) Z={0}UN, andg = (0, g1, g, ...) With g; € 2N forall i > 1, or
7 =-NU{0},andg = (...,g_2,9_1,00) with g; € 2N for all i < —1.
In these caseg is referred to as aemi-terminated type
i) Z={0,...., N+ 1} with N > 0, andg = (o0, g1, -.-, gn, 00) With g; € 2N.
In this caseg is referred to as derminated type.

These types will define function classes using the vegtiar count the crossings af at
the levelsu = +1. Since there are two equilibrium points, we introduce the notigoeoity
denoted byp, which will be equal to eithed or 1.

Definition 2.2 A functionu € H2.
{A;}icz such that

) uH(£1) = Uier 4ir

||) #A;, = g; fori € 7,

i) maxA4; <minA;,,

iv) u(4;) = (=1)*P* and

V) ez Ai consists of transverse crossingsdef, i.e.,v'(z) # 0 for z € A;.

(R) is in theclass M (g, p) if there are nonempty sets

Note that by Definition 2.1, a functianin any classV/ (g, p) has infinitely many crossings
of +1. Definition 2.2 is similar to the definition of the clad$(g) in [5] except that here it is
assumed that all crossings-6f are transverse. Only finitely many crossings were assumed
to be transverse in [5] so that the clasdéég) would be open subsets &f+ H?(R). Since
we will not directly minimize ove (g, p), we now require transversality of all crossings of
+1 to guarantee thdi(u) € P. However, note that the minimizers found in [5] are indeed
contained in classe¥ (g, p) as defined above, where the typeare terminated.

The classedV/ (g, p) are nonempty for all pairég, p). Conversely, any functiom €
(R) is contained in the closure of some clad$g, p) with respect to the complete met-
(R) given by p(u,v) = >, 27" min{1,|lu — vy}, cf. [10]. Thatis, if
we defineM(g,p) := {v € H2 (R) | Ju, € M(g,p), with u,, — u in HZ (R)}, then
H? (R) = Ug,p)M(g,p). Note that the functions ifM (g, p) := M(g,p) \ int(M (g, p))
have tangencies at1 and thus are limit points of more than one class. In the case of an
infinite type, shifts ofg can give rise to the same function class. Therefore certain infinite
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types need to be identified. Letbe the shift map defined by(g); = ¢;+1 and the map
7: {0,1} — {0, 1} be defined by (p) = (p+1)mod 2 = |p — 1|. Two pairs (infinite types)
(g,p) and(g’,p’) are equivalent ig’ = 0"(g) andp’ = 7"(p) for somen € Z, and this
impliesM(g,p) = M(g',p').

3 Definition of minimizer

When the domain of integration B, the action/[u] given in (1.1) is well-defined only for
terminated typeg andu € M(g, p) N {X, + H*(R)}, whereX,, is a smooth function from
(—1)P*! to (—1)P. For semi-terminated types or infinite types the actibis infinite for
everyu € M(g,p). We will define an alternative notion of minimizer in order to overcome
this difficulty.

For every compact intervdl C R the restricted action; is well-defined for all types.
When we restrict, to an intervall, we can define itsype and parity relative td, which we
denote by(g(u|r), p(u|r)). Namely, letu € M(g,p). Itis clear that(u,u’)|s; & (£1,0)
for any bounded interval. Theng(u|;) is defined to be the finite-dimensional vector which
counts the consecutive instancesudf = +1, andp(u|;) is defined such that the first time
u|; = £1in I happens at—1)P*!. Note that the components gfu|;) are not necessarily all
even, since the first and the last entries may be odd. We are now ready tihatdéfinition
of a (global) minimizer inM (g, p).

Definition 3.1 A functionu € M (g, p) is called aminimizer for J over M (g, p) if and only
if for every compact interval the numbetJ;[u|;] minimizesJ[v|;/] over all functionsy €
M (g, p) and all compact intervalg’ such that(v, v')|sr = (u, u')|s;r @and(g(v|r), p(v|r)) =

(g(ulr),p(ulr)).

The pair(g(u|r), p(u|r)) defines a homotopy class of curvesfnwith fixed end points
(u,u')|sr. The above definition says that a functionrepresented as a curVg¢u) in P, is a
minimizer if and only if for any two point$> and P, onI'(u), the segment (Py, P,) C I'(u)
connectingP; andP; is the most/-efficient among all connectiorfé(Pl, P,) betweenP; and
P, that are induced by a functiorand are of the same homotopy typd &@#, P,), regardless
the length of the interval needed to parametrize the cﬁ(xfe, P,). As we mentioned in the
introduction, this is analogous to the length minimizing geodesics of Morse and Hedlund and
the minimizers in the Aubry-Mather theory. The set of all (global) minimizera/ (g, p)
will be denoted byC' M (g, p)-

Lemma 3.2 Letu € M(g, p) be a minimizer, them € C*(R) andu satisfies equatiof.2).
Moreover,u satisfies the relatio (u, v', u”,u") = 0, i.e. the associated orbit lies on the
energy leveH = 0.

Proof. From the definition of\/ (g, p), on any bounded intervdl C R there exists,(I) > 0
sufficiently small such that + ¢ € M(g,p) for all ¢ € HZ(I), with ||¢|lg> < € < &.
ThereforeJ;[u + ¢] > J;[u] for all such functions), which implies thatl.J;[u] = 0 for any
bounded interval C R, and thus: satisfies (1.2).
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To prove the second statement we argue as follows. Sinee M(g,p), there exists
a bounded interval such thatu'|s; = 0. Introducing the rescaled variable= /T with
T = |I] andv(s) = u(t), we have

1
Tilu] = J[T,v] = /0 [%%wu %§|v’|2+TF(v)} ds, (3.1)

which decouples: andT. Sinceu'|s; = 0 we see from Definition 3.1 that[T + ¢,v] >
Jr[u] = J[T,v]. The smoothness of in the variable’ > 0 implies thatZ J[r,v]| = 0.
Differentiating yields

T=

8 _ ! 743 "2 72ﬂ 12
EJ[’T,’U] = /0 [—T §7|v\ -7 §\v| —I—F(v)]ds

= 7'_1/ {—§7|u"|2—é\u'|2+F(u)} dt
. 172 2

:
= —7'1/ H(u,u',u",v")dt = —E,
0

ThusE = 0, andH (u, v',u",u™) = 0 for t € I. This immediately implies that = 0 for alll
teR ]

The minimizers forJ found in [5] also satisfy Definition 3.1, and we restate one of the
main results of [5].

Proposition 3.3 Supposé is even and satisfig$l), and 3,y > 0 are chosen such that1
are saddle-focus equilibria. Then for any terminated tgpeith parity either0 or 1 there
exists a minimizet. € M (g, p) of J.

From Definition 2.2, the crossings af € M(g,p) with =1 are transverse and hence
isolated. We adapt from [5], the notion of a normalized function with a few minangésto
reflect the fact that we now require every crossing-0fto be transverse.

Definition 3.4 A functionu € M (g, p) is normalized if, between each pait(a) and u(b)
of consecutive crossings &fl, the restrictionu|, s is either monotone ot|(, ;) has exactly
one local extremum.

Clearly, the case of|(,4 being monotone can occur only between two crossings at dif-
ferent levelst1, in which case we say thathas aransition on[a, b].

Lemma 3.5 If u € CM (g, p), thenu is normalized.

Proof. Sinceu € M(g, p), all crossings ofi = +1 are transverse, i.a/' # 0. Thus for
any critical pointty € R, u(tg) # +1, and the Hamiltonian relation from Lemma 3.4 implies
thatyu"(t9)%/2 = F(u(ty)) > 0. Thereforeu is a Morse function, and between any two
consecutive crossings afl there are only finitely many critical points. Now on any interval
between consecutive crossings whens not normalized, the clipping lemmas of Section 3
in [5] can be applied to obtain a moyeefficient function, which contradicts the fact thats
a minimizer. ]



4  Minimizers of arbitrary type

In this section we will introduce a notion of convergence of types which will be us8dction
6.2 to establish the existence of minimizers in every cldsg, p) by building on the results
proved in [5].

Definition 4.1 Consider a sequence of typag’, p") = ((¢"):cr,,, P") and a type(g, p) =
((9:)ier, P)- The sequencgg™, p”) limits to the type(g, p) if and only if there exist numbers
N, € 2Z such thatg?, v\ ,n_, — giforall i € I asn — oo. We will abuse notation and

write (g, p™) — (8, p).

We should point out that a sequence of types can limit to more than one type. For
example the sequendg™,0) = ((c0,2,2,n,4,4,4,4,n,2,2,2,...),0) limits to the types
((00,2,2,0),0), ((00,4,4,4,4,0),1) and((cc, 2, 2,2, ...),0).

Theorem 4.2 Let (g", p") — (g,p) andu, € CM(g",p") With ||u,|1,.c < C forall n.
Then there exists a subsequengg such thatu,, — u € M(g,p) in Cii.(R), andu is a
minimizer in the sense of Definiti@l, i.e.u € CM(g, p).

Proof. This proof requires arguments developed in [5] to which the reader is refared f
certain details. The idea is to take the limitwf restricted to bounded intervals. We define
the numbersV,, as in Definition 4.1, and we denote the convex hulleby I; = conv(A4;).
Due to translation invariance we can pin the functiepsso thatu, (0) = (—1)P*!, which
is the beginning of the transition betweéf . . , andI?, y ... ,. Due to the assumed a
priori bound and interpolation estimates which can be found in the appendix to [&,ither
enough regularity to yield a limit functiof as aC\_—limit of u,,, after perhaps passing to
a subsequence. Moreoversatisfies the differential equation (1.2) Bn The question that
remains is whethei € M (g, p).

To simplify notation we will now assume that, = 0 andp™ = p = 0. Fixing a small
6 > 0, we definel*(6) > I as the smallest interval containid§ such thatu|sr»s) =
(—1)" — (=1)"*14. If g is a (semi-)terminated type thdfi(d) is a half-line. The interval of
transition betweed} (§) andI}, , (6) is denoted byL} (). To see thati € M (g, p), the goal
is to eliminate the two possibilities that a priori may lead to the losg@atmn of crossings
in the limit so thatu ¢ M (g, p): the distance between two consecutive crossings, icould
grow without bound ofi could posess tangenciesiat +1.

Due to the a priori estimates V1> we have the following bounds of

J[un‘jzn((s)] S C, (41)

and
J[tn|L25)] < C7,

whereC andC” are independent of and:. Indeed, note that for large enough the homotopy
type ofu,, on the intervald(4) is constant by the definition of convergence of types. Since
the functionsu,, are minimizers,J[u,|»(s] is less than the action of any test function of this
homotopy type satisfying the a priori bounds @m@andu' on dI7*(6) (see [5], Section 6, for

a similar test function argument). The estimaté(s)| < C(d) is immediately clear from
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Lemma 5.1 of [5]. We now need to show that the distance between two crossifigs)of!
within the intervall*(§) cannot tend to infinity.

First we will deal with the case whegj* is finite for all n. Suppose that the distance
between consecutive crossings (ef1)**! in I*(§) tends to infinity as» — oo. Due to
Inequality (4.1) and Lemma 3.5, minimizers have exactly one extremum betwesingro$
(—1)**! for anye > 0, and hence there exist subintervals C I(6) with |K,| — oo, such
that0 < |u, — (—1)%| < e on K,, whereg, € {0,1}, and|u'|sx,| < e. Taking a subsequence
we may assume that, is constant.

We begin by considering the case whege= i + 1. Now e can be chosen small enough,
so that the local theory in [5] is applicable i,. If |K,| becomes too large thep, can be
replaced by a function with lower action and with many crossings-af*+*. Subsequently,
redundant crossings can be clipped out, thereby lowering the action. This implieg tisa
not a minimizer in the sense of Definition 3.1, a contradiction.

The case wherg, = i must be dealt with in a different manner. First, there are unique
pointst, € K, such that/ (t,) = 0, and for these points, (t,) — (—1)¢ as|K,| — oco. Let
un(s,) be the first crossing df~1)+* to the left of K,,. Taking the limit (along subsequences)
of u,(t — s,) we obtain a limit function; which is a solution of (1.2). Ift, — s,| is bounded
thenw has a tangency ta = (—1)" at somet, € R. All u, lie in {H = 0} (see (1.3))
and so does, henceu”(t.) = 0. Moreoveru™(t,) = 0, becausei(t.) is an extremum. By
uniqueness of the initial value problem this implies that (—1)?, contradicting the fact that
u(0) = (=1)"L. If |t, — s,| — oo, thenw is a monotone function o, o), tending to(—1)*
asr — oo, and its derivatives tend to zero (see Lemma 3 in [11] or Lemma 1 pgirt (i7]
for details). This contradicts the saddle-focus character of the equilibrium point

In the case thag! = co we remark that (4.1) also holds whéhis a half-line. It follows
from the estimates in Lemma5.1in [5] thgt — (—1)**! asx — oo orz — —oc (Whichever
is applicable). From the local theory in Section 4 of [5] and the factdhas a minimizer,
it follows that the derivatives of,, tend to zero. The analysis above concerning the intervals
K, and the clipping of redundant oscillations how goes on unchanged.

We have shown that the distance between two crossingsl aé bounded from above.
Next we have to show that the limit function has only transverse crossings. dfhis ensures
that no crossings are lost in the limit. Wh&nvould be tangent t¢—1)**! in I;, then we can
construct a function i € M(g,p) in the same way as demonstrated in [5] by replacing
tangent pieces by motg-efficient local minimizers and by clipping. The functiorstill has
a lower action tham on a slightly larger interval (the limit functio@ also obeys (4.1), so that
the above clipping arguments still apply). Singe— @ in Cj._ it follows thatJ;[u,] — J;[u]
on bounded intervalg. This then implies that for, large enough the function, is not a
minimizer in the sense of Definition 3.1, which is a contradiction.

The limit functionz could also be tangent {e-1)* for somet, € I,. As before, such tan-
gencies satisfyi(ty) — (—1)* = @' (¢y) = @"(to) = @" (to) = 0, which leads to a contradiction
the uniqueness of the initial value problem.

Finally, crossings of:-1 cannot accumulate since this would imply that at the accumulation
point all derivatives would be zero, leading to the same contradiction as .alogparticular,
if g7 — oo for somei, then|I}'| — oo and the crossings iA} for j > i move off to infinity
and do not show im, which is compatabile with the convergence of types.

7



We have now proved that € M(g, p) and, sincei is theC}t_—limit of minimizers,u is

loc

also a minimizer in the sense of Definition 3.1. ]

Remark 4.3 It follows from the estimates in Theorem 3[@{ that in the theorem above we
in fact only need ar.*°-bound on the sequenesg.

Remark 4.4 It follows from the proof of Theore2that there exists a constasy > 0 such
that for all uniformly bounded minimizetst) it holds thatju(t) — (—1)**?| > ¢ forall ¢ € I,
and alli € Z. This means that the uniform seperation property discussgs] iis uniformly
satisfied by all minimizers.

Remark 4.5 In order to take a limit of the sequeneg € CM(g,, p) in the above theorem,
we need the a priori estimatéu, |1 < C for all n. We will show in Section 6 that this
estimate will be satisfied for many sequenggssee Corollary 6.2 and Theorem 6.3 below.
Note that for the special case whefgu) ~ |u|® as|u| — oo for somes > 2, an a priori L
bound on the set of all solutions ¢f.2)with domain of existend® can be obtainedy4].

5 Periodic minimizers

An bi-infinite typeg is periodic if there exists an integer such that™(g) = g. The (natural)
definition of the period of is min{n € 2N|o"(g) = g}. We will write g = (r) where

r = (¢1,.--,g,) @ndn is even. Cyclic permutations efwith possibly a flip ofp give rise to
the same function clas¥ ({r), p). In reference to the typé&) with parity p we will use the
notation(r, p). Any such type paifr, p) can formally be associated with a homotopy class
in 71 (P, 0) in the following way. Let, ande; be the clockwise oriented circles of radius one
centered at1,0) and(—1, 0) respectively, so thdk,y] and[e;] are generators for, (P, 0).
Defining 6(r, p) = e:’,’/i .. - ep? the maph : Ugsi2N% x {0,1} — m(P,0) is an
injection, and we define; (P, 0) to be the image of in 7,(P,0). Powers of a type pair
(r,p)F for k > 1 are defined by concatenationmoWwith itself k times, which is equivalent to

(r,;p)* = 67" ((0(r, p))").

Definition 5.1 Two pairs(r,p) and (r,p) are equivalent if there are numberg,q € N
such that(r, p)? = (r,p)? up to cyclic permutations. This relatio(w,p) ~ (T,p), is an
equivalence relation.

Example: if (r,p) = ((2,4,2,4),0) and (T,p) = ((4,2,4,2,4,2),1), thend(r,p)® =

6(t,p)?. The equivalence class ¢f, p) is denoted byjr,p]. A type (r,p) is a minimal
representative fojr, p] if for each (t,p) € [r, p] there isk > 1 such that¥,p) = (r,p)*

up to cyclic permutations. A minimal representative is unique up to cyclic petions. It is
clear that in the representation of a periodic tgpe (r), the typer is minimal if the length
of r is the minimal period. Due to the above equivalences we now have that

M((r),p) = M((r),p), V (F,p) € [r,p].

It is not a priori clear that minimizers i ({r), p) are periodic. However, we will see that
among these minimizers, periodic minimizers can always be found.
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For a given periodic typér) we consider the subset of periodic functiong\it{(r), p),

Mper({r), p) = {u € M({r),p) | uis periodig.

For anyu € Mpe((r),p) and a periodl’ of u, I'(u|j7) is @ closed loop irP whose ho-
motopy type corresponds to a nontrivial elementrpfP, 0). In this correspondence there
is no natural choice of a basepoint. For specificity, we will describe how tertrekcorre-
spondence with the origin as the basepoint and thereafter omit it from the notatems- Tr
late u so thatu(0) = 0. Lety : [0,1] — P be the line from0 to (0,%'(0)), and let
v(t) = y(1 —t). ThenD'(ulgry) = 7* o I'(ulpr) © v, and[I'(ulo,r)] € 7" (P,0). Now
define[l" (u|jo,m)] = [T (u o,71)]- Thus there exists a pdir'[I'(u|jpm)] = (¥, D) € [r, p], with

T = r* for somek > 1. Therefore we define for an§, p) € [r, p|

Mper(T, D) = {u € Myer((r),P) | [['(tu|0,17)] ~ O(T, D) € m1(P) for a periodT of u}.

The typer = g(uljo,7r)), with g = (r), is the homotopy type of; relative to a periodl’.
This type has an even number of entries. It follows thit.(r,p) C Mpe (T, p) for all
(T,p) = (r,p)¥, k > 1. FurthermoreM,e,((r),P) = Ugp)elr.p)Mper(T, D). In order to
get a better understanding of periodic minimizersMi{(r), p) we consider the following
minimization problem:

Toer(r,p) = inf  Jrp[u] = inf Jr[ul, (5.1)
uEMper(r,p) Mgﬂer(‘:;—p)
TeR

where J is action given in (1.1) integrated over one period of lerifittand M. (r, p) is
the set of7-periodic functions, € M. (r, p) for which g(u|j,r7) = r. Note thatT is not
necessarily the minimal period, unlasis a minimal representative fdr|. It is clear that for
v, 8 > 0 the infimaJ,.(r, p) are well-defined and are nonnegative for any homotopy type
At this point it is not clear, however, that the infirdg..(r, p) are attained for all homotopy
typesr. We will prove in Section 6 that existence of minimizers for (5.1) can be pbthi
using the existence of homoclinic and heteroclinic minimizers already estallin [5].

Lemma 5.2 If J,e:(r, p) is attained for some € M, (r,p) thenu € C*(R) and satisfies
(1.2). Moreover, since: is minimal with respect t@’ we haveH (u, ', v",u") = 0, i.e. the
associated periodic orbit lies in the energy surfa¢e= 0.

Proof. Since J,e:(r, p) is attained by some € M, (r, p) for some period’, we have
that J7[u + @] — Jr[u] > 0 for all ¢ € H?(S', T) with ||¢|| 2 < e, sufficiently small. This
implies thatd.J7[u] = 0, and thus: satisfies (1.2). The second part of this proof is analogous
to the proof of Lemma 3.2. n

We now introduce the following notation:

CM({r),p) = {u € M({r),p) | uis a minimizer according to Definition 3.1},
CMyer((r),p) = {u € CM((r),p) | uis periodic},
CMper(r, p) = {u € Mper(r, p) | u is a minimizer for Jper(r, P)}-
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5.1 Existence of periodic minimizers of typer = (2, 2)*

If we seek periodic minimizers of type= (2, 2)¥, the uniform separation property for min-
imizing sequences (see Section 5 in [5]) is satisfied in the dlissr). Note that the parity
is omitted because it does not distinguish different homotopy types here. The unifmarase
tion property as defined in [5] prevents minimizing sequences from crossing the bpahdar
the given homotopy class. For any other periodic type the uniform separation prapedty i
a priori satisfied. For the sake of simplicity we begin with periodic minarsaf type(2, 2)
and minimizeJ in the classMpe((2,2)).

Minimizing sequences can be chosen to be normalized due to the following |emmnicé,
we state without proof. The proof is analogous to Lemma 3.5 in [5].

Lemma 5.3 Letu € M,((2,2)) andT be a period of.. Then for every > 0 there exists a
normalized functionw € M,.((2, 2)) with periodT” < T such that/;[w] < Jr[u] + €.

The goal of this subsection is to prove that wheérsatisfies (H) andg?,v > 0 are such
that+1 are saddle-foci, thef,.:((2, 2)) is attained, Theorem 5.5 below. The proof relies on
the local structure of the saddle-focus equilibtiaand is a modification of arguments in [5];
hence we will provide only a brief argument. The reader is referred to [5] ftndudetails.

In preparation for the proof of Theorem 5.5, we fix> 0, ¢, > 0, andé > 0 so that the
conclusion of Theorem 4.2 of [5] holds, i.e. the characterization of the oscillatbayim of
solutions near the saddle-focus equilibfia holds. Letu € M, ((2,2)) be normalized, and
let £, be such that(ty) = 0. Thent, is part of a transition fromr1 to +1. Assume without
loss of generality that this transition is froal to 1. Definet_ = sup{t < ty : |u(t)+1| < §}
andt, =inf{t >ty : |u(t) — 1| < d}. ThenletS(u) = {¢t: |u(t) £ 1| < é} andBlu,T] =
|S(u)N[ts,t—+T]|, and note thaftty, to+ 1] = {S(u) N[ty t-+TFU{S(w)*N[te, to+T]}.
With these definitions we can establish the following estimate (c.f.rharh.4 in [5]). For all
u € Mper((2,2)) with Jr[u] < Tper((2,2)) + €0

ullze < C(1+ Tper((2,2)) + Blu, T)). (5.2)

First, ||v']|%: < C(Jper((2,2)) + €), and second ifu & 1| > § thenF(u) > n*u?, which
implies that|u||2, < 1/7? ftz(’*T F(u) dt+(1+6)*Blu, T] < C(Jr[u]+ B[u, T]). Combining
these two estimates proves (5.2).

For functionsu € ML, ((2,2)) that satisfy.Jr[u] < Jper((2,2)) + 1, it follows from
Lemma 5.1 of [5] that there exist (uniform ir) constantd; and7, such thatly > |S(u)¢N
[to,to + T]| > T1 > 0 and thusl” > T;. The next step is to give an a priori upper bound/on
by considering the minimization problem (c.f. Section 5 in [5])

B, =inf{ B[u,T] | ue€ M! ((2,2)) normalized, T € R",

per

and Jr[u] < Jper((2,2)) + €}

Lemma 5.4 There exists a constalif = K (7p) > 0 such thatB, < K forall 0 < € < ¢.
Moreover, ifT, = K + Tb, then for any0 < € < ¢, there is a normalized € ML, ((2,2))
with Jrlu] < Jper((2,2)) + 2e andTy < T < Tp.

Proof. Let (u,,T,) € MI»((2,2)) x R be a minimizing sequence fds,, with nor-

per

malized functions,. As in the proof of Theorem 5.5 of [5], in the weak limit this yields a
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pair (@, T) such thatB[a, T] < B.. We now definek ((2,2), ) = 8((21 + 2) + 2). This
gives two possibilities foB[a, T), eitherB[a, T| > K or B[, T < K. If the former is true
then we can construct (see Theorem 5.5 of [5]) a p&if”) € Mg;'r((Q, 2)) x R*, with v
normalized, such that

Jal0] < J#t] < Jper((2,2)) +€ and B[5,T"] < B[a, T] < B,

which is a contradiction excluding the first possibility. In the second caserewbie, ’f] <
K, we can construct a pa(t, 7") with ¥ normalized such that

Jz[0] < Ja[A] + € < Joer((2,2)) + 26, and B[5,7"] < B[4, T] < K,

which implies thatl; < T < T < K + T3 = T, and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [5]. ]

Theorem 5.5 Suppose that satisfies(H) and 3,y > 0 are such thatt1 are saddle-foci,
then Z,.:((2,2)¥) is attained for anyk > 1. Moreover, the projection of any minimizer in
C'M,er((2,2)) onto the(u, u')—plane is a simple closed curve.

Proof. By Lemma 5.4, we can choose a minimizing sequegeT,) € M1x((2,2)) x
R*, with u,, normalized and with the additional properties that|| ;> < C andT; < T, <
Ty. Since the uniform separation property is satisfied for the tgp®) this leads to a mini-
mizing pair(u, T) for (5.1) by following the proof of Theorem 2.2 in [5]. As for the existence
of periodic minimizers of type = (2, 2)* the uniform separation property is automatically
satisfied and the above steps are identical.

Lemma 3.5 yields that minimizers are normalized functions and the projectiomafa
malized function inM,.((2, 2)) is a simple closed curve in the, u’')—plane. ]

We would like to have the same theorem for arbitrary periodic typesFor homotopy
types that satisfy the uniform separation property the analog of Theorem 5.5 carvbd.pro
However, in Section 5 we will prove a more general result using the infiomabout the
minimizers with terminated types (homoclinic and heteroclinic miningg&rhich was ob-
tained in [5].

Remark 5.6 The existence of @, 2)-type minimizer is proved here in order to obtain a priori
Wle-estimates for all minimizers (Section 6). Howevef; ifatisfies the additional hypoth-

esis thatF'(u) ~ |u|®, s > 2 as|u| — oo, then such estimates are automatic (c.f. [7], [4]).
In that case the existence of a minimizer of type2) follows from Theorem 5.14 below. To
prove existence of minimizers of arbitrary typaeve will use an analogue of Theorem 5.14
(see Lemma 6.7 and Theorem 6.8 below).

5.2 Characterization of minimizers of typeg = ((2, 2))

Periodic minimizers associated wiiy| or [e;] are the constant solutions= —1 andu = 1
respectively. The simplest nontrivial periodic minimizers are those of tyge(2, 2)*, i.e.

r € [(2,2)]. These minimizers are crucial to the further analysis of the general thedype

r = (2,2) is a minimal type (associated withey]), and we want to investigate the relation
between minimizers if/ ({(2,2))) and periodic minimizers of typg, 2)*.
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Considering curves in the configuration sp&tis a convenient method for studying mini-
mizers of typg(2, 2). For example, minimizers i6'M ({(2, 2))) andC M,((2, 2)) all satisfy
the property that they do not intersect the line segnient (—1,1) x {0} in P. If other
homotopy types are considered, i.e. ¢ [(2, 2)], then minimizers represented as curve®in
necessarily have self-intersections and they must intersect the segnveimch makes their
comparison more complicated. We will come back to this problem in Section 6 tRat
for a C'-functionu the associated curv&(u) is a closed loop if and only ifi is a periodic
function.

Lemma 5.7 For any non-periodic minimizes € CM({(2,2))) and any bounded interval

I the curvel'[u|;] has only a finite number of self-intersections. For periodic minimizers
u € CMpe({(2,2))) this property holds when the length bfis smaller than the minimal
period.

Proof. Fix a time intervall = [0, 7. If u is periodic,T should be chosen smaller than
the minimal period of.. Let P = (uy,u;) be an accumulation point of self-intersections of
ul7. ThenP is a self intersection point, and there exists a monotone sequence of{iraes
converging tot, such thatl’(u(r,)) are self-intersection points andu(t,)) = P. Also
there exists a corresponding sequetiges I with o,, # 7,, such that(u(7,,)) = I'(u(oy,)).
Choosing a subsequence if necessayy,— s, monotonically. Since: is a minimizer in
CM({(2,2))), the intervaldo,, 7,,] must contain a transition, and heneg — o,,| > 7y > 0.
Thereforesy # to, and we will assume thag < t, (otherwise change labels). The homotopy
type ofI'(ul[s,4,]) 1S (2, 2)* for somek > 1 (sincel is bounded).

Assume that,, andr, are increasing; the other case is similar. Using the times
s0 < Tp < to, the curvel', = I'[ul[,,—s4,+07], fOr  sufficiently small, can be decomposed as
I'sx =aoo0y07y00;0bwhereb = F(u|[an—6,0n])a M= F(u|[0'n:50])’ Y= F(u|[80,rn])a T2 =
I'(u|ir,t0]), @nda = T'(ulpy,1044])- FOrn sufficiently large;y; andy, have the same homotopy
type, andy; # ,, since otherwise would be periodic with period smaller than—o,, < 7.
We can now construct two more paths

I''=aovyoyoyob and 'y =aoyo0vovyob

which have the same homotopy type fosufficiently large. Sincd|[l',] is minimal,J[I';] >

JII',] and J[['y] > J[I.], and thusJ[yi] > J[y.] and J[y,] > J[y1] which implies that
J[v1] = J[y.]. ThereforeJ[I',] = J[[4] = J[I's], andl'y, 'y andT’, are all distinct minimizers
with the same homotopy type and same boundary conditions. Since these curves alecoinci
alongy, the uniqueness of the initial value problem is contradicted. An argument vetgisimi
to the one above is also used in the proof of Lemma 5.12 and demonstrated in Figurg 5.1.

Lemma5.8If r = (2,2)* with & > 1, thenCM, e, (r) = CM,e:((2,2)) and Jper(r) =
k- Tpar((2,2)).

Proof. Letu € C M, (r) withr = (2,2)* for £ > 1, and letT be the period such
that the associated curve ™ I'(u[j r7), has the homotopy class 6f(2, 2)*). First we will
prove thafl’(u|j,r7) is a simple closed curve iR, and hence: € M,..((2,2)). Suppose not,
then by Lemma 5.7 the cunigu|; 1) can be fully decomposed infodistinct simple closed
curvesl’; fori = 1,...,k (just call the inner loog’,, cut it out, and call the new inner loop
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I';, and so on). Denote by; the action associated with lodp, then)_. J; = Jr[u]. Let
v; € Mper((2,2)%) be the function obtained by pasting togethamopies ofu restricted to the
loop T;. If v; were a minimizer inM,;((2,2)¥), then by Lemma.2 the functionsu anduv;
would be distinct solutions to the differential equatidr) which coincide over an interval.
This would contradict the uniqueness of solutions of the initial value problem, and heisce
not a minimizer, i.eJz[v;] = k - J; > Jper((2,2)%). Consequentlype((2,2)F) = >, J; >
Tver((2,2)), which is a contradiction. Thus € M, ((2,2)) andT (u[jp7)) is a simple loop
traversed: times.

Now we will show thatu € CM,.:((2,2)). SinceI'(u) is the projection of a function
into the(u, u')—planeu traverses the loop once over the intefgall’/k], and Jper ((2, 2)*) =
k - Jrku]. Supposelr/x > JTper((2,2)). Then we can construct a function M. ((2, 2)*)
with action less tha/[u] = J.((2,2)*) by gluing togetherk copies of a minimizer in
M,e((2,2)), which is a contradiction. ]

Lemma 5.9 For anyk > 1, CMpe((2,2)%) = CMper((2,2)) = CMper ({(2, 2))).

Proof. We have already shown in Lemma 5.8 th&t/,e,((2, 2)*) = C Mper((2,2)). We
now first prove thaC' M, ((2,2)) C CMper({(2,2))). Letu € C M, ((2,2)) have period'.
Suppose: ¢ C M, ({(2,2))). Then there exist two poini3(u (1)) = P, andl'(u(tz)) = P
onI'(u) such that the curve betweenP; and P, obtained by followind" () is not minimal.
Replacingy by a curve with smaller action and the same homotopy type yields a function
v € Mpyer({(2,2))) for which Jy, 4,1[v] < J, 1,)[u]. Choosek > 0 such thatkT > 1, — ¢;.
Thenw is a minimizer inC' M, ((2, 2)*) = C M, ((2, 2)) which is a contradiction.

To finish the proof of the lemma we show thal,e.({((2,2))) € CMpe((2,2)). Let
u € CM,e(((2,2))) have periodl’. LetI'(ulp,r) be the associated closed curvefrand
w its winding number with respect to the segmént SupposeJr[u] > Jper((2,2)¥) =
w - Jper(2,2). This implies the existence of a functiene M, ((2,2)*) and a periodl’
such that/s[v] < Jr[u]. Choose a timé, € [0,7] such thatu(t,) = 1 andu'(t;) > 0.
Let Py = (1,u'(ty)) € P. There exists @ > 0 sufficiently small such that(ty + 6) >
0, u'(to = 6) > 0, andu does not cross-1 in [ty — 0,1y + 0] except atty. Let P, and P,
denote the pointéu(ty F0), u'(to F §)) respectively. Lety denote the piece of the curvgu)
from P, to P, and~* the curve tracind’(u) backward in time fromP, to P,. Now choose
a pointP; onT'(v) for whichv = 1 andv’ > 0. We can easily construct cubic polynomials
p1 andp, for which the curve’(p;) connectsP; to P; and the curvé'(p,) connectsPs to P,
in P. These curve¥(p;) are monotone functions, and hence the |6¢p;) o I'(p2) o v* has
trivial homotopy type irfP. Thereforel’ (u|pr))* o 7 ~ ['(p2) © F(v|[0,ﬂ)k oT'(py) in P for
anyk > 1, and from Definition 3.U[I(u|jo,r)* 0 7] < J[['(p2) o T'(v| 4 47)% o T'(p1)]. Thus,

[0,T]
k- Jrlu] + J[y] < Jlp] + Jlpa] + k- Jp[v]
which implies
0 < k(Jr[u] = Jp[v]) < Jpi] + Jpe] — J[]
These estimates lead to a contradictionif@ufficiently large. ]

Lemma 5.10 For any two distinct minimizers, and u, in CMp:((2,2)), the associated
curvesl'(u;) do not intersect.
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Proof. Supposd’(u;) andI'(us) intersect at a poinP € P. Translateu; andu, so that
I'(u1(0)) = I'(uz(0)) = P. Define the functionu € M,:((2,2)?) as the periodic extension of

[t for¢ e [0, T3],
u(t) = {uz(t —Ty) forte [TV, T + T,

whereT; is the minimal period ofi;. ThenJr, iz, [u] = 2Jpe:((2,2)) = Jper((2,2)?). By
Lemmas.8 we haveu € C' M, ((2,2)), which contradicts the fact tha andu, are distinct
minimizers with['(u;) # I(usg). ]

As a direct consequence of this lemma, the periodic orbif#jg ((2,2)) are ordered in
the sense thdt(u,) lies either strictly inside or outside the region enclosed’fy,). The
ordering will be denoted by.

Theorem 5.11 There exists a largest and a smallest periodic orbitii,..((2,2)) in the
sense of the above ordering, which we will denote:hy. and u.,;, respectively. Moreover
1 < ||tminll1,00 < [[Umaxl|1,00 < Coy @NAUmin < U < Umax fOr everyu € CMpe((2,2)). In

particular the setC M, ((2, 2)) is compact.

Proof. Either the number of periodic minimizers is finite, in which case there is nothing
to prove, or the set of minimizers is infinite. LEt= (J{['(u) | v € CM,((2,2))} C P,
and letA = U N {(u,v) | ' = 0,u > 0}. Every minimizer inC M, ((2,2)) intersects
the positiveu—axis transversely exactly once. Moreover distinct minimizers crossaiis at
distinct points by Lemma 5.10. Thus we can usas an index set and label the minimizers
asu, for a € A. Due to the a priori upper bound on minimizers (Lemma 5.1 in [8])s a
bounded set. The set is contained in the-axis and hence has an ordering induced by the
real numbers. This order corresponds to the order on minimizers, keg in A if and only
if uq < ugas minimizers.

Supposey, is an accumulation point ol. Then there exists a sequengg converging
to .. From Theorem 4.2 (the a priaki°-bound onu,,, is sufficient by Remark 4.3) we see
that there exists € CM({(2,2))) which is a solution to Equatiofl.2) such thatu,, —
uin CL.(R). Sinceu,, is periodic and the’} —limit of a sequence of periodic functions
with uniformly bounded periods (compare with the proof of Theorem 4.2 to find a uniform
bound on the periods) is periodi€¢,c C M, ({(2,2))). By Lemma 5.9u € C M, ((2,2)).
Furthermoreuz corresponds te,,,, and henced is compact.

Consequenthd contains maximal and minimal elements. kgf,, andu.,;, be the peri-
odic minimizers through the maximal and minimal pointsdofespectively. This proves the
theorem. ]

The above lemmas characterize periodic minimizer§ M ({(2,2))). Now we turn our
attention to non-periodic minimizers. We conclude this subsection with a thebedrgives
a complete description of the g8/ ({(2, 2))).

Letu € CM({(2,2))) be non-periodic. Suppose th&tis a self-intersection point of
['(u). Then there exist timels < ¢, such thaf(u(t,)) = '(u(tz)) = P, andl'(uly, ) is a
closed loop. By Lemma 5.7 there are only finitely many self-intersectiors om]. Without
loss of generality we may therefore assume thet a simple closed loop, i.e, we need only
consider the case whefe= I'(u(t1)) = I'(u(t2)) andI'(uly, +,)) is a simple closed loop. We
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now definel’ ;. = T'(u(,,00)) @NAT— = T'(uf(—c0,1)). We will refer toI'.. as the forward and
backward orbits of; relative toP.

Lemmab5.12 Letu € CM({(2,2))) be a non-periodic minimizer with at least one self-
intersection. LetP and I’y be defined as above. Then the forward and backward orbits
I'. relative to P do not intersect themselves. Furthermofeand I’y are unique, and the
curvel'(u) passes through any point # at most twice.

Proof. We will prove the result fof, ; the argument fof"_ is similar. Suppose that,
has self-intersections. Define

t. = min{t > t1 | I'(u(t)) = I'(u(r)) for somer € (t1,1)}.

The minimumt, is attained by Lemma 5.7, and > ¢, sincey = I'(uly, +,)) is a simple
closed loop. Let, € (t1,t.) be the point such thdt(u(t,)) = I'(u(t.)). This pointis unique
by the definition oft,, andy = T'(ul,.,)) is a simple closed loop. For small positiveve
define@Q = ['(u(t,)), B = T'(u(t1 — 6)), E = T'(u(t, +9)) andl', = I'(u|y,—s4.+4]), SEE
Figure 5.1. We can decompose this curve into five paris: o3 o 4 o 05 o y 0 07 Whereo;
joins B to P, 05 joins P to @), o3 joins @ to E, and~y andy are simple closed loops based at
P and( respectively, see Figure 5.1. The simple closed cuivasdy go aroundL exactly
once and thus have the same homotopy type. Moregwéry sincewu is non-periodic.
Besided", we can construct two other distinct paths frého E:

' =03009070700; and 'y =030507009007.

It is not difficult to see that';, I';, andT, all have the same homotopy type. Singé&,] is
minimal in the sense of Definition 3.1 we have, by the same reasoning as in LBiinthat
JII'y] > J[I'\] andJ[I's] > J[L',], which implies that/[§] > J[y] andJ[y] > J[¥]. Hence
Jy] = J[F]. ThereforeJ[I';] = J[I'y] = J[I'\] which implies thatl’;,I'; andl', are all
distinct minimizers of the same type as curves joinkhgp E. Since these curves all contain
the pathsr, o andos, and are solutions to (1.2), the uniqueness to the initial value problem
is contradicted.

Finally, the curvd’(u) can pass through a point at most twice because it is a unibn of
andI'_, each visiting a point at most once. Moreover, points {a|, +,)), common to both
', andI'_, are passed exactly once. It now follows that if there is another setsadgon
besidesP, say atR = I'(u(s;)) = I'(u(s2)), thens; < ¢; andts < s. We conclude that the
curvel (u(s, s,)) containsl(u|p, +,1) and therefore it is not a simple closed curve. Thuis
a unigue self-intersection that cuts off a simple loop. ]

Lemma5.13 Letu € CM({(2,2))) be non-periodic. Suppose thatc L>*(R). Thenu is
a connecting orbit between two periodic minimizers uy, € CM,e((2,2)), i.e. there are
sequences, , t;” — oo such thatu(t — ¢,,) — u_(t) andu(t + t}) — u,(t) in CL (R).

Proof. Lemma 5.12 implies thdt, is a spiral which intersects the positiveaxis at a
bounded, monotone sequence of po{atg 0) in P converging to a poinfx,, 0). Lett, be the
sequence of consecutive times such th@t) = «,. Consider the sequence of minimizers
in CM({(2,2))) defined byu,(t) = u(t + t,). By Theorem 4.2 there exist @._—limit

loc
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Figure 5.1: The forward orbit, starting atP with a self-intersection at the poigt. Lemma
5.12 implies that this cannot happen for non-periadie C M ({(2, 2))).

uy € CM({(2,2))). If uy is periodic, there is nothing more to prove. Thus supposés
non-periodic. Then the curdé(u,) crosses the—axis infinitely many times. On the other
hand, from theC. . convergencé (u..) crosses this axis only at.. By Lemma 5.12]"(u. )

can intersecty, at most twice, which is a contradiction. Thg —convergence follows from
regularity (as in the proof of Theorem 4.2). The proof of the existenee o similar. [

Theorem 5.14Let u € CM({(2,2))). Either » is unboundedy is periodic andu €
CM,e:((2,2)), or u is a connecting orbit between periodic minimizer&ind .. ((2, 2)).

Proof. Letu € CM({(2,2))) be bounded, then s either periodic or non-periodic. In the
case that is periodic it follows from Lemma 5.9 that € C' M, ((2,2)). Otherwise ifu is
not periodic it follows from Lemma 5.13 thatis a connecting orbit between two minimizers
u_,uy € CMper((2,2)). ]

In Section 6.2 we give analogues of the above theorems for arbitrary homotopytypes

Notice that the option of, € C'M(((2,2))) being unbounded in the above theorem does
not occur wherF'(u) ~ |ul®, s > 2 as|u| — oo.

6 Properties of minimizers

In Section 5, we proved the existence of minimizerdp..((2, 2)), which will provide a pri-

ori bounds on the minimizers of arbitrary type. These bounds and Theorem 4.2 will dstablis
the existence of such minimizers. In this section we will also provecydhin properties of a
typeg are often reflected in the associated minimizers. The most importamipdesiare the
periodic typeg = (r). Although there are minimizers in every clagg(r), p), it is not clear

a priori that among these minimizers there are also periodic minimizarsrder to prove
existence of periodic minimizers for every periodic tyr¢ we use the theory of covering
spaces.
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6.1 Existence

The periodic minimizers of typ€, 2) are special for the following reason. For a normalized
u € Mper((2,2)), defineD(u) to be the closed disk iR? such tha®D(u) = I'(u).

Theorem 6.110) If u € CM({r),p) thenT'(u) C D(ump) for any periodic type(r) #
((2,2)). i) If ue CM(g,p) thenl'(u) C D(uy;,) for any terminated typg.

Proof.i) If (r) # ((2,2)) then everys € CM ({r), p) has the property thdt(u) intersects
theu-axis between, = +£1. Suppose thdf (u) does not lie inSideé) (umin). ThenI'(u) must
intersectl’ (umin) at least twice, and leP; and P, be distinct intersection points with the
property that the curv€; obtained by following(u) from P; to P, lies entirely outside of
D(Upin)- LetTy C T'(umin) be the curve fron; to P, following um,, such that'; andl's are
homotopic (traversing the lodp(u.,,) as many times as necessary) and thilg | = J[I']
is minimal. Replacind’; by I'; leads to a minimizer i€ M ({r) , p) which partially agrees
with u. This contradicts the uniqueness of the initial value problem for (1.2).

ii) As in the previous case the associated curie) either intersects (u,,,) at least twice
or lies completely insid® (u;,), and the proof is identical. H

Corollary 6.2 For all minimizers in the above theoreffy||; < .

In order to prove existence of minimizers in every class we now use thedbegrem in
combination with an existence result from [5].

Theorem 6.3 For any given typez and parity p there exists a (bounded) minimizer e
CM (g, p). Moreover||u||1, < Cy, independent ofg, p).

Proof. Given a typeg we can construct a sequengg of terminated types such that
g, — g asn — oo. For any terminated typg, there exists a minimizer,, € CM(g,, p) by
Proposition 3.3 (Theorem 1.3 of [5]). Clearly such a sequencsatisfies|u,||1. < C by
Corollary 6.2. Applying Theorem 4.2 completes the proof. ]

6.2 Covering spaces and the action of the fundamental group

The fundamental group @ is isomorphic to the free group on two generatgrande; which
represent loops (traversed clockwise) aroghd)) and(—1,0) respectively with basepoint
(0,0). Indeed,P is homotopic to a bouquet of two circles = S; v S;. The universal
covering ofX denoted by>N( can be represented by an infinite tree whose edges cover either
eo Ore; in X, see Figure 6.1. The universal coveringftienoted by : P — P can then
be viewed by thickening the tre¥ so thatP is homeomorphic to an open diskIi§.

An important property of the universal covering is that the fundamental grp(#) in-
duces a left group action oR in a natural way, via the lifting of paths iR to paths inP.
This action will be denoted b§ - p for § € 7 (P) andp € P. We will not reproduce the
construction of this action here, and the reader is referred to an introdumokyon alge-
braic topology such as [3]. However, we will utilize the structure of the quospates of
P obtained from this action, which are again covering®ofThese quotient spaces will be
the natural spaces in which to consider the lifts of cuiv@s which lie in more complicated
homotopy classes than those in the case ef M, ((2,2)).

17



EI
>
&

o
— ]

*i G

X

Figure 6.1: The universal covef of X is a tree. Its origin is denoted l&9. For6 = eqe; ey,
the quotient spac&, = X/ (f) is also a covering space ov&r, andXy ~ S*.

A periodic typeg = (r) is generated by a finite type which together with the paritp
determines an element of (P) of the formé(r) = e>", - ... - e}}. Since we only consider
curves inP which are of the fornT*(u) = (u(t), «'(¢)), the numbers; are all positive. The
infinite cyclic subgroup generated by any such elerfavitl be denoted by#) C = (P). The
quotient spac®, = P/ (9) is obtained by identifying pointsandg in P for whichg = 6% -p
for somek € Z. The resulting spac@a is homotopic to an annulus, angg : ’ﬁg — Pis
a covering space. Figurel illustrates the situation foX, since it is easier to draw, and for
‘P the reader should imagine that the edges in the picture are thin strips. Thethi& péth
0 = egeie tO X based at? is shown by the dashed line. This piece of the tree becomes
a circle in the quotient spac,. Note that infinitely many edges iX are identified with
this circle. The dashed lines in bofh and)?a are strong deformation retracts &f and)?g
respectively, and hence, is homotopic to a circle. Thickeninﬁe gives thatPy is homotopic
to an annulus. Thu;sl(ﬁg) is a generated by a simple closed Ioo;ﬂgwhich will be denoted

by ((r). Note that for convenience we suppress the dependertcaraf( on the parityp.

Remark 6.4 If we define the shift operatar on finite types to be a cyclic permutation,
then Mpe:(r,p) = Mper(0*(r),7%(p)) for all k € Z. Functions inMy.(r,p) have a
unique lift to simple closed curve iRy, & = 0(r). However, functions in the shifted class
Myer (0®(r), 7%(p)) are not simple closed curves #y. In order for such functions to be
lifted to a unique simple closed curve we need to consider the covering $pacehere

0 = 0(c*(r), 7" (p)).

6.3 Characterization of minimizers of type(r)

In Section 5.2, we characterized minimizers(/(((2,2))) by studying the properties of
their projections intdP. What was special about the typék 2)*¥ was that the projected
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curves were a priori contained 1\ L, which is topologically an annulus. Theefficiency

of minimizing curves restricts the possibilities for their self and muinkgrsections. In par-
ticular, we showed that all periodic minimizers@W/ ({(2,2))) project onto simple closed
curves inP \ L and that no two such minimizing curves intersect. These two properties, cou-
pled with the simple topology of the annulus, already force the minimizing periodvestio

have a structure of a family of nested simple loops.

Such a simple picture in the configuration plgaeannot be expected for minimizers in
CM(({r),p)) withr # (2,2). The simple intersection properties (of Lemma 5.9 and 5.11)
no longer hold; in fact, periodic minimizing curves must have self-intersestin? as do
any curves irP representing the homotopy class(f) , p). However, by lifting minimizing
curves into the annuluB,, we can remove exactly these necessary self-intersections and put
us in a position to emulate the discussion for the ty{2e8)*. More precisely, for a minimal
type (r,p), anyu € My ((r,p)*) with periodT such tha~'['(u|pm)] = (r,p)*, there
are infinitely many lifts of the closed lodp(u|j.r;) into Py(r) (see above remark) but there
is exactly one lift, denotelly(u|; 1)), that is a closed loop homotopic ¢6(r) in Py(r). We
can repeat all of the arguments in Section 5 by identifying intersections éetihie curves
Lo (ulf,) in P, (r) instead of intersections between the cuiés| o,7) in P\ L. Of course,
when gluing together pieces of curves, the values ahdu’ come from the projections into
P. In particular, the arguments of Lemma 5.9 show thgi|,r)) must be a simple loop
tracedk-times, which leads to the following:

Lemma 6.5 For any periodic type(r) and anyk > 1 it holds thatC M, ((r,p)*) =
CMper(r,p) = CMper (), D).

The proof of the next theorem is a slight modification of Theorem 5.11.

Theorem 6.6 For any periodic typg(r) the setC M, (r, p) is compact and totally ordered
(in Py).

The following lemma is analogous to Lemma 5.13. Note however that by Theorem 6.1 we
do not need to assume that the minimizer is uniformly bounded.

Lemma 6.7 Letu € CM ((r),p) for some periodic typér) # ((2,2)). Eitheru is periodic
andu € CM,e(r,p), Or u is a connecting orbit between two periodic minimizersu, €
C M, (r,p), i.e. there are sequences, t; — oo such thatu(t — t,)) — u_(¢t) andu(t +
t") = uy(t) in G (R).

Combining Theorem 6.3 and Lemma 6.7 we obtain the existence of periodic minimizers
in every class with a periodic type (this result can also be obtained inyaamalogous to
Theorem 5.5).

Theorem 6.8 For any periodic typdr) the setC M (r, p) is nonempty.

The classification of functions by type has some properties in common with symbolic dy-
namics. For example, if a typgis asymptotic to two different periodic types, i (g) — r
ando "(g) — r_ asn — oo, withr, # r_, then any minimizex, € CM(g, p) is a con-
necting orbit between two periodic minimizets € CMperr_ py anduy € CMyer(r4, P),
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i.e. there exist sequences, t — oo such thatu(t — ¢,,) — u_(t) andu(t + ¢}) — u(t)
in Cit (R). This result follows from Cantor’s diagonal argument using Theorems 4.2 and 6.7,
and hence we have used the symbol sequences to conclude the existence of heteroclinic and
homoclinic orbits connecting any two types of periodic orbits.

Symmetry properties of typasare also often reflected in the corresponding minimizers.
For example, define the map, on infinite types by, (g) = (g2i, i)icz, and consider types
that satisfyV; (g) = g for somei,. Moreover assume that is periodic. In this case we
can prove that the corresponding periodic minimizers are symmetric anty $d¢ismann
boundary conditions.

Theorem 6.9 Letg = (r) satisfy¥; ((r)) = (r) for someiy. Then for anyu € CMpe,(r, p)
there exists a shift such thatu, (z) = u(x — 1) satisfies

) ur(z) = u, (T — z) for all x € [0, T] whereT is the period ot,

i) u.(0) =u'(0) =0andu,(T) =u!(T) =0, and

iii) u, is a local minimizer for the functionalr[u] on the Sobolev spadé2(0,7) = {u €
H?(0,T) | «'(0) = «/(T) = 0}.

Proof. Without loss of generality we may assume that 1 and thatg = ((g1,---,9xn))
for someN € 2N. We can choose a poititin the convex hull of4; such that/' (o) = u'(to+
T) = 0 andg(uli,,to+11) = (91/2,92,---,9n,91/2). We now defines(t) = u(to + 7 — t).
Then by the symmetry assumptions grwe have thag(v|i to+71) = 8o t0+17)- Since
Jtoto+11(V) = Jpoto+)(w) @ndT(ulto)) = T(u(to + T)) = T(v(ty)) = C(v(to + T)),
we conclude from the uniqueness of the initial value problem &gt = v(¢) for all ¢ €
[to, to + 1], which proves the first statement. The second statement follows imtekydi@m
1). The third property follows from the definition of minimizer. ]
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