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Abstract

In this paper some basic concepts of rigorous computing in a dynamical systems context
are outlined. We often simulate dynamics on a computer, or calculate a numerical solution
to a partial differential equation. This gives very detailed, stimulating information. However,
mathematical insight and impact would be much improved if we can be sure that what we see
on the screen genuinely represents a solution of the problem. In particular, rigorous validation
of the computations allows such objects to be used as ingredients of theorems.

The past few decades have seen enormous advances in the development of computer-assisted
proofs in dynamics. One approach is based on a functional analytic setup. The goal of this
paper is to introduce the ideas underlying this rigorous computational method. As the central
example we use the problem of finding a particular periodic orbit in a nonlinear ordinary
differential equation that describes pattern formation in fluid dynamics. This simple setting
keeps technicalities to a minimum. Nevertheless, the rigorous computation of this single
periodic orbit implies chaotic behavior via topological arguments (in a sense very similar to
“period 3 implies chaos” for interval maps).

1 Introduction

This paper contains slightly extended lecture notes that accompanied the introductory lecture of
the AMS short course on Rigorous Numerics in Dynamics at the Joint Mathematics Meetings
2016 in Seattle. We begin with a few sections that are meant to provide motivation and general
background information, and these are therefore of a rather global nature (there is a vast amount
of introductory texts on nonlinear dynamics; some examples are [26, 33, 17]). In §2 we turn to
a precise mathematical formulation of the general analytic-computational approach. In §3 we
introduce an example for which the approach is subsequently worked out in complete detail in §4.

The core of the material presented here is a synopsis of the state-of-the-art. In §1.2 we give
several references to recent work which forms the foundation of the method described in this
paper. However, it is by no means an exhaustive list. Additional references can be found in
the papers mentioned. The main underlying references for the detailed calculations in this paper
are [40] and [18]. In particular, the bulk of §3 is summarized from [40, §1]. We note that in the
details of the computer-assisted proof we deviate substantially from the original approach. The
new estimates presented in §4.5 and §4.6 are simpler to explain and lead to a computationally
cheaper proof. Furthermore, the setup in §4.3 with two so-called radii polynomials depending on
two radii (which characterize a rectangle in a the product space of unknowns) is more systematic
than the ad-hoc choices of weights that were used in [40]. We believe that this leads to improved
understanding and has the potential for generalizations far beyond the relatively simple example
chosen here to illustrate the method.
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1.1 Background: dynamical systems

Informally, a dynamical system is a system that evolves in time according to a deterministic law.
The time variable t ∈ T may be either discrete or continuous. The time may flow forward (T = N
or T = R+ = [0,∞)) or forward-and-backward (T = Z or T = R). It may happen that an
evolution stops after some finite time (e.g. because it reaches infinity in finite time), but we will
not be considering such details of a technical nature here. Mathematically, what we need are a
topological space X , the phase space, and a continuous function, the flow, ϕ : X × T → X with
the properties

ϕ(x; 0) = x for all x ∈ X , (1a)

ϕ(x; t1 + t2) = ϕ(ϕ(x; t1); t2) for all x ∈ X and t1, t2 ∈ T . (1b)

The interpretation is that after a time t the state x has moved to ϕ(x; t). The identity (1b) expresses
that flowing for some time t1 to a point x1 = ϕ(x; t1) and then flowing another t2 from x1, gives
the same result as flowing for a time t1 + t2 directly.

One usually writes x(t) = ϕ(x(0); t) if it is clear which flow is meant. The fundamental problem
of dynamical systems is that in all but the simplest cases we do not know ϕ, i.e., we have no useful
explicit description of the flow. However, there are many cases where a “law of motion” (for which
we have an explicit description) together with initial data determine the entire future dynamics
deterministically, hence we know there is a flow ϕ, i.e., it is a dynamical system.

Indeed, dynamical systems appear in all branches of sciences. To give a few examples:

• Physics: Newton’s law of motion in classical mechanics

• Chemistry: the Schrödinger equation

• Fluid dynamics: the Navier-Stokes equations

• Economics: the Black-Scholes equation for option pricing

• Meteorology: coupled ocean-atmosphere models in weather forecasting

• Systems biology: reaction-diffusion equations for reaction networks

• Astronomy: planet-, star-, galaxy- and cluster-formation and their evolution

• Neuroscience: dynamic models for bursting neurons

Dynamical systems do not just occur in applications. Indeed, they are interesting from a mathe-
matical perspective in their own right. Moreover, they appear in many branches of mathematics,
such as in the Calculus of Variations (gradient flows), in differential geometry (e.g. the Ricci flow,
leading, eventually, to the resolution of the Poincaré conjecture), in evolutionary and stochastic
partial differential equations, and in symplectic geometry (pseudoholomorphic curves).

The modern theory of dynamical systems dates back to Poincaré and his study of the (in)stability
of the solar system and its ultimate fate. More generally, the central question in dynamical systems
is the following: start at some point x(0) and let it evolve under the flow ϕ; now what happens?
And how do the individual orbits fit together to give a global description of the behavior of the
system as a whole? Additionally, one would like to know not just how the ultimate fate depends
on the initial position, but also on parameters in the system, and on the “type” of system (e.g.
Hamiltonian, gradient, symmetric, network structure).

Clearly, no single method can answer all these questions, especially since there are so many types
of dynamical systems (linear, nonlinear, ordinary differential equations (ODEs), partial differential
equations (PDEs), delay equations, finite and infinite dimensional maps).

Linear dynamical systems can often be analyzed by hand using linear algebra, functional anal-
ysis and special functions. In this paper we are interested in nonlinear dynamics, for which the
analytic tools are much coarser. Topological approaches (e.g. fixed point theorems, Conley index)
and variational methods (e.g. Morse theory) give some information about existence of solutions
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for large classes of systems. However, such robust but coarse results often lack information about
multiplicity of solutions for specific nonlinear dynamical systems. Moreover, they usually provide
very little qualitative (let alone quantitative) information about the shape of the solutions.

In practice, a topological approach is often complemented by computer simulations. While the
latter give numerical evidence for the behavior of solutions, there is unquantified uncertainty in
this information due to the absence of explicit error bounds on the outcome of numerics. These
errors originate from rounding errors and, more importantly, truncation and discretization errors.

The goal of the paper is to introduce a framework in which the quantitative but tentative
information from computer simulations can be turned into mathematically rigorous statements
(theorems). Numerical computations are naturally limited to a relatively small range of param-
eter values and a restricted part of phase space. In particular, our methods focus on rigorously
(in the mathematical sense) finding solutions in nonlinear dynamical systems that represent spe-
cial features. One may think of equilibria, cycles, connecting orbits (homoclinic or heteroclinic),
horseshoes (“chaos”), invariant tori, etc.

What the special solutions of most interest are will depend on the dynamical system. Nev-
ertheless, some useful global statements can be made. In particular, in dissipative systems all
dynamics will evolve towards an attractor, and hence studying this attractor is of most interest.
More generally, the fundamental theorem of dynamical systems, due to Conley [9], states that any
flow (on a compact metric space) decomposes into a chain recurrent part and a gradient-like part.
The recurrent components consist, roughly speaking, of points that come back arbitrarily close
to themselves under the evolution of the flow, whereas points in the gradient part do not. The
dichotomy is thus that points are either recurrent, or they run “downhill” towards a recurrent com-
ponent (and if we can go back in time: they come from another recurrent component). It is thus
interesting to study recurrent components as well as the connecting (heteroclinic) orbits between
them. As an example, in a gradient flow the principle interest is in the (hyperbolic) equilibria and
the heteroclinic orbits that connect equilibria with Morse index difference one.

1.2 Rigorous numerics

computer-assisted proofs have a relatively short history in mathematics. Nevertheless, the proof of
the four color theorem [1, 27] and of the densest sphere packing (Kepler problem) [16] belong to the
classics in the field. Regarding the role of computers in dynamical systems, the start of the system-
atic study of nonlinear dynamical systems coincided with the advent of the computer (Feigenbaum
diagram, Mandelbrot set). Although some qualitative properties were already sketched by Poincaré
and contemporaries, only with the help of numerical simulations were people able to imagine and
map the variety of dynamics exhibited by nonlinear systems. Ever since, computers have been a
crucial instrument in the mathematical analysis of dynamical systems, providing both inspiration
and a way to test (and reject) conjectures. Moreover, due to the very limited availability of tools
for doing quantitative nonlinear analysis by hand, computers have been used as proof-assistants
very early on. Prime examples are the proof of the universality of the Feigenbaum constant [21]
and the existence of the (numerically “obvious”) chaotic attractor in the Lorenz system [36].

By now there is a variety of computational frameworks that aid in the study of nonlinear dynam-
ics. Each of these involves a combination of topological (or analytic-topological) arguments with
(interval arithmetic) computations. Here we delve into the wealth of possibilities of one approach.
Nevertheless, it is important to stress that there is a range of partly overlapping methodologies,
each with their own strengths and relative weaknesses. To name a few (very briefly; we refer the
reader to the references for examples and more details):

• Piotr Zgliczyński and collaborators have developed a method based on integrating the flow
using rigorous enclosures and Taylor methods, combined with topological arguments (Conley
index, covering relations) and derivative information (through so-called cone conditions) [43,
44]. An extensive C++ package CAPD (computer-assisted Proofs in Dynamics) is available
for supporting these proofs [7].

• Hans Koch, in collaboration with Gianni Arioli, has developed a general functional analytic
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approach to computer-assisted proofs in nonlinear analysis (e.g. [3, 4]). That work has
provided the crucial underlying ideas for the techniques discussed in this paper.

• In a spirit similar to the above method, techniques have been developed by Mitsuhiro Nakao,
Michael Plum and collaborators for studying elliptic problems by combining a Newton-like
fixed point map with computer-assisted computations with a variable mix of functional an-
alytic and computational effort (e.g. [6, 25]). This forms another stepping stone for the
techniques discussed below.

• Konstantin Mischaikow and collaborators have developed a “database” approach to repre-
senting the global behavior of parameterised families of nonlinear dynamical systems [2, 20].
The database encodes the minimal Morse-Conley graphs and their dependence on param-
eters. This framework focuses on global dynamics while working up to a finite resolution.
It hence complements the local but “infinitesimal” results that form the core of the method
discussed in the current paper.

The method described in this paper has been developed in the past decade by a large number
of people, and we refer to [8, 11, 12, 14, 23, 37, 39] and the references therein for a limited sample
of the contributions.

1.3 Forcing theorems

Forcing theorems in dynamical systems are statements of the form: if there exists a solution (orbit)
of type A, then there must be orbits of types B, C and D. In the most interesting cases, the list of
implied orbits is infinitely long. Such forcing theorems are strong tools in the study of nonlinear
dynamics. The main obstacle to applying them in concrete situations is that it is usually very
difficult to show that an orbit of type A exists, even if numerical simulations may be tentatively
convincing. This is the perfect setting for showcasing the power of rigorous computations, as they
may be used as a tool to prove the existence of a type A orbit in concrete problems.

Examples of forcing theorems are (roughly in increasing order of sophistication)

• In scalar autonomous ordinary differential equations: if there are two equilibria then there
exists a heteroclinic orbit (non necessarily between these equilibria), or (in very degenerate
situations) a continuum of equilibria.

• In a planar system of ODEs: a periodic orbit implies the existence of an equilibrium (located
inside the orbit). This is a classical result, where the forcing is via index theory.

• Interval maps: “period 3 implies chaos” [24]. If there exists a periodic orbit of (minimal)
period 3, then there are periodic orbits of arbitrary period (this generalizes to the Sharkovsky
ordering [31]) and there is an invariant set on which the dynamics is chaotic (has positive
entropy with respect to a suitably defined distance).

• Three dimensional systems of ODEs: a Shilnikov homoclinic orbit (to an equilibrium with
a one-dimensional unstable manifold and a two-dimensional ‘spiral’ stable manifold) implies
chaos if the expansion rate of the unstable manifold is larger than the contraction rate in the
stable manifold [32].

• In a system of ODEs with three or more degrees of freedom: the existence of a transversal
homoclinic orbit to a cycle implies that there is a Smale horseshoe in the return map, hence
chaos. Similarly, any hyperbolic periodic point of a discrete time dynamical system that has
its stable and unstable manifolds intersecting transversally, implies chaos.

• Maps on two-dimensional manifolds: a periodic orbit whose associated braid (after suspen-
sion) is of pseudo-Anosov type implies chaotic dynamics for the map [35].

• Second order Lagrangian system: certain periodic orbits (to be made explicit in Section 3)
imply chaos [15].
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• In variational problems: the Morse-Floer homology encodes forcing relations between equi-
libria with certain (Morse-Floer) indices and connecting (heteroclinic) orbits between such
equilibria [29].

• More generally for dynamical systems without a variational structure but with “sufficient
compactness properties”: as already mentioned, the Conley index encodes relations between
invariant set and connecting orbits.

We note that in most of these examples a combination of topological arguments and rigorous
computation leads to the strongest results.

2 The general setup

2.1 Motivation: Newton’s method

If we numerically try to find a solution of f(x) = 0, where f : RN → RN is some nonlinear problem,
then, starting from with some initial guess x0, we may iterate the Newton scheme

xn+1 = T̃ (xn)
def
= xn −Df(xn)−1 · f(xn)

to obtain a sequence that hopefully approaches a zero of f quickly. Since

DT̃ (x)y = y − (D[Df(x)−1]y) · f(x)−Df(x)−1 ·Df(x) · y

we find that DT̃ (x̂)y = 0 for any x̂ such that f(x̂) = 0, provided Df(x̂) is invertible. This implies

that if Df(x̂) is invertible, then ‖DT̃ (x)‖ is small near the fixed point x̂, hence T̃ is a contraction
mapping with very strong contraction rate. If we merely want a (moderately strong) contraction
mapping (e.g. because we rely on analytic arguments in addition to computer calculations), then

there is thus quite a lot of room to alter the definition of the map T̃ and still be successful. For
example, one may try replacing Df(x)−1 by Df(x0)−1 so that there is no need to recompute the
inverse after every iteration.

2.2 Setup

Our approach starts by recasting the dynamic problem of interest as a zero finding problem
F (x) = 0 in some infinite dimensional space. To fix ideas, let X and X ′ be Banach spaces, and
F : X → X ′ be a (Fréchet) differentiable map (in practice: F ∈ C1(X,X ′) or C2(X,X ′)). As-
sume that x ∈ X is an approximate zero of F , i.e. ‖F (x)‖X′ ≈ 0, and that we have a left inverse
DF (x)−1 of DF (x). Then we can define the Newton-like map

T̂ (x) = x−DF (x)−1F (x).

If, as is explicitly assumed, DF (x) is invertible, then fixed points of T̂ are in one-to-one corre-

spondence with zeros of F . In this case we can attempt to show that T̂ is a contraction mapping
in a neighborhood of x. However, in practice inverting DF (x) is “too difficult” in this infinite
dimensional setting.

Thus we make use of an approximate inverse, typically obtained in part by computing a nu-
merical inverse. We approximate DF (x) by a (simpler) linear operator A† : X → X ′ and choose
A ∈ L(X ′, X) to be an approximate left inverse of A†.

In our computational framework the choice of the linear operator A is based on a computer
calculation (a non-rigorous one). Namely, we choose (Galerkin) projections πN and π′N of X and X ′

onto N -dimensional subspaces XN and X ′N , respectively, for some N ∈ N. The natural embedding
of XN into X is denoted by ι. The finite dimensional truncated problem is given by

0 = FN (xN )
def
= π′NF (ιxN ),
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where FN : XN → X ′N and xN ∈ XN . We then seek a numerical approximation xN of a solution
to FN (xN ) = 0, for example using a (finite dimensional) Newton iteration scheme. The idea is
that x

def
= ιxN is an approximate solution of F (x) = 0.

Next we compute the JacobianDFN (xN ) and determine a numerical inverseAN ≈ DFN (xN )−1.
We now need to “extend” the operator AN : X ′N → XN (or ιAN : X ′N → X) to an injective oper-
ator A : X ′ → X. How one goes about making this extension depends on the problem. It should
be simple enough to allow for explicit analysis, while accurate enough to be an “approximate” left
inverse of DF (ιxN ) in a sense that will be made precise in §2.3.

Finally we are ready to define the Newton-like operator

T (x)
def
= x−AF (x). (2)

Observe that if A is injective, then fixed points of T correspond to zeros of F . Our goal is to show
that T is a contraction map on a ball around x. This ball should not be chosen too small (since
then it won’t contain a zero of F ), but neither should it be chosen too large (since one cannot
prove that T is a contraction on such larger balls (in fact it might not be a contraction there)).

Remark 1. The space X ′ has no significance. The only important requirement is that we choose
a linear operator A such that AF (x) ∈ X for all x ∈ X.

Remark 2. To have correspondence between fixed points of T and zeros of F , we need that AF (x) =
0 implies F (x) = 0, i.e., A is injective on the range of F . In fact, one only needs that A is injective
on the range of F when the domain of F is restricted to the fixed point space of T (e.g., one may
have a priori knowledge about this due to symmetries).

2.3 The theorem

The following theorem provides conditions under which we can guarantee the existence of a fixed
point of T (and hence a zero of F provided A is injective).

Let X be a Banach space. Let Br(x) denote the closed ball of radius r around x ∈ X.

Theorem 3. Let T be a Fréchet differentiable map from a Banach space X to itself, such that for
all r > 0

‖T (x)− x‖X ≤ Y (3a)

‖DT (x)‖B(X) ≤ Z(r) for all x ∈ Br(x), (3b)

for some Y ∈ R+ and some function Z : R+ → R+. If there exists an r̂ > 0 such that

Y + r̂Z(r̂) < r̂, (4)

then T has a unique fixed point in Br̂(x).

The proof of the theorem is given in §2.5. We note that this is an abstract theorem in the sense
that does not immediately reveal the context of §2.2. However, one should keep in mind that the
bounds Y and Z(r) will be given by complicated but explicit formulas that depend on numerically
obtained values, see §4 for a detailed example. Indeed, both A (which appears in the definition (2)
of T ) and x are determined (largely) numerically. The inequality (4) is then checked with the help
of a computer by using interval arithmetic. In practice Z usually depends polynomially on r. We
then denote the so-called radii polynomial by

p(r)
def
= Y + r[Z(r)− 1],

and we look for an r̂ > 0 such that p(r̂) < 0. We note that we keep r as a variable parameter at the
cost of having to work with a functional form for Z = Z(r), which requires careful bookkeeping.
The advantage is that we have more flexibility, not just enhancing the chance of proving that a
fixed point of T exists, but also allowing better bounds both on the location of the fixed point (by
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determining the smallest r̂ for which p(r̂) is negative) and on the uniqueness range (by determining
the largest r̂ for which p(r̂) is negative).

One may interpret (3a) as an estimate of the residue (but observe that the residue is “pre-
conditioned” with the linear operator A), while (3b) represents both a bound on how well A
approximates DF (x)−1 and an estimate of how nonlinear the problem is.

On the one hand, one may view Theorem 3 as a mathematically rigorous form of an explicit
a-posteriori error analysis. On the other hand, it represents the widely used approach in analysis
of setting up a fixed point problem on some ball around a guess for the solution, using a “suitable
choice” of a linear operator (denoted by A in our case). In our context, the formulation is adjusted
to a situation where both the (center of the) ball and the linear operator depend heavily on
numerically obtained values.

Since the theorem gives uniqueness, it is clear that one can only attack problems that are
formulated in such a way that they have isolated solutions (e.g. one needs to quotient out any
continuous symmetries). Moreover, since the solution is obtained from a contraction argument
(see §2.5), the solution is stable under small perturbations of the problem F (x) = 0, hence only
robust solutions can be found, and only problems with robust solutions can be analyzed. Often
this requirement can be achieved by carefully reformulating the problem, after understanding the
sources of non-uniqueness and/or non-robustness. This robustness feature should also be viewed
as an advantage, since if one finds a solution then it is automatically “in general position” (e.g.
hyperbolic or transversal), a property that is often required when using it as an ingredient in
a larger mathematical context, such as in forcing theorems. Moreover, the setup is perfect for
performing continuation in parameters, which is of crucial importance in most applications of
nonlinear dynamical systems.

2.4 Alternative formulations

Since T (x) = x−AF (x), the conditions (3a) and (3b) may be reformulated in terms of F . Further-
more, in practice the estimate on DF is split into three components with the help of an operator
A† that approximates DF (x). The conditions (3) are then replaced by

‖AF (x)‖X ≤ Y (5a)

‖I −AA†‖B(X) ≤ Z0 (5b)

‖A[A† −DF (x)]‖B(X) ≤ Z1 (5c)

‖A[DF (x)−DF (x)]‖B(X) ≤ Z2(r) for all x ∈ Br(x), (5d)

for some Y, Z0, Z1 ∈ R+ and Z2 : R+ → R+, and one sets Z(r) = Z0 + Z1 + Z2(r). The final
estimate (5d) is often replaced by a Lipschitz bound

‖A[DF (x)−DF (x′)]‖B(X) ≤ Ẑ2‖x− x′‖X for all x, x′ ∈ Br∗(x),

where r∗ > 0 is some a priori bound on the radius, and Z2(r) = Ẑ2r. The Lipschitz bound may,
in turn, be supplanted by a bound on the second derivative:

‖AD2F (x)[v, w]‖X ≤ Ẑ2 for all v, w ∈ B1(x) and all x ∈ Br∗(x).

In both cases one needs an a posteriori check that the radius r̂ for which p(r̂) < 0 also satisfies
r̂ ≤ r∗. In this notation the radii polynomial is written as

p(r) = Y + r[Z0 + Z1 − 1] + r2Ẑ2 for r ∈ [0, r∗].

When we find a radius r̂ ≤ r∗ such that p(r̂) < 0, and if we know that A is injective, then we
conclude that F has a unique zero in Br̂(x). As mentioned before, the smallest such r̂ gives the
best bound on where the solution is, whereas the biggest such r̂ gives the strongest uniqueness
result.
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2.5 The proof of Theorem 3

The goal is to show that T is a uniform contraction on Br̂(x). First, we check that Br̂(x) gets
mapped into itself. Let x ∈ Br̂(x) and apply the Mean Value Theorem for Banach spaces to obtain

‖T (x)− x‖X ≤ ‖T (x)− T (x)‖X + ‖T (x)− x‖X
≤ sup
x′∈Br̂(x)

‖DT (x′)‖B(X)‖x− x‖X + Y

≤ Z(r̂)r̂ + Y.

Since Z(r̂)r̂ + Y < r̂ by assumption, it follows that that T maps Br̂(x) into itself. Second, to
see that T is a contraction on Br̂(x), let x1, x2 ∈ Br̂(x) be arbitrary, and use the estimate (again
applying the Mean Value Theorem)

‖T (x1)− T (x2)‖X ≤ sup
x′∈Br̂(x)

‖DT (x′)‖B(X)‖x1 − x2‖X ≤ Z(r̂)‖x1 − x2‖X . (6)

It follows readily from Y +Z(r̂)r̂ < r̂ with Y ≥ 0 that the contraction rate Z(r̂) in (6) is less than
unity. Applying the Banach contraction mapping theorem finishes the proof.

3 Example of a rigorous computation that forces chaos

To illustrate how one can apply the general setup from §2, we consider as our key example a
problem from pattern formation. The following description (in §3) is a condensed version of the
main result in the paper “Chaotic braided solutions via rigorous numerics: chaos in the Swift-
Hohenberg equation” by Jan Bouwe van den Berg and Jean-Philippe Lessard [40].

We first sketch the context. The Swift-Hohenberg equation [10, 34] is the fourth order parabolic
partial differential equation (PDE)

∂U

∂T
= −

(
∂2

∂X2
+ 1

)2
U + αU − U3. (7)

It is a model equation for pattern formation due to a finite wavelength instability (e.g. in Rayleigh-
Bénard convection). The onset of instability is at parameter value α = 0. Time-independent
solutions to the PDE (7) satisfy the ODE

−U ′′′′ − 2U ′′ + (α− 1)U − U3 = 0. (8)

The latter has a conserved quantity, the energy :

E = U ′′′U ′ − 1

2
U ′′

2
+ U ′

2 − α− 1

2
U2 +

1

4
U4 +

(α− 1)2

4
.

For α > 1, the energy level E = 0 contains two constant solutions U = ±
√
α− 1. For α > 3

2 , these
are stable equilibria of the PDE (7) and saddle-foci for the ODE (8). It is well known that saddle-
foci can act as organizing centers for complicated dynamics [13, 19]. By combining a topological
forcing result with rigorous numerics (to obtain the “seed” of the forcing), we can indeed establish
chaos for a large range of parameter values, as explained below.

Proposition 4 (Proposition 1 in [40]). The dynamics of the Swift-Hohenberg ODE (8) on the
energy level E = 0 is chaotic for all α ≥ 2.

We first perform a change of coordinates that compactifies the parameter range:

y =
X

4
√
α− 1

, u(y) =
U(X)√
α− 1

, ξ =
2√
α− 1

. (9)
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Figure 1: Sketch of a periodic profile ũ satisfying the geometric properties H.

�1

+1

block 1 block 2 block 3

Figure 2: The shape of the building blocks that lead to positive entropy in Theorem 5. It should
be intuitive that block 3 can be followed by block 1 only, while blocks 1 and 2 can be followed by
either block 2 or block 3.

The parameter range α ≥ 2 in Proposition 4 corresponds to ξ ∈ (0, 2]. The differential equation
now becomes

−u′′′′ − ξu′′ + u− u3 = 0, (10)

with energy

E = u′′′u′ − 1

2
u′′

2
+
ξ

2
u′

2
+

1

4
(u2 − 1)2. (11)

Proposition 4 is proved by showing that chaos is forced by a single periodic solution ũ with the
following geometric properties (see also Figure 1):

H


(H1) ũ has exactly four monotone laps and extrema {ũi}4i=1;
(H2) ũ1 and ũ3 are minima, and ũ2 and ũ4 are maxima;
(H3) ũ1 < −1 < ũ3 < 1 < ũ2, ũ4;
(H4) ũ is symmetric in its minima ũ1 and ũ3.

The forcing theorem is formulated below.

Theorem 5 (forcing; Theorem 2 in [40]). Let ξ ∈ [0,
√

8), and suppose there exists a periodic
solution ũ of (10) at the energy level E = 0, satisfying the geometric conditions H. Then (10) is
chaotic on the energy level E = 0 in the sense that there exists a two-dimensional Poincaré return
map which has a compact invariant set on which the topological entropy is positive.

The set of solutions of (10) that implies chaotic dynamics is obtained by combining the three
building blocks in Figure 2 in any order that obeys intuitive geometric restrictions. The final
technical step is then to establish a semi-conjugacy to a subshift of finite type, see [40, §2].

The solutions to the ODE (10) thus constructed from the three building blocks, correspond to
stationary profiles of the PDE (7). It turns out that all these profiles are stable under the evolution
of the PDE, illustrating the pattern forming tendencies of the Swift-Hohenberg model.
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Since Theorem 5 is a forcing theorem, to establish chaos we only need to find, in our case via
rigorous numerics, a single periodic solution ũ satisfying H.

Theorem 6 (rigorous computation; Theorem 3 in [40]). For every ξ ∈ [0, 2] the ODE (10) has a
periodic solution ũ at energy level E = 0 satisfying the geometric properties H.

The change of variables (9) directly converts Theorems 5 and 6 into Proposition 4.
In this paper we present a new, streamlined proof of Theorem 6. In particular, we will discuss

all details of how to prove that for fixed parameter value ξ equation (10) has a periodic solution
at energy level E = 0, see §4. Since the method provides a quantitative description of the solution
with a small explicit error bound, it is relatively easy to check the geometric properties H. In §4.7
we briefly discuss this issue, and we refer to [40, §4] for more details.

One can also prove the result for a continuous range of ξ-values. Indeed, in §4.7 we explain how
one may use interval arithmetic computations to perform “brute force” continuation (by extending
from single parameter values to small intervals of parameter values). Again we refer to [40] for
more details. Moreover, a discussion of proper continuation techniques can be found elsewhere in
this volume [22, 42], as well as in [41, 5].

Finally, we will not discuss the proof of the forcing Theorem 5 as it requires methods that are
disjoint from the aims of the current paper; we refer the interested reader to [40, §2].

4 The computational proof

We will first convert the problem of finding a periodic solution to Fourier space (§4.1). Then
we introduce a convenient norm on the space Fourier coefficients. The brief description in §4.2
is similar to the one in [18]. It diverges from [40] for the purpose of simplifying the exposition.
The full problem consists of the ODE (10) and the energy constraint E = 0, with the Fourier
coefficients and the frequency as variables. In §4.3 we reformulate this as a fixed point problem
of the type (2), although viewed from a non-standard perspective, namely situated in a product
space (of Fourier coefficients and frequency). In particular, we define finite dimensional projections
and the linear operator A. The two radii polynomials for the problem are defined in §4.4. The
formulation and proof of Theorem 11, which is a variation on Theorem 3 adapted to the product
space setting (with two radii polynomials depending on two radii), are novel. Theorem 12 explains
that injectivity of the linear operator A is automatic if one finds a pair of radii for which both
radii polynomials are negative. Explicit expressions for the necessary bounds Y and Z are derived
in §4.5 and §4.6, respectively. Finally, the Matlab code that clinches the proof is discussed in §4.7.

4.1 Fourier transform

We are going to restrict our attention to symmetric periodic solutions u satisfying H, hence we
expand u as a cosine series:

u(y) = a0 + 2

∞∑
m=1

am cos(mqy), (12)

with q > 0 an a priori unknown variable ( 2π
q is the period) and am ∈ R for m ≥ 0. One may also

think of this as
u(y) =

∑
m∈Z

a|m|e
imqy, (13)

i.e., the Fourier transform with symmetry constraint a−m = am.
Since u′(0) = 0, and since the energy (11) is a conserved quantity along the orbits of (10), we

get that

E = u′′′(0)u′(0)− 1

2
u′′(0)2 +

ξ

2
u′(0)2 +

1

4
(u(0)2 − 1)2

= −1

2

[
u′′(0)− 1√

2

(
u(0)2 − 1

)] [
u′′(0) +

1√
2

(
u(0)2 − 1

)]
.
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We look for u such that E = 0, u(0) < −1 and u′′(0) > 0, hence the energy condition boils down
to

u′′(0)− 1√
2

[u(0)2 − 1] = 0. (14)

Substituting the expansion (12) for u(y) in (14), we obtain

fq(q, a)
def
= −2q2

∞∑
m=1

m2am −
1√
2

[
a0 + 2

∞∑
m=1

am

]2
+

1√
2

= 0. (15)

In Fourier space the ODE (10) converts into an infinite sequence of algebraic equations:

(fa)k(q, a)
def
= −λk(q)ak −

∑
k1+k2+k3=k

ki∈Z

a|k1|a|k2|a|k3| = 0 for all k ≥ 0, (16)

where
λk(q)

def
= k4q4 − ξk2q2 − 1 = (k2q2 − ξ/2)2 − (1 + ξ2/4).

Equations (15) and (16) together constitute F = (fq, fa).

4.2 The norm on the space of Fourier coefficients

Since the differential equation is analytic, the solution is going to be analytic as well and the
coefficients will decay geometrically. This motivates us to work with the norm

‖a‖`1ν
def
=

∞∑
k=0

|ak|ωk(ν),

where the exponential weights are

ωk(ν) = ωk
def
=

{
1 k = 0

2νk k ≥ 1,
(17)

for some ν > 1 to be chosen when doing the final computer-assisted step of the proof (we suppress
the dependence on ν in the notation for ωk). The factor 2 in (17) is related to our choice of cosine
series; it facilitates the simple expression for the estimate (18) below. We denote the corresponding
Banach space by `1ν . In view of (13), this norm may also be written as

‖a‖`1ν =
∑
k∈Z
|a|k|| ν|k|.

We endow the one-sided `1ν with the following discrete convolution product: given a, b ∈ `1ν the
convolution product a ∗ b ∈ `1ν has components

(a ∗ b)k def
=
∑
k′∈Z

a|k′|b|k−k′|.

This product satisfies the Banach algebra property

‖a ∗ b‖`1ν ≤ ‖a‖`1ν‖b‖`1ν , (18)

as can be checked directly (applying the triangle inequality):

‖a ∗ b‖`1ν =
∑
k∈Z
|(a ∗ b)|k||ν|k| ≤

∑
k,k′∈Z

|a|k′|||b|k−k′||ν|k|

≤
∑

k,k−k′∈Z
|a|k′||ν|k

′||b|k−k′||ν|k−k
′| = ‖a‖`1ν‖b‖`1ν .

11



In this notation the expression for (fa)k in (16) reduces to

(fa)k = −λk(q)− (a ∗ a ∗ a)k.

The dual of `1ν is (`1ν)∗ ∼= `∞ν−1 = {(bm)∞m=0 : supm∈N |bmω−1m | < ∞}. Namely, for b ∈ (`1ν)∗ we
may use linearity to write

b(a) =
∑
m∈N

b(δm)am,

where δ is the usual Knonecker delta:

δmk
def
=

{
1 k = m

0 k 6= m.

Hence, writing bm
def
= b(δm) we obtain

|b(a)| =
∣∣∣∣∣
∞∑
m=0

bmam

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
m=0

(bmω
−1
m )(amωm)

∣∣∣∣∣ ≤ sup
m∈N
|bmω−1m |

∑
m∈N
|am|ωm.

We will identify (`1ν)∗ with l∞ν−1 and use

‖b‖(`1ν)∗
def
= sup

m∈N
|b(δm)|ω−1m = sup

m∈N
|bm|ω−1m

Remark 7. If G ∈ B(`1ν , `
1
ν), then by linearity

‖G(a)‖`1ν =
∑
k∈N
|G(a)k|ωk =

∑
k,m∈N

|G(δm)kam|ωk

≤
∑
m∈N
|am|ωm sup

m∈N

(
ω−1m

∑
k∈N
|G(δm)k|ωk

)
= ‖a‖`1ν sup

m∈N
ω−1m ‖G(δm)‖`1ν .

Hence, writing Gkm
def
= G(δm)k, we obtain the explicit expression

‖G‖B(`1ν ,`
1
ν)

= sup
m∈N

ω−1m
∑
k∈N
|Gkm|ωk.

4.3 The product space

Since our unknowns are x = (q, a), we use the product space X = R× `1ν . We will use projections
πq and πa onto R and `1ν , respectively. The trivial embedding of R and `1ν into X are both denoted
by ι, since this will never cause confusion.

We fix a computational parameter N ∈ N (to be chosen when we do the final computer-assisted
step of the proof, see §4.7). Given x = (q, a) ∈ X, we define the finite dimensional projection
πNx = (q, a0, . . . , aN ) ∈ XN

∼= R× RN+1 ∼= RN+2. We slightly abuse notation to write πq and πa
for the projections from XN onto R and RN+1, respectively: πqxN = q and πaxN = (ak)Nk=0. The
embedding of XN into X by extending with zeros is again denoted by ι:

πN ιxN = xN and (πaιxN )k = 0 for k > N.

The truncated system, or Galerkin projection, is given by

FN : XN → XN , FN (xN ) = πNF (ιxN ).

We solve FN = 0 numerically (using a good initial guess and Newton’s iteration method) to obtain
an approximate zero xN = (q, a0, . . . , aN ) of FN , and a corresponding approximate zero x = ιxN
of F . The Jacobian matrix

A†N
def
= DFN (xN )

12



�
�
k (q) �

1

AN

Figure 3: The shape of the linear operator A interpreted as an infinite matrix. The finite matrix
AN has size (N + 2) × (N + 2). The shape of A† is identical (but of course with different values
for the nonzero entries).

is inverted numerically to obtain
AN ≈ (A†N )−1.

Based on our expectation that the linear part in (16) will dominate for large k, the linear
operators A† and A are then built up as follows:

πN (A†x) = A†NπNx and (πa(A†x))k = −λk(q)(πax)k for k > N (19a)

πN (Ax) = ANπNx and (πa(Ax))k = −λk(q)−1(πax)k for k > N. (19b)

The shape of the operator A (and A†) as an “infinite matrix” is illustrated in Figure 3. We are
now ready to define

T (x)
def
= x−AF (x).

Remark 8. Let Γ be a linear operator on X, then it can be decomposed into

Γ =

[
Γqq Γqa
Γaq Γaa

]
with Γqq ∈ R, Γqa ∈ (`1ν)∗, Γaq ∈ `1ν and Γaa ∈ B(`1ν , `

1
ν). Formally:

πqΓx = Γqqπqx+ Γqaπax

πaΓx = Γaqπqx+ Γaaπax.

We will use the same notation for bounded linear operators on XN .

Remark 9. Moreover, suppose Γ ∈ L(X,X) is of the form

πNΓx = ΓNπNx and (πaΓx)k = γkxk for k > N,

with supk>N |γk| = γ̂ < ∞ given. Then (Γqa)k and (Γaq)k vanish for k > N , hence their norms
are computable, and

‖Γaa‖B(`1ν ,`
1
ν)

= max

{
γ̂ , max

0≤m≤N
1

ωm

N∑
k=0

|(Γaa)km|ωk
}

is also computable.
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Remark 10. We choose the truncation dimension N ≥ N̂(q, ξ), where

N̂(q, ξ)
def
=

((1 + ξ2/4)1/2 + ξ/2)1/2

q
,

so that
0 < λN+1(q) ≤ λk(q) for all k ≥ N + 1. (20)

This ensures both that the factor λk(q)−1 in (19b) is well-defined for all k > N , and that A is of
the form discussed in Remark 9 with γ̂ = λN+1(q)−1.

4.4 The radii polynomials

Since we (decide to) work on a product space, we are going to deviate from the setup in §2.3
and [40]. For r = (r1, r2) with r1, r2 > 0 we define the rectangle

Br(x) = {x ∈ X : |πq(x− x)| ≤ r1, ‖πa(x− x)‖`1ν ≤ r2}.
We will establish bounds (with Dq and Da denoting partial derivatives)

|πq[T (x)− x]| ≤ Y1 (21a)

‖πa[T (x)− x]‖`1ν ≤ Y2 (21b)

‖DqπqT (x)‖B(R,R) ≤ Z11(r) for all x ∈ Br(x), (21c)

‖DaπqT (x)‖B(`1ν ,R) ≤ Z12(r) for all x ∈ Br(x), (21d)

‖DqπaT (x)‖B(R,`1ν) ≤ Z21(r) for all x ∈ Br(x), (21e)

‖DaπaT (x)‖B(`1ν ,`
1
ν)
≤ Z22(r) for all x ∈ Br(x), (21f)

for some Y1, Y2 ∈ R+ and Zij : (R+)2 → R+ for i, j ∈ {1, 2}. Clearly in (21c)-(21e) one should
read B(R,R) = R, B(`1ν ,R) = (`1ν)∗ and B(R, `1ν) = `1ν . Then the two radii polynomials for our
problem are

p1(r1, r2) = Y1 + r1[Z11(r1, r2)− 1] + r2Z12(r1, r2) (22a)

p2(r1, r2) = Y2 + r1Z21(r1, r2) + r2[Z22(r1, r2)− 1]. (22b)

We need to find an r̂ = (r̂1, r̂2) > 0 such that p(r̂) < 0 component-wise, i.e.,

p1(r̂1, r̂2) < 0 and p2(r̂1, r̂2) < 0. (23)

The geometry of these sublevel sets is illustrated in Figure 4.

Theorem 11. Assume that Yi and Zij satisfy the bounds (21) for i, j ∈ {1, 2}. Let p1 and p2 be
the radii polynomials defined in (22). If r̂1, r̂2 > 0 are such that the inequalities (23) are satisfied,
then T has a unique fixed point in Br̂(x).

Proof. To show that T maps Br̂(x) into itself, we use arguments similar to the ones in §2.5. To
simplify notation, define the projected balls

Bq
def
= {q ∈ R : |q − q| ≤ r̂1} and Ba

def
= {a ∈ `1ν : ‖a− a‖`1ν ≤ r̂2},

so that Br̂(x) = Bq ×Ba. Let x = (q, a) ∈ Br̂(q, a). Then, by applying the triangle inequality and
the intermediate value theorem, we obtain∣∣πqT (q, a)− q

∣∣ ≤ ∣∣πq[T (q, a)− T (q, a)]
∣∣

+
∣∣πq[T (q, a)− T (q, a)]

∣∣+
∣∣πqT (q, a)− q

∣∣
≤ sup
a′∈Ba

‖DaπqT (q, a′)‖(`1ν)∗‖a
′ − a‖`1ν

+ sup
q′∈Bq

|DqπqT (q′, a)| |q′ − q| + Y1

≤ Z12(r̂)r̂2 + Z11(r̂)r̂1 + Y1.
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p1 < 0

p2 < 0

r1

r2

r̂

Figure 4: An illustration of a nonempty intersection of {p1(r1, r2) < 0} and {p2(r1, r2) < 0}. Note
that p1 is monotone in r2, while p2 is monotone in r1. Hence the set {p1 = 0} is a graph over r1,
while the set {p2 = 0} is a graph over r2.

Since p1(r̂) < 0 by assumption, it follows that |πqT (q, a) − q| < r̂1. By an analogous argument,
‖πaT (q, a)− a‖`1ν < r̂2. Hence T maps Br̂(x) into itself.

To show that T is a contraction mapping on Br̂(x) we need to choose a norm on the product
space X = R× `1ν . It turns out that T contracts with respect to the weighted norm

‖(q, a)‖X def
= max{|q|/r̂1, ‖a‖`1ν/r̂2}. (24)

Indeed, let x1, x2 ∈ Br̂(x), then, by applying the mean value theorem and the triangle inequality,

|πq[T (x1)− T (x2)]| ≤ sup
x′∈Br̂(x)

|DqπqT (x′)| |πq(x1 − x2)|
+ sup
x′∈Br̂(x)

‖DaπqT (x′)‖(`1ν)∗‖πa(x1 − x2)‖`1ν

≤ [Z11(r̂)r̂1 + Z12(r̂)r̂2] ‖x1 − x2‖X ,

and analogously

‖πa[T (x1)− T (x2)]‖`1ν ≤ [Z21(r̂)r̂1 + Z22(r̂)r̂2] ‖x1 − x2‖X .

From the above estimates we conclude that

‖T (x1)− T (x2)‖X ≤ max
{
Z11(r̂) + Z12(r̂)r̂2/r̂1, Z21(r̂)r̂1/r̂2 + Z22(r̂)

}
‖x1 − x2‖X . (25)

It follows from the negativity of both radii polynomials (22) that the contraction rate

max
{
Z11(r̂) + Z12(r̂)r̂2/r̂1, Z21(r̂)r̂1/r̂2 + Z22(r̂)

}
(26)

is less than unity.

Theorem 12. Suppose the assumptions of Theorem 11 are met. Then the unique fixed point
x̂ = (q̂, â) obtained in Theorem 11 corresponds to a zero of F , hence â corresponds, via (12), to a
2π/q̂-periodic solution of (10) with energy E = 0.

Proof. The only thing left is to prove is injectivity of A, which is automatic from the negativity
of the radii polynomials. Indeed, since λk(q) 6= 0 for k > N by (20), injectivity of A is equivalent
to injectivity of AN . The latter could be checked numerically, but that is not needed, since by
the arguments in the proof of Theorem 11, negativity of the radii polynomials for r = r̂ implies
that ‖(I −ADF (x))v‖X < ‖v‖X for all v ∈ X, where the norm on X is given by (24). Namely, it
follows from (25) that the operator norm ‖I −ADF (x)‖B(X,X) is bounded by the expression (26),
which is less than unity. Specializing to v = ιvN one finds, for the induced finite dimensional norm
‖xN‖XN = ‖ιxN‖X , that ‖(IN − ANA†N )vN‖XN < ‖vN‖XN for all vN ∈ XN . This implies that
AN is invertible, hence A is injective.
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4.5 The estimates Y

Recalling (21a) and (21b), in this section we establish the bounds

|πqAF (x)| ≤ Y1,
‖πqAF (x)‖`1ν ≤ Y2.

We have

fq(x) = −2q2
N∑
m=1

m2am −
1√
2

[
a0 + 2

N∑
m=1

am

]2
+

1√
2

= 0,

(fa)k(x) =


−λk(q)ak − (a ∗ a ∗ a)k k = 0, . . . , N

−(a ∗ a ∗ a)k k = N + 1, . . . , 3N

0 k > 3N.

There are thus only finitely many non-vanishing terms. Hence we set

Y1 =
∣∣πqANπNF (x)

∣∣,
Y2 =

N∑
k=0

∣∣(πaANπNF (x))k
∣∣ωk +

3N∑
k=N+1

λk(q)−1|(a ∗ a ∗ a)k|ωk,

computed using interval arithmetic to obtain rigorous upper bounds.

4.6 The estimates Z

In this section we construct bounds, see (21),

|DqπqT (x)| ≤ Z11(r) for all x ∈ Br(x), (27a)

‖DaπqT (x)‖(`1ν)∗ ≤ Z12(r) for all x ∈ Br(x), (27b)

‖DqπaT (x)‖`1ν ≤ Z21(r) for all x ∈ Br(x), (27c)

‖DaπaT (x)‖B(`1ν ,`
1
ν)
≤ Z22(r) for all x ∈ Br(x). (27d)

We recall that
Br(0) = {(q, a) ∈ X : |q| ≤ r1, ‖a‖`1ν ≤ r2}.

As already mentioned in §2.4, for each of the four derivatives in (27), we split DT (x+w)v, where
w = (wq, wa) ∈ Br(0) and v = (vq, va) ∈ B1,1(0) are arbitrary, into three pieces:

DT (x+ w)v = [I −AA†]v −A[DF (x)−A†]v −A[DF (x+ w)−DF (x)]v. (28)

By bounding these three terms separately, we will find bounds Zij(r) = Z0
ij + Z1

ij + Z2
ij(r), i, j ∈

{1, 2}. We note that the first two terms are independent of w, hence only the third term depends
on r = (r1, r2).

4.6.1 The bounds Z0

We infer from the definitions of A and A† in (19) that the first term in (28) reduces to a finite
dimensional operator:

[I −AA†]v = ι[IN −ANA†N ]πNv.

Let us write Γ = I − AA†, which is of the form discussed in Remark 9 with γ̂ = 0. With the
notation introduced in Remark 8 it follows from Remark 9 that the computable numbers

Z0
11 = |Γqq|

Z0
12 = ‖Γqa‖(`1ν)∗

Z0
21 = ‖Γaq‖`1ν

Z0
22 = ‖Γaa‖B(`1ν ,`

1
ν)
,
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=DF (x)�A†

DFN (xN )

tail

Figure 5: A sketch of the shape of the linear operator DF (x)−A† interpreted as an infinite matrix.
Note that the first column vanishes, whereas the top row has infinitely many nonzero elements.
The size of the block of zeros at the top left is (N + 2) × (N + 2). The width of the infinite
non-vanishing “diagonal” strip (the “tail”) is 4N + 1.

bound the respective components of I −AA†.

4.6.2 The bounds Z1

For the second term in (28) we first compute, recalling that A†N = DFN (πNx),

[Dfq(x)− πqA†]v = −2q2
∞∑

m=N+1

m2(va)m −
√

2

(
a0 + 2

N∑
m=1

am

)(
2

∞∑
m=N+1

(va)m

)
(29a)

and

([Dfa(x)− πaA†]v)k =

{
−3 (a ∗ a ∗ v0a)k for 0 ≤ k ≤ N
−3 (a ∗ a ∗ va)k for k > N,

(29b)

where

(v0a)k
def
=

{
0 0 ≤ k ≤ N
(va)k k > N.

Figure 5 illustrates the nonzero elements in the linear operator Df(x) − A† interpreted as an
“infinite matrix”. We note that both right-hand sides in (29) are independent of vq, which implies
that Dqf(x)πq −A†ιπq = 0, hence

Z1
11 = 0 and Z1

21 = 0.

We then estimate for all v ∈ B1,1(0), using the characterization of (`1ν)∗ in §4.2,∣∣∣∣∣
∞∑

m=N+1

(va)m

∣∣∣∣∣ ≤ sup
m>N

ω−1m ≤ ω−1N+1∣∣∣∣∣
∞∑

m=N+1

m2(va)m

∣∣∣∣∣ ≤ sup
m>N

m2ω−1m ≤ 1
2Q(ν,N),

where

Q(ν,N)
def
=

{
4

(e ln ν)2 N + 1 ≤ 2/ ln(ν)

2(N + 1)2ω−1N+1 N + 1 > 2/ ln(ν).
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We immediately see that ν should not be chosen too close to 1 as this would lead to a very large
value for Q. We define bounds dN = (dq, da0, . . . , daN ) as follows:

dq
def
= q2Q(ν,N) +

√
2ω−1N+1

∣∣∣∣∣a0 + 2

N∑
m=1

am

∣∣∣∣∣ ≥ |[Dfq(x)− πqA†]v| for all v ∈ B1,1(0),

and for k = 0, . . . , N

dak
def
= 3(|a ∗ a| ∗ χ)k ≥ |([Dfa(x)− πaA†]v)k| for all v ∈ B1,1(0),

where

χk =


0 0 ≤ k ≤ N
ω−1k N + 1 ≤ k ≤ 3N

0 k > 3N,

and where absolute values in |a ∗ a| are taken component-wise. For k > N we note that

|(πaA[Df(x)−A†]v)k| ≤ λk(q)−1|3(a ∗ a ∗ va)k|,

hence we may estimate, by using (18) and (20),

∞∑
k=N+1

|(πaA[Df(x)−A†]v)k|ωk ≤ 3λN+1(q)−1‖a ∗ a‖`1ν for all v ∈ B1,1(0),

provided N ≥ N̂(q, ξ). We thus set

Z1
21 = πq|AN |dN

Z1
22 = ‖πa|AN |dN‖`1ν + 3λN+1(q)−1‖a ∗ a‖`1ν ,

where absolute values in the matrix |AN | are taken entry-wise.

4.6.3 The bounds Z2

The final term in (28) is expanded in powers of r1 and r2 by writing w = (r1w̃q, r2w̃a) with
w̃ ∈ B1,1(0):

[Dfq(x+ w)−Dfq(x)]v = vq
∑
i,j

cijq (x, w̃)ri1r
j
2 +

∑
i,j

c̃ijq (x, va, w̃)ri1r
j
2, (30a)

(
[Dfa(x+ w)−Dfa(x)]v

)
k

= vq
∑
i,j

cijak(x, w̃)ri1r
j
2 +

∑
i,j

c̃ijak(x, va, w̃)ri1r
j
2, (30b)

where we write (cija )k = cijak for convenience. All sums are finite sums; the non-vanishing coefficients

cijq and cijak are listed in Table 1.
We now compute uniform bounds

Cijq (x) ≥ |cijq (x, w̃)| for all w̃ ∈ B1,1(0), (31a)

C̃ijq (x) ≥ |c̃ijq (x, va, w̃)| for all w̃ ∈ B1,1(0), ‖va‖`1ν ≤ 1, (31b)

Cijak(x) ≥ |cijak(x, w̃)| for all w̃ ∈ B1,1(0), 0 ≤ k ≤ N, (31c)

C̃ijak(x) ≥ |c̃ijak(x, va, w̃)| for all w̃ ∈ B1,1(0), ‖va‖`1ν ≤ 1, 0 ≤ k ≤ N. (31d)

These are summarized in Table 2, using the notation

Qν
def
=

4

(e ln ν)2
≥ 2

∑
m∈N

m2|(va)m| for all ‖va‖`1ν ≤ 1. (32)
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c10q −4w̃q
∑N
m=1m

2am c̃10q −4qw̃q
∑∞
m=1m

2(va)m
c01q −4q

∑∞
m=1m

2(w̃a)m c̃01q −
√

2
(
(w̃a)0 + 2

∑∞
m=1(w̃a)m

) (
(va)0 + 2

∑∞
m=1(va)m

)
c̃20q −2w̃2

q

∑∞
m=1m

2(va)m
c11q −4w̃q

∑∞
m=1m

2(w̃a)m

c10ak −2k2w̃q
(
6k2q2 − ξ

)
ak c̃10ak −2k2w̃q

(
2k2q3 − ξq

)
(va)k

c01ak −2k2
(
2k2q3 − ξq

)
(w̃a)k c̃01ak −6 (a ∗ w̃a ∗ va)k

c20ak −12k4w̃2
qqak c̃20ak −k2w̃2

q

(
6k2q2 − ξ

)
(va)k

c11ak −2k2w̃q
(
6k2q2 − ξ

)
(w̃a)k

c̃02ak −3 (w̃a ∗ w̃a ∗ va)k
c30ak −4k4w̃3

qak c̃30ak −4k4w̃3
qq(va)k

c21ak −12k4w̃2
qq(w̃a)k

c̃40ak −k4w̃4
q(va)k

c31ak −4k4w̃3
q(w̃a)k

Table 1: The non-zero coefficients in the expansions (30).

C10
q 4

∣∣∑N
m=1m

2am
∣∣ C̃10

q 2qQν

C01
q 2qQν C̃01

q

√
2

C̃20
q Qν

C11
q 2Qν

C10
ak 2k2

∣∣6k2q2 − ξ∣∣|ak| C̃10
ak 2k2

∣∣2k2q3 − ξq∣∣ω−1
k

C01
ak 2k2

∣∣2k2q3 − ξq∣∣ω−1
k C̃01

ak 6‖a‖`1νω
−1
k

C20
ak 12k4q|ak| C̃20

ak k2
∣∣6k2q2 − ξ∣∣ω−1

k

C11
ak 2k2

∣∣6k2q2 − ξ∣∣ω−1
k

C̃02
ak 3ω−1

k

C30
ak 4k4|ak| C̃30

ak 4k4qω−1
k

C21
ak 12k4qω−1

k

C̃40
ak k4ω−1

k

C31
ak 4k4ω−1

k

Table 2: The uniform bounds C(x) and C̃(x) on the coefficients c(x, w̃) and c̃(x, va, w̃), see (31).
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C̃10
tail 4q3µN+1

C01
tail 4q3µN+1 C̃01

tail 6λN+1(q)−1‖a‖`1ν
C̃20

tail 6q2µN+1

C11
tail 12q2µN+1

C̃02
tail 3λN+1(q)−1

C̃30
tail 4qµN+1

C21
tail 12qµN+1

C̃40
tail µN+1

C31
tail 4µN+1

Table 3: The uniform norm bounds Cijtail(x) and C̃ijtail(x) on the non-vanishing tail terms cijak and

c̃ijak for k > N , incorporating the left-multiplication by the diagonal part of A, see (33).

For k > N we use that N ≥ N̂(q, ξ), see Remark 10, hence we obtain the bound

µN+1
def
=

(N + 1)4

λN+1(q)
≥ k4

λk(q)
for all k ≥ N + 1.

This allows the uniform “tail” estimates

Cijtail(x) ≥
∑
k>N

∣∣∣λk(q)−1cijak(x, w̃)
∣∣∣ωk for all w̃ ∈ B1,1(0), (33a)

C̃ijtail(x) ≥
∑
k>N

∣∣∣λk(q)−1c̃ijak(x, va, w̃)
∣∣∣ωk for all w̃ ∈ B1,1(0) and ‖va‖`1ν ≤ 1, (33b)

where the non-zero Cijtail and C̃ijtail are listed in Table 3.
Finally, with the notation

CijN = (Cijq , C
ij
a0, . . . , C

ij
aN ) and C̃ijN = (C̃ijq , C̃

ij
a0, . . . , C̃

ij
aN ),

we set

Z2
11(r1, r2) =

∑
i,j

πq|AN |CijN ri1rj2,

Z2
12(r1, r2) =

∑
i,j

πq|AN |C̃ijN ri1rj2,

Z2
21(r1, r2) =

∑
i,j

∥∥πa|AN |CijN∥∥`1ν ri1rj2 +
∑
i,j

Cijtail r
i
1r
j
2,

Z2
22(r1, r2) =

∑
i,j

∥∥πa|AN |C̃ijN∥∥`1ν ri1rj2 +
∑
i,j

C̃ijtail r
i
1r
j
2.

All sums are over (a subset of) 0 ≤ i ≤ 4, 0 ≤ j ≤ 2.

4.7 Success

The estimates from §4.5 and §4.6, as well as the radii polynomials (23) have been implemented
in the Matlab code SHproof.m, which uses the interval arithmetic package Intlab [28]. All code
can be found at [38]. Based on Theorems 11 and 12 the script runproofpointwise.m successfully
proves the existence aspect (as discussed at the end of §3) of Theorem 6 for ξ = 0.01n where n =
0, 1, . . . , 203. We use N = 20 and ν = 1.5. These choices were made after some experimentation
with the code. The run time is less than a minute on a standard Macbook Pro.

The code also verifies, by using checkgeometry.m, that the geometric conditionsH are satisfied.
Indeed, first we use the cosine series (12) to transform the Fourier coefficients a back to physical
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space to obtain the approximate solution

u(y) = a0 + 2

N∑
m=1

am cos(mq̂y).

Note that the value of q̂ (which lies somewhere in the interval [q − r̂1, q + r̂1]) plays no role in the
geometric conditions H and is thus not used in this part of the code. Denoting the true solution
by

û(y) = â0 + 2

∞∑
m=1

âm cos(mq̂y),

the characterization of (`1ν)∗ in §4.2 leads to the error estimate

‖û− u‖∞ ≤ |â0 − a0|+ 2

∞∑
m=1

|âm − am| ≤ r̂2.

Adding the uncertainty interval [−r̂2, r̂2] to u thus leads to a rigorous interval arithmetic description
of the solution:

û(y) ∈ u(y) + [−r̂2, r̂2].

Analogous constructions lead to explicit quantitative descriptions of the first and second derivative
û′(y) and û′′(y), with extra factors q̂/(e ln ν) and 4q̂2/(e ln ν)2, respectively, in the uncertainty
intervals for these derivatives, cf. (32). Since our interest is in the sign of these derivatives only,
the value of q̂ again plays no role (and is “scaled out” in the code). Next, we split the interval
[0, π/q̂] into 50 equal pieces. We note that û′(0) = û′(π/q̂) = 0 by construction. To verify that
there are exactly two monotone laps on [0, π/q̂] and that the local minima and maxima satisfy
(H3), we check that the second derivative is nonzero on the intervals where the first derivative is
potentially zero, and that the value of û on these intervals must lie in the appropriate range. See
the code checkgeometry.m and [40, §4] for additional details.

Finally, the script runproofcontinuous.m proves Theorem 11 for all 0 ≤ ξ ≤ 2.02, i.e., for a
continuous range of parameter values. The interval [0, 2.02] is split into 202000 intervals of width
0.00001, and all bounds are derived uniformly for ξ in each of these small intervals (by using
interval arithmetic). We use N = 70 and ν = 1.15 + 0.15ξ, i.e., we need more modes than for
the pointwise proof and the choice of ν is a little more subtle, namely linear in ξ. These choices
were made after some experimentation with the code. Again, we also verify that the geometric
conditions H are satisfied, as described above. This brute force continuation takes several hours
(see [41, 5, 22, 30, 42] for more sophisticated approaches).
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