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Abstract

For a model of the long Josephson junction one can calculate for which pa-
rameter values there exists a homoclinic solution (fluxon solution). These
parameter values appear to lie on a spiral. We show that this is a conse-
quence of the presence of a heteroclinic solution, which lies at the centre
of the spiral.

1 Introduction

A long Josephson junction is sketched in Figure 1. It consists of two slabs of
superconducting material which have a small overlap and are separated by a thin
insulating barrier. An important application of long Josephson junctions is their
use as sub-millimeter radiation sources/detectors. To use such a junction as a
radiation source, it has to be brought in a state where so-called fluxons travel
along the junction. These fluxons are circulating currents which can release
(some of) their energy in the form of radiation on collision with the edges of the
device.

Superconductors

Figure 1: A sketch of a long Josephson junction
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Figure 2: A sketch of the spiral in the (¢,v)-plane.

A model for the long Josephson junction is given by [1]
by — Py —sin® = ad; — /B(I)avzt -7 (1)

In this equation ® is the phase difference between the two superconducting
layers and z is the coordinate along the junction. The parameters a and § are
damping parameters (due to quasi-particles) and « is the bias current.

We look for travelling wave solutions of this equation and substitute ®(z,t) =
o(z + ct) = ¢(€) to get the equation

ed" + (1= c*)¢" — acg’ —sing + v =0. (2)

This equation admits homoclinic solutions for certain combinations of ¢ and v
(and fixed a,f).

1 Remark The variable ¢ is an angle-variable, so increasing its value by 27
has no effect on the system at all, hence a solution connecting the equilibria
arcsiny and arcsin-y + 27 is actually a homoclinic orbit.

When calculating the parameter combinations for which a homoclinic orbit ex-
ists numerically (see e.g. [2]), one finds that they form a spiral in the (¢, v)-plane
(Figure 2). The objective of this paper is to understand why this is a spiral.
We shall show that this is a consequence of the fact that for certain parameter
values, namely at the centre of the spiral, there exists a heteroclinic cycle. The
centre of the spiral lies at a point (¢,7vy) = (1,7*(a, 8)); the significance of the
special wave speed ¢ = 1 is that Equation (2) has (additional) symmetries in
that case (see section 2). When the parameters are varied one of the hetero-
clinic orbits breaks up and can form a homoclinic orbit.Such scenarios have been
studied in a more general setting by Bykov [3]. We will prove the existence of
the heteroclinic cycle at the centre of the spiral and give a simple version of the
proof that this gives rise to homoclinic orbits for parameter values on a spiral.

To fix ideas let us now give an overview of the situation in phase space.
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Figure 3: Heteroclinic cycle for p =0

1.1 Sketch of the situation

Equation (2) has two equilibria (we identify the 27 shifted equilibria). We will
fix the parameters o and § since these are material properties and hence have
two free parameters c and ~.

The general picture is that we have an ordinary differential equation in R*® with
a parameter p € R?. For a special choice of p the situation is as depicted in
Figure 3: there is a heteroclinic cycle between the two equilibria. The one
dimensional unstable manifold of equilibrium z; intersects the one dimensional
stable manifold of z,; this part of the heteroclinic cycle is non-generic (co-
dimension 2). Furthermore, the two dimensional manifolds W*(x2) and W?*(z1)
intersect (transversally).

For parameter values different from this special choice, the unstable manifold
of z; will no longer intersect the stable manifold of xz5. For specific choices of
parameters, the unstable manifold may come close to the intersection of the two
dimensional manifolds and intersect the stable manifold of z;.

1.2 Outline

In section 2 we will prove the existence of the crucial heteroclinic connection.
This is the main result. We will indicate the necessary conditions for the spiral
to occur in section 3. In the following section we give the proof that these
assumptions result in the spiral mentioned above. This is essentially the same
as Lemma 4.1 in [3], but there the proof was part of a more general analysis and
since we only need this specific item, the proof can be given in a more compact



form. In the last section we show how the hypothesis needed for the proof can
by verified numerically for the travelling waves in a long Josephson junction
described by (1).

2 Existence of the heteroclinic connection

For ¢ =1 Equation (2) reduces (after rescaling) to
¢" —a¢' =sing -, 3)

where & = \3/%,7 For the rest of this section we will drop the tilde. This type of

equation has been studied in [7]. However, we cannot simply refer to this paper
because our right hand side is not sign definite.

The equilibria of (3) are given by
o = 2km + arcsiny, ¢apy1 = ™ — arcsiny + 2k 4)

Equation (3) is reversible and if ¢(&) is a solution then so is 37 — ¢(—&). We
will use these symmetries to prove the following result:

2 Theorem There exists a constant aq such that for all 0 < a < aq there ex-
ists, for some y € (0,1), a monotone symmetric (with respect to L) heteroclinic
solution connecting ¢y and ¢3. Furthermore, oy > 0.65.

The linearised equation around ¢y has one positive eigenvalue A, hence ¢ has a
one dimensional unstable manifold for all v € [—1, 1], which varies continuously
with . We shoot, with 7 as the shooting parameter, from this (local) unstable
manifold, where we take the orbit in W%, which initially increases. Thus, for

some small € > 0 let ¢(&,7) be the solution of (3) with ¢(0,v) = ¢o + € and
(¢a ¢Ia ¢”)(05 7) € Wﬁfc(%, 05 0)

Since we are looking for a monotone solution, it will be very helpful to use the
following formulation. On intervals on which ¢ is monotonically increasing we
define

=9 ()= 59’ (5)

Then 2 = ¢", where the dot denotes differentiation with respect to t. For the
second derivative of z we find, using (3),

sint —y

= 6
WP (6)

In the limit £ - —oo, we find the initial value for the z-equation:
Z(do) =0, #(do) =0, Z(¢o) = A (M)



To set up the shooting method we define

&(7) =sup{€|¢"(¢,7) > 0 on (—00,§)}, (8)
&) = sup{£] 9(6,7) < o on (~o0,8)}. ©)

Finally we define

Yo =sup{y € [-1,1] | &1(7) > &(7)}- (10)

That 7o is well-defined follows from Lemma 3a below.

First we make some observations. Clearly ¢'(§) > 0 on (—o0,&;]. It follows from
the implicit function theorem that &;(7v) depends continuously on « for v < 7.
Besides, &, is finite for v < 7o, since ¢ is concave on (—oo, &].

We shall prove the following properties.

3 Lemma With the above definition of vy one has
a. 7o is well-defined.

b. Yo > 0.

c. v < 1for 0 < a < a, where ag g 0.65.

Before we prove this lemma, let us show how this leads to Theorem 2.
4 Lemma For v =g € (—1,1) one has & = &.

It follows that ¢(&1,7) = 2Z and ¢"(&1,70) = 0, hence using the symmetry we
have found for v = 79 a heteroclinic solution as asserted in Theorem 2.

Proof of Lemma 4:

It follows from a continuity argument that &;(vo) < &(70). Now suppose, by
contradiction, that & < & at v9. Then ¢'(§) > 0 and ¢”(£1) = 0. From the
definition of & we obtain that ¢"'(£1) < 0 (since ¢” > 0 in a left neighbourhood
of £&1). From the definition of vy we infer that ¢"'(£1) = 0 since otherwise, by
the implicit function theorem, & < & for v € (79 —43,70) for some small positive
4, contradicting the definition of ~y.

It follows from Equation (3) that
sing —v=¢" —ag' <0, at &, (11)

hence ¢(&1) € (¢1,3F) C (%,3F); recall that ¢; is the second equilibrium.
Differentiating (3) we obtain

¢//// — Oé¢” + ¢I COS(,Z5 < 0’ at 61‘ (12)

The fact that ¢""'(£1) < 0 implies that ¢” < 0 in a left neighbourhood of &,
contradicting the definition of &;. |



We now turn to the proof of Lemma 3.

Proof of Lemma 3:
Part a. For v = —1 it follows immediately from the z-equation (6) that Z(¢) > 0
for all t > ¢, hence ¢"(£) > 0 for all £ € R.

Part b. Suppose, by contradiction, that v9 < 0. Observe that ¢; > 7, and

from Lemma 4 we see that #(t) > 0 on (¢, 2Z). Since 2(2£) = 0 we have
371’\'
0= Z(t)dt = Z(t)dt — Z(t)|dt. 13
40“) Jetousey 50 = [ O (13)
>0 £<0

On the one hand we conclude from the above observations that (we use the
notation (y); = max{0,y})

3m am
i int — EH -
/ |2(t)|dt§/ (_a_u) dts/ __sint_
3 ™ 2Z(t) + 7r QZ(t)
te‘ﬁ’l
257 "
b sint 1

<

_ dt = ,
- \/2z(m) g \/2z(m)

while on the other hand

. & sint — 7o T sint
3(t) dt > a+7dt2/
te[¢/3" z V/22(t) 22(t)
5307 (15)
T sint

1
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These inequalities contradict Equation (13).

s
2

Part c. Suppose, by contradiction, that 79 = 1. Then

3
) >0  forte[s, . (16)
2° 2
Also, 2(t) = a + % < afort € (%, 3], from which we conclude that
2(t) < S(t-5)* (17)
Now we find that
e ki sint — 1 c
z'?{—”=/ 5tdt</ a+t ————dt =ar — —, (18)
Y SN () Va
where o
Cdéf/Tsint;ldtz/ﬁl—cossds_ (19)
z t—3) 0 s



Hence

def 1/3
z(%’r) <0 if am— % <0,ie.iffa<ag= (%) ) (20)

def

contradicting (16). Notice that ap = (£)'/3  0.65. O

3 Assumptions

Now we will highlight the other necessary conditions for the existence of the
aforementioned spiral.

5 Definition In this work with a spiral is meant a curve, converging to a
point zg, which can be parameterised in polar coordinates around xo as r(0),
where r has the property that for all 8, it holds that (0 + 27) < r(6). (Or for
which it holds that for all 6, r(6 + 27) > r(6).)

In the general setting we study a system
z = f(z;p) reR;peR; feC? (21)

containing two hyperbolic equilibria z; and z,. We will assume the equilibria
to be independent of p, to simplify notation.

We assume
dim W*(z1;p) =1
o dim W?(zy1;p) = 2
dim W*(z2;p) = 2
dim W?(z2;p) =1

More specifically we assume
H2 The unstable eigenvalues of zo form a complex conjugate pair

Furthermore we assume that there exists a heteroclinic cycle I'o UT'y for p = 0:

H3 W (21;0) N W?(z;0) = TO,
and
H4 Wu(.'L'Q;O)ﬂWS(.’El;O) DI‘l,

(see Figure 3).

Tt is also assumed that W¥(z4;0) and W?(x;;0) intersect transversally,
H5 T,W¥(z2;0) + T,W*(z1;0) =R*, ¢qeTl'.

Hence we have
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Figure 4: The flow near z»

6 Corollary For p small enough there exists a one dimensional intersection of
WH(xq;p) and W*(zy;p), this intersection will be denoted by T'(p).

The intersection of W*(x1;0) and W#*(z5;0) will in general not persist under
perturbations. For small changes in the parameter p, W% (z1;p) will still come
close to the equilibrium z5. We select a coordinate system around z, such
that locally the stable manifold of z2 is the z-axis and the unstable manifold
is the (z,y)-plane (V|p| < d2). We take a transverse intersection of the stable
manifold
X = {(z,y,2)z = o}

At p = 0, the unstable manifold of z; will intersect ¥ at (0,0,0) (see Figure 4).
We choose d small enough such that for |p| < 2 the unstable manifold of
intersects X for the first time at the point I(p) = (z1(p), y1(p), o).

Let C, be the set of parameter values for which there exist an orbit homoclinic
to z1 and let I(p) be the first intersection of W*(z1;p) with X. If Cx, denotes
the intersection of the homoclinic orbits with X, then the relation between Cyx
and Cj, is given by C, = I7'(Cx). We assume p — I(p) to be a bijection:

dzr oyr
dp1  Op1

H6 det l o 8@/1] #0.
Op2  Op2dlp=0

We want hypothesis H6 to be satisfied for all small ¢ > 0. This can be reformu-
lated in a more convenient way by using the solutions to the variation equations,



where we consider variations around the special heteroclinic orbit I'g. We call
¢p, the solution of the variation equation of (21) around I'¢ for variations in py,
and in the same way define ¢,,. The solution of the variation equation for vari-
ations in time will be denoted by ¢;. Assumption H6 can now be reformulated
as assuming that the solutions ¢,,, ¢p, and ¢; are linearly independent, close
to the right hand equilibrium:

Hé6b §1im det [@p, Pp, F¢] #0
-0 S—_—
B

If H6D is satisfied then it follows that H6 holds for all sufficiently small o.

4 Local Analysis

We will first formulate the desired result in a theorem.

7 Theorem Under the assumptions HI-H5&H6Db, there exists 6o > 0 and a
curve in parameter space (p1(n),p2(n)), defined for |n| < d2 for which there
exists an orbit homoclinic to x;. Furthermore this curve will be a spiral.

Proof:

It is convenient to use cylindrical coordinates. We choose a p > 0 small enough
and a C'-coordinate transformation such that for r < p and z < o, the system
is locally given by

6 =w, (22)

In the present case C'-linearisation is possible, see [6].

According to Lemma 6 there exists, for |p| small enough, a connection I'!(p),
which intersects the cylinder r = p at the position Q@ = (p,80(p),0). Since
the intersection of W¥(x2;p) and W#(zy;p) is transversal, there exists a func-
tion 6°(z;p), such that the stable manifold of z; contains the curve Ci(z) =
(p,0%(z;p), 2) for |z| small enough (see Figure 5), and §°(z; p) is C! for small 2
and p.

We will now show that for certain values of p the unstable manifold of z;, inter-
secting X at I(p) = (rr(p),01(p), o), (with rr < p) will intersect this curve C1 (z).

Because of H6 we can locally write p(rr,0r).

The curve through I(p(ry,0r)) is for ¢ > 0 parameterised by

r =rrett,
0 =0r + wt, (23)
2z =oce M.
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Figure 5: The curve C} is the intersection of W*(zy;p) with a cylinder.

This curve will intersect the cylinder r = p at a time

In
t =

L

- 24
. (24)
A

"

so the intersection point will be (p, 61 + “1n Lo (ﬁ) - ).

TI

Thus this curve will intersect the stable manifold of z; if it intersects the
curve Cp, i.e.

W@(£>M”ML&D=&+gmﬁ-mM2m (25)
rr BoTr

The left-hand side of this equation approaches a constant, say 8o = 8°(0;0), as
rr — 0. Hence it is easily seen that the (rr,0r) satisfying (25) form a spiral for
small r, since we find that, with K = min{1, %} >0,

==L +0,+0(F) asr 0. (26)
poorr

O
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5 Verification of the assumptions

As mentioned in the Introduction, the motivation for this analysis was the ob-
served phenomenon in the equation

Bed" + (1- CZ)¢” —acd' —sing+v =0, (27)

which we write in the form

= ¢

¢=X(1 : » (28)
, —(1-c a sing —y

X = g XYt 5

We will verify that the assumptions H1-H6b hold. As mentioned in the Intro-
duction, ¢ is an angle-variable, hence the equilibria ¢ will be identified and
denoted by z2, and ¢op4+1 will be denoted by z;.

The assumptions about the dimensions are satisfied. It is also easily checked
that H2 is satisfied. The existence of a heteroclinic solution has been proven
in section 2. The following subsections will be dedicated to checking the condi-
tions H4-H6b numerically. For this we will make use of the program AUTO [4].

The values of the parameters have been chosen to be the same as those in [2],
this means a = 0.18, § = 0.1. We obtained a slightly different value for ~*,
namely v* = 0.8830437. We note that @ = 5= =~ 0.39 is within the range

VB
covered by Theorem 2.

5.1 Bijection

The condition H6b was checked by calculating the determinant of the matrix B
defined in H6b. However, we did not directly use the solutions to the variation
equations. Near the equilibrium z3, both ¢, and ¢, might increase exponen-
tially, while ¢; will decrease exponentially (the determinant, however, will re-
main finite). We defined qASt = \_;L:I’ which is the direction of ¢; and which must
satisfy

=A@~ b <A©)3,0>, (29)
where A(¢) = Df(T'°(€)) and the vector f represents the right hand side of (28).
For ¢, and ¢, we know the growth behaviour near z» and define ¢, = e *¢¢,,
where A is the real part of the complex eigenvalues of x5, and we solve the
equation for ¢, instead of @, (and similarly for ¢,).

In Figure 6 the determinant is plotted as a function of £ (rescaled to lie in
the interval [0,1]). The determinant is very small, since the three vectors are
almost co-planar. However, as can be seen, the determinant does not vanish

11
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Figure 6: The determinant as a function of &.

near the right hand equilibrium (£ = 1.0). Near the right hand equilibrium, the
determinant should be constant. In the figure it does not stay constant all the
way, but this is caused by numerical errors (numerically the approach to the
equilibrium is not ezactly along the stable eigenvector).

5.2 Transversality

Now we will indicate how the assumptions H4 and H5 were checked.

To calculate the intersection of the two manifolds, the calculation was set up
as follows. First, using DSTOOL [5], we found a starting point, close to 3,
which lies on a trajectory that passes close to the left hand equilibrium z;.
A solution starting from this point was then used as an initial condition to
a boundary value problem for AUTO. The solution was required to start in
the unstable eigenspace of the equilibrium z, and was calculated, until it hit
the stable eigenspace of the equilibrium z;. In a further step the distance to
both equilibria was decreased, hence the solution converged to the heteroclinic
solution.

To check the transversality condition, we calculated the linear approximation
to both manifolds and the angle 8, between them. The linear approximation
to one of these manifolds is spanned by the direction of the intersection and a
solution to the variation equation.

12



Also in this case we did not directly calculate solutions to the variation equation,
since we are only interested in the direction of the solution and these solutions
will diverge rapidly. If the intersection is given by ¢(£), the variation equation
is given by

g = Df(q(€))y- (30)

We did not solve for y, but defined v = I_yLI’ similar to what we did to check
condition H6b. We calculated two solutions v; and v, to the variation equation,
where v;(0) was required to be perpendicular to the intersection and to lie in
the stable eigenspace of x;, whereas v,(1) was required to lie in the unstable
eigenspace of o (time is rescaled so that £ = 1 is the end-point). For every
point &, the linear approximation to the unstable manifold of x5 is thus spanned
by ¢(¢) and v;(€). Hence we could calculate the angle 63 made by the two
manifolds at any point and hence check the transversality condition. The angle
between the manifolds was always larger than 0.5 rad.

5.3 Conclusions

For the model of a long Josephson junction the spiral in the (c,)-plane, the
points on which are parameter combinations for which a homoclinic solution
exists, is explained. To do this we proved the existence of a heteroclinic orbit,
making use of the fact that this heteroclinic orbit is monotone and that the
system is reversible at that particular value of the parameters. That there is a
spiral in parameter space then follows from a local analysis similar to the one
of Bykov [3]. The hypotheses we needed to assume for the proof were checked
numerically for specific values (taken from [2]) of the parameters.
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