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Abstract

In this paper we develop a general computer-assisted proof method for periodic solu-
tions to delay differential equations. The class of problems considered includes systems of
delay differential equations with an arbitrary number of (forward and backward) delays.
When the nonlinearities include nonpolynomial terms we introduce auxiliary variables to
first rewrite the problem into an equivalent polynomial one. We then apply a flexible fixed
point technique in a space of geometrically decaying Fourier coefficients. We showcase
the efficacy of this method by proving periodic solutions in the well-known Mackey-Glass
delay differential equation for the classical parameter values.

1 Introduction

In many biological phenomena and engineering applications the dynamics of the system is
determined in part by a feedback loop. When this feedback is delayed significantly compared
to the time scale of the dynamics, such systems are often described by Delay Differential
Equations (DDEs). The analysis of DDEs is considerably more difficult than that of ordinary
differential equations (ODEs), since the phase space of the dynamics of DDEs is effectively
infinite dimensional. Much progress has been made in studying DDEs, and we refer to [12,
15, 22, 23, 24, 33, 34, 41, 42, 55] for overviews and highlights. Nevertheless, it is fair to say
that even for the study of relatively simple dynamic structures such as periodic solutions a
great desire for new flexible, generally applicable techniques remains.

In this paper we develop computer-assisted techniques for finding (and proving) periodic
solutions of DDEs. We will, in particular, focus on DDEs with finitely many discrete delays:

u′(t) = F
(
u(t− τ1), . . . , u(t− τq)

)
. (1)

The unknown u : R → Rp is a periodic function with a priori unknown period. The delays
are {τj}qj=1 ⊂ R, and the nonlinearity F maps (Rp)q to Rp.

Ever since the first proof of the universality of the Feigenbaum constant [27], great strides
have been made in the application of computer-assisted proofs in dynamical systems. By
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far the most progress has been achieved in ODE problems, with the existence of chaos in
the Lorenz system [37, 48, 49] as one of the outstanding results. In the last decade these
developments have also extended to partial differential equations. While it is beyond the
scope of this paper to present a review of the literature, we remark that, roughly speaking,
these efforts can be categorized in two categories. The first type of approach centers around
developing rigorous integrators for (semi-)flows and combining these with intricate topological
arguments to study a variety of dynamic behaviours. One could describe these as “phase
space” methods, and we refer to [2, 4, 7, 10, 21, 35, 56, 57, 58] and the references therein
for the tremendous advances made. The second, complementary viewpoint, is based on
reformulating the question of locating and proving certain types of dynamic structures as
a zero finding problem in an appropriate functional analytic setting. For a sample of such
“function space” methods we refer to [1, 6, 8, 11, 13, 39, 52, 53] and the references therein.

The novel general approach to periodic orbits in systems of DDEs proposed here is of
the function space type. In a nutshell, it is based on a careful consideration of a modified
Newton iteration method. We study zeros of a function F(x) by looking for fixed points of
a Newton-like map:

T (x) = x−AF(x), (2)

where A is a carefully chosen approximation of the inverse of DF(x). We thus construct a
map F , such that the zeros correspond to periodic solutions, and then show the existence
of a zero by means of a fixed point argument applied to the map T . Such an approach was
previously used in [28], which focussed on Wright’s DDE

u′(t) = −γu(t− 1)[1 + u(t)], with γ > 0. (3)

We note that Equation (3) has received particular scrutiny in the context of computer-
assisted proofs, see [3, 19, 20, 28, 51] More generally, additional function space efforts for
DDEs include [16, 25], while concerning the phase space perspective on computer-assisted
proofs we refer to [46, 47] for some applications to DDEs.

The main contribution of the present paper is a function space method that applies to
periodic orbits of general systems of DDEs of the type (1). We stress that this class includes
forward-backward problems (both positive and negative delays τj) for which there is no
well-defined semi-flow. On a technical level, we propose a flexible zero finding formulation,
together with an associated fixed point map T described by (2). The success of the method
is intimately linked to our novel choice for A, the approximate inverse of the Jacobian, see
Section 4.4 for the details.

In order to illustrate the efficacy of our approach, we will consider several examples. The
example that we will cover in most detail is the Mackey-Glass equation [32], a scalar DDE
with a single delay and a nonpolynomial nonlinearity:

u′(t) = −βu(t) + α
u(t− τ)

1 + u(t− τ)ρ
. (4)

This DDE, which models the concentration of white blood cells in a subject, is one of the
first scalar DDEs that was conjectured to exhibit chaotic behaviour. In this equation, α is
the production rate of new cells and β is the rate at which the cells die. The delay parameter
τ > 0 models the time it takes for the subject’s body to observe the concentration and
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react, by either increasing or decreasing cell production. Finally, the positive real (i.e. not
necessarily integer) parameter ρ models the assumption that the production of new cells will
abruptly stop if the concentration is higher than the critical concentration. In the rescaled
version (4), this critical concentration is given by u = 1.

Chaos has been observed numerically in those cases where the critical concentration lies
close to an equilibrium solution, and where the cell-growth drops, parameterized by ρ, is
sufficiently steep [32, 31]. We will therefore consider the case where u = 1 is an equilibrium
of (4), which implies that α = 2β. By rescaling time we can choose, without loss of generality,
α = 2 and β = 1. Furthermore, chaos only occurs for “large” values of ρ, in particular ρ > 9.
Classically ρ is taken to be 10 or a non-integer value near 10.

The very first nonperturbative rigorous results on periodic solutions for the Mackey-Glass
equation (4) were recently obtained in [47] using the phase space approach. It relies on care-
fully integrating the DDE to construct a Poincaré return map explicitly. This construction
provides an existence proof of an attracting periodic orbit for both ρ = 6 and ρ = 8.

With the function space methods developed in the current paper we are able to comple-
ment these results by proving solutions for non-integer ρ, and for parameters values inside the
chaotic regime. In particular, we will focus on two particular choices for ρ and τ . First, we
will consider ρ = 10 and τ = 1.63, which lies close to the chaotic regime (in the (ρ, τ)-plane).
For these parameters, there is a long stable periodic orbit, which we will use as a basis to ob-
tain two other periodic solutions. Subsequently, we will use these results to obtain solutions
inside the chaotic regime, in particular for ρ = 9.65 and τ = 2. Some example orbits can be
found in Figure 1.

We note that these results complement and in some sense enhance the ones obtained
previously in [47]. In particular, we prove two co-existing periodic solutions for classical
(integer and non-integer) values of the parameter ρ, including in the chaotic regime. The
periodic orbits are observed (although not yet proven) to be dynamically unstable, but our
method is unaffected by this. We obtain tight (rigorous) uniform error bounds of O(10−8)
between the numerical approximation and the periodic solution, see Section 6.2 for the precise
numbers. Rigorous error bounds on derivatives are also available, see Remark 4.7. Among
other things, this implies that computing an eigenvalue of the linearized problem (around the
solution) and proving it(s real part) is positive (and hence instability of the periodic orbit),
is well within reach, although we did not pursue that in this paper. Moreover, rigorous
parameterization of the associated unstable manifolds along the lines of [14] would be a
natural next step.

The code to produce these results is available at [54].

Outline of the method and the paper

Let us for simplicity first consider scalar DDEs of the form (1), where F is nonlinear. When
looking for periodic solutions of (delay) differential equations the classical method is to con-
struct these solutions using Fourier series, i.e. we look for functions of the form

u(t) =
∑
k∈Z

ake
ikϑt,

where 2π/ϑ is the a priori unknown period.
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Figure 1: Two periodic solutions found in the chaotic regime, corresponding to α = 2, β = 1,
τ = 2 and ρ = 9.65. Left: a parametric plot of (u(t), u(t − τ)) of the two solutions. Right:
a 3-dimensional rendering of (u(t), u(t − τ/2), u(t − τ))) for the same two solutions. Also
depicted is a (numerical) long orbit with random initial data, to illustrate the nature of the
chaotic attractor.

Our first observation then is that both differential and delay operators have nice analogues
in Fourier space:

u′(t) =
∑
k∈Z

(ikϑak)e
ikϑt , u(t− τj) =

∑
k∈Z

(ake
−ikϑτj )eikϑt,

i.e. the Fourier coefficients of u′(t) are given by ikϑak and those of u(t − τj) are given by
ake
−ikϑτj .
Secondly, we observe that Fourier series have the property that pointwise multiplication

translates to two-sided convolution products.

Definition 1.1 (Convolutions). Let a, b ∈ CZ, then we define the convolution of a and b,
denoted as a ∗ b as the bi-infinite sequence given by

(a ∗ b)k =
∑

k1+k2=k

ak1bk2 ,

whenever the right-hand side converges.

Hence if the function u(t) has Fourier coefficients ak and v(t) has coefficients bk, then we
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have that

u(t)v(t) =
∑
k∈Z

(a ∗ b)keikϑt.

Since the convolution product is associative, it is easy to see that all polynomial combinations
of 2π/ϑ-periodic functions can be described by similar polynomial combinations of (possibly
higher-order) convolutions.

In conclusion, if the function F from (1) is polynomial, one can naturally rewrite (1)
as an equation on the space of Fourier coefficients. However, when a differential equation
involves nonpolynomial nonlinearities, then finding a closed form expression for the Fourier
coefficients can be at best tedious and in the worst case impossible. In Section 2 we introduce
a method, inspired by automatic differentiation, as used in [30], to deal with a large class of
nonpolynomial nonlinearities for delay equations. Our method is based on the observation
that many “standard” functions can be constructed as solutions of (systems of) polynomial
ODEs. In particular, when the nonlinearity F in (1) contains a nonpolynomial term, say
described by some “standard” nonpolynomial scalar function f , then one can rewrite Equation
(1) as a system of polynomial DDEs, by replacing a nonpolynomial nonlinearity with a new
variable, and appending the differential equation that this nonlinearity solves.

In order to make this substitution precise, we must also add one (or more) scalar equa-
tions to the system. This is necessitated by the fact that in order to recover a nonlinear
function from the polynomial ODE it satisfies, a specific boundary condition must be met.
For instance, to obtain f(x) = ex from f ′(x) = f(x), we need to specify that f(0) = 1. The
details on this can be found in Section 2.

This reformulation thus brings us to a situation where we have a system of DDEs with
polynomial nonlinearities, appended with additional boundary conditions. These boundary
conditions include a phase condition, which needs to be appended even if the original system
was already polynomial (to lift the degeneracy of solutions due to time shift). For such
systems we outline a computer-assisted method, that allows us to prove the existence of
periodic solutions close to some numerically obtained approximate solution. The method
that we will use, also called the method of radii polynomials, has in the last decade seen
extensive use in a large range of dynamical systems problems. There is by now a large body
of papers on this approach, see for instance [36, 17, 29] and the references therein. This
computer-assisted method relies on the construction of a map T (on a sequence space) from
a numerically obtained approximate solution. This map is constructed such that any fixed
point of T corresponds to a solution of the system of DDEs. Subsequently we show the
existence of a fixed point by means of a contraction argument, in particular by showing that
it is contractive on a ball around a numerically calculated approximate solution. This method
does not only provide a proof of existence, but the radius of the ball also allows us to give
an explicit Ck-error bound on the numerical (approximate) solution used to find the exact
solution (see Remark 4.7). The functional analytic framework needed to construct T and
prove its contractivity are described in Section 4.

In Section 5, we outline in detail how to use the tools from Section 4 to obtain estimates
necessary to prove the contractivity of T . Our guiding example there will be the Mackey-Glass
equation (4), but since functional analytic foundations laid in Section 4 are comprehensive,
the technique to derive the estimates works in full generality for any problem of the form (1)
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for which we have a polynomial (re)formulation. We finish this paper by presenting several
complicated periodic orbits of (4) in Section 6, both in and near the chaotic regime, which
we succeeded in proving using the developed techniques. In Section 6.3 we discuss possible
future work.

2 Polynomialization of nonlinearities

Our main goal is to construct methods to study nonpolynomial DDEs. In this section we will
explain how to reformulate a nonpolynomial DDE as a system of polynomial DDEs. For the
purposes of this paper we will call this procedure “polynomialization”. The key idea is that
many elementary nonpolynomial functions are solutions of polynomial differential equations.
By appending this polynomial differential equation and solving for the transformed original
variable, we can rewrite our nonpolynomial system as a (larger) polynomial system, see
also [21, 26, 30, 50]

To see how one can apply this idea to a DDE, let us consider the following, instructive
example.

Example 2.1 (Cooke’s equation). As a simple first example, we consider Cooke’s equation,
a nonpolynomial DDE arising from population dynamics [9], given by

u′(t) = −βu(t) + αe−γu(t−τ)u(t− τ), (5)

where α, β, γ > 0. In this case, the nonpolynomial nonlinearity is given by

f(y) = e−γy,

which satisfies

f ′(x) = −γf(x).

If we introduce a new variable v = e−γu, then v′(t) = −γv(t)u′(t), hence (5) becomes

u′(t) = −βu(t) + αu(t− τ)v(t− τ)

v′(t) = −γv(t)(−βu(t) + αu(t− τ)v(t− τ)),
(6)

where we substituted the equation for u′(t) for the u′(t) term appearing in the expression for
v′(t). For a pair (u, v) solving (6), it easily follows that veγu is constant, where a priori the
constant is arbitrary. In order to make sure that the new variable v really satisfies v = f(u),
we need to impose boundary conditions.

Periodic solutions to (5) come in (at least) one parameter families, sine we can apply
arbitrary time shifts to them. However, when we choose a c in the interior of the range of u,
then we can impose u(0) = c as a phase condition, if u is not locally constant near t = 0. This
phase condition also gives us a natural boundary condition for v by imposing v(0) = e−γc.
Motivated by numerical calculations, we will, for Cooke’s equation, use c = 1.

If we want to treat u and v as coupled variables in an equation, then we have one final
obstacle. The problem we have constructed thus far, consisting of finding periodic solutions
u and v together with two phase conditions, is over-determined. In particular, we have two
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phase conditions, but only one corresponding variable, namely the period. We solve this
problem by adding an auxiliary variable η to (6) as follows:

u′(t) = −βu(t) + αu(t− τ)v(t− τ), u(0) = 1,

v′(t) = −γv(t)(−βu(t) + αu(t− τ)v(t− τ)) + η, v(0) = e−γ .
(7)

We now wish to find periodic functions u, v solving (7) we well as two scalars, namely the
frequency ϑ ∈ R and the auxiliary variable η ∈ R. If we can show the existence of such a
solution, then it can be shown that η must be 0, and subsequently that v = eγu and that u
solves (5).

Remark 2.2. It should be noted that there are many ways in which we can add the auxiliary
variable η to (6). Instead of adding it as a constant to the equation, we could also add ηv(t)
instead. Some care has to be taken in how to choose the auxiliary variables, for instance,
adding them as a constant does not work in the Ikeda equation, see Example 2.6.

We can summarise the relationship between (7) and (5) in the following proposition.

Proposition 2.3. Let α, β, γ ∈ R, let η ∈ R, and let (u, v) be a periodic solution of (7).
Then η = 0 and u is a periodic solution of Cooke’s equation (5).

Proof. First note that v satisfies

v′(t) = −γv(t)u′(t) + η.

If follows directly from this equation that v′(t) = η whenever v(t) = 0. If v(t0) = 0 for some
t0, and η = 0, then v′(t0) = v(t0) = 0, hence v = 0 everywhere by the uniqueness theorem
for solutions to initial value problems, contradicting the assumption that v is periodic and
v(0) = e−γ . Hence it follows that if v(t) is zero anywhere, then v crosses 0 in a direction
determined by the sign of η. But η is a constant, hence if v crosses zero once, it cannot cross
zero again, which contradicts the assumption that v is periodic. Therefore v 6= 0 everywhere.
Since any solution must be continuous it follows from v(0) > 0 that v > 0 everywhere.

Since v > 0 everywhere, log v is also defined everywhere and

d

dt
(log v(t) + γu(t)) =

η

v(t)
.

Since v > 0 the right-hand side has either constant sign or it vanishes. Moreover, log v + γu
is periodic, hence its derivative cannot have constant sign. We conclude that η = 0 and
that log v + γu is constant. Furthermore, the choice of boundary values in (7) implies that
v(0) = e−γu(0) and we conclude that log v + γu = 0, hence v(t) = e−γu(t). In particular, u(t)
satisfies (5).

We can apply the same ideas to the Mackey-Glass equation.

Example 2.4 (The Mackey-Glass equation). Recall from the introduction that the Mackey-
Glass equation is given by,

u′(t) = −βu(t) + α
u(t− τ)

1 + u(t− τ)ρ
, (8)

7



where typically ρ is chosen large and possibly non-integer [31, 32]. In particular, this DDE
involves a nonpolynomial nonlinearity,

f(y) =
y

1 + yρ
.

The function f satisfies the non-autonomous, but polynomial, differential equation

f ′(y) = (y−1 − ρyρ−2f(y))f(y). (9)

This means that if we introduce a new variable

v(t) =
u(t)

1 + u(t)ρ
= f(u(t)),

then u satisfies

u′(t) = αv(t− τ)− βu(t).

However, (9) contains two new nonlinearities, namely y−1 and yρ−2. In order to handle
these, we will introduce new functions: x(t) = u(t)−1 and w(t) = u(t)ρ−2. As in Example
2.1 we also introduce three auxiliary variables η1, η2 and η3 together with the boundary
conditions u(0) = w(0) = x(0) = 1 and v(0) = 1/2. We thus consider the following system of
polynomial DDEs:

u′(t) = αv(t− τ)− βu(t), u(0) = 1, (10a)

v′(t) = v(t) (x(t)− ρv(t)w(t)) (αv(t− τ)− βu(t)) + η1, v(0) = 1/2, (10b)

w′(t) = (ρ− 2)x(t)w(t) (αv(t− τ)− βu(t)) + η2, w(0) = 1, (10c)

x′(t) = −x(t)2 (αv(t− τ)− βu(t)) + η3, x(0) = 1. (10d)

The relation between periodic solutions of (10) and (8) is guaranteed by the following
proposition.

Proposition 2.5. Let α, β, η1, η2, η3 ∈ R and let (u, v, w, x) be a periodic solution of (10),
then u is a periodic solution of the Mackey-Glass equation (8).

Proof. First note that the x component of any periodic solution of (10) must satisfy

x′(t) = −x(t)2u′(t) + η3.

Similar to the proof from Proposition 2.3, we can conclude that x > 0. It follows that we can
write

d

dt

(
u(t)− x(t)−1

)
=

η3

x(t)2
.

As in the proof of Proposition 2.3, u(t)− x(t)−1 is periodic, hence η3 = 0 and u(t)− x(t)−1

must be constant. Since x(0) = u(0) = 1, x(t)−1 = u(t). In a similar vein,

w′(t) = (ρ− 2)x(t)w(t)u′(t) + η2.
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Since w(0) > 0, we again have by (10c) that w > 0, hence using that x,w > 0 and that
x(t) = u(t)−1, we find

d

dt
(logw(t)− (ρ− 2) log u(t)) =

η2

w(t)
.

By analogous arguments, we can then conclude that η2 = 0 and w(t) = u(t)ρ−2. Finally,
combining (10a) and (10b) gives

v′(t) = v(t) (x(t)− ρv(t)w(t))u′(t) + η1,

hence using the relations x(t) = u(t)−1 and w(t) = u(t)ρ−2 we conclude that

d

dt

(
u(t)

v(t)
− u(t)ρ

)
= −η1

u(t)

v(t)2
,

implying that η1 = 0. Because u(0) = 2v(0) = 1, we now have that u(t)
v(t) −u(t)ρ = 1, resulting

in v(t) = u(t)/(1 + u(t)ρ).
In conclusion, any periodic solution to (10) satisfies u′(t) = −βu(t) +αf(u(t− τ)), which

is the Mackey-Glass equation (8).

As a final example we consider the Ikeda equation, where the polynomialization is slightly
more subtle.

Example 2.6 (The Ikeda equation). The Ikeda equation [18, 45] is a simple DDE with a
sinusoidal nonlinearity:

u′(t) = sin(u(t− τ)). (11)

In this case we introduce two new variables, namely v = sin(u) and w = cos(u). These new
variables satisfy v′ = wu′ and w′ = −vu′. As phase condition, we can put u(0) = v(0) = 0
and w(0) = 1. In this case we pass to the system

u′(t) = v(t− τ), u(0) = 0,

v′(t) = w(t)v(t− τ) + η1v(t) + η2w(t), v(0) = 0,

w′(t) = −v(t)v(t− τ) + η1w(t)− η2v(t), w(0) = 1.

(12)

The introduction of the two linear terms with auxiliary variables η1 and η2 is justified by
the next proposition.

Proposition 2.7. Let η1, η2 ∈ R and let (u, v, w) be a periodic solution of (12) with period
2π/ϑ. If |η2| < ϑ, then u is a periodic solution of the Ikeda equation (11).

Proof. If we define r2(t)
def
= v(t)2 + w(t)2, then

1

2

d

dt
r2 = vv′ + ww′ = η1(v2 + w2) = η1r

2. (13)
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Clearly r2 must be periodic, and r2(0) = 1. This can only be the case if η1 = 0, Hence
(13) implies that r2(t) = 1 for all t so that (v(t), w(t)) lies on the unit circle in R2. If φ(t)
describes the angle of (w(t), v(t)) = (cosφ(t), sinφ(t)), then φ(0) = 0 and

φ′ = v′w − w′v = (v2 + w2)(η2 + u′) = η2 + u′.

While v and w are periodic, it does not follow directly that φ is periodic. However, by the
above equation, it does follows that (φ−u)′ = η2, a constant. Furthermore, since u, v and w
are periodic, it also follows that this constant must be an integer multiple of ϑ. Since |η2| < ϑ,
we must therefore have that η2 = 0, hence φ′ = u′. Since u(0) = φ(0) = 0, it follows that
u = φ, and therefore v(t) = sinu(t). In particular, u satisfies the Ikeda equation (11).

3 The zero finding problem

The approach described in the previous section allows us to rewrite a large class of non-
polynomial DDEs as polynomial ones, which means that we can take advantage of all the
benefits of Fourier series, and of Banach algebra properties in particular (avoiding somewhat
cumbersome interpolation and truncation estimates). In particular, we will use this to show
that we can solve these DDEs by finding zeros of a map F on a suitably chosen sequence
space of Fourier coefficients. In this section we construct this map for each of the examples
covered above. Subsequently, we will dedicate the remainder of this paper to finding zeros of
these maps.

We recall that the Fourier series associated with the constant function u = 1 is given by
the standard Kronecker-δ0, i.e. δ0 ∈ CZ satisfying

δ0,k =

{
1 if k = 0,

0 if k 6= 0.

As we will frequently work with derivatives and delayed versions of functions derived from
Fourier series, it will be useful to introduce the following operators related to the derivatives
and delays.

Definition 3.1. Let (ck)k∈Z be a bi-infinite sequence, then we define the operator K : CZ →
CZ by

(Kc)k = kck.

For a given delay τ > 0 and frequency ϑ ∈ R we define the map dτ (ϑ) : CZ → CZ by

(dτ (ϑ)c)k = e−ikϑτck.

Remark 3.2. For ϑ ∈ R, the operator dτ (ϑ) is loosely related to the identity map. If we
take the absolute value entry-wise, we have |dτ (ϑ)| = Id, as long as ϑ ∈ R. If ϑ is allowed to
be complex valued, i.e. Imϑ 6= 0, then eikϑτ is unbounded in k. While it is not impossible
to work with such an operator, many of the estimates to follow will simplify a great deal if
we restrict ourselves to ϑ ∈ R. For this reason, we will assume throughout the paper that
ϑ ∈ R. Since we wish to unify the way we treat the scalar unknowns (ϑ and η1, . . . , ηm−1),
we will analogously assume that ηj ∈ R.
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The operators from Definition 3.1 allow us to write, without having to resort to indices, the
Fourier series associated with the differentiated and delayed functions. Using this notation,
we can concisely rewrite the example equations covered in Section 2. Each of the systems
derived from those examples can be written as

x′(t) = g(η1, . . . , ηm−1;x(t);x(t− τ)) x(0) = x0,

where x(t) = (x0(t), . . . , xm−1(t)) ∈ Rm and η1, . . . , ηm−1 are unknown, x0 ∈ Rm is given and
g : Rm−1 × Rm × Rm → Rm is polynomial. Since we also wish to solve for the frequency ϑ,
we will from now on set η0 = ϑ and write

η
def
= (ϑ, η1, . . . , ηm−1) ∈ Rm.

If we write x as a Fourier series with coefficients ck = (c0
k, . . . , c

m−1
k ) ∈ Cm, i.e.,

x(t) =
∑
k∈Z

cke
ikϑt,

then x′(t) =
∑

k iϑ(Kc)ke
ikϑt and similarly x(t−τ) =

∑
k(dτ (ϑ)c)ke

ikϑt. The DDE can then
be written as

iϑKc = ĝ(η, c),

where ĝ(η, c) “equals” g(η1, . . . , ηm−1; c; dτ (ϑ)c), with all multiplications of bi-infinite se-
quences interpreted as convolutions (see Definition 1.1).

Because of its dependence on dτ (ϑ), the map ĝ is not truly polynomial. However, since ĝ
is only nonpolynomial in the scalar variables η = (ϑ, η1, . . . , ηm−1), and not in the bi-infinite
variables c, this does not pose a problem.

Example 3.3 (Cooke’s equation). In the case of Cooke’s equation from Example 2.1, we
find that (7) is equivalent to

FCooke(η, c)
def
=


∑

k c
0
k − 1∑

k c
1
k − e−γ

iϑKc0 + βc0 − αdτ (ϑ)(c0 ∗ c1)
iϑKc1 − βγ c0 ∗ c1 + αγ c1 ∗ dτ (ϑ)(c0 ∗ c1)− η1δ0

 = 0, (14)

meaning that we can rewrite our problem as F(η, c) = 0, where F : R2× (CZ)2 → C2× (CZ)2

is given by (14).

Example 3.4 (The Mackey-Glass equation). We can rewrite the Mackey-Glass equation
from Example 2.4 as F(η, c) = 0, where F : R4 × (CZ)4 → C4 × (CZ)4 is given by

FMG(η, c)
def
=



∑
k c

0
k − 1∑

k c
1
k − 1/2∑

k c
2
k − 1∑

k c
3
k − 1

iϑKc0 − (αdτ (ϑ)c1 − βc0)
iϑKc1 − (c1 ∗ c3 − ρc1 ∗ c1 ∗ c2) ∗ (αdτ (ϑ)c1 − βc0)− η1δ0

iϑKc2 − (ρ− 2)c2 ∗ c3 ∗ (αdτ (ϑ)c1 − βc0)− η2δ0

iϑKc3 + c3 ∗ c3 ∗ (αdτ (ϑ)c1 − βc0)− η3δ0


. (15)
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Example 3.5 (The Ikeda equation). For the system derived from the Ikeda equation in
Example 2.6, we see that the problem can again be written as F(η, c) = 0, where F :
R3 × (CZ)3 → C3 × (CZ)3 is given by

FIkeda(η, c)
def
=



∑
k c

0
k∑

k c
1
k∑

k c
2
k − 1

iϑKc0 − dτ (ϑ)c1

iϑKc1 − c2 ∗ dτ (ϑ)c1 − η1c
1 − η2c

2

iϑKc2 + c1 ∗ dτ (ϑ)c1 − η1c
2 + η2c

1

 . (16)

In each of the examples above, we have constructed a map F : Rm×(CZ)m → Cm×(CZ)m.
Note that the Cm component in the range of F is due to the fact that we do not, a priori,
assume that our functions are going to be real-valued. The Rm component in the domain of
F is due to Remark 3.2.

Finally, when our starting point is a vector-valued problem (1), i.e., u : R → Rp with
p > 1, then we end up with a map F : Rm × (CZ)m+p−1 → Cm × (CZ)m+p−1. In order
not to burden the notation, we will put p = 1 in what follows, and we just remark that the
methodology naturally extends to p > 1.

4 Functional analytic necessities

In this section we study the problem of finding solutions to F(η, c) = 0, with F as constructed
in Section 3. In particular, we set up the outline of the computer-assisted proof of the existence
(and local uniqueness) of these solutions. Since our goal is to provide a general framework
to prove periodic solutions in general systems of DDEs, a fair bit of preparation is required
to introduce convenient notions, so that the necessary bounds can be derived in a relatively
compact manner in Section 5. In particular,

• in §4.1 we discuss the `1 spaces needed for the Fourier analysis;

• in §4.2 we set up the parameterized Newton-Kantorovich argument;

• in §4.3 we select a suitable finitely truncated problem and associated projections;

• in §4.4 we construct an ingenious approximate inverse of the Jacobian needed in the
definition of the fixed point operator;

• in §4.5 we deal with symmetry invariance, which eventually provides us with a real-
valued periodic solution;

• in §4.6 we introduce the concept of pseudo-convolutions, which capture the delay oper-
ators appearing in DDE problems in a remarkably convenient notation;

• in §4.7 we estimate the norms of the linear operators that are central to obtaining the
bounds in Section 5.

12



4.1 Sequence spaces for analytic functions

It is a well known fact that analytic DDEs with constant delays have analytic periodic solu-
tions [40]. Since the DDEs considered in this paper are analytic (after all, they are polyno-
mial), we can a priori assume that the solutions that we will find are analytic as well. We
exploit this a priori information in order to identify the Banach space on which to consider
our zero finding problem.

Suppose that a periodic function u : R → C is given by u(t) =
∑

k cke
ikϑt, then u is

analytic if and only if the Fourier coefficients ck decay exponentially. Hence there exists a
ν > 1 such that ∑

k

|ck|ν|k| <∞.

This motivates the following definition.

Definition 4.1. We define the Banach space `1ν as

`1ν
def
=

{
c ∈ CZ :

∑
k∈Z
|ck|ν|k| <∞

}
equipped with the norm

‖c‖1,ν
def
=
∑
k∈Z
|ck|ν|k|.

Since we are not solving a single equation, but a system of m equations, the following
definition will be useful:

Definition 4.2. We define the Banach space `1,mν as

`1,mν
def
=

c = (c0, . . . , cm−1) ∈ (CZ)m :
m−1∑
j=0

∑
k∈Z
|cjk|ν

|k| <∞


which is a Banach-space under the norm

‖c‖1,ν
def
=

m−1∑
j=0

∑
k∈Z
|cjk|ν

|k| =

m−1∑
j=0

‖cj‖1,ν .

The maps F constructed in Section 3 also depend on m real parameters, and involve m
complex boundary/phase conditions, which motivates the following definition.

Definition 4.3. We define the Banach spaces XR,m
ν and XC,m

ν as

XR,m
ν

def
= Rm × `1,mν XC,m

ν
def
= Cm × `1,mν ,

where the norm of x = (η, c), for both x ∈ XR,m
ν and x ∈ XC,m

ν , is given by

‖x‖ =
m−1∑
j=0

|ηj |+
m−1∑
j=0

‖cj‖1,ν .

13



In the above definitions, we purposefully choose to take the sum of `1 norms, as opposed
to the more “classical” method of taking the maximum of norms when constructing products
of Banach spaces. This is because taking the sum of `1 norms results in a Banach space
which is also `1, albeit with more indices. This makes calculating the norm of operators on
these new Banach spaces much more elementary.

In order to obtain the numerical results that form the basis of our computer-assisted proof,
we need some formalism that deals with truncated sequences and finite dimensional subspaces.
To this end we will, throughout this paper, consider C2n+1 as a (2n+1 dimensional) subspace
of `1ν by setting ck = 0 for |k| > n. We will abuse notation by implicitly identifying the finite
dimensional space C2n+1 with this subspace of `1ν . Thus, this gives rise to a natural projection
πn : `1ν → C2n+1 ⊂ `1ν that is obtained by setting

(πnc)k =

{
ck if |k| ≤ n
0 otherwise.

The complementary projection we denote by πn,∞, i.e. πn + πn,∞ = Id.
When n1 < n2, we similarly have a natural embedding C2n1+1 ⊂ C2n2+1 ⊂ `1ν . In this case

we will also use the projection on the complement of C2n1+1 in C2n2+1, denoted by πn1,n2 :

(πn1,n2c)k =

{
ck if n1 < |k| ≤ n2

0 otherwise,

hence it satisfies πn1 + πn1,n2 = πn2 .
Finally, we note that these projections naturally extend to the product space Cm(2n+1) ⊂

`1,mν , by setting

πnc = (πnc0, . . . , πncm−1).

The primary reason to focus on `1-spaces (as opposed to other `p-spaces), is that these
spaces are Banach-algebras with respect to two-sided convolutions. This is important because
as our system of delay equations is polynomial, the corresponding nonlinearities can be written
as convolutions.

Lemma 4.4. Let a, b ∈ `1ν , then the two-sided convolution a ∗ b, given by

(a ∗ b)k =
∑

k1+k2=k

ak1bk2

also satisfies a ∗ b ∈ `1ν . In particular

‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν .

Finally, we can give explicit expressions for the norms of maps and of linear functionals
in terms of their coefficients. Since `1ν is a sequence space, we can also represent φ : `1ν → C
as a (bi-infinite) sequence.

Remark 4.5. Let the basis elements ej ∈ `1ν for j ∈ Z be such that ejk = δj,k where δ is
the standard Kronecker-δ. Then the explicit representation of φ ∈ (`1ν)∗ as a sequence is via
φj = φ(ej) for all j ∈ Z.

14



Furthermore, we have by Hölder’s inequality that

|φ(c)| =

∣∣∣∣∣∑
k

φkck

∣∣∣∣∣ ≤
(

sup
k
|φk|ν−|k|

)(∑
k

|ck|ν|k|
)
.

This gives us the following result.

Lemma 4.6. The dual `∞ν
∼= (`1ν)∗ of `1ν is given by

`∞ν
def
=

{
φ ∈ CZ : sup

k
|φk|ν−|k| <∞

}
,

and the norm on the dual is given by

‖φ‖∞,ν
def
= sup

k
|φk|ν−|k|.

Remark 4.7. If we write u(t) =
∑

k cke
ikϑt, then Lemma 4.6 allows us to calculate an explicit

bound on the Cn-norm by means of the following inequality:

‖u‖Cn = max
0≤j≤n

sup
t∈[0,2π/ϑ]

∣∣∣∣ djdtj u(t)

∣∣∣∣
≤ max

0≤j≤n
ϑj
∑
k

|k|j |ck|

≤ ‖c‖1,ν max
0≤j≤n

ϑj sup
k
|k|jν−|k|.

Lemma 4.6 can be used to calculate the norm of operators M : `1ν → `1ν as follows.

Lemma 4.8. Let M : `1ν → `1ν be a bounded linear map, represented by a bi-infinite matrix
(Mk1,k2)k1,k2∈Z, then

‖M‖ = sup
k2

ν−|k2|
∑
k1

|Mk1,k2 |ν|k2|.

We can apply this lemma to calculate the norm of the linear map dτ (ϑ) that we introduced
in Definition 3.1. But, if we try to apply Lemma 4.8 to the operator K, we run into a problem,
namely if c ∈ `1ν , then it does not follow that Kc ∈ `1ν . To remedy this, we introduce the
following Banach space

Definition 4.9. We define the Banach space `1ν+ as

`1ν+
def
=

c ∈ CZ : |c0|+
∑
|k|>1

|ck|
ν|k|

|k|
<∞


equipped with the norm

‖c‖1,ν+
def
= |c0|+

∑
|k|>1

|ck|
ν|k|

|k|
.

We define the Banach spaces `1,mν+ , XR,m
ν+ and XC,m

ν+ in the same manner as `1,mν , XR,m
ν and

XC,m
ν from Definition 4.2 and Definition 4.3.
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Using this we can now also specify the range and norm of K.

Lemma 4.10. Let K : `1ν → `1ν+ and dτ (ϑ) : `1ν → `1ν be given by

(Kc)k
def
= kck,

(dτ (ϑ)c)k
def
= e−ikϑτck.

Then ‖K‖ = 1 and ‖dτ (ϑ)‖ = 1.

Since we choose to use the sum of the norms on the product spaces, we have a similar
(but due to indices rather technical) result on `1,mν , and XR,m

ν and XC,m
ν . To write down this

result, we observe that we can write each element x ∈ C × `1ν as vector (x)i∈I , where the
index-set is given by the disjoint union

I = {0} t Z.

Using this notation, we have that ‖x‖ =
∑

k∈I |xk|ν|k|, allowing us to formulate the following
result.

Corollary 4.11. Let X be either XR,m
ν or XC,m

ν and let M : X → X , then M can be
written as a block-matrix M = (M j1,j2)j1,j2∈{0,...,m−1}, where for each j1, j2, M j1,j2 ∈ CI×I .
Furthermore,

‖M‖ = max
0≤j2≤m−1

sup
k2∈I

ν−|k2|
m−1∑
j1=0

∑
k1∈I
|M j1,j2

k1,k2
|ν|k1|.

While the notation here is rather cumbersome, it should be noted that the norm above
is obtained by taking the X norm of every column in M, and taking the dual norm of the
resulting row.

Finally we observe that Rm ⊂ Cm, hence we have a natural inclusion XR,m
ν ⊂ XC,m

ν .
Furthermore, every linear map M : XR,m

ν → XC,m
ν has, by linearity, a natural extension to a

map M : XC,m
ν → XC,m

ν . If we denote the inclusion ι : XR,m
ν → XC,m

ν , then M =Mι. Since
‖ι‖ = 1, it then follows that

‖M‖ = ‖Mι‖ ≤ ‖M‖‖ι‖ = ‖M‖.

We summarise this conclusion in the following Corollary.

Corollary 4.12. , Let M : XR,m
ν → XC,m

ν and let M : XC,m
ν → XC,m

ν be its natural
extension. Then ‖M‖ ≤ ‖M‖.

4.2 General radii polynomial approach

Our computer-assisted proof makes use of the so-called radii polynomial approach, which we
formulate here. The method itself is based on the Banach fixed point theorem and combines
numerical (computer-derived) calculations and analytical estimates to both construct a can-
didate fixed point operator and verify its contractivity. We first present this method for a
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general class of zero finding problems and subsequently comment on the implementation in
the case of periodic orbits of (systems of) delay equations.

Let us consider a map F : X → X ′, between two Banach spaces. The candidate for our
contracting map is derived from the classical Newton method, which is used to find zeroes of
maps by iterating the Newton operator on X given by

x 7→ x−DF(x)−1F(x).

Suppose now that we have constructed (numerically) an approximate solution x̂ ∈ X, i.e.
we have that F(x̂) ≈ 0. We then expect that the Newton map will be contracting on some
neighbourhood of x̂. The problem is that when working with infinite-dimensional systems,
DF can be hard to construct and inconvenient to invert. Hence instead of using DF(x)−1, we
will use an approximate inverse of the derivative in the point x̂, that is, we take A : X ′ → X
such that

A ≈ DF(x̂)−1

and we define T : X → X by

T (x)
def
= x−AF(x). (17)

If A is injective, then F(x̃) = 0 if and only if T (x̃) = x̃. Hence x̃ is a solution of F(x̃) = 0 if
and only if x̃ is a fixed point of T . If we can show that T is a contraction, then T must have
a fixed point and consequently F must have a zero.

The expectation that this T is contracting is not unreasonable. After all, the Newton-like
operator T can be seen as a perturbation of the classical Newton operator on a neighbourhood
of x̂. Since Newton’s method is so strongly contracting, it is reasonable to expect that small
perturbations, and hence T , will still be contracting. However, for any particular choice of
A this of course needs to be verified.

In order to show that T is indeed contracting on a ball of radius r around x̂ we will use
a parameterized version of the Newton-Kantorovich theorem. This particular variant of the
theorem is due to [5].

Theorem 4.13. Let T : X → X be differentiable and let x̂ ∈ X. Furthermore, suppose there
exist constants Y,Z1 and a function Z2 : R+ → R+ such that

‖T (x̂)− x̂‖ ≤ Y (18a)

‖DT (x̂)‖ ≤ Z1 (18b)

and such that for every r > 0 and ‖y‖ ≤ 1,

‖DT (x̂+ ry)−DT (x̂)‖ ≤ Z2(r)‖y‖. (18c)

If there exists a radius r̂ > 0 such that the following two inequalities hold:

Y +

(
Z1 +

1

2
Z2(r̂)

)
r̂ < r̂, (19a)

Z1 + Z2(r̂) < 1, (19b)

then T : Br̂(x̂)→ Br̂(x̂) is a contraction.
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Proof. Suppose z ∈ Br(x̂), then

‖T (z)−x̂‖ ≤ ‖T (x̂)− x̂‖︸ ︷︷ ︸
≤Y

+‖T (z)− T (x̂)‖

≤ Y +

∥∥∥∥∫ 1

0
DT (x̂+ t(z − x̂))(z − x̂)dt

∥∥∥∥
≤ Y + ‖z − x̂‖

(∫ 1

0
‖DT (x̂)‖ dt+

∫ 1

0
‖DT (x̂+ t(z − x̂))−DT (x̂)‖ dt

)
≤ Y + ‖z − x̂‖

(∫ 1

0
Z1dt+

∫ 1

0
Z2(r)‖z − x̂‖ t

r
dt

)
≤ Y + ‖z − x̂‖

(
Z1 + Z2(r)

∫ 1

0
t dt

)
= Y +

(
Z1 +

1

2
Z2(r)

)
r,

hence if (19a) holds, then T maps Br̂(x̂) into itself. Furthermore, we have similarly for
x, z ∈ Br(x̂) that

‖T (z)− T (x)‖ ≤
∫ 1

0
‖DT (x+ t(z − x))‖ ‖z − x‖dt.

If we denote xt = x + t(z − x), then by convexity xt ∈ Br(x̂), i.e. ‖x̂ − xt‖ ≤ r for all
t ∈ [0, 1], hence we have that

‖T (z)− T (x)‖ ≤ ‖z − x‖
∫ 1

0
‖DT (xt)‖ dt

≤ ‖z − x‖
∫ 1

0
‖DT (x̂− (x̂− xt)‖ dt

≤ ‖z − x‖
(∫ 1

0
‖DT (x̂)‖ dt+

∫ 1

0
‖DT (x̂− (x̂− xt))−DT (x̂)‖ dt

)
≤ ‖z − x‖ (Z1 + Z2(r)) .

We conclude that when (19b) holds in addition to (19a), then T is a contraction on Br̂(x̂).

Remark 4.14. In practice, the Z2 bound is often chosen to be polynomial (or even constant)
in r. Furthermore, the inequality in (19a) is clearly equivalent to

p(r̂)
def
= Y +

(
Z1 +

1

2
Z2(r̂)− 1

)
r̂ < 0.

This polynomial is called the radii polynomial. In the case where Z2 is linear, the further
requirement provided by (19b) is then equivalent to p′(r̂) < 0.

When we interpret Theorem 4.13 in the context of the map F and the approximate
inverse A, we obtain the following corollary.
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Corollary 4.15. Let F : X → X ′ be differentiable and let A : X ′ → X be an injective
linear map. If there exist an x̂ ∈ X, bounds Y, Z1 and Z2, and a radius r̂ such that the map
T (x) = x − AF(x) satisfies the assumptions in Theorem 4.13, then there exists a unique
x̃ ∈ Br̂(x̂) ⊂ X such that F(x̃) = 0.

Remark 4.16 (Interval Arithmetic). The estimates appearing in Theorem 4.13 depend ex-
plicitly on a computer-obtained approximate numerical solution. Hence the Y and Z bounds
will also have to be calculated using a computer. One problem is that such calculations are
prone to rounding errors caused by floating-point operations. To make our computations
rigorous, instead of just numerical, we therefore need a way to rigorously bound the rounding
errors that accumulate during the calculation of Y and Z. The standard way to do this is by
making use of an interval-arithmetic library [38, 50]. For the calculations done in this paper,
the Intlab library for Matlab was used [44, 43].

From here on out, we will use the Banach spaces XR,m
ν and XC,m

ν that we introduced
in Section 4.1, and solely focus on the maps F : XR,m

ν → XC,m
ν+ we obtained in Section 3.

The first obstacle in using Theorem 4.13 is selecting an approximate inverse. Because of our
restriction of F to the Banach space XR,m

ν , the construction of the approximate inverse, in
Section 4.4, will be slightly more subtle than described above. We will spend the following
sections providing the necessary functional analytic setup to construct this approximate in-
verse and a version of Corollary 4.15, suitable for the type of maps described in Section 3.
This result is formulated in Proposition 4.25.

The remainder of the paper will then be dedicated to providing the means to calculate
the Y and Z bounds needed to apply Proposition 4.25.

4.3 The finite dimensional projection

In order to compute the approximate solution as well as the approximate inverse mentioned
in the previous section, we will need to truncate the map F . To this end, we observe that
each of the examples covered in Section 3 can be decomposed in the following way:

F(x) = F(η, c) =

(
H(c)
G(η, c)

)
,

where H : `1,mν → Cm represents the boundary/phase conditions and where G : XR,m
ν =

Rm × `1,mν → `1,mν+ encodes the differential equations. In particular, the map H is affine,

meaning that we can write H(c) = Ec − h, where E : `1,mν → Cm is linear and where
h ∈ Cm. Furthermore, each of the components of G = (G0, . . . , Gm−1) with Gj(η, c) ∈ `1ν+

satisfies

Gj(η, c)k = ikϑcjk + convolution terms.

Note that the convolution terms will depend on η and might include zeroth convolution
powers of c as well. This means that, especially for large |ϑk|, the (diagonal) ikϑcjk term
will be dominant, which implies that for large |ϑk| it is reasonable to approximate G with a
diagonal operator. This motivates the following definitions.
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Definition 4.17. Let K : `1ν → `1ν+ be as in Definition 3.1. We then define the operator

K : `1,mν → `1,mν+ by

K
def
= diag(K, . . . ,K).

Furthermore, we define for a fixed and given ϑ > 0 the diagonal operators Ω̃ϑ : `1ν → `1ν+ and

Ω̃ϑ : `1,mν → `1,mν+ by

Ω̃ϑ
def
= iϑK and Ω̃ϑ

def
= iϑK.

Using this notation, we see that we can write

G = Ω̃ϑ + convolution terms.

Of course Ω̃ is not invertible, but when restricting to the tail, i.e., those indices for which
|k| > n > 0, it is. In the following we choose n > 0 to be the number of modes after which
we wish to truncate F .

Definition 4.18. We define for a fixed and given ϑ > 0 the diagonal operator Ωϑ : πn,∞`1ν →
πn,∞`1ν+ by

(Ωϑc)k
def
= ikϑck, i.e., Ωϑ = iϑKπn,∞.

We define the inverse operator Ω−1
ϑ : πn,∞`1ν+ → πn,∞`1ν by

(Ω−1
ϑ c)k

def
=

1

ikϑ
ck.

Finally, we define the extended operators Ωϑ : πn,∞`1,mν → πn,∞`1,mν+ and Ω−1
ϑ : πn,∞`1,mν+ →

πn,∞`1,mν by

Ωϑ
def
= diag(Ωϑ, . . . ,Ωϑ) and Ω−1

ϑ
def
= diag(Ω−1

ϑ , . . . ,Ω−1
ϑ ).

We apply traditional numerical techniques in order to calculate an approximate solution
x̂ = (η̂, ĉ) ∈ Rm × Cm(2n+1) satisfying(

Eĉ− h
πnG(η̂, ĉ)

)
≈ 0,

where we used the affine formulation of H(c) = Ec − h to represent the phase condition.
This approximate solution of the truncation of F is also an approximate solution of the
full-dimensional approximation Fn : Rm × `1,mν → Cm × `1,mν+ of F given by

Fn(η, c)
def
=

 Ec− h
πnG(η,πnc)
Ωη0π

n,∞c

 .

The benefit of working with this particular approximation Fn is that it is relatively easy
to calculate its derivative and to invert this Jacobian approximately but accurately, as we
discuss in the following section.
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4.4 The approximate inverse

In this section we construct an operator A : XC,m
ν+ → XC,m

ν that approximates the inverse of

DF . We note that, since the domain of F was specifically chosen to be XR,m
ν (see Remark

3.2), we will need to make a few modifications to the theory behind Theorem 4.13 and
Corollary 4.15 to obtain an analogous result for A and F , see Section 4.5.

Remark 4.19. The diagonals Ωϑ̂, Ω−1

ϑ̂
related to Fn all depend on the approximate frequency

η̂0 = ϑ̂. We will from now on suppress the dependency of ϑ̂, except where needed.

We recall that in the examples covered in Section 3, the affine map H(c) = Ec − h is
always given by a simple summation over the coefficients of c. When inverting the derivative
of Fn, we will see that this operator E will interact with Ω−1 = Ω−1

ϑ̂
. To deal with these

interactions, we introduce the following operators.

Definition 4.20. We define E : `1ν → C by

E : c 7→
∑
k∈Z

ck.

Equivalently, see Remark 4.5, we can define E ∈ `∞ν by Ek = 1 for all k ∈ Z.
We define the row-operator ω−1 : πn,∞`1ν+ → C by

ω−1 = EΩ−1.

Note that ω−1 ∈ πn,∞`∞ν+ is simply given by ω−1
k = 1/ikϑ and hence Ω−1 = diag(ω−1).

Finally we define the operators E : `1,mν → Cm and ω−1 : πn,∞`1,mν+ → Cm by

E
def
= diag(E, . . . , E) and ω−1 = diag(ω−1, . . . , ω−1).

Based on the natural inclusion Cm(2n+1) ⊂ `1,mν , we write E = Eπn + Eπn,∞. With
respect to this decomposition we will write E as a block row matrix by setting

E =
(
Eπn Eπn,∞

)
.

Here we interpret Eπn as a finite (m×m(2n+ 1)) matrix.
Using this notation the derivative of Fn, can be written as a linear map A† : XR,m

ν →
XC,m
ν+ , given by

A† def
= DFn(x̂) =

 0 Eπn Eπn,∞

V A† 0
0 0 Ω

 ,

where A† and V are finite dimensional.
The operator V : Rm → πn`1,mν+ has a natural extension to an operator V : Cm → πn`1,mν+

obtained by setting

V (z) = V Re(z) + iV Im(z).
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This “complexification” of V then satisfies V = V ιm, where ιm : Rm → Cm is the inclusion.
We similarly have a natural extension of A† to an operator A† : XC,m

ν → XC,m
ν+ , which is

given by

A† def
=

 0 Eπn Eπn,∞

V A† 0
0 0 Ω

 , (20)

satisfying A† = A†ι, where ι : XR,m
ν → XC,m

ν is the inclusion.
If we then calculate (complex) matrices M,P,Q and A such that(

M P
Q A

)(
0 Eπn

V A†

)
= J ≈ Id, (21)

then it follows that PV ≈ Idm (the m × m identity) and therefore PV = PV ιm ≈ ιm.
Furthermore, we have thatM P −MEπn,∞Ω−1

Q A −QEπn,∞Ω−1

0 0 Ω−1

 0 Eπn Eπn,∞

V A† 0
0 0 Ω

 =

(
J 0
0 Id

)
,

i.e., while the finite-dimensional part of A† is inverted approximately, the infinite-dimensional
part is inverted exactly.

Hence, if we assume that we have numerically calculated the matrices M,P,Q and A,
then the approximate inverse of A†, denote by A : XC,m

ν+ → XC,m
ν is given by

A def
=

M P −Mω−1

Q A −Qω−1

0 0 Ω−1

 . (22)

This construction ensures that AA† ≈ Id, the identity on XC,m
ν . Similarly, it follows that

AA† ≈ ι.

Remark 4.21. This particular construction of the approximate inverse will allow us to
obtain tight bounds on the terms originating from exact scalar equations. In particular, this
method produces smaller bounds, and therefore improves on previous methods dealing with
exact scalar equations [30, 52]. More generally, the approach described above is well suited to
systems where exact phase-conditions are needed or where other quantities, like the energy
level, need to be fixed, or where a (nontrivial) integral condition is appended. Hence, this
approach could be useful when considering Hamiltonian systems where the energy needs to
be fixed in order to isolate periodic orbits

4.5 Symmetry and real-valued solutions

Until now, we have solely focussed on using complex Fourier series to find solutions to our
DDEs. What we have skimmed over thus far is the problem of making sure these solutions
are real-valued. A function u : R→ C defined by its Fourier series c ∈ `1ν takes on real values
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if and only if c is symmetric in the sense that c−k = c∗k for all k ∈ Z, where given z ∈ C,
z∗ denotes its complex conjugate. We therefore need an argument to show that the solution
obtained from our computer assisted proof satisfies this symmetry. In practice, this result
will follow from the following addendum to the Banach fixed point theorem.

Lemma 4.22. Let X be a complete metric space and B,S ⊂ X be closed. Let T : X → X
be such that T (B) ⊆ B and T (S) ⊆ S. If T is a contraction on B and B ∩ S 6= ∅, then T
has a unique fixed point in B ∩ S.

Proof. Clearly T (B ∩ S) ⊆ B ∩ S, hence T is also a contraction on B ∩ S. The result then
follows by direct application of the Banach fixed point theorem.

From this it follows that we need to show that the space of symmetric solutions is closed
and that the Newton-like operator constructed at the beginning of this section also respects
this symmetry. The next couple of lemmas will enumerate the results needed to conclude
this.

Let us denote the subset of symmetric sequences, (`1ν)sym ⊂ `1ν by

(`1ν)sym def
=
{
c ∈ `1ν : c−k = c∗k for all k ∈ Z

}
.

We then make the following observations.

Lemma 4.23. Suppose a, b ∈ (`1ν)sym, then the following all hold.

1. (`1ν)sym is a closed real subspace of `1ν .

2. The convolution a ∗ b ∈ (`1ν)sym.

3. If L : `1ν → `1ν+ satisfies L−j,−k = L∗j,k then La ∈ (`1ν+)sym, hence L maps (`1ν)sym to

(`1ν+)sym.

4. If φ ∈ `∞ν such that φ−k = φ∗k, then φ(a) ∈ R, hence φ maps (`1ν)sym to R.

5. For ϑ ∈ R, the diagonal operator dτ (ϑ) satisfies dτ (ϑ)a ∈ (`1ν)sym, hence dτ (ϑ) maps
(`1ν)sym to itself.

6. The diagonal operators Ω and Ω−1 map (`1ν)sym to (`1ν+)sym and (`1ν+)sym to (`1ν)sym,
respectively.

The symmetry on `1ν extends naturally to a symmetry on `1,mν . The corresponding sym-
metric subspace we denote by (`1,mν )sym ⊂ `1,mν . On this space we make the following obser-
vations.

Lemma 4.24. Let F be as in Section 3 and let A be as in (22). Furthermore, let T : XR,m
ν →

XC,m
ν be given by T (x) = x−AF(x). Then the following all hold.

1. F maps maps Rm × (`1,mν )sym to Rm × (`1,mν+ )sym.
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2. If we construct M such that M ∈ Rm×m, construct P , Q and A such that for j1, j2 ∈
{0, . . . ,m− 1} and |k1|, |k2| ≤ n

Aj1,j2−k1,−k2 = (Aj1,j2k1,k2
)∗, P j1,j2−k = (P j1,j2k )∗ and Qj1,j2−k = (Qj1,j2k )∗,

then A maps Rm × (`1,mν+ )sym to Rm × (`1,mν )sym.

3. If A is as above, then T (x) = x−AF(x) maps Rm × (`1,mν )sym to Rm × (`1,mν )sym.

We can now apply these observations, in combination with Lemma 4.22, to any solution
found using the radii polynomials from Theorem 4.13, resulting in the following, modified
version of Corollary 4.15.

Proposition 4.25. Let F : XR,m
ν → XC,m

ν+ and A : XC,m
ν+ → XC,m

ν satisfy the symmetries

from Lemma 4.23 and Lemma 4.24, and let A be injective. Let T : XR,m
ν → XC,m

ν be given by
T (x) = x − AF(x) and let x̂ ∈ Rm × (`1,mν )sym. Furthermore suppose there exist Y,Z1 > 0
and Z2 : R+ → R+ such that

‖T (x̂)− x̂‖1,ν ≤ Y (23a)

‖DT (x̂)‖ ≤ Z1 (23b)

and such that for every r > 0 and ‖y‖ ≤ 1,

‖DT (x̂+ ry)−DT (x̂)‖ ≤ Z2(r)‖y‖. (23c)

If there exists a radius r̂ > 0 such that

Y +

(
Z1 +

1

2
Z2(r̂)

)
r̂ < r̂ (24a)

Z1 + Z2(r̂) < 1 (24b)

then F has a unique zero in Rm × (`1,mν )sym.

Proof. Let us define J : XC,m
ν → XR,m

ν by setting

J =

(
Re 0
0 Id

)
.

Let us now define T̃ : XR,m
ν → XR,m

ν by setting T̃ = J T . Since ‖J ‖ = 1, it follows that

‖T̃ (x̂)− x̂‖1,ν = ‖J T (x̂)− J x̂‖1,ν ≤ ‖J ‖‖T (x̂)− x̂‖1,ν = ‖T (x̂)− x̂‖1,ν ,

where we used that J x̂ = x̂. Similarly, we have for every x that

‖DT̃ (x)‖ = ‖JDT (x)‖ ≤ ‖J ‖‖DT (x)‖ = ‖DT (x)‖.

Hence, if we have bounds Y and Z as above, then it follows that the same estimates hold for T̃ .
This implies, by Theorem 4.13, that T̃ is a contraction on some ball Br(x̂) in XR,m

ν , hence it
must have a unique fixed point x̃ ∈ Br(x̂) ⊂ XR,m

ν . Furthermore, since x̂ ∈ Rm × (`1,mν )sym

we have by Lemma 4.22 that x̃ ∈ Rm × (`1,mν )sym.
Now note that since T̃ (x̃) = x̃ and since J x̃ = x̃, we must have that JAF(x̃) = 0.

By Lemma 4.24, AF(x̃) ∈ Rm × (`1,mν )sym, hence it follows that AF(x̃) = 0. Because
A : XC,m

ν → XC,m
ν is injective, we conclude that F(x̃) = 0.
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Since our map F preserves the symmetry, it follows that derivative does as well. Hence any
“good” approximation of the derivative and its inverse should also preserve the symmetry. In
practice we see that that when using standard methods of computing the (numerical parts of)
the approximate inverse, we end up with a matrix that is indeed machine-precision (10−16)
close to a matrix satisfying the symmetry assumptions in Lemma 4.24. In other words,
imposing the symmetry condition (also) on the numerical part of A does not “worsen” our
approximate inverse in any significant way.

4.6 Pseudo-convolutions

As mentioned before, one of the main strengths of using `1 spaces when working with periodic
solutions is the behaviour of the convolution product. As we will need to compute derivative
of convolutions when computing the Z bounds, we will look in detail at some maps one can
construct from convolutions.

Definition 4.26. Let a ∈ `1ν be fixed. We define the convolution operator C(a) : `1ν → `1ν by

C(a) : c 7→ a ∗ c.

The map C(a) is clearly linear and bounded since ‖C(a)‖ = ‖a‖1,ν . Furthermore, it can
be represented by the matrix C(a)j,k = aj−k. In particular, if a has finite length, in the sense
that a ∈ C2n+1 ⊂ `1ν , then C(a)j,k = 0 whenever |j − k| > n.

As can be seen from Section 3, often these convolutions do not appear by themselves, but
in expressions of the form

a ∗ dτ (ϑ)b.

In many ways, especially when it comes to `1 estimates, the map (a, b) 7→ a ∗ dτ (ϑ)b still
behaves like a convolution. Based on this observation we introduce the notion of a pseudo-
convolution and pseudo-convolution operators.

Definition 4.27. Let S ∈ CZ×Z be such that |Sj,k| ≤ 1 for all j, k ∈ Z. We define for
a, b ∈ `1ν the pseudo-convolution associated with S as

(a ∗S b)k =
∑

k1+k2=k

Sk1,k2ak1bk2 .

For fixed a ∈ `1ν , we then define the pseudo-convolution operator ΓS(a) by

ΓS(a) : c 7→ a ∗S c.

It is immediately clear that if Sj,k = 1 for all j, k ∈ Z, then a ∗S b = a ∗ b. Furthermore,
the following results are easy to check.

Lemma 4.28. Let S ∈ CZ×Z be such that |Sj,k| ≤ 1 for all j, k ∈ Z. Then the following all
hold.

• For every a, b ∈ `1ν , a ∗S b ∈ `1ν and ‖a ∗S b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν .

25



• For every a ∈ `1ν , ΓS(a) : `1ν → `1ν and ‖ΓS(a)‖ ≤ ‖a‖1,ν .

• For every a ∈ `1ν and j, k ∈ Z we have ΓS(a)j,k = Sj−k,kaj−k.

• For every a ∈ `1ν and j, k ∈ Z we have |ΓS(a)j,k| ≤ |aj−k|.

The derivative and shift operators K and dτ (θ) also interact in a very elementary way
with (pseudo)-convolutions. On the function space side of things, the derivative operator
satisfies the Leibniz rule and the shift operator acts distributively on products. Hence we can
expect similar identities to hold for the operators K and dτ (ϑ). This motivates the following
result.

Lemma 4.29. Let S ∈ CZ×Z be such that |Sj,k| ≤ 1 for all j, k ∈ Z. Then for every a, b ∈ `1ν
we have

K(a ∗S b) = (Ka) ∗S b+ a ∗S (Kb)

dτ (ϑ)(a ∗S b) = (dτ (ϑ)a) ∗S (dτ (ϑ)b).

Equivalently, for every a ∈ `1ν

KΓS(a) = ΓS(Ka) + ΓS(a)K

dτ (ϑ)ΓS(a) = ΓS(dτ (ϑ)a)dτ (ϑ).

Proof. These identities can be found by simply writing out their definitions.

Finally, where more intricate terms are involved, it will be useful to have a notion of
polynomials constructed from pseudo-convolutions.

Definition 4.30. We say that γ is a pseudo-convolution polynomial if we can write γ as a
finite linear combination of c0, . . . , cm ∈ `1ν :

γ =

N∑
j=1

ζjc
α0,j ∗S1,j . . . ∗

Skj,j
c
αkj,j ,

where ζj ∈ C, kj ∈ N, α0,j , . . . , αkj ,j ∈ {0, . . . ,m} and where each product ∗S1,j , . . . , ∗
Skj,j

is
a pseudo-convolution.

Because the pseudo-convolution may change with every product in the polynomial, the
above definition is rather cumbersome. What is more important is that we use the notion of
a pseudo-convolution polynomial to generalise the Banach-algebra property.

Lemma 4.31. Let c0, . . . , cm ∈ `1ν and let γ be a pseudo-convolution polynomial in c0, . . . , cm.
Then γ ∈ `1ν and

‖γ‖1,ν ≤
N∑
j=1

kj∏
k=0

|ζj |‖cαk,j‖1,ν .

26



4.7 Estimates of operators

We finish this section by listing a couple of lemmas that will prove essential in obtaining
(relatively) sharp Y and Z bounds. Most of these estimates involve the projection operators,
diagonal operators and row operators which we have defined before.

Lemma 4.32. Let Ω−1 = Ω−1

ϑ̂
be as in Definition 4.18 and let K : `1ν → `1ν+ be as in

Definition 3.1 (or Lemma 4.10). Let Ω̄−1 : `1ν+ → `1ν be given by

Ω̄−1 =
1

ϑ̂(n+ 1)
πn + Ω−1πn,∞,

then Ω̄−1 : `1ν → `1ν and Ω̄−1K : `1ν → `1ν are bounded and

‖Ω̄−1‖ =
1

ϑ̂(n+ 1)

‖Ω̄−1K‖ =
1

ϑ̂
.

Proof. These results follow directly from applying Lemma 4.8 to diagonal operators.

Lemma 4.33. Let Ω̄−1 be as in the previous lemma, let c ∈ `1ν and let ΓS(c) be a pseudo-
convolution operator. Then Ω̄−1ΓS(c)K is bounded and for all a ∈ `1ν

‖Ω̄−1ΓS(c)Ka‖ ≤ Cν

ϑ̂
‖a‖1,ν‖c‖1,ν ,

where the constant Cν is given by

Cν
def
=

{
ν2n+2

e log ν2n+2 if ν2n+2 < e

1 if ν2n+2 ≥ e.

Proof. First note that

‖Ω̄−1ΓS(c)Ka‖1,ν ≤
∑
k′

ν|k
′|
∑
k

|Ω̄−1
k′,k|

∑
k1+k2=k

|ck1 ||ak2 ||k2|

≤
∑
k′

∑
k1,k2

ν|k
′||Ω̄−1

k′,k1+k2
||ck1 ||ak2 ||k2|

=
∑
k1,k2

∑
k′

ν|k
′|−|k1|−|k2||Ω̄−1

k′,k1+k2
||k2|ν|k1|+|k2||ck1 ||ak2 |

≤ ‖a‖1,ν‖c‖1,ν sup
k1,k2

∑
k′

ν|k
′|−|k1|−|k2||Ω̄−1

k′,k1+k2
||k2|.

Since |Ω̄−1
k′,k| = δk′,k

1
ϑ̂max{|k′|,n+1}

, hence we need to prove that Cν is a bound for

sup
k1,k2∈Z

ν|k1+k2|−|k1|−|k2||k2|
max{|k1 + k2|, n+ 1}

= sup
k,m∈Z

ν|m|−|m−k|−|k||k|
max{|m|, n+ 1}

. (25)
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For notational convenience we introduce

ξ(k,m)
def
=

ν|m|−|m−k|−|k||k|
max{|m|, n+ 1}

.

Since ξ(−k,−m) = ξ(k,m) we may restrict attention to m ≥ 0 and k ∈ Z. We split the
analysis in three cases: k ≤ 0 ≤ m, 0 < k < m and k ≥ m ≥ 0. In the first case (k ≤ 0 ≤ m)

ξ(k,m) =
νm−(m−k)+k|k|
max{m,n+ 1}

=
ν2k|k|

max{m,n+ 1}
≤

sup
k̃>0

ν−2k̃k̃

max{m,n+ 1}
.

Since

sup
k̃≥1

ν−2k̃k̃ =

{
1

2e log ν if 1
2 log ν ≥ 1

ν−2 if 1
2 log ν < 1,

we obtain for all k ≤ 0 ≤ m that

ξ(k,m) ≤ max

{
1

e log ν2n+2
,

1

ν2(n+ 1)

}
≤ Cν . (26)

In the second case, 0 < k < m, we estimate

ξ(k,m) =
νm−(m−k)−kk

max{m,n+ 1}
=

k

max{m,n+ 1}
≤ 1 ≤ Cν . (27)

For the third case, k ≥ m ≥ 0, we have

ξ(k,m) =
ν2m−2kk

max{m,n+ 1}
.

We now fix m and vary k:

sup
k≥m

ν−2kk =

{
1

2e log ν if 1
2 log ν ≥ m

ν−2mm if 1
2 log ν < m,

hence for all k ≥ m ≥ 0 we find

ξ(k,m) ≤ ξ̂(m)
def
=

{
ν2m

2emax{m,n+1} log ν if m ≤ 1
2 log ν

1 if m > 1
2 log ν .

(28)

We now first consider the subcases ν2n+2 ≥ e and ν2n+2 < e separately. The former corre-
sponds to n+ 1 ≥ 1

2 log ν . Then, by varying over m in the right-hand side of (28) we obtain,

since ν2m is increasing in m,

sup
m≥0

ξ̂(m) ≤ max

{
ν

2 1
2 log ν

2e(n+ 1) log ν
, 1

}
= max

{
1

log ν2n+2
, 1

}
= 1. (29)
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Figure 2: A sketch of the entries of the pseudo-convolution operator ΓS(a) as a Z×Z matrix.
The light- and dark-grey part represents the nonzero entries of ΓS(a). The darker grey area
represents the nonzero entries of the operator πn,∞ΓS(a)πn1,∞ for a ∈ C2n′+1 ⊂ `1ν with
n < n′ and n1 = n+ n′.

For the remaining subcase ν2n+2 < e, i.e. n+ 1 < 1
2 log ν , we observe that ν2m

m is decreasing in

m for m ≤ 1
2 log ν . Hence

sup
m≥0

ξ̂(m) ≤ max

{
ν2(n+2)

2e(n+ 1) log ν
, 1

}
=

ν2n+2

e log ν2n+2
. (30)

The estimates (29) and (30) show that ξ̂(m) ≤ Cν , uniformly in m, hence (28) implies that
ξ(k,m) ≤ Cν for all k ≥ m ≥ 0. Combining this with (26) and (27) concludes the proof.

Next we estimate several operators that appear in the calculation of the Z1 bounds. These
estimates involve cut-off versions of a pseudo-convolution operator ΓS(a). It may be helpful
to consult Figure 2 for the role that the various indices play in this operator.

Lemma 4.34. Let n < n′ and set n1 = n + n′. Let a ∈ C2n′+1 ⊂ `1ν be such that |a−k| =
|ak|, let Γ = ΓS(a), with S as above and let Ω−1 = Ω−1

ϑ̂
be as in Definition 4.18. Then

Ω−1πn,∞Γπn1,∞ : `1ν → `1ν is bounded and

‖Ω−1πn,∞Γπn1,∞‖ ≤ 1

ϑ̂

n′∑
k=−n′

|ak|
n1 + 1 + k

νk.

Proof. Let us write M = Ω−1πn,∞Γπn1,∞, then clearly Mj,k = 0 whenever |k| ≤ n1 or |j| ≤ n,
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hence

‖M‖ = sup
k
ν−|k|

∑
j

ν|j|
∣∣(Ω−1πn,∞Γπn1,∞)j,k

∣∣
= sup
|k|>n1

ν−|k|
∑
|j|>n

ν|j|
∣∣(Ω−1πn,∞Γπn1,∞)j,k

∣∣
= sup
|k|>n1

ν−|k|
∑
|j|>n

ν|j|

ϑ̂|j|
|Γj,k|

≤ sup
|k|>n1

ν−|k|

ϑ̂

∑
|j|>n

ν|j|

|j|
|aj−k|,

where we used that ΓS(a)jk = 0 whenever k > n1 and j ≤ n. Since |aj−k| = |ak−j |, we can
without loss of generality assume that j > n and that k > n1 > n, implying that

‖M‖ ≤ sup
k>n1

ν−k

ϑ̂

∑
j>n

νj

j
|aj−k| = sup

k>n1

ν−k

ϑ̂

k+n′∑
j=k−n′

νj

j
|aj−k|

= sup
k>n1

ν−k

ϑ̂

n′∑
j=−n′

νj+k

j + k
|aj | = sup

k>n1

1

ϑ̂

n′∑
j=−n′

νj

j + k
|aj |

=
1

ϑ̂

n′∑
j=−n′

νj

j + n1 + 1
|aj |.

Lemma 4.35. Let n < n′ and set n1 = n+n′. Let a ∈ C2n′+1 ⊂ `1ν be such that |a−k| = |ak|,
let Γ = ΓS(a), with S as above and let ω−1 be as in Definition 4.20. Let X be a Banach space
and V : C → X be a bounded linear operator. Then the map V ω−1πn,∞Γπn1,∞ : `1ν → X is
bounded and

‖V ω−1πn,∞Γπn1,∞‖ ≤ ‖V ‖ν−(n+1)‖Ω−1πn,∞Γπn1,∞‖.

Proof. Note that since ω−1 = Eπn,∞Ω−1, we have

‖V ω−1πn,∞Γπn1,∞‖ ≤ ‖V ‖‖Eπn,∞‖1,∞‖Ω−1πn,∞Γπn1,∞‖.

By combining this with ‖Eπn,∞‖1,∞ = ν−(n+1), the result follows.

5 Derivation of the Y and Z bounds for the Mackey-Glass
equation

In this section we will explicitly construct all the bounds that are necessary to apply The-
orem 4.13. In the following it will be helpful to recall from Section 4.3 that we consider
F : XR,m

ν → XC,m
ν+ of the form

F(x) = F(η, c) =

(
H(c)
G(η, c)

)
,
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where H = (H0, . . . ,Hm−1) : `1,mν → Cm and G = (G0, . . . , Gm−1) : Rm × (`1ν)m → (`1ν+)m.
In particular, we have that H is given by the affine map H : c 7→ Ec − h, while G can be
written as

G(η, c) = iϑKc+ convolution terms,

where we use the notation η0 = ϑ, i.e., η = (ϑ, η1, . . . , ηm−1).
The methodology presented in this section results in general estimates for the class of

functions described above, i.e., the bounds apply to arbitrary systems of polynomial DDEs
(possibly after a reformulation as described in Section 2). For the parts of the estimates that
are executed “term by term” (monomial by monomial in the pseudo-convolution polynomial,
see Definition 4.30), we focus on deriving bounds for the Mackey-Glass equation from Ex-
ample 3.4. Specifically, we are alluding here to the explicit expressions in the latter parts of
Sections 5.2.3 and 5.2.4. The main simplification obtained from focusing on the Mackey-Glass
system is that it only depends on one delayed variable (namely c1). However, we stress that
the methodology for obtaining the bounds, as presented in this section, is not at all restricted
to this particular case.

We recall that for the Mackey-Glass system we have that m = 4 and using that η =
(ϑ, η1, η2η3), hence we can write the function G = (G0, . . . , G3) as

Gj(η, c) = iϑKcj + Φj(c) + Ψj(c) ∗ dτ (ϑ)c1 + Lj(η), (31)

where Φ = (Φ0, . . . ,Φ3) and Ψ = (Ψ0, . . . ,Ψ3) do not depend on η and where Lj is given by

Lj =

{
0 if j = 0,

−ηj if j = 1, 2, 3.

Remark 5.1 (Other systems). The construction of the bounds in following sections can be
easily adjusted to suit the other examples from Section 2. In the case of Cooke’s equation
from Examples 2.1 and 3.3 we find that G is decribed by

GjCooke(η, c) = iϑKcj + Φj(c) + Ψj(c) ∗ dτ (ϑ)(c0 ∗ c1) + Lj(η),

where Φ = (Φ0,Φ1) and Ψ = (Ψ0,Ψ1) do not depend on η = (ϑ, η1) and where

Lj =

{
0 if j = 0,

−η1 if j = 1.

Similarly, for the Ikeda equation from Examples 2.6 and 3.5 we can describe G by

GjIkeda(η, c) = iϑKcj + η1Φ1,j(c) + η2Φ2,j(c) + Ψj(c) ∗ dτ (ϑ)c1,

where neither Ψ = (Ψ0,Ψ1,Ψ2) nor Φl = (0,Φl,1,Φl,2) with l = 1, 2 depend on η = (ϑ, η1, η2).
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5.1 The Y bounds

Recall from Theorem 4.13 that the Y bound must satisfy

‖T (x̂)− x̂‖ = ‖AF(x̂)‖ ≤ Y,

where T (x) = x−AF(x) as in (17).
Since ĉ ∈ Cm(2n+1) ⊂ `1,mν and G(η, c) is polynomial in c and dτ (ϑ)c1, there exists an

n′ > 0 such that Gj(η̂, ĉ)k = 0 for all |k| > n′ and j = 0, 1, 2, 3. In particular, for the Mackey-
Glass equation, n′ = 4n, since the Mackey-Glass system (10) is polynomial of degree 4.

From this it follows that F(η̂, ĉ) only has finitely many nonzero terms, and using n′ as
above,

G(η̂, ĉ) = πn
′
G(η̂, ĉ) ∈ Cm(2n′+1).

Therefore all the nonzero elements of AF(x) are given byM P −Mω−1πn,n
′

Q A −Qω−1πn,n
′

0 0 πn,n
′
Ω−1πn,n

′

 H(ĉ)
πnG(η̂, ĉ)

πn,n
′
G(η̂, ĉ)

 ∈ Cm × Cm(2n′+1) ⊂ XC,m
ν .

In conclusion, the computation of the Y -bound reduces to a finite number of computations,
i.e., we can use interval arithmetic to compute Y such that∥∥∥∥∥∥

M P −Mω−1πn,n
′

Q A −Qω−1πn,n
′

0 0 πn,n
′
Ω−1πn,n

′

 H(ĉ)
πnG(η̂, ĉ)

πn,n
′
G(η̂, ĉ)

∥∥∥∥∥∥ ≤ Y. (32)

5.2 The Z bounds.

Recall from Theorem 4.13 that Z1 ≥ 0 must satisfy

‖DT (x̂)‖ = ‖ι−ADF(x̂)‖ ≤ Z1,

where ι : XR,m
ν → XC,m

ν is the natural inclusion. Since we have constructed the approximate
inverse A by means of an approximate derivative A† ≈ DF(x̂), it is natural to decompose
the Z1 estimate as

‖ι−ADF(x̂)‖ ≤ ‖ι−AA†‖︸ ︷︷ ︸
≤Z0

+ ‖A(DF(x̂)−A†)‖︸ ︷︷ ︸
≤Z1

. (33)

Likewise, Z2 : R+ → R+ must satisfy, for all ‖y‖ ≤ 1,

‖DT (x̂+ ry)−DT (x̂)‖ = ‖A(DF(x̂+ ry)−DF(x̂))‖ ≤ Z2(r)‖y‖.

The most straightforward way to estimate this is by using a version of the mean-value theorem.
This requires the computation of a second derivative of F . In particular, this means that we
will encounter terms involving the operator ∂2

ϑdτ (ϑ) = −τ2K2dτ (ϑ), hence we need estimates
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for terms involving ‖Ω−1(K2a) ∗S b‖, for unknown a, b ∈ `1ν . Unfortunately, this cannot be
done, since Ω−1K2 is not bounded on `1ν and the convolution does not help to temper this.

To circumvent this problem, we write y = (λ,a) ∈ XR,m
ν (with λ ∈ Rm and a ∈ `1,mν ),

introduce the variable y = (λ, 0) ∈ XR,m
ν , and decompose the Z2 bound as

‖DT (x̂+ ry)−DT (x̂)‖ ≤
‖A(DF(x̂+ ry)−DF(x̂+ ry))‖︸ ︷︷ ︸

≤Z2(r)

‖y‖+ ‖A(DF(x̂+ ry)−DF(x̂))‖︸ ︷︷ ︸
≤Z3(r)

‖y‖. (34)

Note that the Z2 bound only requires differentiation with respect to η once. Conversely,
in the Z3 bound we do differentiate with respect to η twice. However, as we will be made
evident in Section 5.2.4, where we compute this bound, the K2 operator that appears in this
bound will solely act on the components of ĉ, not on those of a. Since ĉ = (ĉ0, . . . , ĉm−1)
only has finitely many nonzero elements, we have that K2ĉj ∈ `1ν for every 0 ≤ j ≤ m − 1,
hence this term poses no problems.

We conclude this section by providing step-by-step estimates for each of the terms in (33)
and (34).

5.2.1 The Z0 bound

This bound is by far the simplest Z bound to compute, hence we will be concise in our
derivation. We first observe that, analogously to Corollary 4.12,

‖ι−AA†‖ = ‖ι−AA†ι‖ ≤ ‖ Id−AA†‖‖ι‖ ≤ ‖ Id−AA†‖,

where A† : XC,m
ν → XC,m

ν+ is the natural extension of A† : XR,m
ν → XC,m

ν+ , see (20), and where

Id is the identity on XC,m
ν .

Next, we note that Ω−1Ω = πn,∞, hence we can write

AA† =

M P −Mω−1

Q A −Qω−1

0 0 Ω−1

 0 Eπn Eπn,∞

V A† 0
0 0 Ω


=

PV MEπn + PA† 0

AV QEπn +AA† 0
0 0 Idn,∞

 ,

where Idn,∞ denotes the identity on πn,∞`1,mν . This means that the Z0 bound must satisfy

‖ Id−AA†‖ =

∥∥∥∥∥∥
Idm−PV −MEπn − PA† 0

−AV Idm(2n+1)−QEπn −AA† 0

0 0 0

∥∥∥∥∥∥ ≤ Z0.

In conclusion, we obtain a linear operator, whose nonzero part is given by a m(2n + 2) ×
m(2n + 2)-matrix and whose norm can thus be calculated, with a finite computation, using
Corollary 4.11. This norm provides us with the Z0 bound. In view of (21) this bound is tiny
in practice.
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5.2.2 The Z1 bound

We wish to find a bound Z1 satisfying

‖A(DF (x̂)−A†)‖ ≤ Z1.

Let us denote the derivative with respect to the Fourier coordinates by Dc and the deriva-
tive with respect to the scalar variables as Dη. Next, we introduce the shorthand

DηG = DηG(η̂, ĉ)

DcG = DcG(η̂, ĉ).

We then consider

DF (x̂)−A† = 0 Eπn Eπn,∞

πnDηG πnDcGπ
n πnDcGπ

n,∞

πn,∞DηG πn,∞DcGπ
n πn,∞DcGπ

n,∞

−
 0 Eπn Eπn,∞

V A† 0
0 0 Ω

 .

We choose n1 such that each component G(x̂)k with |k| ≤ n only depends on those xk with
|k| ≤ n1. Furthermore, we choose n2 ≥ n1 such that G(x̂)k with |k| ≤ n2 depends only on xk
with |k| ≤ n1. For Mackey-Glass, n1 = n′+n = 5n and n2 = 2n′+n = 9n, see also Figure 2.

Then we split the derivative into further blocks to obtain

DF (x̂)−A† =
Ω̃0 0 0 0

πnDηG− V πnDcGπ
n −A† πnDcGπ

n,n1 0

πn,n2DηG πn,n2DcGπ
n πn,n2(DcG− Ω̃)πn,n1 πn,n2(DxG− Ω̃)πn1,∞

0 0 0 πn2,∞(DcG− Ω̃)πn1,∞

 .

Note that here we used the extended Ω̃, which satiesfies πn,∞Ω̃ = Ω.
Hence, after multiplying with the approximate inverse, we can write this as

A(DF (x̂)−A†) =


−Mω−1πn,∞(DcG− Ω̃)πn1,∞

m(2n2 + 2)×m(2n1 + 2) −Qω−1πn,∞(DcG− Ω̃)πn1,∞

Ω−1πn,∞(DcG− Ω̃)πn1,∞
0

 . (35)

The block in the top-left corner is a finite matrix representing a map from Rm×Cm(2n1+2) to
Cm×Cm(2n2+2), whose norm we can calculate using Corollaries 4.11 and 4.12. Let us denote
this norm by Z1

finite. To analyse the block on the top-right, we write

W =

(
M
Q

)
,

where W is a (m(2n + 2) ×m) matrix and we denote W j ∈ Cm × Cm(2n+1) ⊂ XC,m
ν as the

j-th “column” of W . Furthermore, we denote Γ = DcG− Ω̃ and observe that, since the iϑK
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terms cancel exactly, we can view this operator as a m×m block-matrix, such that each of
the blocks Γj,j

′
: `1ν → `1ν is a pseudo-convolution operator for j, j′ = 0, . . . ,m− 1.

Then we can view the top-right block in (35) as a 1×m block-matrix, where each block
is an operator given by

[
Wω−1πn,∞Γπn1,∞]j′ =

m−1∑
j=0

W jπn,∞ω−1Γj,j
′
πn1,∞ for j′ = 0, . . . ,m− 1.

Similarly we can view the bottom-right block in (35) as a m ×m block-matrix, where each
block is an operator is given by[

Ω−1πn,∞Γπn1,∞]j,j′ = Ω−1πn,∞Γj,j
′
πn1,∞ for j, j′ = 0, . . . ,m− 1.

When we combine this with the top-right operator, we find that we can estimate norm of the
full right-block of (35) by

max
0≤j′≤m−1

m−1∑
j=0

∥∥∥W jπn,∞ω−1Γj,j
′
πn1,∞

∥∥∥+

m−1∑
j=0

∥∥∥Ω−1πn,∞Γj,j
′
πn1,∞

∥∥∥
 .

This expression can in turn be estimated by a constant Z1
∞ that satisfies

Z1
∞ ≥ max

0≤j′≤m−1

m−1∑
j=0

Λj,j
′
,

where

Λj,j
′ def

= (1 + ‖W j‖ν−(n+1))
∥∥∥Ω−1πn,∞Γj,j

′
πn1,∞

∥∥∥ . (36)

Here we have applied Lemma 4.35. The final factor in (36) can be estimated by using Lemma
4.34. Hence we can calculate bounds Z1

finite and Z1
∞ such that

‖A(DF (x̂)−A†)‖ ≤ Z1 = max{Z1
finite,Z1

∞}.

5.2.3 The Z2 bound

Recall now that the Z2 bound requires us to estimate, for ‖y‖ = ‖(λ,a)| ≤ 1,

‖A(DF(x̂+ ry)−DF(x̂+ ry))‖ = ‖A(DF(η̂ + rλ, ĉ+ ra)−DF(η̂ + rλ, ĉ))‖.

Let us also take z = (µ, b) ∈ XR,m
ν and write

A(DF(x̂+ ry)−DF(x̂+ ry))z =∫ r

0

d

ds

d

dt
AF(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

ds.
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Hence it suffices to obtain an estimate for all ‖y‖, ‖z‖ ≤ 1 and 0 ≤ s ≤ r of∥∥∥∥ dds d

dt
AF(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

∥∥∥∥ . (37)

Now recall that we set F = (H,G), where H represents the phase/boundary conditions.
The function H is linear, which implies that all second derivatives of H vanish. This means
that we can, without loss of generality, look at how these second derivatives act on G only.
In particular, this means that it suffices to look at the part of A that acts on `1ν , i.e.,P −MEπn,∞Ω−1

A −QEπn,∞Ω−1

0 Ω−1

 . (38)

Observe that by defining A0 : `1,mν → XC,m
ν , Ω̃ : `1ν+ → `1ν and Ω̃ : `1,mν+ → `1,mν such that

A0 =

ϑ̂(n+ 1)P −MEπn,∞

ϑ̂(n+ 1)A −QEπn,∞
0 Id

 ,

Ω̄−1 =

( 1
ϑ̂

1
n+1 Id 0

0 Ω−1

)
,

Ω̄−1 = diag(Ω̄−1, . . . , Ω̄−1),

the operator in (38) becomes equal to simply A0Ω̄
−1. Writing M,P,Q and A as m × m

block-matrices, we find using Corollary 4.11 that

‖A0‖ = max
0≤j2≤m−1

ϑ̂(n+ 1) max
|k2|≤n

ν−|k2|
m−1∑
j1=0

|P j1,j2k2
|+

∑
|k1|≤n

ν|k1||Aj1,j2k1,k2
|

 ,

1 + ν−|(n+1)|
m−1∑
j1=0

|M j1,j2 |+
∑
|k1|≤n

ν|k1||Qj1,j2k1
|

 .

Remark 5.2. The decomposition of the block-matrix from (38) into A0 and Ω̄−1 is actually
optimal from a Banach-algebra perspective, i.e. ‖A0Ω̄

−1‖ = ‖A0‖‖Ω̄−1‖. This is due to the
fact that the sup (over the sums of the columns) appearing in Corollary 4.11, is attained in
the inner-most columns of each block (i.e. in the (n+ 1)-th and (−n− 1)-th column).

Let us now apply this notation to (37). We then have that∥∥∥∥ dds ddtAF(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

∥∥∥∥
=

∥∥∥∥ dds ddtA0Ω̄
−1G(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

∥∥∥∥.
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Since we have constructed the norm on XC,m
ν by taking the sum of `1 norms, the above norms

can now be decomposed as∥∥∥∥ dds ddtAF(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

∥∥∥∥
≤ ‖y‖ max

0≤j,j′≤m−1

{∥∥A0Ω̄
−1∂ηj∂cj′G(η̂ + rλ, ĉ+ sa)

∥∥ ,
∥∥A0Ω̄

−1∂cjcj′G(η̂ + rλ, ĉ+ sa)
∥∥},

(39)

where we used that ‖z‖ = ‖(µ, b)‖ ≤ 1 and that ‖a‖ ≤ ‖y‖ = ‖(λ,a)‖, and where we
understand the norm of the bilinear operator A0Ω̄

−1∂cjcj′G(. . .) : `1,mν × `1,mν → `1,mν to be
defined as

‖A0Ω̄
−1∂cjcj′G(. . .)‖ def

= sup
‖a′‖,‖b′‖≤1

‖A0Ω̄
−1∂cjcj′G(. . .)(a′, b′)‖1,ν .

The Mackey-Glass equation

Let us now apply this to the Mackey-Glass system as given in (31). We first observe that
the Mackey-Glass system only depends linearly on η1, η2 and η3, hence all second partial
derivatives involving differentiation to at least one of these variables will vanish. Only the
η0 = ϑ term will be relevant.

Furthermore, we see that (39) has repeated occurrences of terms involving ĉ+ sa ∈ `1,4ν .
To simplify some notation involving these terms, it will be useful to introduce the notation

ãs = ĉ+ sa.

While we do know now that ‖ãs‖ ≤ ‖ĉ‖ + s‖a‖ ≤ ‖ĉ‖ + r, we do not a-priori know the
value of r. In fact, r can only be determined after we have properly calculated all Y and
Z bounds. However, we can make the assumption that r ≤ r∗ for some r∗ > 0. If we
then calculate all bounds using this assumption, and then verify that there exists an r̂ ≤ r∗

satisfying Theorem 4.13, then the assumption that r ≤ r∗ was justified. Hence, we will from
now on assume the existence of such an r∗ > 0, and therefore ‖ãs‖ ≤ ‖ĉ‖+ r∗. Note that for
the components ãs = (ã0

s, . . . , ã
m−1
s ) ∈ `1,4ν , we then also know that ‖ãjs‖1,ν ≤ ‖ĉj‖1,ν + r∗.

Likewise, we will denote

ϑ̃r = ϑ̂+ rλ0.

If we apply all of the above to the Mackey-Glass equation, as described in (31), and recall
that we use η0 = ϑ, then we see that (39) becomes∥∥∥∥ dds ddtAF(η̂ + rλ+ tµ, ĉ+ sa+ tb)

∣∣∣∣
t=0

∥∥∥∥ ≤
‖y‖‖A0‖ max

0≤j,j′≤3

{ 3∑
l=0

∥∥∥Ω̄−1∂ϑ∂cj′
[
iϑ̃rKã

l
s + Φl(ãs) + Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]∥∥∥ ,
3∑
l=0

∥∥∥Ω̄−1∂cjcj′
[
iϑ̃rKã

l
s + Φl(ãs) + Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]∥∥∥}.
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We then find that for arbitrary a′, b′ ∈ `1,4ν ,

∂ϑ∂cj′
[
iϑ̃rKã

l
s + Φl(ãs)

]
a′ = iKδj′,la

′,

∂cjcj′
[
iϑ̃rKã

l
s + Φl(ãs)

]
b′a′ = ∂cjcj′Φ

l(ãs)b
′a′,

and

∂ϑ∂cj′
[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
a′ =− iτ

(
∂cj′Ψ

l(ãs)a
′) ∗ dτ (ϑ̃r)Kã

1
s − iτδ1,j′Ψ

l(ãs) ∗ dτ (ϑ̃r)Ka
′,

∂cj∂cj′
[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
b′a′ =

(
∂cjcj′Ψ

l(ãs)b
′a′
)
∗ dτ (ϑ̃r)ã

1
s

+ δ1,j′DcjΨ
l(ãs)b

′ ∗ dτ (ϑ̃r)a
′ + δ1,jDcj′Ψ

l(ãs)a
′ ∗ dτ (ϑ̃r)b

′,

with all other derivatives, i.e., those with respect to η1, η2 and η3, vanishing. This means
that for 0 ≤ j, j′, l ≤ 3, there exist pseudo-convolution polynomials, in the sense of Definition

4.30, γjj
′l

1&4 = γjj
′l

1&4(ãs,a, b), γ
jj′

2 = γjj
′

2 (ãs,a), and γl3 = γl3(ãs), where only γ4 involves actual
pseudo-convolutions, such that∥∥∥Ω̄−1∂ϑ∂cj′

[
iϑ̃rKã

l
s + Φl(ãs)

]
a′
∥∥∥

1,ν
≤ δj′,l‖Ω̄−1Ka′‖1,ν ,∥∥∥Ω̄−1∂cjcj′

[
iϑ̃rKã

l
s + Φl(ãs)

]
b′a′
∥∥∥

1,ν
≤ ‖Ω̄−1γjj

′l
1 ‖1,ν ,∥∥∥Ω̄−1∂ϑ∂cj′

[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
a′
∥∥∥

1,ν
≤ τ

∥∥∥Ω̄−1ΓS(γj
′l

2 )Kã1
s

∥∥∥
1,ν

+ τδ1,j′

∥∥∥Ω̄−1ΓS(γl3)Ka′
∥∥∥

1,ν
,∥∥∥Ω̄−1∂cj∂cj′

[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
b′a′
∥∥∥

1,ν
≤ ‖Ω̄−1γjj

′l
4 ‖1,ν .

Here ΓS is the pseudo-convolution operator given by ΓS(a) : c 7→ a ∗ dτ (ϑ̃r)c. When we take
‖a′‖, ‖b′‖ ≤ 1 and repeatedly apply Lemmas 4.32 and 4.33, we obtain∥∥∥Ω̄−1∂ϑ∂cj′

[
iϑ̃rKã

l
s + Φl(ãs)

]
a′
∥∥∥

1,ν
≤ δj′,l

1

ϑ̂
,∥∥∥Ω̄−1∂cjcj′

[
iϑ̃rKã

l
s + Φl(ãs)

]
b′a′
∥∥∥

1,ν
≤ 1

ϑ̂

1

n+ 1
‖γjj

′l
1 ‖1,ν ,∥∥∥Ω̄−1∂ϑ∂cj′

[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
a′
∥∥∥

1,ν
≤ τ Cν

ϑ̂

(
‖γj

′l
2 ‖1,ν‖ã

1
s‖1,ν + δ1,j′‖γl3‖1,ν

)
,∥∥∥Ω̄−1∂cj∂cj′

[
Ψl(ãs) ∗ dτ (ϑ̃r)ã

1
s

]
b′a′
∥∥∥

1,ν
≤ 1

ϑ̂

1

n+ 1
‖γjj

′l
4 ‖1,ν ,

where the norms of the (pseudo-)convolution polynomials γ can be computed using Lemma 4.31.

In conclusion, we can calculate Z2 by finding bounds such that ‖γjj
′l

i ‖ ≤ σjj
′l

i , ‖γjj
′

i ‖ ≤
σjj
′

i , and ‖γli‖ ≤ σli and setting

Z2(r) ≥ r‖A0‖
ϑ̂

max
0≤j,j′≤3

{
1 + τCν

3∑
l=0

(
σj
′l

2 (‖ĉ1‖1,ν + r∗) + δ1,j′σ
l
3

)
,

1

n+ 1

3∑
l=0

(
σjj
′l

1 + σjj
′l

4

)}
,

(40)

where the right-hand side of (40) depends linearly on r, and where we restrict our attention
to r ≤ r∗.
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5.2.4 The Z3 bound

Finally, we calculate the Z3 bound, which requires us to estimate

‖A(DF(x̂+ ry)−DF(x̂))‖ = ‖A(DF(η̂ + rλ, ĉ)−DF(η̂, ĉ))‖.

As many of the derivations are similar to those done for the Z2 bounds, we will be a little
more succinct in deriving these bounds.

We again take z = (µ, b) ∈ XR,m
ν and write

A(DF(x̂+ ry)−DF(x̂))z =

∫ r

0

d

ds

d

dt
AF(η̂ + sλ+ tµ, ĉ+ tb)

∣∣∣∣
t=0

ds.

Hence it suffices to obtain an estimate for all ‖y‖, ‖z‖ ≤ 1 and 0 ≤ s ≤ r of∥∥∥∥ dds d

dt
AF(η̂ + sλ+ tµ, ĉ+ tb)

∣∣∣∣
t=0

∥∥∥∥ . (41)

Again the phase/boundary conditions from the linear component H drop out, meaning
that it suffices to look only at the G component in F = (H,G). If we again write A0Ω̄

−1 for
the matrix in (38) then we find that (41) can be estimated as follows:∥∥∥∥ dds ddtAF(η̂ + sλ+ tµ, ĉ+ tb)

∣∣∣∣
t=0

∥∥∥∥
≤ ‖y‖ max

0≤j,j′≤m−1

{∥∥∥A0Ω̃∂ηj ,ηj′G(η̂ + sλ, ĉ)
∥∥∥ , ∥∥A0Ω̄

−1∂ηj∂cj′G(η̂ + sλ, ĉ)
∥∥} , (42)

where we used that |λ| ≤ ‖(λ,a)‖ = ‖y‖ and that |µj | ≤ 1.

The Mackey-Glass equation

Let us now, as with the Z2 bounds, focus on the Mackey-Glass problem (31). Then again the
partial derivatives with respect to η1, η2 and η3 vanish. Furthermore, we write ϑ̃s = ϑ̂+ sλ0

and conclude that |ϑ̃s| ≤ ϑ̂+ r∗. We see that (42) becomes∥∥∥∥ dds ddtAF(η̂ + sλ+ tµ,ĉ+ tb)

∣∣∣∣
t=0

∥∥∥∥
≤ ‖y‖‖A0‖ max

0≤j′≤3

{ 3∑
l=0

∥∥∥Ω̄−1∂2
ϑ

[
iϑ̃sKĉ

l + Φl(ĉ) + Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ
1
]∥∥∥ ,

3∑
l=0

∥∥∥Ω̄−1∂ϑ∂cj′
[
iϑ̃sKĉ

l + Φl(ĉ) + Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ
1
]∥∥∥}.

(43)

When we write out the partial derivatives in the above estimate, we find, as in Section 5.2.3,
that for arbitrary b′ ∈ `1,4ν ,

∂2
ϑ

[
iϑ̃sKĉ

l + Φl(ĉ)
]

= 0,

∂ϑ∂cj′
[
iϑ̃sKĉ

l + Φl(ĉ)
]
b′ = iδj′,lKb

′,
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and likewise

∂2
ϑ

[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]

= −τ2Ψl(ĉ) ∗ dτ (ϑ̃s)K
2ĉ1,

∂ϑ∂cj′
[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]
b′ = −iτ(∂cj′Ψ

l(ĉ)b′) ∗ dτ (ϑ̃s)Kĉ
1 − iτδ1,j′Ψ

l(ĉ) ∗ dτ (ϑ̃s)Kb
′.

Since ĉ1 has only finitely many nonvanishing components, the new term involving the K2

operator does not cause any problems.
Using the above identities, we see that there exist pseudo-convolution polynomials γl5 =

γl5(ĉ), γ̃j
′l

2 = γj
′l

2 (ĉ, b) and γ̃l3 = γl3(ĉ), such that the following inequalities hold:∥∥∥Ω̄−1∂2
ϑ

[
iϑ̃sKĉ

l + Φl(ĉ)
]∥∥∥

1,ν
= 0,∥∥∥Ω̄−1∂ϑ∂cj′

[
iϑ̃sKĉ

l + Φl(ĉ)
]
b′
∥∥∥

1,ν
≤ δj′,l‖Ω̄−1Kb′‖1,ν ,∥∥∥Ω̄−1∂2

ϑ

[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]∥∥∥

1,ν
≤ τ2‖Ω̄−1ΓS(γl5)K2ĉ1‖1,ν ,∥∥∥Ω̄−1∂ϑ∂cj′

[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]
b′
∥∥∥

1,ν
≤ τ‖Ω̄−1ΓS(γ̃j

′l
2 )Kĉ1‖1,ν + δ1,j′τ‖Ω̄−1ΓS(γ̃l3)Kb′‖1,ν ,

where ΓS is the pseudo-convolution operator is given by ΓS(a) : c 7→ a ∗ dτ (ϑ̃r)c. If we then
again apply Lemmas 4.32 and 4.33, we find that∥∥∥Ω̄−1∂2

ϑ

[
iϑ̃sKĉ

l + Φl(ĉ)
]∥∥∥

1,ν
= 0,∥∥∥Ω̄−1∂ϑ∂cj′

[
iϑ̃sKĉ

l + Φl(ĉ)
]
b′
∥∥∥

1,ν
≤ δj′,l

1

ϑ̂
,∥∥∥Ω̄−1∂2

ϑ

[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]∥∥∥

1,ν
≤ τ2 1

ϑ̂

1

n+ 1
‖γl5‖1,ν‖K2ĉ1‖1,ν ,∥∥∥Ω̄−1∂ϑ∂cj′

[
Ψl(ĉ) ∗ dτ (ϑ̃s)ĉ

1
]
b′
∥∥∥

1,ν
≤ τ 1

ϑ̂

1

n+ 1
‖γ̃j

′l
2 ‖1,ν‖Kĉ

1‖1,ν + δ1,j′
1

ϑ̂
Cντ‖γ̃l3‖1,ν .

Here it should be noted that since ĉ ∈ C4(2n+1), we have that Kĉj ∈ `1ν and likewise K2ĉj ∈ `1ν ,
meaning that all norms above can be bounded explicitly. Specifically, if we compute bounds

such that ‖γl5‖ = σl5, ‖γ̃j
′l

2 ‖ ≤ σ̃
j′l
2 and ‖γ̃l3‖ ≤ σ̃l3, then we can calculate Z3 by setting

Z3(r) ≥ r‖A0‖
ϑ̂

max
0≤j′≤3

{
1 + τ

3∑
l=0

(
‖Kĉ1‖1,ν
n+ 1

σ̃j
′l

2 + δ1,j′Cν σ̃
l
3

)
, τ2 ‖K2ĉ1‖1,ν

n+ 1

3∑
l=0

σl5

}
,

where we note that the right-hand side depends linearly on r.

6 Numerics and results

In this final section of the paper, we exhibit the numerical solutions and bounds necessary to
complete the existence proof for several parameter choices of the Mackey-Glass equation. In
particular, we provide explicit values of the Y and Z bounds outlined in the previous section
as well as discuss the limitations of this approach.
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Figure 3: All four verified solutions plotted using delay embedding coordinates. Left: Solu-
tions №1 and №3 from Table 1, corresponding to τ = 1.63. Right: Solutions №2 and №4
from Table 1, corresponding to τ = 2.

6.1 Control parameters

By means of the polynomialization scheme from Section 2, we were able to rewrite the Mackey-
Glass equation as a system of equations outlined in (10). However, it is clear that the chosen
polynomialization is not unique. In particular, we could have chosen to rescale the newly
introduced auxiliary functions v(t), w(t) and x(t) by some factors. Doing so provides us with
more choices when attempting to compute optimal Y and Z bounds for this problem, without
fundamentally changing the problem. To this end, we rescale the v, w and x functions by a
constant µ1, µ2 and µ3 by simply setting v = vold/µ1, w = wold/µ2 and x = xold/µ3.

Remark 6.1. Recalling that (u, v, w, x) correspond to the Fourier coefficients (c0, c1, c2, c3) ∈
`1,4ν , this rescaling effectively changes the contribution of the c1, c2 and c3 to the norm of c.
Hence, equivalently, we could have replaced the norm on `1,4ν by

‖c‖ = ‖c0‖+ µ1‖c1‖+ µ2‖c2‖+ µ3‖c3‖,

while leaving the functions v, w, x (and hence c1, c2, c3) unchanged.

Using the new parameters µ1, µ2, µ3, we obtain the following system, equivalent to (10):

u′(t) = αµ1v(t− τ)− βu(t), u(0) = 1,

v′(t) = v(t) (µ3x(t)− ρµ1µ2v(t)w(t)) (αµ1v(t− τ)− βu(t)) + η1, v(0) = 1/2µ1,

w′(t) = (ρ− 2)µ3x(t)w(t) (αµ1v(t− τ)− βu(t)) + η2, w(0) = 1/µ2,

x′(t) = −µ3x(t)2 (αµ1v(t− τ)− βu(t)) + η3, x(0) = 1/µ3.

(44)
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Figure 4: Two solutions of (44) for τ = 1.63, ρ = 10, corresponding to solutions №1 with
ϑ̂ = 1.3819 (left) and №3 with ϑ̂ = 0.6412 (right) from Table 1.

The corresponding map F : XR,m
ν → XC,m

ν is then given by

F(η, c)
def
=



∑
k c

0
k − 1∑

k c
1
k − 1/2µ1∑

k c
2
k − 1/µ2∑

k c
3
k − 1/µ3

iϑKc0 − (αµ1dτ (ϑ)c1 − βc0)
iϑKc1 − (µ3c

1 ∗ c3 − ρµ1µ2c
1 ∗ c1 ∗ c2) ∗ (αµ1dτ (ϑ)c1 − βc0)− η1δ0

iϑKc2 − (ρ− 2)µ3c
2 ∗ c3 ∗ (αµ1dτ (ϑ)c1 − βc0)− η2δ0

iϑKc3 + µ3c
3 ∗ c3 ∗ (αµ1dτ (ϑ)c1 − βc0)− η3δ0


. (45)

It should be noted these new parameters are easily absorbed in the estimates from Section 5.

6.2 Results

In order to demonstrate the efficacy of our method, we prove the existence of some solutions
both close to, and inside the chaotic regime of the Mackey-Glass equation. As we noted in
the introduction (see also [31, 32]), chaos occurs when the equilibrium solution lies close to
u = 1, hence we choose our parameters such that u = 1 is an equilibrium solution, which
implies that α = 2β. Since we can always rescale time (and the delay τ), we fix α = 2 and
β = 1.

We will now focus on two particular choices for ρ and τ . In order to find the numerical
solutions around which we base our computer-assisted proof, we fix ρ = 10 and τ = 1.63.
Using the dde23 integrator from MATLAB we observe a stable periodic orbit. This “long”
stable solution is the product of two subsequent period doubling bifurcations when considering
ρ as an increasing parameter, see [31]. We produce two more solutions, with periods equal
to roughly a half and a quarter of the period of the stable orbit, by using Newton’s method
(on the truncated finite-dimensional problem). We call these the medium length and short
periodic orbit, respectively. Via standard continuation methods we then continue the three
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№ ϑ̂ ν n̂+ npad Y Z0 Z1 r−1Z2(r) r−1Z3(r) r̂

×10−10 ×10−11 ×106 ×105 ×10−7

1 1.3819 1.040 70 + 0 3.0774 6.6639 0.4213 2.8645 4.3377 1.6668
2 1.1932 1.040 73 + 0 4.2520 5.5870 0.4480 2.7036 3.9099 1.6945

×10−10 ×10−9 ×108 ×107 ×10−9

3 0.6412 1.010 144 + 180 2.8112 1.9989 0.3618 3.3467 4.5488 1.5947
4 0.5251 1.096 177 + 130 2.7836 2.5673 0.4612 2.8173 3.7215 1.6048

Table 1: The parameters, bounds and r̂ that satisfy Proposition 4.25. Solutions №1 and №3
correspond to τ = 1.63 and ρ = 10. Solutions №2 and №4 correspond to τ = 2 and ρ = 9.65.

numerical approximate solutions to the chaotic parameter regime. In particular, we obtain
approximate solutions for τ = 2 and ρ = 9.65.

In both these cases, we are able to prove a pair of co-existing periodic solutions, corre-
sponding to the short and medium length orbits. In particular, we prove the existence of a
pair of solutions, corresponding to solutions №1 and №3 presented in Figure 4, with param-
eter values τ = 1.63 and ρ = 10, and another pair, solutions №2 and №4 in Figure 4, with
τ = 2 and ρ = 9.65. In either case we are unable to verify the existence of the long stable
periodic orbit with the current set of estimates. In Section 6.3 we discuss the cause of this
issue, as well as possible ways to resolve it.

The following results were obtained for the Mackey-Glass equation as outlined in (44),
where we chose the (experimentally obtained) rescaling factors: µ1 = 1, µ2 = 4 and µ3 = 2. In
our numerical computations, we also have to decide how many Fourier coefficients we compute
with. In practice, we choose n such that we can be reasonably sure that any coefficient of
the solution outside of our truncation range is smaller than machine precision. That is, we
use the largest n such that maxj=0,1,2,3 |ĉjn| ≥ 10−16. This n may not be the optimal number
of modes to run the computer-assisted proof. Especially the Z1 component of the Z1 bound
can usually only be made small by ensuring that n is big. We do this by padding ĉ with
zeros until the desired length is obtained. In Table 1 we denote by n̂ the number of Fourier
modes used to compute ĉ, and npad the number of zeros padded.

We will choose the a priori radius r∗, introduced in Section 5.2.3 and used in (40), such
that r∗ = 10−6. As can be seen from Table 1, this is clearly larger than the computed r̂,
justifying this choice.

Next, we compute the approximate derivative in accordance with the restrictions outlined
in Section 4.4 and 4.5. Using this, we compute the Y , Z1 and Z2 bounds as outlined in Sec-
tion 5. It is at this step that the constant ν, appearing in the norm, is chosen experimentally
such that both Y and Z1 are suitably small. Finally, we compute r̂ and verify that the
inequalities from (19) hold. This, by Proposition 4.25, proves the existence of real valued
periodic solutions near the numerical solutions from Figures 4 and 5. The Y and Z bounds,
together with the appropriate choices for ν and the resulting r̂ can be found in Table 1.

Note that solution №3 and №4 need respectively n = 324 and n = 307 elements to
complete the proof. In the calculation of the Z1 bound, this results in having to multiply
with a 9512× 6056-matrix and a 10960× 6712-matrix, respectively.

43



0 1 2 3 4 5 6

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
v
w
x

0 2 4 6 8 10 12

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

u
v
w
x

Figure 5: Two solutions of (44) for τ = 2, ρ = 9.65, corresponding to solutions №2 with
ϑ̂ = 1.1932 (left) and №4 with ϑ̂ = 0.5251 (right) from Table 1.

6.3 Discussion

While we are able to verify the existence of the short and medium length orbits, we were not
able to verify the long periodic solution from which we obtained the shorter ones. In order
to see where our analysis fails, consider that, for a linear Z2(r) = rẐ2,

Y +

(
Z1 +

1

2
Z2(r)− 1

)
r = Y +

(
Z1 +

1

2
Ẑ2r − 1

)
r = 0

can only hold if Y Ẑ2 ≤ 1/2. However, as can be calculated from Table 1, Y Ẑ2 = Y (r−1Z2(r)+
r−1Z3(r)) becomes significantly bigger as the period increases. In particular, Z2 and Z3 grow
two orders of magnitude between the short solutions (№1 and №2) and the medium length
solutions (№3 and №4). When we consider the long orbits, this entails a similar increase in
the order of magnitude of the Z2 bound. Hence, we fail to verify these long solutions, not
because of any problem with the Z1 bound, but because of the respective magnitudes of Y
and Z2(r). As adding extra modes does not significantly affect the residue bound Y , the only
way to improve the Y bound is by lowering ν. However, the constant Cν needed in the Z2

and Z3 bound does not scale nicely with ν. In particular, if we write ν = 1 + ε, then

Cν ∼ 1 +
1

(n+ 1)ε
.

Furthermore, since ‖A0‖, as it appears in the Z2-bounds, increases approximately linearly
with n, this means that adding extra zeros or lowering ν will only worsen the Z2 and Z3

bounds.
Therefore, the only way to push the results further would be by either lowering the Y

bound in another way, for instance by using multiple-precision methods, or by significantly
altering the way the Z2 bounds are estimated. One possible avenue would be to compute
higher than second order derivatives for the Z2 bounds, cf. (37) and (41).
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