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Abstract. We consider fourth order parabolic equations of gradient type.
For sake of simplicity the analysis is carried out for the specific equation
ut = −γuxxxx + βuxx − F ′(u), with (t, x) ∈ (0,∞) × (0, L) and γ, β > 0,
and where F (u) is a bi-stable potential. We study its stable equilibria as
function of the ratio γ

β2 . As the ratio γ
β2 crosses an explicit threshold value

the number of stable patterns grows to infinity as L → ∞. The construction
of the stable patterns is based on a variational gluing method, which does
not require any genericity conditions to be satisfied.

1. Introduction

Higher order parabolic equations may display a multitude of stable station-
ary states. A good way to describe this phenomenon is to start with fourth
order parabolic equations. In order to keep the exposition of the results and the
methods transparant we will mainly restrict to the following model equation

(1) ut = −γuxxxx + βuxx − F ′(u), (t, x) ∈ R
+ × (0, L),

with γ > 0, β > 0. Bare in mind that the results apply equally well to a much
larger class of fourth order parabolic equations as will be explained below. Our
goal is to study stable stationary states of (1) as function of the parameters
γ, β, the potential F , the interval-length L and the boundary conditions at
x = 0 and x = L. In doing so we develop a new variational gluing method for
constructing stable stationary states. The most important characteristic of the
method is that no generic properties for Equation (1), such as non-degeneracy
of stationary patterns, will be required.

In our notation u is a function of the variables t and x, and ut and ux

denote the partial derivatives. The initial state u(0, x) is denoted by u0. The
function F ∈ C2 is a double-well potential that satisfies

(2) F (±1) = F ′(±1) = 0, F ′′(±1) > 0 and F > 0 for u 6= ±1.

On the potential the following growth condition is imposed:
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F (u) > −C0 +C1u
2 for some C0, C1 > 0, i.e. F grows super-quadratically1.

Parabolic equations with a potential as described above are often referred to
as bi-stable equations. For the second order bi-stable model (γ = 0) the only
candidates for stable equilibria are constant solutions: critical points of F .
As we will see later on this behavior dramatically changes as the dynamical
nature2 of the constants states changes with the ratio γ

β2 .

In certain physical models (Swift-Hohenberg equation, extended Fisher-
Kolmogorov equation, see e.g. [30, 31, 32, 33, 34, 35]), in which Equation (1)
occurs, the boundary conditions

ux(t, 0) = uxxx(t, 0) = 0 and ux(t, L) = uxxx(t, L) = 0

are often used. These boundary conditions are referred to as the Neumann
boundary conditions. In this case u ≡ ±1 are stable equilibria for all γ, β, L >
0. It should be noted at this point that the Neumann boundary conditions
that we impose on Equation (1) are by no means a restriction for the results
presented here, and different conditions can be used. We will come back to
this point later on (especially in Sect. 6).

Essential to our analysis is the property that (1) is the L2-gradient flow
equation for the action

(3) JL[u] =

∫ L

0

γ
2
|uxx|2 + β

2
|ux|2 + F (u).

This variational structure allows our methods to be applicable to more gen-

eral actions: JL[u] =
∫ L

0
j(u, ux, uxx)dx, where j ≥ 0 satisfies the convexity

condition ∂2
uxx
j ≥ δ > 0, and j(u, 0, 0) replaces the potential F . In order to

best explain the overall features of our methods we restrict ourselves here to
actions of the form given in (3).

In [21, 22, 23] stationary solutionss of (1) were found by means of mini-
mization of the associated action (3). In particular the results in [22] will be
drawn upon to construct stable solutions of the parabolic equation. We carry
out the construction of stable equilibria in the case of the Neumann boundary
conditions, as other boundary conditions can be dealt with in exactly the same
way. The natural function space for this case is

H2
N

def
= {u ∈ H2(0, L) | ux(0) = ux(L) = 0}.

Equation (1) has a compact attractor A = A(L, γ, β, F ) for all 0 < L < ∞,

γ, β > 0 and for all potentials F that satisfy the growth condition lim inf
|u|→∞

F ′(u)
u

>

0; for β < 0 one needs that lim inf
|u|→∞

F ′(u)
u

> β2

4γ
(see e.g. [18, Sect. 4.3])3. If L

is small enough then A contains exactly two stable equilibria (u ≡ ±1). The
size of the attractor A depends on L in the sense that if L grows larger the

1This growth condition is taken such as to simplify estimates, but can be weakened in
various directions.

2The dynamical nature of a constant solution u(t) ≡ u∗ of equation (1) is determined
by the characteristic equation γλ4 − βλ2 + F ′′(u∗) = 0.

3Note the difference with the earlier growth condition of F .
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attractor also becomes larger and the number of equilibria in A increases. It
is not a priori clear whether new stable equilibria are created. This question
brings us to the main result of this paper.

If γ
β2 > max

{
1

4F ′′(−1)
, 1

4F ′′(+1)

}
, then the nature of the equilibrium points

u = ±1 changes from real saddle to saddle-focus. Our main result states that
as soon as the equilibrium states u = ±1 are both saddle-foci, then a lower
bound on the number of stable states of Equation (1) grows exponentially with
the interval length L. Moreover, we describe the shape and the attracting sets
of these stable equilibria.

Since we do not require stationary solutions to be either hyperbolic
(generic) or isolated we need the more general notion of stable set:

Definition 1. A set S of stationary solutions of Equation (1) is stable
if for any ε > 0 there exists an open neighborhood U ⊂ Bε(S) such that for all
u0 ∈ U it holds that u(t, x) ∈ Bε(S) for all t > 0.

We want to identify various attracting sets, i.e., forwardly invariant sets,
in which we can then find stable sets of equilibria.

Theorem 2. Let the potential F satisfy the Hypotheses (2) and grow super-
quadratically. Suppose that β > 0 and γ

β2 > max
{

1
4F ′′(−1)

, 1
4F ′′(+1)

}
. Then

for any n ∈ N there exists a constant Ln > 0, such that for all L ≥ Ln

Equation (1) (with Neumann boundary conditions) has at least n disjoint stable
sets of stationary solutions.

The number of stable stationary states will grow rapidly as the interval
length L goes to infinity. In the proof of Theorem 2 various a priori estimates
are used. If some of these estimates are carried out more carefully one can
actually find a lower bound on the number of stable equilibria as function of
the interval length L. We prove that there are constants a1 > 0 and a2 > 0
such that

(4) #
{
disjoint stable sets of equilibria

}
> a1e

a2L.

Hence the number of stable sets grows exponentially in L (see Sect. 5).
Each stable set in the above theorem consists of stationary solutions with

a specific geometrical shape, which differs from set to set (see Sect. 4). Notice
that this theorem holds under very mild conditions on the double-well potential
F and that no non-degeneracy assumptions are made (the same theorem holds
for other boundary conditions).

The method we use to construct stable sets is motivated by a novel gluing
technique due to Buffoni and Séré [9]. Usually gluing techniques require cer-
tain transversality/non-degeneracy conditions to be satisfied. The method de-
scribed in [9] uses analyticity to obtain isolation properties, which circumvents
transversality. The technique developed here uses neither transversality/non-
degeneracy nor analyticity, and is specifically suited for finding minimizers.
The minimization procedure for finding homoclinic/heteroclinic connections
to the saddle-focus constant states u = ±1 in all homotopy classes, which
was devised in [22], allows one to obtain various isolation properties of homo-
clinic/heteroclinic connections in these homotopy classes (see Sect. 3). These
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isolation properties in turn are used then to construct product neighborhoods
from truncated homoclinic minimizers as found in [22] on which J attains its
minimum in the interior (see also Sect. 2). The advantage of this variational
approach is that no generic assumptions are needed and this gluing via mini-
mization produces stable sets of equilibria of various geometric shapes (in all
the homotopy classes, see Figure 2). It also gives us controle over the interval
length L on which such stable states must exist, and allows for estimates on
their number as function of L (see below). A key issue for obtaining the isola-
tion properties in this paper and in [22] is that isolation can be achieved if the
equilibrium points u = ±1 are of saddle-focus type, which explains the transi-
tion at γ

β2 > max
{

1
4F ′′(−1)

, 1
4F ′′(+1)

}
— for F (u) = 1

4
(u2 − 1)2 this transition is

sharp.
What the above results imply is that the dynamics near the attractor de-

pends in a very subtle manner on the parameters γ and β. This behavior is
not captured by, for example, the general slow motion results of [24]. This
question initiates the second part of the paper. How do the above results fit
it with the structure of the attractor, and how does the latter depend on γ

β2 ?

For γ = 0 the attractor is well understood. In fact, when for instance
F (u) = 1

4
(u2−1)2 then u ≡ ±1 are the only stable equilibria for all L > 0, and

the attractor in this case can be characterized completely [1, 10, 19] (see also
Sect. 7). For 0 < γ

β2 ≤ 1
8

— we restrict to the special choice for the potential
F to simplify the presentation — the following theorem, based on a general
result in [27], gives a strong characterization of the attractor, relating it to
the second order equation (γ = 0). We first introduce some notation. The
semi-flow associated with (1) with Neumann boundary conditions is denoted
by φ(L, γ, β). The first bifurcation of the homogeneous solution u ≡ 0 occurs

at L = L0(γ, β)
def
= π

√
2γ√

β2+4γ−β
(and L0(0, β) = πβ).

Theorem 3. Let F (u) = 1
4
(u2 − 1)2 and suppose that β > 0 and 0 <

γ
β2 ≤ 1

8
, then for all L > 0 there is a semi-conjugacy between the flow on the

attractor of (1) (Neumann boundary conditions) and the corresponding flow
for the second order equation (γ = 0). To be precise, there is a semi-conjugacy

between φ(L, γ, β)
∣∣
A and φ(LL0(0,β)

L0(γ,β)
, 0, β)

∣∣
A. Moreover, the equilibria are in

one-to-one correspondence with the equilibrium solutions of (1) for γ = 0, and
are all hyperbolic (non-trivial ones).

In particular this theorem implies that for γ
β2 ≤ 1

8
and all L > 0 the

only stable solutions are the homogeneous states u ≡ ±1. Another conse-
quence is the existence of connecting orbits between various stationary states
(see Sect. 7 for more details). The above theorem holds for a more general
class of potentials F (u). For example, a sufficient condition is that F is
even, satisfies (2) and F ′′′(u) ≥ 0 for u ≥ 0 (this condition can be some-
what relaxed) and the parameter range for which the theorem holds is then
γ
β2 ≤ max{ 1

4F ′′(−1)
, 1

4F ′′(+1)
}. An analogous theorem holds for Navier boundary

conditions: u(t, 0) = uxx(t, 0) = 0 and u(t, L) = uxx(t, L) = 0.
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The third part of the paper, Sect. 8, decribes the transition at γ
β2 = 1

8

(i.e. with the choice of F (u) = 1
4
(u2 − 1)2). At this bifurcation point we give

a precise decription of how the attractor changes for γ
β2 = 1

8
+ ε, 0 < ε � 1.

In this case all stationary solutions are found — not just stable ones — and
complete bifurcation diagram is given. Theorem 2 explains that most stable
solutions persist for all γ

β2 >
1
8
.
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2. Homoclinic and heteroclinic minimizers

We start our investigation of Equation (1) with the Neumann boundary
conditions ux(t, 0) = uxxx(t, 0) = 0 and ux(t, L) = uxxx(t, L) = 0 in the case
that the equilibrium points are saddle-foci. By extending the solutions to
x ∈ R by reflecting in x = 0 and x = L, one may regard equilibrium solutions
u of (1) as a closed curves in (u, ux)-plane by drawing the (u, ux)-curve over
one period. In [21] it was proved that, when we puncture the (u, ux)-plane
in (±1, 0), for all homotopy classes of closed curves in R

2 \ {(±1, 0)} there
exist associated minimizers for J4. These minimizers lie on the energy level
E = 0, where the energy is defined by (9). The periodic minimizers give
rise to minimizers of JL with Neumann boundary conditions, but the interval
length is dictated by the homotopy type and thus they occur only for certain
interval lengths L. Roughly speaking, when L is sufficiently large, the numbers
L ≈ S0 + nT0 +mω0, n,m ∈ N, occur as interval lengths, where S0, T0 and ω0

are constants depending only on γ, β and F . The integer m can be written as
m =

∑n
i=1mi, mi ∈ N and for every n-tuple (m1, . . . , mn) there exists at least

one minimizer with interval length L ≈ S0 + nT0 + mω0. We will prove that
for values of L in between one can also find minimizers. Such minimizers do
not necessarily lie on E = 0.

Let us briefly explain the idea. Trying to fit two pieces of solution together
one uses a gluing function which lives in a small neighborhood of the equilib-
rium point. In Figure 1 the dependence of the action J on the interval length
s (on which the gluing takes place) is depicted for a saddle-focus equilibrium.

4For most homotopy classes when the evenness assumption on F is dropped.
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J

s

Figure 1. Sketch of the dependence of J on the interval length
s for a gluing function close to a saddle-focus equilibrium.

u = 1

u = −1

��

0 u

ux

P1 P2

Figure 2. A heteroclinic solution with homotopy type g =
(2, 4). On the right the projection Γ(u) of the orbit onto the
(u, ux)-plane has been depicted (schematically).

The local minima and maxima correspond to solutions with energy E = 0.
The minima have been found previously in [21], i.e., stable solutions are found
for discrete values of the interval length. The intermediate solutions, although
not local minima of the curve, can still be (local) minima of the action for fixed
s. The gluing procedure can be made rigorous under transversality assump-
tions, see [9, 23] and Sect. 8. In the absence of a transversality assumption,
we follow a different approach.

In order to construct attracting sets which contain stable equilibria we will
use the heteroclinic and homoclinic minimizers that were found in [22]. Let
us first summarize the results of [22]. Consider the punctured plane P =
R

2 \ {P1, P2}, where P1 = (−1, 0) and P2 = (+1, 0). Let u be a heteroclinic or
homoclinic solution of (1) and let Γ(u) = (u, ux) : R → P with Γ(u(x))|x=±∞ ∈
{P1, P2} and define its homotopy type as follows. As x goes from x = −∞
to x = ∞, Γ can intersect the lines L− = {(u, ux) ∈ P, u = −1} and L+ =
{(u, u′) ∈ P, u = +1}. The number of consecutive intersections of L− and
L+ is always even. We do not count the intersections of L± at start and
finish. In between one obtains a finite sequence of even numbers denoted by
g = (g1, . . . , gk), which we call the homotopy type of Γ (see Figure 2 for an
example). Note that given the homotopy type g one still has the freedom of
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choosing the initial point to be either P1 or P2. Whether Γ terminates at P1

or P2 then depends on g.
If F (u) = 1

4
(u2−1)2 it follows from the results discussed in Sect. 7 that for

γ
β2 ≤ 1

8
the only minimizers are the constant solutions u ≡ ±1 and two hete-

roclinic connections with trivial homotopy type. On the contrary, for γ
β2 >

1
8

it is proved in [22] that for any homotopy type g of any length there exists a
‘geodesic’ Γ(u). In other words by minimizing J [u] =

∫
R
j(u) over functions u

for which the associated curve Γ(u) has homotopy type g, a minimizer is found
in every homotopy class5. The minimization is carried out in classes of func-
tions defined via the homotopy type, and are are denoted by M(g, Pν), where
Pν ∈ {P1, P2} (i.e. ν ∈ {1, 2} and (u, ux)(−∞) = Pν for all u ∈ M(g, Pν)). To
be precise, let χ0(x) be a smooth function such that χ0(x) = 1 for x ≥ 1 and
χ0(x) = −1 for x ≤ −1. Let χ1(x) ≡ −1, and let χi = χ

i mod 2
for i ≥ 2.

Then we define for all m ≥ 0 and any g ∈ N
m (see [22]):

Definition 4. A function u is in M(g, Pν) if u− (−1)νχm ∈ H2(R) and
if there exist nonempty subsets {Ai}m+1

i=0 of R such that

(1) u−1(±1) = ∪m+1
i=0 Ai;

(2) #Ai = gi for i = 1, . . . , m;
(3) maxAi < minAi+1 for i = 0, . . . , m;
(4) u(x) = (−1)ν+i+1 for all x ∈ Ai;
(5) {maxA0} ∪ (∪m

i=1Ai)∪ {minAm+1} consists of transverse crossings of
±1.

Under these conditions M(g, Pν) is an open set in (−1)νχ + H2(R). The
function class with m = 0 is denoted by M((0), Pν). We will use the notation
|g| = m if g ∈ 2N

m, and drop the implicit dependence of χ|g| on |g| from the
notation.

Define

J(g, Pν) = inf
u∈M(g,Pν)

J [u],

where in this case the domain of integration is the entire real line. Finally, the
set of global minimizers of J over the function class M(g, Pν) is denoted by

CM(g, Pν) = {u ∈M(g, Pν) | J [u] = J(g, Pν)}.
Since M(g, Pν) is an open set, minimizers u ∈ CM(g, Pν) satisfy the Euler-
Lagrange equation

(5) −γuxxxx + βuxx + F ′(u) = 0.

In [22] the following theorem is proved:

Theorem 5. Let F ∈ C2(R) satisfy (2) and grow super-quadratically. Sup-
pose that γ

β2 > max
{

1
4F ′′(−1)

, 1
4F ′′(+1)

}
. Then

(a) if F is even: J(g, Pν) is attained for any g.

5This result is actually proved for general even potentials F under the condition that
γ
β2 > 1

2F ′′(±1) .
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(b) if F is not even: there exists a universal constant N0(F, γ, β) ∈ N such
that J(g, Pν) is attained for any g = (g1, . . . gm) with gi ∈ {2} ∪ {n ≥
N0} for all i = 1, . . . , m.

The homotopy types g selected in the above theorem are called admissible
types. In the following we will always assume that F satisfies the assumptions
in the above theorem, that γ

β2 > max
{

1
4F ′′(−1)

, 1
4F ′′(+1)

}
, and that g is an

admissible homotopy type.
It has been proved in [22] that all minimizers obtained in Theorem 5 are

normalised, i.e., all crossings of ±1 are transverse and between two consecu-
tive crossings of ±1 the function is either monotone or has exactly one local
extremum.

As was already pointed out, in order to find stable solutions with respect
to the Neumann boundary conditions we need to consider certain types of ho-
moclinic connections found in [22]. Of particular interest are the symmetric
types with an odd number of entries, i.e. g = (g1, . . . , g2n+1) with gi = g2n+2−i.
It follows from the minimizing property that the curves Γ (and thus also the
functions u) inherit the symmetry in g, i.e., the functions u are symmetric
with respect to the line ux = 0. To be precise, given a minimizer u there exists
a point x = x0 such that u(x0 + x) = u(x0 − x). Since the minimizers are
invariant under translations in x one can choose a representative u such that
x0 = 0, and in particular we have ux(0) = uxxx(0) = 0. For the functions
u− = u|R− and u+ = u|R+ one can define the restricted homotopy type as
before by counting the number of intersections of Γ(u) with L− and L+. Thus
g(u−) = (g1, . . . , gn, gn+1/2) and g(u+) = (gn+1/2, gn+2, . . . , g2n+1). Restrict-
ing to functions over R

+ we still have the freedom of choosing the endpoint to
be either P1 or P2. Define for all (restricted) homotopy types g = (g1, . . . gm)
with g1 ∈ N and gi ∈ 2N for i = 2, . . . , m,

MR+(g, Pν) = {u ∈ (−1)ν +H2(R+) | ux(0) = 0, g(u) = (g)}.
Lemma 6. The infima JR+(g, Pν) = infu∈M

R+(g,Pν) JR+[u] are pre-

cisely attained by u+ = u|R+ with u ∈ CM(g−1
g, Pν), where g

−1
g =

(gm, . . . , g2, 2g1, g2, . . . , gm) (under the same assumptions as in Theorem 5).

The minimizers of JR+(g, Pν) in MR+(g, Pν) are denoted by CMR+(g, Pν).
For periodic solutions one can set up the same construction (see [21]). The ho-
motopy type is now determined over one period. The function classes and sets
of global minimizers are denoted by Mper(g, Pν) and CMper(g, Pν) respectively,
and Jper(g, Pν) is attained under the same assumptions as in Theorem 5.

3. A priori estimates

For the class of homoclinic and heteroclinic connections that were found
in Theorem 5 we prove certain a priori estimates concerning their asymptotic
behaviour. We assume throughout this section that for either F even or F not
even, the homotopy types are admissible (see Theorem 5). Also assume that
γ
β2 > max

{
1

4F ′′(−1)
, 1

4F ′′(+1)

}
.
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`1 `2

I1 I2

u = 1

u = −1

Figure 3. The intervals Ii and `i are indicated for a function
of type g = (6, 4).

For easy notation we lift the translation invariance of minimizers of J by
defining CM∗(g, Pν) = CM(g, Pν)/R, represented by functions u ∈ CM(g, Pν)
with the property that u(0) = (−1)ν+1 and such that (−1)ν+1u(x) < 1 for
all x < 0 (this corresponds to taking min(A1) = 0). For a minimizer u ∈
CM∗(g, Pν) recall that the sets Ai represent the successive crossings of (−1)ν+i,
i = 1, .., |g| and define (see also Figure 3)

Ii
def
= [minAi,maxAi] and `i

def
= [maxAi−1,minAi+1].

The a priori bounds on minimizers u ∈ CM(g, Pν) obtained in this sec-
tion will immediately carry over to minimizers on the half line on account of
Lemma 6.

Lemma 7. There exists constants C1, C2, C3 > 0 such that for any admis-
sible homotopy type g and any u ∈ CM∗(g, Pν) it holds that

‖u‖W 1,∞(R) ≤ C1,

and

distR2

(
Γ(u|`i

), ((−1)ν+i, 0)
)
≥ C2e

−C3gi, for i = 1, 2, . . . , |g|,
where `i = [maxAi−1,minAi+1].

Before proceeding with the proof of this lemma we first introduce the notion
of covering spaces in the present context (see also [21]). The fundamental
group of P = R

2 \ {P1, P2} is isomorphic to the free group on two generators
e1 and e2 which represent loops (traversed clockwise) around P1 = (−1, 0)
and P2 = (1, 0) respectively with base-point (0, 0). Since P represents the
phase-plane, the curves corresponding to functions u only traverse the loops in
the clockwise direction. Note that P is homotopic to a bouquet of two circles

X = S1 ∨ S1. The universal covering of X, denoted by X̃, can be represented
by an infinite tree whose edges cover either e1 or e2 in X, see Figure 4. The

universal covering of P denoted by ℘ : P̃ → P can then be viewed as a

thickened version of X̃ so that P̃ is homeomorphic to an open disk in R
2.

The origin of P̃ will be denoted by O. Of course every point in P has many
lifts. To be able to fix notation we distinguish a particular lift ℘−1 of the
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O

P̃X̃

Figure 4. The universal covering X̃ of X = S1 ∨ S1 is a tree.

The universal covering P̃ of P is a thickened version of X̃. Its
origin is denoted by O. The single and double arrows indicate
the two different generators e1 and e2 which can only be traversed
in one direction.

u

ux

��

Figure 5. All minimizers in any class are bounded in the (u, ux)
plane from the outside by u ∈ CMper(2, 2) and from the inside
by u ∈ CM((0), Pν) (only u ∈ CM((0), P1) is depicted here).
The dotted curve represents (part of) a minimizer.

line {(0, ux) | ux ∈ R} ⊂ P by requiring that ℘−1((0, 0)) = O and continuous

extension. Denote ℘−1({(0, ux)}) by N ⊂ P̃ .

We now turn to the proof of Lemma 7.

Proof. The first estimate (the outer bound) is proved in Theorem 5.1
in [21]. It follows from the fact that all minimizers are bounded in the (u, ux)
by a minimizer of class Mper(2, 2) (see Figure 5). We will show that the second
estimate in Lemma 7 comes from a similar argument where minimizers of
class M((0), P1,2) take the the role of inner bounds. The proof is completely
analogous to the first estimate when we lift the problem to the covering space.



FOURTH ORDER PARABOLIC EQUATIONS 11

The idea is that all minimizers lie “outside” the simple heteroclinic minimizers
of type g = ((0), P1), i.e., they spiral towards Pν slower than these simple
minimizers.

Let u ∈ CM∗(g, Pν) with g 6= (0). The idea now is to compare different

lifts of Γ(u) to P̃ with lifts of minimizers in CM∗((0), Pν). Fix the index i to
be any of the numbers 1, . . . , |g|. Choose u0 ∈ CM∗((0), P1) if ν + i is even,
and u0 ∈ CM∗((0), P2) if ν + i is odd. Set x0

def
= max{x < min(Ai) | u(x) = 0}.

Now lift Γ(u0) and Γ(u) to P requiring that both ℘−1(Γ(u0(0))) ∈ N and
℘−1(Γ(u(x0))) ∈ N .

We claim that the lifts ℘−1(Γ(u0)) and ℘−1(Γ(u)) intersect at most once.
Indeed, suppose they intersect twice in say y0 and y1, then their action J
between y0 and y1 is equal since they are both minimizers. This implies that if
one can replace u0 by u between y0 and y1, and thus obtain another minimizer
of the same homotopy type. Since all minimizers satisfy (5), this contradicts
the uniqueness of the initial value problem, which proves our claim. In fact
the same argument shows that, for i = 1, and i = |g|, the lifts ℘−1(Γ(u0)) and
℘−1(Γ(u)) do not intersect at all.

For the remaining indices i we assert that if ℘−1(Γ(u0)) and ℘−1(Γ(u)) in-
tersect, then they do not cross. That is, if the curves have a point in common
(intersect), then this intersection can be removed by an arbitrarily small per-
turbation (the intersection is tangent). Indeed, if the curves would cross, then
there would be a second intersection point contradicting the statement above.
This is most easily seen from the left picture in Figure 6 since both limits of
℘−1(Γ(u)) as x → ±∞ lie on the same side of ℘−1(Γ(u0)). It is also follows
that ℘−1(Γ(u)) lies on the “outside” of ℘−1(Γ(u0)), that is to say the curve
Γ(u) spirals about P1 or P2 on `i outside the spiral of Γ(u0) (see Figure 6;
right).

Finally, the set CM∗((0), P1) is ordered by their derivative at the origin,

i.e. u′(0) (since two minimizers cannot intersect in P̃). Besides, CM∗((0), Pν)
turns out to be compact (see Lemma 12). Hence there exists a smallest and
a largest element of CM∗((0), P1) (measured by u′(0)). The smallest element
Γ(u0) spirals exponentially towards P1,2 as x → ±∞. A similar argument
holds for CM∗((0), P2) (especially because these are the same functions with
inverted x). Since all other minimizers spiral outside these minimal elements
the second (exponential) estimate of the lemma follows. �

Another way to prove Lemma 7 is to construct annuli as covering spaces
as was done in [21].

Remark 8. The proof also shows that the tails of any minimizer cannot
spiral towards the equilibrium point faster than some fixed exponential rate.

In [22] the Uniform Separation Property was introduced. This property is
closely related to the question which types are admissible. Here the following
result from [22] is used:
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O

P̃

u

ux

��

Figure 6. On the left: the lifts of the simple heteroclinic
℘−1(Γ(u0)) of class g = ((0), P1) and, as an example, a min-
imizer ℘−1(Γ(u)) of class g = ((4, 2), P2). On the right: the
heteroclinic class g = ((0), P1) and, as an example, (part of) a
minimizer of class g = ((6), P1).

Lemma 9. There exist a constant C4 > 0 such that for any admissible
homotopy type g and any u ∈ CM∗(g, Pν) it holds that

|u(x) − (−1)ν | ≥ C4 for all x ∈ Ii,

where Ii = [minAi,maxAi]

We now deduce a bound on the length of the interval between the tails.

Lemma 10. There exists a constant δ1 > 0 so that for any admissible
homotopy type g and any δ ≤ δ1 there exists constants T−

δ < 0 and T+
δ > 0

such that for any u ∈ CM∗(g, Pν)

‖u− (−1)ν‖W 1,∞(−∞,T−
δ

) < δ, ‖u− (−1)ν+|g|−1‖W 1,∞(T+

δ
,∞) < δ.

Proof. First of all we analyse the tails. We choose δ1 > 0 so small that
the local theory near the equilibrium points from Sect. 4 in [22] applies for all
δ < δ1. According to the local theory there exists a 0 < δ2 < δ such that if a
point x1 ∈ (−∞,minA1) in the left tail of u is such that |u(x0) − (−1)ν | < δ2
and |u′(x0)| < δ2, then ‖u‖W 1,∞(−∞, x1) < δ. This expresses the fact that
Γ(u) spirals towards Pν as x → −∞. Of course a similar statement holds for
the right tail.

Now choose κ = min{δ2, C4, C2e
−C3 max1≤i≤|g| gi}, where C2, C3 and C4 are

defined in Lemmas 7 and 9. We are going to estimate the measure of

Kκ
def
= {x ∈ R | distR2

(
(u(x), ux(x)), {P1, P2}

)
< κ},

or rather its complement Kc
κ. By Lemmas 7 and 9 the interval

[minA1,maxAm] is contained in Kc
κ. We assert that there is a constant C > 0
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such that
J [u|Kc

κ
] ≥ C|Kc

κ|κ2.

Namely, considering u ≥ 0 and u < 0 separately, we obtain that, for some
C > 0, the inequality j(u) ≥ Cκ2 holds pointwise for all x ∈ Kc

κ (since F
has non-degenerate equilibria). Since J [u|Kc

κ
] < J(g, Pν) it follows that |Kc

κ| is

smaller than J(g,Pν)
Cκ2 . Hence choosing |T±

δ1
| = J(g,Pν)

Cκ2 we have proved the lemma.
�

Our next aim is to obtain compactness of the set of minimizers. To proceed
we need to convert to functions on a finite interval.

The restriction of the minimizers in CM∗(g, Pν) to [T−, T+] is denoted by
CMT

∗ (g, Pν). Let H2
∗ (T

−, T+) = {u ∈ H2(T−, T+) | u(0) = (−1)ν+1}, then
CMT

∗ (g, Pν) ⊂ H2
∗ (T

−, T+). Functions in CMT
∗ (g, Pν) can be mapped back

to CM∗(g, Pν) as follows. Define the map E0 : CMT
∗ (g, Pν) → CM∗(g, Pν):

(6) E0[u] =





α
(
x− T−

δ , (u(T
−
δ ), ux(T

−
δ ))
)

x ∈ (−∞, T−
δ ]

u(x) x ∈ [T−
δ , T

+
δ ]

ω
(
x− T+

δ , (u(T
+
δ ), ux(T

+
δ ))
)

x ∈ [T+
δ ,∞)

where α and ω are unique minimizers of an appropriate functional, i.e., α is the
unique minimizer (see e.g. [22]) for J over functions α in (−1)ν +H2(−∞, 0)
for which (α(0), αx(0)) = (u(T−

δ ), ux(T
−
δ )). A similar definition holds for ω ∈

(−1)ν+|g|+1 + H2(0,∞). The map E0 is well-defined for all u ∈ H2
∗ (T

−
δ , T

+
δ )

for which distR2

(
(u, u+)(T±

δ ), {P1, P2}
)

is sufficiently small (see e.g. [9, 22]),

say distR2

(
(u, u+)(T±

δ ), {P1, P2}
)
< δ3.

We now fix

δ = δ0
def
=

1

2
min{δ1, δ3},

where δ1 is defined in Lemma 10. Also fix T± def
= T±

δ0
(see Lemma 10). The set

Vε(g, Pν) = {u ∈ H2
∗ (T

−, T+) | distH2(u, CMT
∗ (g, Pν)) ≤ ε},

is a bounded neighborhood of CMT
∗ (g, Pν). For every u ∈ Vε there exists

v ∈ CMT
∗ (g, Pν) such that ‖u− v‖H2 ≤ ε and thus ‖u − v‖W 1,∞ ≤ C̃ε, where

C̃ is the Sobolev embedding constant. When C̃ε < δ0 then the map E0 is
well-defined on Vε. If we choose

ε ≤ ε0
def
= min{δ0, C4, C2e

−C3 max1≤i≤|g| gi}/C̃,
then by Lemmas 7 and 9 the set Uε = E0[Vε] is contained M∗(g, Pν). Fix ε = ε0
and write V (g, Pν)

def
= Vε0(g, Pν). Of course, when necessary one can choose a

smaller value of ε.

Corollary 11. The map E0 is well-defined for all u ∈ V (g, Pν) and the
sets U

def
= E0[V (g, Pν)] ⊂M∗(g, Pν).

One now obtains the following compactness result.

Lemma 12. For any admissible homotopy type g the set CM∗(g, Pν) is
compact.
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Proof. The set CM∗(g, Pν) ⊂ (−1)νχ+H2(R) is closed and bounded (by
Lemma 7). It remains to show that CM∗(g, Pν) is precompact. Let {un} ⊂
CM∗(g, Pν), then by Lemma 10 we have that

distR2

(
(un, un,x)(x), {P1, P2}

)
≤ δ0 for x ∈ [T−, T+]c.

Define the functional JT def
= J ◦E0 on the bounded sets V . Since the functions

un are minimizers it holds that dJT [un] = dJ ◦ E0[un] = 0. This yields the
relation 0 = un+K[un], where K is a compact operator (cf. [23, Theorem 3.2]).
For the sequence {un} this implies that (possibly along a subsequence) un

converges in H2(T−, T+) to some function u. Let us denote the tails of un

on the intervals (−∞, T−] and [T+,∞) by αn and ωn respectively. Since δ0
is sufficiently small and all αn and ωn satisfy Equation (5) it follows from the
local theory near the equilibria that the tails αn and ωn also converge to E0[u]
in H2(−∞, T−] and H2[T+,∞) respectively. Indeed, F has non-degenerate
equilibria and thus (F ′(u1)−F ′(u2))(u1 −u2) ≥ 1

2
F ′′(±1)(u1 −u2)

2 for u1 and
u2 sufficiently close to ±1. Hence we obtain, using the differential equation,
for some small C > 0

γ

∫ T−

−∞
|αn,xx − αm,xx|2 + β

∫ T−

−∞
|αn,x − αm,x|2 + C

∫ T−

−∞
|αn − αm|2 ≤

−γ(αn,xxx − αm,xxx)(αn − αm)(T−) + γ(αn,xx − αm,xx)(αn,x − αm,x)(T
−)

−β(αn,x − αm,x)(αn − αm)(T−).

The right-hand side tends to 0 as n,m→ ∞ since αn(−T ) and αn,x(−T ) con-
verge, and αn,xx(−T ) and αn,xxx(−T ) are bounded (this follows from regularity
arguments). Therefore the sequence {un} converges strongly, possibly along a
subsequence, in χ +H2(R), which concludes the proof. �

For JT we can derive the following geometric properties.

Lemma 13. The set of all minimizers of JT in V (g, Pν) is given by
CMT

∗ (g, Pν). Moreover, there exist constants C0 = C0(g, F, γ, β) > 0 such
that JT |∂V ≥ J(g, Pν) + C0.

Proof. By definition U = E0[V ] and thus infV J
T = infU J ≥ J(g, Pν).

For u ∈ CMT
∗ (g, Pν) ⊂ V it follows that JT [u] = J(g, Pν) and therefore

infV J
T = J(g, Pν). Clearly, if JT [u] = J(g, Pν) for some u ∈ V then E0[u] ∈

CM∗(g, Pν) which proves the first claim.
Suppose there exists no constants C0 such that JT |∂V ≥ J(g, Pν) + C0.

Then one can find a sequence un ∈ ∂V such that JT [un] → J(g, Pν). By
Ekeland’s variational principle [14] there exists a slightly different sequence
ũn with ‖ũn − un‖H2(T−,T+) → 0 as n → ∞, such that dJT [ũn] → 0, and
JT [ũn] ≤ JT [un].

Since V is bounded it follows that there exists a subsequence, again denoted
by ũn, such that ũn ⇀ u in H2(T−, T+) and un → u in W 1,∞(T−, T+). By the
weak lower-semicontinuity of J we obtain the estimate JT [u] ≤ J(g, Pν).

From the fact that dJT [ũn] → 0 it follows, arguing as in the proof of
Lemma 12, that ũn → u strongly in H2(T−, T+), hence un → u, implying
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L

u+ u−

Figure 7. Two symmetric homoclinic minimizers which have
to be glued together to produce a stable stationary solution on
the interval [0, L] satisfying Neumann boundary conditions.

that u ∈ ∂V ⊂ M∗(g, Pν). From the definition of J(g, Pν) it follows that
JT [u] ≥ J(g, Pν). Together with the reversed inequality which was already
obtained, this implies that u ∈ ∂V is a minimizer, a contradiction. �

Remark 14. The constant C0 in the above lemma depends on the homotopy
type g. In Sect. 5 we will prove that when we the neighborhood V (g, Pν) is
defined in a different way, C0 can be chosen independent of g for a large class
of homotopy types g.

4. Stable equilibrium solutions

The a priori properties of minimizers can be used now to construct sta-
ble equilibria for Equation (1) via a minimization procedure partly based on
techniques used in [9] and [23]. Our first goal is to construct stable equilibria
for (1) that satisfy the Neumann boundary conditions.

We split two symmetric homoclinics and glue the two halves together by
matching their tails (see Figure 7). The length of the plateau thus formed
in the middle can be arbitrarily long. Since our initial homoclinic minimizers
are not necessarily isolated we have to perform a careful gluing procedure in
special subsets V of the function space, so that the infimum of J on V is
strictly larger than infimum of J on ∂V , and hence the minimum is attained
in the interior of V .

Another way to express ’splitting’ of symmetric homoclinic minimizers is to
take minimizers from CMR±(g, Pν). Minimisers in CMR±(g, Pν) are obtained
from minimizers in CM(g−1

g, Pν) in the following way. Normalise functions
in CM(g−1

g, Pν) by setting u(0) = 0 at the unique point of even symmetry.
The sets CMR−(g, Pν) and CMR+(g, Pν) are then obtained by restricting to
the intervals (−∞, 0] and [0,∞) respectively. For functions in CM(g−1

g, Pν),
that are normalised as described above, we now have that the conclusions
of Lemma 10 hold for |x| > T = (T+ − T−)/2. Define CMT

R−(g, Pν) and
CMT

R+(g, Pν) as the restrictions of functions in CMR−(g, Pν) and CMR+(g, Pν)
to the intervals [−T, 0] and [0, T ] respectively. Let H2

n(0, T ) = {u ∈
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H2(0, T ) | ux(0) = 0} and H2
n(−T, 0) = {u ∈ H2(−T, 0) | ux(0) = 0}, then

CMT
R−(g, Pν) ⊂ H2

n(−T, 0) and CMT
R+(g, Pν) ⊂ H2

n(0, T ). As in the previous
section we can define the map E0 : CMT

R+(g, Pν) → CMR+(g, Pν):

E+
0 [u] =

{
u(x) x ∈ [0, T ]
ω
(
x− T, (u(T ), ux(T ))

)
x ∈ [T,∞).

By the same token we define the map E−
0 : CMT

R−(g, Pν) → CMR−(g, Pν).
The functionals JR− ◦ E−

0 and JR+ ◦ E+
0 are well-defined on CMT

R−(g, Pν)
and CMT

R+(g, Pν) respectively. As in the previous section we can define ε-
neighborhoods of CMT

R+(g, Pν) ⊂ H2
n(0, T+) and CMT

R−(g, Pν) ⊂ H2
n(0, T−),

which we indicate by V + and V − respectively. The functionals J±
T are well-

defined on these neighborhoods if ε is small enough, say ε ≤ ε0(g) (see Corol-
lary 11). The following is an immediate consequence of Lemma 13.

Lemma 15. The set of all minimizers of J+
T over V + is given by

CMT
R+(g, Pν). Moreover, there exist constants C0 = C0(g, F, γ, β) > 0 such

that JR+ ◦ E+
0 |∂V +(g,Pν) ≥ JR+(g, Pν) + C0. The same statement holds for

JR− ◦E−
0 .

We now use Lemma 15 to construct neighborhoods V ⊂ H2
N(0, L) such that

inf∂V J > infV J . In order to do so we again invoke the local theory near the
equilibrium points (see Theorems 4.1 and 4.2 in [22]). Take ȳ = (y1, y2) and
z̄ = (z1, z2), with both |ȳ−(±1, 0)| < δ1 and |z̄−(±1, 0)| < δ1 and δ1 sufficiently
small (in fact one can take the same value as in Lemma 10). Then the boundary
value problem for Equation (5) on an interval of length s with left and right
boundary conditions given by (u, u′)(0) = ȳ and (u, u′)(s) = z̄ has a unique
global minimizer if s is larger than some constant, say s > S0 = S0(F, γ, β, δ1).
This minimizer is denoted by g(x, ȳ, z̄, s).

Let g
− and g

+ be two admissible homotopy types, i.e. g
± = (g±1 , .., g

±
|g±|),

with g±1 ∈ N and g±i ∈ 2N for i = 2, .., |g±|. Furthermore, let H2
N(0, 2T + s) =

{u ∈ H2(0, 2T + s) | ux(0) = ux(2T + s) = 0}.
Define the map Es

2 : CMT
R+(g+, Pν) × CMT

R−(g−, Pν) → H2
N(0, 2T + s) as

follows:

Es
2[u

+, u−] =

{
u+(x) x ∈ [0, T ]
g(x− T, (u+(T ), u+

x (T )), (u−(0), u−x (0)), s) x ∈ [T, T + s]
u−(x− 2T − s) x ∈ [T + s, 2T + s]

Arguing as in Sect. 3, since δ0 ≤ 1
2
δ1 it follows that when we choose ε =

min{ε0(g+), ε0(g
−)}, the functional JT

s
def
= J2T+s ◦Es

2 : V +(g+)×V −(g−) → R

is well-defined for any s > S0.
The estimate of Lemma 15 carries over to the current situation.

Lemma 16. There exist constants S1, C0(g
−), and C0(g

+) such that

inf
∂(V +(g+)×V −(g−))

JT
s ≥ inf

V +(g+)×V −(g−)
JT

s + min(C0(g
+), C0(g

−))/2

for all s ≥ S1.
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Proof. For any pair (u+, u−) ∈ V +(g+) × V −(g−) we have that

JT
s [u+, u−] =

∫ T

0
j(u+) +

∫ s

0
j(g) +

∫ 0

−T
j(u−)

= JR+ ◦ E+
0 [u+] −

∫∞
0
j(ω) +

∫ s

0
j(g) −

∫ 0

−∞ j(α) + JR− ◦ E−
0 [u−]

= JR+ ◦ E+
0 [u+] + JR− ◦ E−

0 [u−] + A(s),

where A(s) = −
∫∞
0
j(ω) +

∫ s

0
j(g) −

∫ 0

−∞ j(α). The behaviour of A(s) is gov-

erned by the linear flow near a saddle-focus and we find that A(s) = O(e−c0s)

for s → ∞, where c0 = c0(F, γ, β) > 0. Indeed, A(s) =
∫ s/2

0
[j(g) − j(ω)] −∫∞

s/2
j(ω) +

∫ 0

−s/2
[j(g(x + s)) − j(α)] −

∫ −s/2

−∞ j(α), and each integral decays

exponentially in s. For the second and fourth term this follows from the lin-
earisation of the flow near the non-degenerate equilibrium point. Besides, we
obtain, in a similar manner as in the proof of Lemma 12, that ‖ω− g‖H2(0,s/2)

is bounded by boundary terms and hence is of order O(e−c1s) for some c1 > 0.

It then follows that
∫ s/2

0
j(g)− j(ω) = O(e−c2s) for some c2 > 0, since ω and g

are close to the (non-degenerate) equilibrium point. An analogous argument

deals with the term
∫ 0

−s/2
j(g(x+ s)) − j(α).

We choose S1 ≥ S0 such that A(s) ≤ min(C0(g
+), C0(g

−))/4 for all s ≥ S1.
Applying Lemma 15 now finishes the proof. �

The information of Lemma 16 can be used to find minimizers for JT
s in

V +(g+)× V −(g−) for all s ≥ S1. Indeed, let (u+
n , u

−
n ) ∈ V +(g+)× V −(g−) be

a minimizing sequence for JT
s , for s ≥ S1 fixed. Then ‖u+

n ‖H2
n(0,T )+‖u−n ‖H2

n(−T,0)

is bounded and thus (u+
n , u

−
n ) ⇀ (u+, u−) ∈ H2

n(0, T ) × H2
n(−T, 0). In

exactly the same way as in the proof of Lemma 13 one obtains that in
fact (u+

n , u
−
n ) → (u+, u−) strongly in H2

n(0, T ) × H2
n(−T, 0). It follows that

(u+, u−) ∈ V +(g+) × V −(g−), and since JT
s is weakly lower-semicontinuous

we derive that (u+, u−) is a minimizer of JT
s on V +(g+) × V −(g−). The fact

that the sets V +(g+)×V −(g−) contain minimizers for JT
s does not necessarily

imply that the functions Es
2[u

+, u−] are solutions to Equation (5). However,
since the minimizers (u+, u−) lie in the interior of V +(g+) × V −(g−) one can
prove that Es

2[u
+, u−] are local minimizers for J and hence solutions of (5).

Lemma 17. Let (u+, u−) be a minimizer of Js
T in V +(g+) × V −(g−).

Then for all φ ∈ H2
N(0, 2T + s) with ‖φ‖H2 sufficiently small it holds

that J2T+s[E
s
2[u

+, u−] + φ] ≥ J2T+s[E
s
2[u

+, u−]]. Moreover, the function
v = Es

2[u
+, u−] satisfies Equation (5) with the Neumann boundary conditions

ux(0) = uxxx(0) = 0 and ux(2T + s) = uxxx(2T + s) = 0.

Proof. Since the minimizer u = Es
2[u

+, u−] lies in int(V +(g+)× V −(g−))
one can find small open neighborhoods N+ ⊂ V +(g+) and N− ⊂ V −(g−) of
u+ and u− respectively such that JT

s [u+ + φ+, u− + φ−] ≥ JT
s [u+, u−] for all

(u+ + φ+, u− + φ−) ∈ N+ ×N−.
Let N ⊂ H2

N(0, 2T + s) be a small neighborhood of u = Es
2[u

+, u−], i.e.,
v ∈ N can be written as v = u + φ, with φ ∈ H2

N(0, 2T + s) and ‖φ‖H2

small. If the neighborhood N is small enough then φ− = φ|[T+s,2T+s] ∈ N−
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and φ+ = φ|[0,T ] ∈ N+. The part in the middle, φ|[T,T+s], is denoted by φ0 We

can write v + φ0 = v + φ̂0 + (φ0 − φ̂0), where v + φ̂0 is the unique minimizer
of J[T,T+s] over functions with boundary conditions at x = T and x = T + s
equal to (u+ + φ+, u+

x + φ+
x )(T ) and (u− + φ−, u−x + φ−

x )(T + s) respectively,
i.e., functions of the form v|[T,T+s] + ψ0 with ψ0 ∈ H2

0 (T, T + s).
We now have that

J2T+s[E
s
2[u

+, u−] + φ] =
∫ T

0
j(u+ + φ+) +

∫ T+s

T
j(v + φ0) +

∫ 2T+s

T+s
j(u− + φ−)

≥
∫ T

0
j(u+ + φ+) +

∫ T+s

T
j(v + φ̂0) +

∫ 2T+s

T+s
j(u− + φ−)

= J2T+s[E
s
2[u

+ + φ+, u− + φ−]] = JT
s [u+ + φ+, u− + φ−]

≥ JT
s [u+, u−] = J2T+s[E

s
2[u

+, u−]].

This proves the first claim. From the fact that u = Es
2[u

+, u−] is a local
minimizer of J2T+s one easily deduces that u satisfies Equation (5) and the
Neumann boundary conditions. �

The next step is to construct proper attracting neighborhoods in
H2

N [0, 2T + s] for Equation (1) that contain the equilibria Es
2[u

+, u−].
Let φ ∈ Br(0) ⊂ H2

0 (T, T + s) and consider the triples (u+, u−, φ) ∈
V +(g+)×V −(g−)×Br(0). Define the map F s : V +(g+)×V −(g−)×Br(0) →
H2

N(0, 2T+s) as follows: F s(u+, u−, φ) = Es
2[u

+, u−]+φ̃, where φ̃ ∈ H2
0(0, 2T+

s) is the extension by zero of φ. Set Y
def
= F s

(
V +(g+)× V −(g−)×Br(0)

)
. We

want to show that inf∂Y J2T+s > infY J2T+s, and from Lemma 16 we see that
the remaining problematic boundary of Y is V +(g+)×V −(g−)×∂Br(0). How-
ever, if we for example choose r sufficiently large then this problem is overcome
and

J2T+s[u] = J [Es
2[u

+, u−] + φ̃] ≥ inf
V +(g+)×V −(g−)

JT
s + min(C0(g

−), C0(g
+))/2

is satisfied for all u ∈ ∂Y .
Let S be a the set of minimizers of JT

s in V +(g+) × V −(g−). As before
u ∈ Y is in S if and only if there is a pair (u+, u−) which minimizes JT

s on
V +(g+)×V −(g−), with u = F s(u+, u−, 0). We will now show that S is stable.

Let η < ε = min(ε0(g
−), ε0(g

+)), then Bη(S) = {u ∈ H2(0, 2T +
s) | distH2(u,S) < η} is contained in Y (for r sufficiently large).

Via the same reasoning as in Lemma 13 we find that

a
def
=

1

2

(
inf

∂Bη(S)
J2T+s − inf

Bη(S)
J2T+s

)
> 0.

Define Na
ε = Ja

2T+s ∩Bη(S), where Ja
2T+s is the sub-level set

Ja
2T+s = {u ∈ H2

N(0, 2T + s) | J2T+s[u] ≤ inf
Bη(S)

J2T+s + a}.

It follows that J2T+s|∂Na
ε

= a. Since Equation (1) is the L2-gradient flow
equation of J , the quantity J2T+s[u(t, x)] decreases in t, and thus for initial
data u(0, x) = u0(x) ∈ Na

ε it holds that u(t, x) ∈ Na
ε for all t > 0. This proves

that S is a stable set for Equation (1). Since s > S1 is arbitrary and this
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construction can be carried out for all admissible homotopy types g
+ and g

−,
we obtain the following theorem (Theorem 2 of the introduction).

Theorem 18. Let γ
β2 > max

{
1

4F ′′(−1)
, 1

4F ′′(+1)

}
. Then for any n ∈ N there

exists a constant Ln > 0 such that for all L ≥ Ln Equation (1) with the
Neumann boundary conditions has at least n disjoint sets of stable equilibria
(in the sense of Definition 1).

5. Estimating the number of equilibria

Some of the estimates obtained in Sects. 3 and 4 can be made uniform
with respect to the homotopy type g. With such uniform estimates one can
obtain a lower bound on the number of stable solutions of Equation (1) as
function of L. The crucial constant in this context is the constant introduced
in Lemma 13:

C0 = inf
∂V
J [u] − inf

V
J [u].

We recall from Sect. 3 that fixing γ, β and F , we have that ε0 only depends
max1≤i≤|g| gi. The following lemma is a uniform analogue of Lemma 13 and
shows that, with an appropriate choice of the neighborhood V the constant C0

also depends only on max1≤i≤|g| gi.

Lemma 19. For all N∗ ∈ N there exists positive constants C0, D1 and
D2 such that for any admissible homotopy type g with gi ≤ 2N∗ for all i =
1, 2, . . . |g|, there exists a bounded neighborhood V (g, Pν) ⊂ H2

∗ (T
−, T+) of

CMT
∗ (g, Pν) with |T±| ≤ D1 +D2|g|, such that E0[V (g, Pν)] ⊂M∗(g, Pν) and

inf∂V J ◦ E0[u] − J(g, Pν) > C0.

It should be clear that we need to restrict the magnitude gi to get such a uni-
form estimate, since the higher gi the closer CM∗(g, Pν) gets to the boundary
of the class M∗(g, Pν), i.e., the more oscillations around one of the equilibrium
points the closer the function approaches the equilibrium. Note however that
the length |g| of the homotopy type is arbitrary. This is made possible by an
appropriate choice of V (g, Pν), which will be discussed later on.

Before we prove the lemma we will first explain how the lemma can be used
to count the number of equilibria (or attracting sets) as L → ∞. Our goal is
to derive the exponential lower bound on the number of stable equilibria as
function of L mentioned in Equation (4). Choosing V (g, Pν) as in Lemma 19
it follows from the proof of Lemma 16 that S1 depends on N∗ only (since C0

depends on N∗ only). We now fix N∗ > 1 and only consider g when gi ≤ 2N∗.
One can now construct stable solutions of (1) as in Sect. 4 by using building

blocks (u+, u−) ∈ V +(g+)×V −(g−) for which g−i , g
+
j ≤ 2N∗. The solutions are

defined on intervals of length L = T (g+)+T (g−)+s with s ≥ S1. Since s ≥ S1

can be chosen arbitrarily a stable solution of such type then exist for all interval
lengths L ≥ T (g+) +T (g−) +S1. Since T (g±) ≤ D1 +D2|g±| by Lemma 19 a
stable solution thus exist for all interval lengths L ≥ 2D1+D2(|g+|+|g−|)+S1.
Hence we obtain a stable solutions on an interval of length L for every pair
(g+, g−) with g−i , g

+
j ≤ 2N∗ such that |g+| + |g−| ≤ (L− S1 − 2D1)/D2. The
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number of such pairs to grows as (N∗)
(L−S1−2D1)/D2 , i.e., exponentially in L.

This proves Equation (4).

To prove Lemma 19 we first recall the Uniform Separation Property
from [22] (see also Lemma 9) which holds for all admissible types g:

Uniform Separation Property : There exists a δ̃ > 0 and an ε̃ >
0 such that for all admissible homotopy types g and all u ∈
M(g, Pν) with J [u] ≤ J(g, Pν) + δ̃ we have |u(x) − (−1)i| > ε̃
for all x ∈ Ii, i = 0, . . . , |g| + 1.

Although in [22] ε̃ depends on g and the Uniform Separation Property is only
used for so-called normalised functions, the constant ε can in fact be chosen
independent of g and in absence of normalisation.

The justification of the construction of the neighborhoods V needed in
Lemma 19 is quite technical. First define

Wε
def
= {u ∈M∗(g, Pν) | distR2

(
Γ(u|Icore), Pi

)
> ε for i = 1, 2},

where Icore = [maxA0,minA|g|] is the core interval. Next define

Uε,δ
def
= {u ∈Wε | J [u] < J(g, Pν) + δ}.

By Lemmas 7 and 9 and the set Wε is a neighborhood of CM∗(g, Pν) for ε
small enough and all g with gi ≤ 2N∗. By the Uniform Separation Property
we have U ε,δ ⊂M∗(g, Pν) for δ small enough.

In order to reduce to function on a finite interval, define

UT±

η
def
=
{
u ∈ H2

∗ (T
−, T+)

∣∣∣ distR2

(
Γ(u(T−)), Pν

)
< η,

distR2

(
Γ(u(T+)), Pν+|g|−1 mod 2

)
< η
}
,

where η is chosen so small that E0 (see Sect. 3) is well-defined on UT±

η . In

what follows η is fixed. The following lemma shows that Uε,δ ⊂ UT±

η for T±

large enough.

Lemma 20. There exist constants δ̃(η) > 0, T̃ (η) > 0 such that for any

δ < δ̃ and any g with gi ≤ 2N∗ for all i = 1, 2, . . . |g| (and η and ε small

enough) it holds that when u ∈ Uε,δ then u ∈ UT±
η , with T− = C−(g) − T̃

and T+ = C+(g) + T̃ , where the constants C±(g) can be chosen such that

C± < C̃|g| for some C̃ independent of g and η.

Proof. The functions u in Uε,δ are uniformly bounded in W 1,∞. Indeed,
a function u ∈ M∗(g, Pν) with large W 1,∞-norm can be easily modified to a
function ũ ∈ M∗(g, Pν) with J [ũ] < J [u]−C for some C > δ (the appropriate
estimates can be found for example in [22, Lemma 5.1]. This contradiction
shows that such u (with large W 1,∞-norm) are not in Uε,δ.

It follows from a test function argument (cf. [22, Sect. 4]) that there exists a
constant C > 0, independent of gi, such that J [u|`i

] < C, and thus J [u|Icore] ≤
C|g|. Since u ∈Wε, i.e., Γ(u) stays away from the equilibrium points (±1, 0),

this implies that |Icore| ≤ C̃|g| for some C̃ = C̃(ε̃) > 0.
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After taking care of the core interval, we need to estimate the tails. The
action of the tails is also uniformly bounded by a test function argument. For δ
smaller than δ̃ (defined in the Uniform Separation Property above) this implies
that the norm ‖u− (−1)ν‖H2(−∞,max(A0)) of the left tail is uniformly bounded
(and similarly for the right tail).

Taking T̃ = T̃ (η̃) large enough there exists a point x1 ∈ [max(A0) −
T̃ ,max(A0)] such that Γ(u(x1)) ∈ Bη̃(Pν). From, again, a test function ar-
gument and the local behaviour near the equilibrium it follows that for η̃ small
enough J [u|(−∞,x1)] ≤ c1η̃

2 + δ for some c1, c2 > 0. On the other hand, for
Γ(u) to go from ∂Bη/2(Pν) to ∂Bη(Pν), it costs at least an amount c(η) > 0
of action. Take η̃ < η/2 and moreover choose η̃ = η̃(η) and δ = δ(η) so small
that c1η̃

2 + δ < c(η). This ensures that Γ(u(x)) ∈ Bη(Pν) for all x ≤ x1 (and

x1 ∈ [max(A0)−T,max(A0)]). Taking T± = C̃|g|+ T̃ we obtain that u ∈ UT±
η .

�

Finally, we pick up the proof of Lemma 19. Let δ̃(η) and T± be as in
Lemma 20. We next define the neighborhoods V needed in Lemma 19:

Vε,δ(g, Pν)
def
= {u ∈ UT±

η |E0[u] ∈Wε and J ◦ E0[u] < J(g, Pν) + δ}.
This is a bounded neighborhood of CMT

∗ (g, P ). Moreover, the construction of
V is such that ∂V consists of three parts, i.e., any u ∈ ∂V satisfies one of the
following possibilities (see also Figure 8):

• J ◦ E0[u] = J(g, Pν) + δ;
• Γ(u(T±)) ∈ ∂Bη(Pν);
• E0[u] ∈ ∂Wε.

The first possibility is no problem, since we in fact want to show that inf∂V J ◦
E0 − infV J ◦ E0 is bounded away from zero (uniformly in g). The second

possibility is excluded by choosing δ ≤ δ̃(η
2
) so that u ∈ UT±

η/2 by Lemma 20.
The third possibility is dealt with in the next lemma, which states that for
such u we have J ◦ E0[u] ≥ J(g, Pν) + C̃0 for some C̃0 > 0 if δ and ε are

sufficiently small. Taking C0 = min{C̃0, δ} finishes the proof of Lemma 19.

The following lemma deals with the third of the three possibilities above.

Lemma 21. There exist constants C̃0 and ε0 such that for δ sufficiently
small and any g with gi ≤ 2N∗ for all i = 1, 2, . . . |g| it holds that when
u ∈ Vε0,δ and E0[u] ∈ ∂Wε0 , then J ◦ E0[u] ≥ J(g, Pν) + C̃0.

Proof. Assume by contradiction that such C̃0 and ε0 do not exist.
Thus, for all δ0 and ε0 there exist functions un ∈ V ε0,δ0(g

n, Pνn) and un ∈
∂Wε0(g

n, Pνn) such that J [un] − J(gn, Pνn) → 0 as n→ ∞. We will choose δ0
and ε0 later on.

By taking a subsequence we may take νn constant, say νn = 1, and we will
drop Pν from our notation. Let xn ∈ In

core be points such that

distR2

(
Γ(un(xn)), ((−1)kn, 0)

)
= ε0.
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E−1
0 (Wε)

UT±

η

Vε,δ

Jδ

Figure 8. The boundary of Vε,δ a priori consists of three parts,

since it is the intersection of UT±

η , the sub-level set Jδ and the

set E−1
0 (Wε). When δ is sufficiently small then the (appropriate

part of) the sub-level set is contained in UT±

η .

Again taking a subsequence, we may assume that kn is constant in the pre-
vious expression, to fix ideas say kn = 2 for all n (the other case, kn = 1, is
analogous).

We now want to locate the points xn, and for this purpose we define the
following sets (see also Figure 3 for the definition of `i and Ii):

Si
def
=

{
`i if i is odd,
Ii if i is even,

for i = 1 . . . |g| − 1,

and

S|g|
def
=

{
`|g| if |g| is odd,
[maxA|g|,minA|g|+1] if |g| is even.

These sets cover the core interval, i.e., Icore = ∪|g|
i=1Si. The points xn are in at

least one of these sets Si, say Sin . Taking a subsequence we may assume that
one of the following three cases holds:

(1) 1 < in < |g| for all n;
(2) in = 1 for all n;
(3) in = |g| for all n.

We will exclude each of these three possibilities by choosing ε0 and δ0 small
enough.

We start with Case 1. Taking a subsequence one may assume that in
either is odd for all n, or even for all n. In the latter case we easily reach a
contradiction by choosing ε0 < ε̃ and δ0 < δ̃, where ε̃ and δ̃ are defined in the
Uniform Separation Property above.

We now deal with the case that in is odd for all n, which is somewhat
more complicated. Taking a subsequence we can assume that gn

in is constant,
say gn

in = g̃ ∈ 2N. Shift all un so that xn = 0 for all n. We now take
another subsequence such that gn

in−1 and gn
in+1 are independent of n as well,

say gn
in−1 = g̃l and gn

in−1 = g̃r.
Let In

def
= [max(Ain−2),min(Ain+2)]. The functions un are uniformly

bounded in W 1,∞, as discussed in the proof of Lemma 20. By a test function
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argument it follows that J [un|In] is bounded, which in turn (since u ∈ W ε0)
implies that |In| and ‖un‖H2(In) are bounded.

Take a weak limit (along a subsequence) inH2
loc which converges to v weakly

in H2
loc and strongly in W 1,∞

loc . We have that distR2

(
Γ(v(0)), (1, 0)

)
= ε0. The

intervals In and Sin converge to intervals Iv and Sv respectively. It holds that
v(x) = 1 on ∂Iv, and v(x) = −1 on ∂Sv. Besides, v(x) has on Iv subsequently
g̃r crossings of −1, then g̃ crossings of +1 (in fact these crossings occur in Sv),
and finally g̃l crossings of −1.

Moreover, it is not too difficult to conclude that v|Iv is a minimizer of J in
the sense of [21, Definition 2.1], i.e., among function with the same boundary
conditions (i.e., matching to (v, v′)|∂Iv) and the same number of crossings of
±1, where the interval length is arbitrary. However, such minimizers satisfy
the result of Lemma 7 on the interval Sv, i.e., ‖v − 1‖W 1,∞(Sv) > c1e

−2c2N∗ for
some c1, c2 > 0. We now take ε0 < c1e

−2c2N∗ to reach a contradiction, i.e.
contradicting the fact that distR2

(
Γ(v(0)), (1, 0)

)
= ε0. Hence, the possibility

in Case 1 is excluded.
In Case 2 a very similar argument holds. Namely, arguing along the same

lines we now define In = [T−,min(A3)] (or [T−, T+] if |g| = 1). We again find
a weak limit v and v|Iv is a minimizer of J ◦E0 in the same sense as above, i.e.,
E0[v]|(−∞,max(Iv)) is a minimizer of J among function with the same boundary
conditions (instead of a left boundary conditions one takes v+1 ∈ H2) and the
same number of crossings of ±1. A contradiction is reached as in the previous
case.

Case 3 is completely analogous to Case 2, except that we now use Remark 8
to reach a contradiction.

Having reached a contradiction in all three cases, we have proved the
lemma. �

6. Different boundary conditions

Theorem 2 states that Equation (1) has an arbitrary number of stable
equilibria provided that the interval length L is large enough. In the previous
section we proved this in the case of the Neumann boundary conditions. The
result remains unchanged for various other types of boundary conditions.

In the case of the Neumann boundary conditions the stable solutions are
constructed using minimizers defined on the half-spaces R

+ and R
− that satisfy

the Neumann boundary conditions at x = 0. These minimizers are derived
from the homoclinic minimizers found in [22].

Now consider Equation (1) with the so-called Navier boundary conditions:
u(t, 0) = u(t, L) = 0, uxx(t, 0) = uxx(t, L) = 0. In order to construct stable
equilibria we need to find minimizers on the half-spaces R

+ and R
− which

satisfy the boundary conditions u(0) = uxx(0) = 0. If the potential F is
even such minimizers can be derived from the results in [22]. Indeed, consider
heteroclinic minimizers with homotopy type (gm, .., g1, g1, .., gm). From [21,
22] it then follows that that such minimizers are odd with respect to a unique
point of odd symmetry. Due to translation invariance we can choose this point
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to be x = 0. The restriction of these minimizers to the intervals R
+ and R

−

now satisfies the boundary conditions u(0) = uxx(0) = 0. From this point on
the construction of stable equilibria is identical to the construction carried out
in the previous section. The statement of Theorem 2 for the case of the Navier
boundary conditions remains unchanged. Although this construction can only
be carried out when F is even, the result also holds when F is not even, as we
will see momentarily.

Another set of boundary conditions that can be considered are Dirichlet
boundary conditions. General Dirichlet boundary conditions for Equation (1)
are (u(t, 0), ux(t, 0)) = ȳ = (y1, y2) and (u(t, L), ux(t, L)) = z̄ = (z1, z2). The
minimizers on the half-spaces R

+ and R
− needed for the construction of stable

equilibria cannot be found via the results in [22]. To obtain such minimizers
on for example R

+, we minimize JR+ [u] over functions u for which the induced
curve Γ(u) starts at ȳ and terminates at P1 (or P2), and which has a cer-
tain homotopy type g. The homotopy g is defined as before by counting the
number of consecutive crossings of the lines u = −1 and u = 1 excluding the
intersections in the tail. This leads to the homotopy vector g = (g1, .., gm),
with g1 ∈ N and gi ∈ 2N for i = 2, . . . , m. The function classes of a given
homotopy g and initial point ȳ are denoted by MR±(g, ȳ). The potential F
is not assumed to be even here. As in [22] (see also Theorem 5) there exists
a universal constant N0(ȳ) such that, for homotopy types g with gi ≥ N0,
the infima of JR± over MR±(g, ȳ) are attained. These minimizers are again
the building blocks for constructing stable solutions to the Dirichlet problem.
Consequently the statement of Theorem 2 also holds for the Dirichlet boundary
conditions.

Let us now come back to the Navier boundary conditions when the poten-
tial F is not even. In this case the minimizers on the half-spaces R

±, needed
for the construction of stable solutions, are found in function classes in the
space {u ∈ H2(R+) | u(0) = 0}. From the variational principle minimizers
satisfy the second boundary condition uxx(0) = 0.

The various boundary conditions discussed above are not the only possibil-
ities. For example, one can also treat the non-homogeneous Neumann and the
non-homogeneous Navier boundary conditions. Furthermore, one can consider
various types of mixed boundary conditions. The bottom line is that as long
as one considers boundary conditions for which Equation (5) has a variational
principle, then the method in this paper applies and a variant of Theorem 2
can be obtained.

7. The semi-conjugacy

We commence with the study of the attractor of (1) with F (u) = 1
4
(u2−1)2

and Neumann boundary conditions for γ
β2 ≤ 1

8
, i.e.

(7){
ut = −γuxxxx + βuxx + u− u3 for x ∈ (0, L), t > 0
ux(t, 0) = ux(t, L) = uxxx(t, 0) = uxxx(t, L) = 0 for all t > 0.
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1

0

−1

LL0 2L0 3L0

u1 u2 u3

−u1 −u2 −u3

Figure 9. A sketch of the bifurcation diagram for γ ∈ [0, 1
8
].

The shape of the bifurcating solutions ±u1, ±u2 and ±u3 is
indicated.

Without loss of generality we put β = 1 throughout this section. We first
consider the set of stationary solutions. Clearly all stationary solutions can
be extended to the real line by reflection in the points x = 0 and x = L, and
therefore correspond to bounded solutions of

(8) −γuxxxx + uxx + u− u3 = 0.

Solutions of (8) have a constant of integration, the energy :

(9) E [u]
def
= γuxxxux − γ

2
|uxx|2 − 1

2
|ux|2 + 1

4
(u2 − 1)2 = E,

where E ∈ R is constant along solutions of (8).
It was found in [?, 4] that for γ ∈ (0, 1

8
] the bounded solutions of (8) are in 1-

1 correspondence with the bounded solutions of the second order equation (γ =
0). To be precise, for γ ∈ (0, 1

8
] the only bounded solutions of (8) are the three

homogeneous solutions u ≡ 0 and u ≡ ±1; two monotone heteroclinic solutions
connecting u = ±1; and a family of periodic solutions which are symmetric
with respect to their extrema and antisymmetric with respect to their zeros.
These periodic solutions form a continuous family and can be parametrised

either by their energy E ∈ (0, 1
4
), or by their period ` ∈ (0, 2π

√
2γ√

1+4γ−1
).

Existence of these solutions can be proved either via a shooting method where
the energy is used as a parameter [30], via a minimization method where the
period is used as a parameter [35], or via continuation [4]. The bifurcation
diagram for the stationary solutions of (7) is given by Figure 9. For small L
the only bounded solutions are the three homogeneous states. At L = L0

def
=

π
√

2γ√
1+4γ−1

two non-uniform stationary solutions bifurcate. These solutions

±u1(x;L) are monotone and have exactly one zero. The bifurcation is a generic
supercritical pitchfork bifurcation (see e.g. [19, Sect. 6.2])). More generally,
the same type of bifurcation occurs at L = nL0 for all n ≥ 2. The bifurcating
stationary solutions are just multiples of the primary bifurcating branch.
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Figure 10. The attractor for γ = 0 for 0 < L ≤ π on the left;
for π < L ≤ 2π in the middle; and for 2π < L ≤ 3π on the right.

For γ = 0 the attractor of problem (1) with Neumann boundary has been
extensively studied (see [1, 10, 19]). For 0 < L < π the attractor consists
of the three uniform states and their connecting orbits. For π < L < 2π the
attractor contains five equilibrium points, namely the three uniform states and
two monotone non-uniform states ±u1. For 2π < L ≤ 3π the attractor is three-
dimensional and consists of the equilibrium points u ≡ 0, u ≡ ±1, ±u1 and
±u2, and their connecting orbits. The situation is depicted in Figure 10. In
general, for nπ < L < (n+1)π the attractor contains 2n+3 equilibrium points.
The flow on the attractor can be described completely. In particular, for all L >
0 the flow φ(L, 0, 1) on the attractor is conjugated to simple ODE (see [27]).

We now turn our attention back to the fourth order equation for γ ∈
(0, 1

8
]. Theorem 3 states that there exists a semi-conjugacy between the flow

on the attractor of the fourth order equation and the corresponding flow for
the second order equation with the same number of stationary solutions. This
follows immediately from [27, Theorems 1.2 & 2.1], since our problem obeys
the conditions required for the analysis presented there:

• The semi-flows φ(L, γ, 1) have compact global attractors.
• The equilibrium solutions are given by the bifurcation diagram of

Figure 9. The zero solution undergoes generic supercritical pitchfork
bifurcations and the equilibria u ≡ ±1 are stable.

• There exists a Lyapunov functional JL[u] (given by (3)).

We remark that the theorem implies that the dynamics on the attractor
are at least those of the second order equation. When we denote the solution
on the k-th bifurcation branch by uk then there exists a connecting orbit
going from uk to ul if and only if k < l (hence JL(uk) < JL(ul) for k < l,
which can also be derived directly from [35]). The semi-conjugacy does not
completely determine the flow on the attractor (as a conjugacy would), since
it is unknown whether the problem satisfies the Morse-Smale property. The
following lemma shows that away from the bifurcation points the equilibrium
points are hyperbolic. Thus, the information which is lacking in order be
able to check the Morse-Smale property is a proof of the transversality of the
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intersection between unstable and stable manifolds of these equilibria (for the
second order equation this follows from the lap-number theorem [1, 20, 26]).

Lemma 22. The nontrivial equilibrium solutions are hyperbolic.

The proof of this lemma can be found in [5], Chap. 4.
Again, the results in this section hold for a more general class of poten-

tials F (u). Analogous results also hold for the Navier boundary conditions
(u(t, 0) = uxx(t, 0) = 0 and u(t, L) = uxx(t, L) = 0), and for the mixed case of
Navier boundary conditions on one boundary and Neumann boundary condi-
tions on the other boundary.

8. The bifurcation

In this section we analyse the bifurcation that occurs at γ
β2 = 1

8
. In par-

ticular, for γ
β2 slightly larger than 1

8
we will completely describe the set of

stationary solutions for all L > 0. Without loss of generality we set β = 1:

−γuxxxx + uxx + u− u3 = 0 for x ∈ (0, L)(10a)

ux(0) = uxxx(0) = ux(L) = uxxx(L) = 0(10b)

We stress that the bifurcation analysis in the present section is the only part
of this paper where we need transversality information.

8.1. The finite dimensional reduction. As discussed in Sect. 7 for
γ = 1

8
the bifurcation diagram is as depicted in Figure 9. The results of [4],

which are used in Sect. 7, can also be applied to γ > 1
8
. One obtains the

following: the only solutions of (10a) with ‖u‖∞ ≤ 4γ+1
12γ

(any γ > 0) are u ≡ 0

and a one parameter family of periodic solutions, symmetric with respect to
their extrema and antisymmetric with respect to their zeros. This family of
periodic solutions can be parametrised by the energy or by the period. Denote
this continuous family, including u ≡ 0, by Fγ. These solutions of (10) form
the skeleton of the bifurcation diagram.

The additional solutions that appear in the bifurcation diagram for γ
slightly larger than 1

8
are all in a small neighborhood of the heteroclinic cycle.

We denote the unique monotonically increasing heteroclinic solutions at γ = 1
8

by u0, and we divide out the translational invariance by fixing u0(0) = 0. Let
the heteroclinic cycle in phase space be

∆ = {(±1, 0, 0, 0)} ∪ {±(u0(x), u
′
0(x), u

′′
0(x), u

′′′
0 (x)) | x ∈ R},

and define Bε(∆) to be the ε-neighborhood of ∆ in R
4.

Lemma 23. There exists a constant ε0 > 0 such that for all 0 < ε < ε0
there exists a δ0 = δ0(ε) > 0 such that for all 1

8
< γ < 1

8
+ δ0 any bounded

solution of (10a) is either an element of Fγ or its orbit is entirely contained
in Bε(∆).

Proof. Suppose by contradiction that the assertion does not hold. Then
there exists an ε > 0 and sequence γn ↓ 1

8
with corresponding solutions un

of (10a), such that un /∈ Fγn and (un, u
′
n, u

′′
n, u

′′′
n )(xn) /∈ Bε(∆) for some xn ∈ R.
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After translation we may assume that xn = 0 for all n. Since bounded
solutions of (10a) are uniformly bounded in W 3,∞ there exists a subsequence,
again denoted by un, which converges in C3

loc on compact sets to some limit
function u. This function u is a bounded solution of (10a) for γ = 1

8
. Since

(u, u′, u′′, u′′′)(0) /∈ Bε(∆) we have that u is one of the solutions in F 1

8

(this

follows from the complete classification of bounded solutions at γ = 1
8
). There-

fore E [u] ∈ (0, 1
4
] and ‖u‖∞ < 1. In particular ‖u‖∞ < 4γn+1

12γn
for n sufficiently

large. We now assert that ‖un‖∞ → ‖u‖∞, which implies that un ∈ Fγn for
n sufficiently large, a contradiction. Indeed, we show that un → u in phase
space, i.e. orbital convergence, which implies that ‖un‖∞ → ‖u‖∞. First notice
that E [un] → E [u], since this holds for x = 0. Let Bε(u) be the ε-neighborhood
of {(u(x), u′(x), u′′(x), u′′′(x)) | x ∈ R}. Suppose now, by contradiction, that
there exists a constant η > 0 such that distR4

(
(un, u

′
n, u

′′
n, u

′′′
n )(xn), Bε(u)

)
> η

for some points xn ∈ R. As before, taking a subsequence, we obtain that
un(x+xn) converges in C3 on compact sets to some limit function v. Again, v is
a bounded solution of (10a) for γ = 1

8
and distR4

(
(v, v′, v′′, v′′′)(0), Bε(u)

)
≥ η.

On the other hand it follows that E [v] = limn→∞ E [un] = E [u]. Since there is
only one bounded solution of (10a) with γ = 1

8
in each energy level E ∈ (0, 1

4
]

we conclude that u ≡ v modulo translation, a contradiction. �

For γ = 1
8

the heteroclinic orbit is the unique, transversal intersection of

W u(−1) and W s(+1). For γ slightly larger than 1
8

this transversal intersection
persists. This enables us to glue the two heteroclinics (going from −1 to +1
and back) together to form multitransition solutions. In particular we can
find, for γ sufficiently close to 1

8
, all solutions of (10) in a neighborhood of the

heteroclinic cycle. This method has already been successfully applied in [23]
to show that there is a countable infinity of heteroclinic solutions. Besides,
in [36] the stability of multiple-pulse solutions converging to a saddle-focus
was studied via a reduction to a finite-dimensional center manifold (when the
pulses are far apart). Here we will use the transversality to find all solutions
of (10) and their index.

Let u0 be the unique monotonically increasing heteroclinic solution of (10a)
at γ = 1

8
. The transversality implies that d2J [u0] is an invertible operator on

H2
c (R) = {u ∈ H2(R) | u(0) = 0}, where we have made the usual identification

(H2)∗ = H2. Moreover, since u0 is a non-degenerate minimum of J one has
(d2J [u0]v, v) ≥ C0‖v‖2 for some C0 > 0 and all v ∈ H2

c (R). As in Sect. 3
we consider the restriction of u0 to a large finite interval [−T, T ]. The tails
can be recovered by an application of the extension map E0 defined in (6).
Note that E0 also depends on γ. Taking T large enough this extension map
Eγ

0 [u] is well-defined in a small neighborhood of u0 in H2
c (−T, T ) for γ close

to 1
8
. A perturbation argument shows that there exists a C1 > 0 such that

(d2(J ◦ Eγ
0 )[u]v, v) ≥ C1‖v‖2 for all u in a small η-neighborhood Uη(u0) ⊂

H2
c (−T, T ) of u0, all v ∈ H2

c (−T, T ) and for all γ sufficiently close to 1
8

and T
sufficiently large.
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To glue transitions from −1 to +1 and vice versa together we introduce sev-
eral gluing functions, as in Sect. 4. Write ~u for the pair (u, u′). For ȳ = (y1, y2)
and z̄ = (z1, z2) close to (±1, 0) and for large s we define gl(x, ȳ, s), gr(x, ȳ, s)
and g(x, ȳ, z̄, s) as the unique local solutions of (10a) near the equilibrium
points u = ±1, such that

g′l(0, ȳ, s) = 0, g′′′l (0, ȳ, s) = 0 and ~gl(s, ȳ, s) = ȳ;

~gr(0, ȳ, s) = ȳ and g′r(s, ȳ, s) = 0, g′′′r (s, z̄, s) = 0;

~g(0, ȳ, z̄, s) = ȳ and ~g(s, ȳ, z̄, s) = z̄.

Here we have implicitly assumed that it will be clear from the context if these
solutions are close to +1 or close to −1. The functions g are the unique solu-
tions of the boundary value problem which lie entirely in a small neighborhood
of the equilibrium point in phase space. On the other hand, in function space
they are the unique global minimizers of the corresponding variational prob-
lem, and the unique critical points a neighborhood of ±1 in H2. By symmetry
one has gl(x, (y1, y2), s) = g(x + s, (y1,−y2), (y1, y2), 2s), and similarly for gr.
Note that the solutions g also depend on γ.

We now glue n transitions together. Let Sk = (2k + 1)T +
∑k

i=0 si, and
define for n ≥ 1 the gluing maps Eγ

n = Eγ
n[u1, . . . , un; s0, . . . , sn] as

Eγ
n =





gl

(
t, ~u0(−T ), s0

)
for t ∈ [0, S0 − T ]

u1(t− S0) for t ∈ [S0 − T, S0 + T ]
g
(
t− S0 − T, ~u1(T ), ~u2(−T ), s1

)
for t ∈ [S0 + T, S1 − T ]

u2(t− S1) for t ∈ [S1 − T, S1 + T ]
...
g
(
t− Sn−2 − T, ~un−1(T ), ~un(−T ), sn−1

)
for t ∈ [Sn−2 + T, Sn−1 − T ]

un(t− Sn−1) for t ∈ [Sn−1 − T, Sn−1 + T ]
gr

(
t− Sn−1 + T, ~un(T ), sn

)
for t ∈ [Sn−1 + T, Sn − T ].

This gluing function is well-defined for (u1, . . . , un) in a product neighbor-
hood Vη = Uη(u0) × Uη(−u0) × · · · × Uη((−1)n−1u0) in

(
H2

c (−T, T )
)n

, and for
s0, . . . , sn large enough. Note that Eγ

1 [u] → Eγ
0 [u] as s0, s1 → ∞. Similarly

Eγ
2 [u1, u2] tends to a concatenation of Eγ

0 [u1] and Eγ
0 [u2] as s0, s1, s2 → ∞,

etcetera.
Introduce the notation u = (u1, . . . , un) and s = (s0, . . . , sn). For fixed s

we can find the unique critical point of JL ◦ Eγ
n in the product neighborhood

Vη. This is easily seen by using the following fixed point argument. Consider
the iteration (with 1n the unit matrix in R

n)

uk+1 = uk −
(
d2(J ◦ Eγ

0 )[u0] 1n

)−1
du(JL ◦ Eγ

n)[uk; s].

This is a contraction on Vη for η sufficiently small (say 0 < η ≤ η0) and
|γ − 1

8
| < δ1(η) and min(s)

def
= min0≤i≤n si > σ(η). Here δ1(η) and σ(η) are

positive constants which, as a function of η, are, respectively, non-decreasing
and non-increasing. For an explicit calculation of the derivative du(JL ◦ Eγ

n)
we refer to [23]. The contraction thus has a unique fixed point z(s) which
depends smoothly on s for min(s) > σ(η). Since (d2(J ◦Eγ

0 )[u]v, v) ≥ C1‖v‖2
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it follows that z(s) is the minimizer of JL◦Eγ
n on Vη. We substitute this vector

into the action and obtain

Kn(s)
def
= JL ◦ Eγ

n [z(s); s].

The variational problem has thus been reduced to a finite dimensional setting.
Solutions of (10) correspond to critical points of Kn(s) under the constraint∑n

i=0 si = L− 2nT .

Lemma 24. Let η ≤ η0, let γ ∈ (1
8
, 1

8
+ δ1(η)) and let s with min(s) > σ(η)

be a critical point of Kn under the constraint
∑n

i=0 si = L − 2nT . Then
Eγ

n [z(s); s] is a solution of (10). The index of the critical point s (under
the constraint) is equal to the index of the solution Eγ

n[z(s); s].

Proof. It is immediately clear that u = Eγ
n [z(s), s] is a piecewise solu-

tion of the differential equation. We assert that these pieces connect nicely
to a solution on the whole interval. Let v be a function in H2

N in a small
neighborhood of u. Then v has precisely n zeros, say at x1, . . . , xn. Let
vi(x + xi) = v(x)

∣∣
[xi−T,xi+T ]

and t0 = x1 − T and ti = xi+1 − xi − 2T ,

1 ≤ i ≤ n − 1 and tn = L − xn − T . Then v can be written as
v = Eγ

n [v1, . . . , vn; t0, . . . , tn]+
∑n

i=0 φi with φi ∈ H2
0 (τi, τI +ti) for 1 ≤ i ≤ n−1

where τi = 2iT +
∑i−1

k=0 tk, and φ0 ∈ H2
n0(0, t0) and φn ∈ H2

0n(L− tn, L). Here
H2

n0(0, t0) = {u ∈ H2(0, t0) | u′(0) = u(t0) = u′(t0) = 0}. This shows that all
variations in H2

N are covered by the decomposition of the variational method,
hence u is a solution on the whole interval [0, L]. The statement about the
index follows from the fact that both g(·, ȳ, z̄, si) and z(s) are non-degenerate
minimizers, thus the unstable directions only come from variations in si. �

The previous lemma describes all solutions in a small neighborhood Bε(∆)
of the heteroclinic cycle.

Lemma 25. Let η ≤ η0. There exists a constants ε1(η) such that when u
is a solution of (10) for γ ∈ (1

8
, 1

8
+ δ1(η)) with u entirely contained in Bε1(∆)

then for some n ≥ 1 it holds that u = En(z(s, s)), where s is a critical point
of Kn under the constraint

∑n
i=0 si = L− 2nT and min(s) > σ(η).

Proof. Let u be a solution of (10) which lies entirely in Bε(∆). Since
u′(0) 6= 0, it follows that for ε sufficiently small u has a finite number of zeros,
say at x1, . . . xn. Let ui(x + xi) = u(x)

∣∣
[xi−T,xi+T ]

. and ψi(x + xi + T ) =

u(x)
∣∣
[τi,τi+si]

, where s0 = x1 − T and si = xi+1 − xi − 2T , 1 ≤ i ≤ n − 1 and

sn = L − xn − T , and τi = 2kT +
∑i−1

k=0 sk. The orbit of u passes close to
the equilibrium points ±1. If ε is small enough then the distance between two
zeros is larger than 2T + σ(η), hence si > σ(η).

Firstly, we infer that ψi = g(·, ~ui(T ), ~ui+1(−T ), si) since ψi is entirely con-
tained in some small neighborhood of the equilibrium point ±1, and g is the
unique local solution of the corresponding boundary value problem. Secondly,
for ε sufficiently small ui ∈ Uη(u0). Since z are the unique critical points in Vη

we have that u = z(s) and thus u = Eγ
n[z(s); s]. Finally, since u is a critical

point in H2
N(0, L) it follows that s must be a critical point of Kn under the
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constraint
∑n

i=0 si = L−2nT . Hence u is obtained from a critical point of Kn.
�

It follows from the above lemma that ε1(η) can be chosen to be a non-
decreasing function of η. Hence for ε < ε1(η0) there exists an η1(ε) < η0

such that ε1(η1(ε)) < ε. Combining with Lemmas 23–25 implies the following
theorem:

Theorem 26. Let ε < ε2
def
= min{ε0, ε(η0)}, and let δ2(ε)

def
=

min{δ0(ε), δ1(η1(ε))}. When u is a solution of (10) for γ ∈ (1
8
, 1

8
+ δ2(ε)) and

u 6∈ Fγ, then u is entirely contained in Bε(∆) and u corresponds to a critical
point s of K with min(s) > σ(η1(ε)).

For γ ≤ 1
8

the functions Kn can also be defined, but its only critical points
are the symmetric sequences (s0, 2s0, 2s0, . . . , 2s0, s0), corresponding to the
simple periodic solutions in Fγ. For γ slightly larger than 1

8
Theorem 26

implies that the additional solutions appearing in the bifurcation are com-
pletely determined by the bifurcation function K(s). Part of the bifurcation
diagram is still formed by the solutions in Fγ. The solutions corresponding to
critical points of Kn will fit exactly onto those in Fγ, and they form all of the
remainder of the bifurcation diagram.

In the following we fix ε < ε2, write σ = σ(η1(ε)), and assume that 0 <
γ − 1

8
< δ2(ε).

8.2. Analysis of the bifurcation function. What remains is to deter-
mine the critical points of the bifurcation function Kn for all n ≥ 1. For easy
notation we denote the n + 1 gluing functions by g0, g1, . . . , gn−1, gn. Recall
that, by symmetry, one has gl(x, (y1, y2), s) = g(x+s, (y1,−y2), (y1, y2), 2s) and
similarly for gr, so that all gi can be dealt with on the same footing (taking
care to correctly transform the variables). In the following we will only discuss
those gi which live in a neighborhood of +1, the other case being completely
analogous. Calculating the partial derivatives one obtains that

∂Kn(s)

∂si
= E [gi(·, z(s), si)],

where E is the energy, see (9). This follows from an explicit calculation, see
e.g. [23]. To investigate the partial derivatives we use the following character-
isation due to Buffuni and Séré [9]. When γ > 1

8
then the equilibria ±1 are

saddle-foci. Shift the equilibrium point to the origin and choose coordinates
ξ = (ξ1, ξ2, ξ3, ξ4) such that the local stable and unstable manifolds are given by
W s

loc = {(ξ1, ξ2, 0, 0) | ξ1, ξ2 small} and W u
loc = {(0, 0, ξ3, ξ4) | ξ3, ξ4 small}. De-

note ξs = (ξ1, ξ2) and ξu = (ξ3, ξ4). In a small neighborhood B4(δ) = {|ξs| <
δ, |ξu| < δ} of the origin. the flow is given by

(11) ξ′ =

( −λ −ω 0 0
ω −λ 0 0
0 0 λ −ω
0 0 ω λ

)
ξ + f(ξ),

where f(0, 0) = 0, f ′(0, 0) = 0, fu(ξs, 0) = 0 and fs(0, ξu) = 0. The parameters
λ > 0 and ω > 0 are the real and imaginary part of the eigenvalues of the
linearised problem respectively. An important observation, to which we will
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come back later, is that λ→ 2 and ω → 0 as γ ↓ 1
8
. Introduce polar coordinates

(rs, θs) and (ru, θu): x1 = rs cos θs, x2 = rs sin θs, and x3 = ru cos θu, x4 =
ru sin θu. Write the gluing function gi(x, z(s), si) in these polar coordinates
coordinates: (rs, θs, ru, θu)(x; s). One obtains the following characterisation [9,
Lemma A.2] of the energy

Eg[si; s]
def
= E [gi(·, z(s), si] =

∂Kn(s)

∂si

=
√
λ2 + ω2 |ρ(si; s)|2 cos(ϕ(si; s)) +O(|ρ(si; s)|3),(12a)

where

ρ(si; s) = e−λsi/2
√
rs(0; s)ru(si; s) (1 +O(δ)),(12b)

ϕ(si; s) = ωsi + θs(0; s) − θu(si; s) − µ+O(δ).(12c)

Here µ is a constant which tends to 0 as γ → 1
8
. The terms O(δ) and

O(|ρ(si; s)|3) are due to the fact that near the equilibrium point the flow is in
fact non-linear, i.e., they represent the higher order terms in (11).

We first analyse the values of rs(0; s), θs(0; s), ru(si; s) and θu(si; s), which
will turn out to depend only weakly on si, i.e., they are almost constant.

One should keep in mind that for γ close to 1
8

we have ω ≈ 0 and λ ≈ 2.

However, the linearisation for γ = 1
8

is not given by (11) with ω = 0. This is
caused by the change of coordinates necessary to convert to the above form.
For γ = 1

8
one can choose coordinates such that for ζ ∈ B4(δ̃)

ζ ′ =

( −λ −1 0 0
0 −λ 0 0
0 0 λ −1
0 0 0 λ

)
ζ + f(ζ).

Of course we choose T so large that (u0, u
′
0, u

′′
0, u

′′′
0 )(T ) ∈ B4(δ̃) and that the

gluing functions gi are entirely contained in B4(δ̃). Before making the con-
nection between the ζ- and ξ-coordinates, we briefly look at the picture in
ζ-coordinates. All orbits in W s, and in particular the heteroclinic solution u0,
tend to the origin along the ζ2 axis. In fact, in ζ-coordinates u0 behaves as
ζ1(x)/ζ2(x) = O(1/x) for x → ∞. For γ = 1

8
+ δγ , 0 < δγ � 1 the eigen-

values are ±2(1 ± i
√

2δγ − 3δγ + O(δ
3/2
γ )). And after an appropriate scaling

in x we may assume that the real part ±λ of the eigenvalues is constant, i.e.,
the eigenvalues are of the form ±2 ± iω and we may take ω (or ω2) as the
parameter instead of γ. The choice of coordinates is such that W s is always
given by {ζ3 = ζ4 = 0} = {|ζu| = 0}. As opposed to the ξ-coordinates, the
ζ-coordinates are chosen to depend smoothly on ω for ω ↓ 0. The flow becomes

ζ ′ =

( −2 −1+O(ω) 0 0

ω2+O(ω3) −2 0 0
0 0 2 −1+O(ω)

0 0 ω2+O(ω3) 2

)
ζ + f(ζ).

The coordinate change to get from ζ to ξ is of the form ξ1 = ωζ1 +O(ω2) and

ξ2 = ζ2. Since θ = arctan ξ1
ξ2

= arctan ωζ1+O(ω2)
ζ2

it follows that θs(0) = O(ω/T )

or θs(0) = π + O(ω/T ). To determine which of these to possibilities occurs,
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we look at situation at the bifurcation point. For γ = 1
8

the only solutions

of (10) are the periodic solutions in F 1

8

, and they have energy E ∈ (0, 1
4
], see

Sect. 7. For large periods these solutions can also be described by the present
variational gluing method. Since these solutions are symmetric it corresponds
to a critical point of the form s∗ = (s0, 2s0, . . . , 2s0, s0) for some s0 > σ, and
z(s) = (u1,−u1, u1, . . . ) for some u1 ∈ H2

c . Hence Eg[2s0, s∗] ∈ (0, 1
4
]. By

continuity, for small ω and s > σ not too large the energy Eg[2s0; s∗] must be
positive. Therefore the first of the above possibilities holds: θs(0; s) = O(ω/T ),
and similarly θu(si; s) = O(ω/T ).

Choosing ε small in Theorem 26, it follows that δ2 and η1 are arbitrary small
and σ is arbitrary large, it follows that we may restrict our attention to gluing
functions gi such that the point (gi, g

′
i, g

′′
i , g

′′′
i )(0, z(s), si) is arbitrary close to

(u0, u
′
0, u

′′
0, u

′′′
0 )(T ). Let δ∗ = distR4

(
(u0, u

′
0, u

′′
0, u

′′′
0 )(T ), (1, 0, 0, 0)

)
. One thus

has, for some constant 0 < ε2 � δ∗, that ||ζs| − δ∗| < ε2, and |ζu| < ε2. Hence
rs(0) = δ∗ +O(ε2) and similarly ru(s) = δ∗ +O(ε2).

Having obtained estimates on rs(0; s), θs(0; s), ru(si; s) and θu(si; s), we are
ready to investigate the function Eg[si; s]. We will first concentrate on solutions
with one transition. We thus look for critical points of the function K1(s0, s1)
under the constraint s0 +s1 = L−2T , i.e., zeros of Eg[s0; s]−Eg[L−2T −s0; s]
with min(s) > σ, where s = (s0, L − 2T − s0). Since in the present case one
has to think of the gluing functions gl and gr as half of an ordinary gluing
function g, we define s = 2s0 and G(s)

def
= Eg[

s
2
; ( s

2
, L0−s

2
)] − Eg[

L0−s
2

; ( s
2
, L0−s

2
)],

where L0 = 2(L− 2T ).
For L0 not too large and ω small, there is only one solution of the equation

G(s) = 0, since this solution necessarily belongs to Fγ, hence s = L0/2.
It is immediately clear that for any L0 > 2σ there is a symmetric solution
corresponding to s = L0/2. More generally, looking for zeros of G(s) we
consider the good approximation

G(s) ≈ G0(s)
def
=

√
λ2 + ω2δ2

∗

(
e−λs cosωs− e−λ(L0−s) cosω(L0 − s)

)
.

The scaling s̃ = ωs is useful as well, effectively setting ω = 1 and λ → ∞ as
γ ↓ 1

8
.

It follows that for small ω zeros of G0(s) only occur in the neighborhood

of the lines (in the (s, L0)-plane) s = L0

2
, and s = (2k−1)π

2ω
, s < L0

2
for k ∈ N,

and s = L0 − (2k+1)π
2ω

, s > L0

2
for k ∈ N, see Figure 11. The second and third

case are related by symmetry. Next we consider the derivative of G0 in the
neighborhood of these lines:

G′
0(s)√

λ2 + ω2 δ2
∗

= −λe−λs cosωs− ωe−λs sinωs

− λe−λ(L0−s) cosω(L0 − s) − ωe−λ(L0−s) sinω(L0 − s).

Firstly, in a neighborhood of the line s = L0

2
it follows that G′

0(s) 6= 0 if (s, L0)

is away from the points s = L0

2
= (2k−1)π

2ω
, because there the first and third
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s0

s1

0 π
4ω

π
2ω

3π
4ω

π
4ω

π
2ω

3π
4ω

L0

s

0 π
ω

2π
ω

3π
ω

π
ω

2π
ω

3π
ω

Figure 11. Critical points of K1 can only occur in the grey
regions, which are shown both in the (L0, s)-plane and in the
(s0, s1)-plane.

terms in G′
0(s) are dominant. This means that for fixed L0 6≈ (2k−1)π

ω
the only

zero of G0(s) in a neighborhood of s = L0

2
is at s = s̄ = L0.

Secondly, in a neighborhood of the line s = (2k−1)π
2ω

, s < L0

2
it follows that

G′
0(s) 6= 0 if (s, L0) is away from the point s = L0

2
= (2k−1)π

2ω
, because there

the second term in G′
0(s) is dominant. This implies that for fixed L0 >

(2k−1)π
ω

there is exactly one zero of G0(s) in a neighborhood of s = (2k−1)π
2ω

.

We conclude that, away from the special points s = L0

2
= (2k−1)π

2ω
the zeros

of G0(s) are transverse and thus depend smoothly on L0. On the line s = L0

2

there are bifurcation points s∗ near s = (2k−1)π
2ω

These points are characterised
by the fact that G′

0(s∗) = 0. Interpreting G0 as a function of s and the
parameter L0 one calculates that at these points (s = s∗, L0 = 2s∗) a forward
pitchfork bifurcation takes place:

(13)
∂G0

∂L0
= 0,

∂2G0

∂s2
= 0,

∂2G0

∂L0∂s
· ∂

3G0

∂s3
< 0.

Next we have to consider the difference between G(s) and G0(s). We have
already obtained estimates on rs(0; s), θs(0; s), ru(si; s) and θu(si; s), but we
also need estimates on their derivative with respect to si. For this purpose we

first look at ∂gi(0,z(s),si)
∂si

. Let us consider ḡ(x; si) = gi(x, ȳ, z̄, si) − 1, which is
the solution of

{
−γḡ′′′′ + ḡ′′ − 2ḡ = 3ḡ2 + ḡ3

ḡ(0) = y1, ḡ
′(0) = y2, ḡ(si) = z1, ḡ

′(si) = z2.
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Scaling x̃ = x/si we get for g̃(x̃) = g(x):
{ −γ 1

s4
i

g̃′′′′ + 1
s2
i

g̃′′ − 2g̃ = 3g̃2 + g̃3

g̃(0) = y1, g̃
′(0) = y2si, g̃(1) = z1, g̃

′(1) = z2si.

For h̃(x̃) = ∂g̃
∂si

we obtain:
{

−γ 1
s4
i

h̃′′′′ + 1
s2
i

h̃′′ − 2h̃ = 6h̃g̃ + 3h̃g̃2 + 4γ
s5
i

g̃′′′′ − 2
s3
i

g̃′′

h̃(0) = 0, h̃′(0) = y2, h̃(1) = 0, h̃′(1) = z2.

And finally for h(x) = h̃(x̃) = ∂ḡ
∂si

= ∂gi

∂si
one gets:

{
−γh′′′′ + h′′ − 2h = 6hḡ + 3hḡ2 + 4γ

si
ḡ′′′′ − 2

si
ḡ′′

h(0) = 0, h′(0) = y2/si, h(si) = 0, h′(si) = z2/si.

Since |ȳ| < δ and |z̄| < δ, we conclude that ‖h‖W 3,∞(0,si) = O(δ/si). By
differentiating the identity d(J ◦ Eγ

n)[z(s); s] = 0, one finds that

d2
u(J ◦ Eγ

n)
∂z(s)

∂si

= − ∂

∂si

du(J ◦ Eγ
n) = O(‖∂gi

∂si
‖W 3,∞(0,si)).

Here the last equality follows from an explicit calculation of du(J ◦Eγ
n). Com-

bining this with the above estimate on ‖∂gi

∂si
‖W 3,∞(0,si), we obtain that ∂z(s)

∂si
=

O(δ/si), so that ∂rs(0;s)
∂si

= O(δ/si),
∂ru(si;s)

∂si
= O(δ/si), and ∂θs(0;s)

∂si
= O(ω/si),

∂θu(si;s)
∂si

= O(ω/si).
From the previous analysis it is clear that we are only interested in s which

are larger than approximately π
2ω

, since for smaller s there will only be one
critical point of K1, which is of the form ( s

2
, s

2
). Since δ is small it follows that

for such values of s the dominant term in (12c) is ωsi, so that the zeros of G(s)

can again only occur near the lines s = L0

2
, and s = (2k−1)π

2ω
, s < L0

2
for k ∈ N,

and s = L0 − (2k+1)π
2ω

, s > L0

2
for k ∈ N, see Figure 11. To be able to carry

over the analysis of G′
0(s) to G′(s) we need that 1

rs

∂rs

∂si
� λ, ∂θs

∂si
� ω, which

is true by the estimates above for large si, i.e., ω sufficiently small. Moreover,
we need estimates on the derivatives of the terms of order O(δ) in (12). Since
these terms originate from the higher order terms in (11) one finds that they

are of order O(∂z(s)
∂si

) = O(δ/si). Therefore these terms are dominated by ω,

for small δ and si >
π
4ω

. Hence, as for G′
0(s), we conclude that, away from the

special points s = L0

2
= (2k−1)π

2ω
, the zeros are unique (near the fore-mentioned

lines) and depend continuously on L0.
The analysis of the bifurcation points also carries over from G0(s) to G(s),

since estimates on the higher order derivatives are found in a similar manner as

before: ∂2
z(s)

∂s2
i

= O(δ/s2
i ) and ∂3

z(s)
∂s3

i

= O(δ/s3
i ). Thus, at the bifurcation points

s∗, characterised by G′(s∗) = 0, the inequality of (13) holds (for G instead of
G0), while the equalities follow from the symmetry.

Finally, the index of a critical point ( s
2
, L0−s

2
) is easily calculated: it is 1

if G′(s) < 0, and it is 0 if G′(s) > 0. More explicitly, the index is 0 if either
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L≈ π
2ω

L≈ π
ω L≈ 3π

2ω

(a)

(b)

(c)

1

0
1
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1

1
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0

1
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−1
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1

0
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Figure 12. A blow-up of the first branch of the bifurcation
diagram for γ slightly larger than 1

8
. The branch consists of so-

lutions of (10) with one zero (at which it has positive slope). The
profile of solutions on different parts of the branch are depicted
below (for large L). The index of the solutions is also shown.

s = L0

2
and s ∈

(
(4k−3)π

2ω
+ ε, (4k−1)π

2ω
− ε
)
, k ∈ N, or or s ≈ (4k−1)π

2ω
, s < L0

2
− ε or

s ≈ L0 − (4k−1)π
2ω

, s > L0

2
+ ε for k ∈ N. Here ε is some small positive number

which tends to 0 as ω → 0. On the complementary (parts of) branches the
index of the critical point is 0. The points where the index changes are of course
precisely the bifurcation points. Because all this is much easier to understand
from a picture, Figure 12 shows all solutions (and their index) on the first
branch (containing of solutions with one zero) of the bifurcation diagram for
γ slightly larger than 1

8
.

We now turn our attention to the solutions with more transitions/zeros.
To find critical points one needs to solve ∂K

∂si
= ∂K

∂sj
for all 0 ≤ i, j ≤ n. Since

all partial derivatives are of the form (12) the analysis of the case n = 1
can be repeated for n ≥ 2. To make notation easier we define s̃0 = 2s0 and
s̃n = 2sn and subsequently drop the tildes from the notation. The critical
points of Kn can only occur near the diagonal {s0 = s1 = · · · = sn}, and, for
any permutation τ , any 0 ≤ m ≤ n − 1 and any sequence {ki}m

i=0 ⊂ N with
ki ≤ ki+1, near the line
(14)

{sτ(i) = (2ki−1)π
2ω

, 0 ≤ i ≤ m} ∩ {sτ(i) = sτ(i+1) ≥ (2km−1)π
2ω

, m+ 1 ≤ i ≤ n}.
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In words this means that some (but not all) of the si are fixed at an odd multiple
of π

2ω
, while the remaining si are all equal and larger than the maximum of the

fixed si. This gives the complete bifurcation diagram; for fixed L one needs to
restrict to

∑n
i=0 si − s0+sn

2
= L− 2nT .

We are solving the (n + 1) equations fi
def
= ∂K

∂si
− ∂K

∂si+1
= 0, 0 ≤ i ≤ n− 1,

and fn
def
=
∑n

j=0 sj − (L0 − 2nT ) = 0. To conclude uniqueness (and continuous

dependence) of the solutions of these equations, one needs det
(

∂fi

∂sj

)
6= 0. A

direct calculation shows that

det
(∂fi

∂sj

)
=

n∑

i=0

∏

0≤j≤n
j 6=i

∂Eg[sj ; s]

∂sj
+ other terms,

where all other terms are small compared to the first term if δ, ω and 1
min(s)

are sufficiently small. As in the case n = 1 discussed above, good bookkeeping
reveals the dominant term(s) in this expression when (s, L0) is not close one of
the exceptional points, and one concludes that det

(
∂fi

∂sj

)
6= 0. The exceptional

points are the points where two or more of the lines, which were defined above,
meet.

The index of the critical equal to the number of negative eigenvalues of

the (n × n)-matrix
∂2Kn(s0,s1,...,sn−1,L−∑n−1

k=0
sk)

∂si∂sj
. Since ∂Kn

si
= Eg[si; s] − Eg[L −

∑n−1
k=0 sk; s] and Eg[si; s] is well approximated by F (si)

def
= Ce−λsi cosωsi, we

get
(
∂2Kn

∂si∂sj

)
=

(
F ′(s0)+F ′(sn) F ′(sn) . . . F ′(sn)

F ′(sn) F ′(s1)+F ′(sn) . . . F ′(sn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F ′(sn) F ′(sn) . . . F ′(sn−1)+F ′(sn)

)
+ small terms.

On the diagonal {s0 = s1 = · · · = sn} this reduces to
(
∂2Kn

∂si∂sj

)
≈ F ′(s0)

(
2 1 ··· 1
1 2 ··· 1
··· ··· ··· ···
1 1 ··· 2

)
.

Since the matrix is positive definite, the index of the critical point

( s
2
, s, s, . . . , s, s

2
) is 0 if s ∈

(
(4k−3)π

2ω
+ ε, (4k−1)π

2ω
− ε
)
, k ∈ N with ε > 0 small.

On the complementary part of the diagonal the index is n.
Working out the number of negative eigenvalues on the other branches of

solutions we get the following. Near the line (14) and away from the bifurcation
points the index of the critical point is equal to the number #{0 ≤ i ≤
m | ki+1

2
∈ N} raised by n − m − 1 if sτ(m+1) = · · · = sτ(n) ∈

( (4j−1)π
2ω

+

ε, (4j−3)π
2ω

− ε
)

for some j ∈ N.
A full examination of these bifurcation points for n ≥ 2 is beyond the scope

of this paper. We remark that a (numerical) analysis for the model function
Fi = Ce−λsj cosωsj (instead of Eg[si; s]) already gives a lot of insight. Walking
along one of the curves of solutions near the lines (14) branches bifurcate in
the neighborhood of points where all si are equal to an odd multiple of π

2ω
. The

number of bifurcating branches is (n−m)(n−m− 1), which can be explained
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Figure 13. A blow-up of part of the second branch of the bifur-
cation diagram for γ slightly larger than 1

8
. The branch consists

of solutions of (10) with two zeros. The profile of solutions on
different parts of the branch are depicted below (for large L).
The index of the solutions is also shown.

as follows. The jump in the index along the primary curve is n − m − 1.,
while there is an (n−m)-fold symmetry which is broken upon bifurcation. We
refer to [2, 15] for rigorous results on the multiplicity of bifurcating branches
in the presence of symmetries. However, keep in mind that the symmetry is
usually broken upon returning to Eg[si; s] instead of the model function Fi. As
an illustration part of the branch of solutions of (10) for n = 2 (i.e., with two
transitions/zeros) is shown in Figure 13.
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