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Abstract

In [6] Fiedler and Mallet-Paret proved a version of the classi-
cal Poincaré-Bendixson Theorem for scalar parabolic equations. We
prove that a similar result holds for bounded solutions of the non-
linear Cauchy-Riemann equations. The latter is an application of an
abstract theorem for flows with an (unbounded) discrete Lyapunov
function.

1 Introduction

The classical Poincaré-Bendixson Theorem describes the asymptotic behav-
ior of flows in the plane. The topology of the plane puts severe restrictions
on the behaviour of limit sets. The Poincaré-Bendixson Theorem states
for example that if the α- and the ω-limit set of a bounded trajectory of
a smooth flow in R2 does not contain equilibria, then the limit set is a pe-
riodic orbit. Several generalizations of this theorem have appeared in the
literature. For instance, there are generalizations of the Poincaré-Bendixson
Theorem to two-dimensional manifolds, cf. [3]. In [7] an extension to con-
tinuous (two-dimensional) flows is obtained, and [4] provides a general-
ization to semi-flows. The remarkable result by Fiedler and Mallet-Paret
[6] establishes an extension of the Poincaré-Bendixson Theorem to infinite
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dimensional dynamical systems with a positive Lyapunov function. They
apply their result to scalar parabolic equations of the form

us = uxx + f(x, u, ux), x ∈ S1, f ∈ C2. (1.1)

In this paper we establish a version of the Poincaré-Bendixson Theorem for
bounded orbits of the nonlinear Cauchy-Riemann equations in the plane.
A bounded orbit of the nonlinear Cauchy-Riemann equation in the plane is
a (smooth) bounded function u : R× S1 → R2, which satisfies the equation

us − J
(
ut − F (t, u)

)
= 0, (1.2)

with u(s, t) =
(
p(s, t), q(s, t)

)
, s ∈ R, t ∈ S1 = R/Z.Here F (t, u) is a smooth

non-autonomous vector field on R2 and J is the symplectic matrix

J =

(
0 −1

1 0

)
.

We prove that the asymptotic behavior, as s goes to infinity, of bounded
solutions of Equation (1.2) is as simple as the limiting behavior of flows
in R2. Equation (1.2) arises in many different contexts, in particular in the
Floer homology literature, where the vector field has the form F (t, u) =

FH(t, u), i.e., FH is Hamiltonian, cf. [9]. The latter implies that there ex-
ists a time-dependent Hamiltonian function H(t, ·) : R2 → R, such that
FH(t, u) = J∇H(t, u). In the Hamiltonian case the Cauchy-Riemann equa-
tions are the L2-gradient flow of the Hamilton action and as such bounded
solutions of (1.2) will, generically, be connections orbits between equilibria.
The Hamilton action is an R-valued Lyapunov function for the Cauchy-
Riemann equations. In this paper we obtain a result about the asymptotic
behavior of orbits for general vector fields F in the Cauchy-Riemann Equa-
tions.

The main result for the Cauchy-Riemann equations in this paper con-
cerns the asymptotic behavior of bounded solutions. A bounded solution
of the Cauchy-Riemann equations is a smooth function uwith |u(s, t)| ≤ C.
Let X be the set of solutions bounded by a fixed (but arbitrary) constant
(in the present work we will always choose C = 1). Endowed with the
compact-open topology X is a compact Hausdorff space. The translation
invariance of the Cauchy-Riemann equations in the s-variable defines an
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induced flow on X by translating solutions in the s-variable. A bounded
solution u can be identified with its orbit γ(u), and α(u) and ω(u) are well-
defined elements ofX . In Section 2 we given a detailed account of the space
X and the induced translation flow in the context of the Cauchy-Riemann
equations.

Theorem 1.1. Let u be a bounded solution of the Cauchy-Riemann Equations
(1.2). Then, for the ω-limit set ω(u) the following dichotomy holds:

(i) either ω(u) consists of exactly one periodic orbit, or

(ii) α(v) ⊆ E and ω(v) ⊆ E, for every v ∈ ω(u),

where E denotes the set of 1-periodic solutions of the vector field F (t, x). The same
dichotomy holds for the α-limit set α(u).

As in the classical Poincaré-Bendixson Theorem, alternative (ii) al-
lows for ω(u) (or α(u)) to consist of homoclinic and/or heteroclinic solu-
tions joining equilibria. An important reason why a generalization of the
Poincaré-Bendixson holds for the Cauchy-Riemann equations is that there
exists a continuous projection onto R2, which is defined as follows. Let
t0 ∈ S1 be arbitrary, then define

πt0 : X → R2

u = (p, q) 7→ πt0(u) =
(
p(0, t0), q(0, t0)

)
.

(1.3)

Theorem 1.2. Under the assumptions of Theorem 1.1 the projection

πt0 : ω(u)→ πt0ω(u)

is a homeomorphism onto its image.

In general, if a flow allows a continuous Lyapunov function, then limit
sets of orbits consist only of equilibria. Such flows are referred to as
gradient-like flows. Theorem 3.1 in this paper gives an abstract extension
of the Poincaré-Bendixson Theorem to flows that allow a discrete Lyapunov
function. In particular Theorem 3.1 implies Theorem 1.1. Note that The-
orem 1.2 together with the classical Poincaré-Bendixson Theorem also im-
plies Theorem 1.1. Theorem 1.2 is proved in Section 5 as an abstract version.

The main differences between the results in [6] for parabolic equations
and the results in this paper, are that the Cauchy-Riemann equations do not
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define a well-posed initial value problem and, more importantly, the dis-
crete Lyapunov functions that are considered in this paper are not bounded
from below. Furthermore, the results obtained in this paper do not assume
differentiability of the flow, nor does the flow need to be defined on a Ba-
nach space. We believe that most of the results in this paper can be ex-
tended to semi-flows, cf. [4].

In Section 2 we analyze the main properties of the Cauchy-Riemann
equations (1.2), with additional details given in Section 6. In Section 3, we
set up an abstract setting which generalizes the properties of the Cauchy-
Riemann equations. In Sections 4 and 5 a full proof of the Poincaré-
Bendixson Theorem is given, adapted to the abstract setting introduced in
Section 3.

2 The Cauchy-Riemann Equations

Since the initial value problem of Equation (1.2) is ill-posed, we restrict
our attention to bounded solutions, i.e., functions u ∈ C1(R × S1;R2) that
satisfy Equation (1.2) and for which

|u(s, t)| <∞, for all (s, t) ∈ R× S1. (2.1)

Since we can consider each bounded solution separately, it suffices to con-
sider the space X of functions u ∈ C1(R×S1;R2) satisfying Equation (1.2),
and for which

|u(s, t)| ≤ C, for all (s, t) ∈ R× S1,

for some fixed arbitrary constant C > 0. Note that, without loss of gener-
ality, we can choose C = 1. On X we consider the compact-open topology,
i.e.

un
X−→ u ⇐⇒ un

C0
loc−−→ u, (2.2)

where the latter indicates uniform convergence on compact subsets of
S1×R. Since C0(R×S1;R2), endowed with the compact-open topology, is
Hausdorff (see [10, §47]), and X ⊂ C0(R × S1;R2), also X is a Hausdorff
space.

Proposition 2.1. The solution space X is a compact Hausdorff space.

Proof. See Section 6.
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Identify the translation mapping (s, t) 7→ (s+σ, t) by σ ∈ R and consider
the evaluation mapping

R× C0(R× S1;R2)→ C0(R× S1;R2), (σ, u) 7→ φσ(u) = u ◦ σ. (2.3)

Lemma 2.2. The evaluation mapping (σ, u) 7→ φσ(u) is continuous with respect
to the compact-open topology on C0(R× S1;R2).

Proof. Since R × S1 is a locally compact Hausdorff space, the composition
of mappings

C0(R× S1;R× S1)× C0(R× S1;R2)→ C0(R× S1;R2),

is continuous with respect to the compact-open topologies on C0(R ×
S1;R × S1) and C0(R × S1;R2), see [10, §46]. The translation σ, as de-
fined above, is a continuous mapping in C0(R× S1;R× S1), which proves
the lemma.

Since the Cauchy-Riemann Equations are s-translation invariant we
have that u ∈ X implies that φσ(u) ∈ X. We therefore obtain a continu-
ous mapping R×X → X , again denote by φσ(u). Also,

φσ
(
φσ
′
(u)
)

= (u ◦ σ′) ◦ σ = u ◦ (σ + σ′) = φσ+σ
′
(u),

which shows that φσ defines a continuous flow on X . A continuous flow
on X is a continuous mapping (σ, u) 7→ φσ(u) ∈ X , such that φ0(u) = u

and φσ+σ
′
(u) = φσ(φσ

′
(u)), for all σ, σ′ ∈ R and for all u ∈ X .

Consider the evaluation mapping ι : C0(R × S1;R2) → C0(S1;R2),
defined by

u(·, ·) 7→ u(0, ·).

By a similar argument as in Lemma 2.2 it follows that the mapping ι

is a continuous mapping with respect to the compact-open topology on
C0(S1;R2).

Proposition 2.3. The mapping ι : X → X , with X = ι(X), is a homeomor-
phism.

Proof. See Section 6.
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For φσ we have the following commuting diagram:

R×X X

R×X X ,

-φσ

?

id×ι

?

ι

-Tσ

with u(0, ·) 7→ T σ(u(0, ·)) = u(σ, ·), and T σ defines a flow on X .
The principal tool in the proof Theorem 1.1 is the existence of an un-

bounded, discrete Lyapunov function, which decreases along orbits of the
flow φσ. Let u1, u2 ∈ X be two solutions, with u1 6= u2, such that the func-
tion t 7→ u1(s, t) − u2(s, t) is nowhere zero. Then define w := u1 − u2 ∈
C0(R× S1;R2). The s-dependent winding number W of the pair (u1, u2) is
defined as the winding number of w about the origin, i.e.

W
(
u1(s, ·), u2(s, ·)

)
:= W (w(s, ·), 0) =

1

2π

∫
S1

w∗θ, (2.4)

where θ = −qdp+pdq
p2+q2

is a closed one-form on R2 \{0}, cf. [11]. A pair of solu-
tions (u1, u2) ∈ X ×X is said to be singular, if they belong to the “crossing”
set defined by

ΣX := {(u1, u2) ∈ X ×X : ∃ s ∈ R : u1(s, t) = u2(s, t) for some t ∈ S1},

and W : (X ×X) \ ΣX → Z is defined by

W (u1, u2) := W
(
ι(u1), ι(u2)

)
. (2.5)

The Lyapunov function W is continuous on (X × X) \ ΣX and constant
on connected components. The set ΣX is a closed in X ×X, since uniform
convergence on compact sets implies point-wise convergence. The function
W is a symmetric:

W (u1, u2) = W (u2, u1), for all (u1, u2) 6∈ ΣX .

The diagonal in X ×X is defined by

∆ := {(u1, u2) ∈ X ×X : u1 = u2},
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and ∆ ⊂ ΣX . The flow φσ induces a product flow on X ×X , via (u1, u2) 7→(
φσ(u1), φσ(u2)

)
, and the diagonal ∆ is invariant for the product flow. For

the action of the flow on W we have

W
(
φσ(u1), φσ(u2)

)
= W

(
ι ◦ φσ(u1), ι ◦ φσ(u2)

)
= W

(
T σ(ι(u1)), T σ(ι(u2))

)
= W (u1(σ, ·), u2(σ, ·)).

In [11] it is proved that the set ΣX \∆ is “thin” in X ×X , which is the
content of the following proposition.

Proposition 2.4 (see [11]). For every singular solution pair (u1, u2) ∈ ΣX \∆,
there exists an ε0 = ε(u1, u2) > 0, such that (φσ(u1), φσ(u2)) 6∈ ΣX , for all
σ ∈ (−ε0, ε0) \ {0}.

Orbits which intersect ΣX “transversely” (and thus are not in the diago-
nal) instantly escape from ΣX and the diagonal ∆ is the maximal invariant
set contained in ΣX . The following proposition indicates W is a discrete
Lyapunov function.

Proposition 2.5 (see [11]). For every pair of singular solutions (u1, u2) ∈
ΣX \ ∆, there exists an ε0 = ε(u1, u2) > 0, such that W (φσ(u1), φσ(u2)) >

W (φσ
′
(u1), φσ

′
(u2)), for all σ ∈ (−ε0, 0) and all σ′ ∈ (0, ε0).

For a given u ∈ X define the α- and ω-limit sets as:

ω(u) := {w ∈ X : φσn(u)
X−→ w, for some σn →∞},

α(u) := {w ∈ X : φσn(u)
X−→ w, for some σn → −∞}.

The sets α(u) and ω(u) are closed invariant sets for the flow φσ, see [7,
Lemma 4.6 Chapter IV]. Since X is compact, also α(u) and ω(u) are com-
pact. Compactness of X also implies that α(u) and ω(u) are non-empty, see
[7, Theorem 4.7 Chapter IV]. The Hausdorff property of X and the conti-
nuity of the flow φσ imply that α(u) and ω(u) are connected sets, see [7,
Theorem 4.7 Chapter IV]. Define the equilibria of φσ by

E := {u ∈ X : φσ(u) = u for all σ ∈ R}.

Equilibria are functions u = u(t) which satisfy the stationary equation ut =

F (t, u).
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3 The abstract Poincaré-Bendixson Theorem

The concepts introduced so far can be embedded in a more abstract setting,
which generalizes the work by Fiedler and Mallet-Paret in [6]. Let φσ be a
continuous flow on a compact Hausdorff spaceX. In the case of the Cauchy-
Riemann equations the flow φσ is defined in (2.3), where the space X is
either the full solution space, or the space which consists of the closure of a
single entire (bounded) orbit.

The notions of α- and ω-limit sets, defined in Section 2 remain un-
changed, and α(u) and ω(u) are non-empty, compact, connected, invariant
sets. We denote by E ⊂ X the set of equilibria of φσ.

Let ∆ = {(u1, u2) ∈ X × X : u1 = u2} be invariant for the product
flow induced by φσ. We assume that there exist a closed “thin” singular
set Σ, with ∆ ⊂ Σ ⊂ X × X, and functions W : (X × X) \ Σ → Z and
π : X → π(X) ⊂ R2, which satisfy the following five axioms:

(A1) the function W : X ×X \ Σ→ Z is continuous and symmetric;

(A2) the mapping π : X → π(X) ⊂ R2 is a continuous projection onto its
(compact) image;

(A3) the set {(u1, u2) ∈ X ×X : π(u1) = π(u2)} is a subset of Σ;

(A4) for every (u1, u2) ∈ Σ \ ∆, there exists an ε0 > 0, depending on
(u1, u2), such that (φσ(u1), φσ(u2)) 6∈ Σ, for all σ ∈ (−ε0, ε0) \ {0};

(A5) for every (u1, u2) ∈ Σ \ ∆, there exists an ε0 > 0, depending on
(u1, u2), such that

W (φσ(u1), φσ(u2)) > W (φσ
′
(u1), φσ

′
(u2)),

for all σ ∈ (−ε0, 0) and all σ′ ∈ (0, ε0).

Axioms (A1)-(A5) are modeled on the properties of the non-linear Cauchy-
Riemann Equations discussed in Section 2, with π = πt0 defined in (1.3).
The above axioms also generalize the conditions in the work of Fiedler and
Mallet-Paret in [6]. Note that the function W is a priori unbounded in the
present case and the flow φσ does not necessarily regularize. Under these
assumptions we prove the following theorem.
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Theorem 3.1 (Poincaré-Bendixson). Let φσ be a continuous flow on a compact
Hausdorff spaceX. Let Σ be a closed subset ofX×X , and letW : (X×X)\Σ→ Z
and π : X → π(X) ⊂ R2 be mappings as defined above, and which satisfy Axioms
(A1)-(A5). Then, for ω(u) we have the following dichotomy:

(i) either ω(u) consists of precisely one periodic orbit, or else

(ii) α(w) ⊆ E and ω(w) ⊆ E, for every w ∈ ω(u).

The same dichotomy holds for α(u).

As in [6], the proof of Theorem 3.1 will be divided into the three Propo-
sitions listed below.

From this point on we assume the hypotheses of Theorem 3.1.

Proposition 3.2 (Soft version). Let u be in X and let w ∈ ω(u), then ω(w)

contains a periodic solution or an equilibrium. The same holds for α(w).

Proposition 3.2 implies that, since ω(w) and α(w) are both subsets of
ω(u), also ω(u) contains a periodic solution or an equilibrium.

Proposition 3.3. Let u be in X and let w ∈ ω(u). Then either,

(i) α(w) and ω(w) consist only of equilibria, or else

(ii) γ(w) is a periodic orbit.

Proposition 3.4. Let u be X. If ω(u) contains a periodic orbit, then ω(u) is a
single periodic orbit.

The proof of Proposition 3.2 is given in Section 4 and the proofs of
Propositions 3.3 and 3.4 are carried out in Section 5.2. Section 5.2 also pro-
vides the proof of Theorem 1.2, with a formulation adapted to the abstract
setting. Propositions 3.3 and 3.4 together imply Theorem 3.1, while Propo-
sition 3.2 will be used to prove Proposition 3.3. Theorem 3.1 can be ap-
plied directly to the Cauchy-Riemann equations and therefore implies The-
orem 1.1. Subsection 5.1 contains a number of technical lemmas. Finally,
Section 6 provides the proofs of Propositions 2.1 and 2.3.
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4 The soft version

This section deals with the proof of Proposition 3.2. The hypotheses of
Section 3 will be assumed for the remainder of the paper.

Lemma 4.1. For every pair (u1, u2) ∈ (X ×X) \∆, the set

A(u1,u2) := {σ ∈ R :
(
φσ(u1), φσ(u2)

)
∈ Σ}

consists of isolated points only. Moreover, the mapping

σ 7→W (φσ(u1), φσ(u2)),

defined for σ ∈ R \A(u1,u2), is a non-increasing function of σ and constant on the
connected components of R \A(u1,u2).

Proof. Suppose there exists an accumulation point σn → σ∗, with σn ∈
A(u1,u2). By definition

(
φσn(u1), φσn(u2)

)
∈ Σ \∆, since ∆ is invariant and

(u1, u2) 6∈ ∆. By the continuity of φσ we have that(
φσn(u1), φσn(u2)

) n→∞−−−→
(
φσ∗(u1), φσ∗(u2)

)
∈ Σ,

since Σ is closed. This proves that σ∗ ∈ A(u1,u2). The invariance of ∆ implies
that

(
φσ∗(u1), φσ∗(u2)

)
∈ Σ \ ∆. By Axiom (A4) there exists an ε0 > 0,

depending on
(
φσ∗(u1), φσ∗(u2)

)
, such that (φσ∗+ε(u1), φσ∗+ε(u2)) 6∈ Σ, for

all ε ∈ (−ε0, ε0) \ {0}. This contradicts the fact that σ∗ is an accumulation
point.

The set A(u1,u2) is a discrete and ordered set. Let σ′ < σ′′ be two con-
secutive points in A(u1,u2). By Axiom (A1), W is continuous and Z-valued,
and therefore W (φσ(u1), φσ(u2)) is constant on σ ∈ (σ′, σ′′). The fact that
W is non-increasing then follows from (A5), since W (φσ(u1), φσ(u2)) drops
at points in A(u1,u2).

Lemma 4.2. Let u ∈ X and w ∈ ω(u). For every w1, w2 ∈ cl
(
γ(w)

)
with

w1 6= w2, it holds that (w1, w2) 6∈ Σ.

Proof. We argue by contradiction. Suppose (w1, w2) ∈ Σ \ ∆, then, by the
Axioms (A4) and (A5), there exists an ε0 > 0, such that

(
φσ(w1), φσ(w2)

)
6∈

Σ, for all σ ∈ (−ε0, ε0) \ {0} and

W (φσ(w1), φσ(w2)) > W (φσ
′
(w1), φσ

′
(w2)),
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for all σ ∈ (−ε0, 0) and all σ′ ∈ (0, ε0). Set σ = −ε and σ′ = ε,
with 0 < ε < ε0. Since w1, w2 ∈ cl(γ(w)), there exist s1, s2 ∈ R,
such that

(
φs1±ε(w), φs2±ε(w)

)
6∈ Σ and

(
φs1±ε(w), φs2±ε(w)

)
is close to(

φ±ε(w1), φ±ε(w2)
)
. The continuity of W (Axiom (A1)) then implies

W (φs1+ε(w), φs2+ε(w)) = W (φε(w1), φε(w2))

< W (φ−ε(w1), φ−ε(w2))

= W (φs1−ε(w), φs2−ε(w)).

(4.1)

Since γ(w) ⊂ ω(u) is an invariant subset of ω(u), the definition of ω-limit
set and the continuity of φσ imply that there exists a sequence σn → ∞, as
n→∞, such that

φσn+s1−s2±ε(u)→ φs1±ε(w), and φσn±ε(u)→ φs2±ε(w). (4.2)

Since σn is divergent, we may assume

σn+1 > σn + 2ε, for all n. (4.3)

Inequality (4.1), the convergence in (4.2), Axiom (A1) (continuity) and the
fact that W is locally constant (see Lemma 4.1), imply, for σn →∞, that

W (φσn+s1−s2+ε(u), φσn+ε(u)) = W (φs1+ε(w), φs2+ε(w))

< W (φs1−ε(w), φs2−ε(w))

= W (φσn+s1−s2−ε(u), φσn−ε(u)).

By combining the latter with (4.3) and the fact that W is non-increasing, we
obtain

W (φσn+1+s1−s2−ε(u), φσn+1−ε(u)) < W (φσn+s1−s2−ε(u), φσn−ε(u)),

for all n. From this inequality we deduce that σ 7→ W (φσ+s1−s2(u), φσ(u))

has infinitely many jumps and therefore

W (φσ+s1−s2(u), φσ(u))→ −∞, as σ →∞.

On the other hand, by continuity of W and (4.2) we have, for σn →∞, that

W (φσn+s1−s2+ε(u), φσn+ε(u)) = W (φs1+ε(w), φs2+ε(w)) > −∞,

which is a contradiction.
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Lemma 4.3. Let u ∈ X and w ∈ ω(u), then

π : cl (γ(w))→ π cl(γ(w)) ⊂ R2

is a homeomorphism onto its image. Hence, π ◦ φσ ◦ π−1 is a continuous flow on
π cl(γ(w)).

Proof. By Axiom (A2), the projection π : cl (γ(w)) → π cl(γ(w)) is continu-
ous. Since cl (γ(w)) is compact and π cl(γ(w)) is Hausdorff, it is sufficient
to show that π is bijective, see [10, § 26, Thm. 26.6]. The projection π is
surjective and it remains to show that π is injective on cl(γ(w)). Suppose π
is not injective, then there exist w1, w2 ∈ cl(γ(w)), such that w1 6= w2 and
π(w1) = π(w2). Axiom (A3) then implies that (w1, w2) ∈ Σ \ ∆. On the
other hand, Lemma 4.2 implies that (w1, w2) 6∈ Σ, which is a contradiction.
This establishes the injectivity of π.

For the projected flow on π cl(γ(w)) we have the following commuting
diagram:

R× cl(γ(w)) cl(γ(w))

R× π cl(γ(w)) π cl(γ(w)),

-φσ

?
id×π

?

π

-ψσ

(4.4)

where ψσ = π ◦ φσ ◦ (id× π)−1.

Corollary 4.4. The equilibria of the planar flow ψσ := π ◦ φσ ◦ (id × π)−1 on
π cl(γ(w)) are in one-to-one correspondence with the equilibria of the flow φσ in
cl(γ(w)).

Following the natural strategy in proving a Poincaré-Bendixson type
result, we now would like to find a transverse curve at a non-equilibrium
point and invoke a flow box theorem, ultimately leading to contradiction
arguments involving the inside and outside of a Jordan curve made up of
a flow line and the transversal. Transversals do exist for a continuous (but
not necessarily smooth) flow in R2 [7, section VII.2]. However, our flow is
defined on the closed invariant subset π cl(γ(w)) ⊂ R2. This set has empty
interior, and this prevents us from finding a section, as defined below, that
is also a curve (i.e. a so-called transversal). Roughly speaking, we overcome
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this difficulty by adapting the usual Jordan curve arguments to a slightly
“less local” version.

Let (σ, x) 7→ ψσ(x) be the (local) continuous flow on the subset D =

π cl(γ(w)) of R2. A subset C ⊂ D is a section for ψσ, if there is a δ > 0, such
that

ψσ1(C ) ∩ ψσ2(C ) = ∅, for all 0 ≤ σ1 < σ2 ≤ δ.

The following lemma shows that for non-equilibrium points x ∈ D there
exists a section for the flow in an ε-neighborhood of x.

Lemma 4.5. Let x ∈ D be a non-equilibrium point of ψσ.

(i) For sufficiently small δ > 0 there exists a section C containing x such that
the set

U := {ψσ(y) : y ∈ C , σ ∈ [−δ, δ]}

is homeomorphic to C × [−δ, δ] via the map ψ, and for ε > 0 sufficiently
small

• Bε(x) ∩D ⊂ U ,

• hσ(Bε(x) ∩U ) ∈ (−δ, δ).

where hσ is the second components of the inverse homeomorphism h : U →
C × [−δ, δ], i.e., h ◦ ψσ(y) = (y, σ) for all y ∈ C , σ ∈ [−δ, δ].

(ii) For δ0 < δ sufficiently small the three balls B0 ≡ Bε0(x), B− ≡
Bε0(ψ−δ0(x)) and B+ ≡ Bε0(ψδ0(x)) are, for ε0 < ε sufficiently small,
disjoint subsets of Bε(x) such that hσ(B− ∩U ) < − δ0

2 < hσ(B0 ∩U ) <
δ0
2 < hσ(B+ ∩ U ). Furthermore, for ε1 < ε0 sufficiently small, we have
ψ±δ0(y) ∈ B± for all y ∈ C0 ≡ C ∩Bε1(x).

Proof. The first part follows from the construction of sections in [7, section
VI.2]. The second part then follows from continuity of ψ and its inverse h.

The situation described by Lemma 4.5 is illustrated in Figure 1.

Remark 4.6. In fact, as we will see later, we need to apply a variant of the
above lemma to forward invariant closed subsets of the form

cl(γ(w) ∪ {φσ(u), σ ≥ σ∗}),
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B"

B0

B�
B+

x

C

 ��(C )
 �(C ) �0/2(C )

 ��0/2(C )

Figure 1: Sketch of the flow in U (and the subset Bε(x) ∩ D) through the
section C . The time section σ = ±δ0/2 separate the balls B0 and B±. We
note that the section C (and its forward and backward translates in time)
are not (necessarily) curves.

where u ∈ X,w ∈ ω(u), σ∗ ∈ R. On cl(γ(w) ∪ {φσ(u), σ ≥ σ∗}) we have a
commuting diagram similar to (4.4). In order to have a bi-directional local
flow, we define the slightly smaller set

V := π cl(γ(w) ∪ {φσ(u), σ ≥ σ∗ + 2δ}), (4.5)

for δ > 0 small. Then, if x ∈ V is not an equilibrium for ψσ, Lemma 4.5
continues to hold with U replaced by V .

Remark 4.7. (i) The second part of Lemma 4.5 is used to construct a set
that replaces the role of the transversal. Let y1 and y2 be two points in C0.
Consider the line segment L0 connecting y1 and y2. Then L0 ⊂ B0. It
may happen that L0 intersects the flow lines of ψσ(y1,2) at some σ 6= 0,
but this can be overcome by slightly varying σ. Indeed, let the line seg-
ment `0 be a subset of L0 with endpoints ψσ

0
1 (y1) and ψσ

0
2 (y2) for some

σ01, σ
0
2 ∈ (−δ0/2, δ0/2), such that `0 does not intersect the flow lines ψσ(y1)

and ψσ(y2) at any other σ ∈ [−δ, δ]. We still have `0 ⊂ B0, see Figure 2.
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y1
`0

B0

B+

B�
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L�

L+

L0

`0

`�

`+

J�

J+
J⇤
0 = J⇤

+ \ J⇤
�

Figure 2: On the left an illustration of the construction of `0 and `±. On the
right a sketch of the interiors J0 and J± of the Jordan curves J0 and J±
(as well as their exteriors J∗0 and J∗±). Note that J0 = int(J− ∪ J+).

We repeat this construction in the balls B− and B+ to obtain line seg-
ments `− and `+, respectively, with one end point on each flow line and no
other intersections with the flow lines.

Then we obtain three Jordan curves

J0 = {ψσ(y1) : σ−1 ≤ σ ≤ σ
+
1 } ∪ {ψ

σ(y2) : σ−2 ≤ σ ≤ σ
+
2 } ∪ `− ∪ `+,

J− = {ψσ(y1) : σ−1 ≤ σ ≤ σ
0
1} ∪ {ψσ(y2) : σ−2 ≤ σ ≤ σ

0
2} ∪ `− ∪ `0,

J+ = {ψσ(y1) : σ01 ≤ σ ≤ σ+1 } ∪ {ψ
σ(y2) : σ02 ≤ σ ≤ σ+2 } ∪ `0 ∪ `+,

lying in Bε(x), see Figure 2. We denote the interior of Jj by Jj , and its
exterior by J∗j , j ∈ {−, 0,+}. Clearly, J± ⊂ J0 and J− ∩ J+ = ∅.

(ii) By Lemma 4.5 any flow line in J0 must leave J0 in forward and
backward time. By flow invariance of the other boundary components, a
flow line can only enter or leave J0 through `+ or `−. Moreover, no flow line
can (in forward time) enter J0 through `+ and then leave it through `−. In
this sense, the set J0 plays the role of a transversal. Analogous statements
holds for J+ and J−. In particular, this implies a slightly stronger statement
for the flow in J+ ⊂ J0: if a flow line is in J+ then must leave J0 through
`+. Similarly, if a flow line is in J− then must have entered J0 through `−.

(iii) The flow lines {ψσ(y1,2) : σ ∈ (σ+1,2, δ]} and {ψσ(y1,2) : σ ∈
[−δ, σ−1,2)} lie in the exterior J∗0 . This follows from the fact that by con-
struction they cannot cross `+ and `−, respectively, and ψ±δ(y1,2) all lie in
J∗0 by the second bullet of Lemma 4.5(i).
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Proposition 4.8 (Soft version). Let u be inX andw ∈ ω(u), then ω(w) contains
a periodic orbit or an equilibrium. The same holds for α(w).

Proof. Suppose ω(w) does not contain any equilibria. Choose ζ ∈ ω(w) and
ζ∗ ∈ ω(ζ), then

ω(ζ) ⊆ ω(ω(w)) = ω(w) ⊆ ω(γ(w)) = cl(γ(w)). (4.6)

Since ζ∗ is not an equilibrium, then π(ζ∗) is not an equilibrium for ψσ =

π ◦ φσ ◦ (id × π)−1 by Corollary 4.4. According to Lemma 4.5 there exists
a section C for ψσ through x = π(ζ∗). Since ζ∗ ∈ ω(ζ), there exist times
σn → ∞, such that φσn(ζ) → ζ∗. By Lemma 4.5 these times can be chosen
such that π ◦ φσn(ζ) ∈ C0, as defined in Lemma 4.5(ii), for σn sufficiently
large. Moreover, π ◦ φσ(ζ) 6∈ C0 for σ ∈ (σn, σn+1). We consider two cases.

Case 1. For some n 6= n′, we have π◦φσn(ζ) = π◦φσn′ (ζ). Then, since π is
a homeomorphism on cl

(
γ(w)

)
(see Lemma 4.3) and since ω(ζ) ⊂ cl

(
γ(w)

)
(see Equation (4.6)), it follows that φσn(ζ) = φσn′ (ζ), and thus φσ(ζ) is a
periodic orbit.

Case 2. All π ◦ φσn(ζ) are mutually distinct. Take n sufficiently large
so that y1 ≡ π ◦ φσn+1(ζ) and y2 ≡ π ◦ φσn+1(ζ) both lie in C0. Denote
σ̃ = σn+1−σn, so that y2 = ψσ̃(y1). Apply the construction of Remark 4.7(i)
to these y1 and y2. In addition to J0 we obtain two more Jordan curves

G− = {ψσ(y1) : σ−1 ≤ σ ≤ σ̃ + σ−2 } ∪ `−
G+ = {ψσ(y1) : σ+1 ≤ σ ≤ σ̃ + σ+2 } ∪ `+.

Both curves separate R2 into two open sets, say A1
± and A2

±, see Figure 3.
Here, to fix notation, we require that J0 ⊂ A1

+ and J0 ⊂ A2
− (recall that J0

is the interior of J0), so that A2
+ ∩A1

− = ∅. It follows from the property of
J0 described in Remark 4.7(ii) and flow invariance of {ψσ(y1) : σ−1 ≤ σ ≤
σ̃ + σ+2 } that once a flow line is in A2

+ it can never enter A1
− (in forward

time).
Finally, we note that Remark 4.7(iii) implies that x1 = ψ−δ(y1) = π ◦

φσn−δ(ζ) lies in A1
−, while x2 = ψδ(y2) = π ◦ φσn+1+δ(ζ) lies in A2

+. Now
consider the orbit π ◦ φσ(w). Since ζ ∈ ω(w) and π is continuous, π(ζ) is
an ω-limit point of π(w) under ψσ. Consequently, the orbit π ◦ φσ(w) keeps
(in forward time) visiting arbitrarily small neighborhoods of x1 ∈ A1

− and
x2 ∈ A2

+ . However, as argued above, once a flow line is in A2
+ it can never

enter A1
−. This is a contradiction.
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A1
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x1

x2

y1

y2

`�
`+

Figure 3: Sketch of the construction of A2
+ and A1

−. Whether A1
− is a

bounded region and A2
+ an unbounded one (as depicted here) or the other

way around, is irrelevant for the argument.

Remark 4.9. In [6, Proposition 2] the “soft version” was proved using both
smoothness of the flow and fact that there exists a non-negative discrete
Lyapunov function. The extension given by Proposition 4.8 makes it appli-
cable to the Cauchy-Riemann equations, for which a Z-valued Lyapunov
function exists.

5 The strong version

This section is subdivided into two subsections. In the first subsection we
show some preliminary lemmas that will be used to prove the strong ver-
sion of the Poincaré-Bendixson Theorem. The proof of Proposition 3.3 oc-
cupy the second subsection. Proofs are as in [6], but worked out in more
details, and eventually adjusted to our setting.

5.1 Technical lemmas

Lemma 5.1. Let u ∈ X, then for every w ∈ ω(u) there exists an integer k(w),
such that

W (w1, w2) = k(w),
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for all w1, w2 ∈ cl
(
γ(w)

)
, with w1 6= w2.

Proof. See also [6, Lemma 3.1]. Since we consider two distinct w1, w2 ∈
cl
(
γ(w)

)
, we may exclude the case that w is an equilibrium. We therefore

distinguish two cases: (i) γ(w) is a periodic orbit, or (ii) σ 7→ φσ(w) is in-
jective. Lemma 4.2 implies that (w1, w2) 6∈ Σ, and therefore (w1, w2) 7→
W (w1, w2) is a continuous Z-valued function on

(
cl(γ(w))× cl(γ(w))

)
\∆.

(i) If γ(w) is a periodic orbit, then, cl(γ(w)) = γ(w), which is homeo-
morphic to S1, and γ(w) × γ(w) is therefore homeomorphic to the 2-torus
T2. Therefore (w1, w2) 7→ W (w1, w2) induces a continuous Z-valued func-
tion on T2 \ S1. Since the latter is connected, it follows that W is constant
on
(
γ(w)× γ(w)

)
\∆.

(ii) If σ → φσ(w) is injective, then
(
γ(w)× γ(w)

)
\∆ has two connected

components given by (φσ1(w), φσ2(w)), with σ1 > σ2, and σ1 < σ2, respec-
tively. Since W is symmetric (Axiom (A1)) we conclude that W is con-
stant on

(
γ(w) × γ(w)

)
\ ∆. Note that

(
cl(γ(w)) × cl(γ(w))

)
\ ∆ is the

closure of
(
γ(w) × γ(w)

)
\ ∆ in (X × X) \ ∆. Since W is continuous on(

cl(γ(w))× cl(γ(w))
)
\∆, it is also constant, which proves the lemma.

Lemma 5.2. Assume that u ∈ X and w ∈ ω(u). Let k(w) be defined as in Lemma
5.1. If α(w) ∩ ω(w) = ∅, then there exists a σ∗ ≥ 0, such that

W (u1, w1) = k(w) (5.1)

for every u1 ∈ cl{φσ(u), σ ≥ σ∗} and every w1 ∈ cl(γ(w)), such that u1 6= w1.

In particular, if π(u1) = π(w1) for some u1 ∈ cl{φσ(u), σ ≥ σ∗} and w1 ∈
cl(γ(w)), then u1 = w1. Hence

π ◦ φσ(u) 6∈ π cl(γ(w)) for all σ ≥ σ∗. (5.2)

Proof. See [6, Lemma 3.2]. We start by observing that it is enough to prove
that (5.1) holds for u1 ∈ φσ(u), σ ≥ σ∗. Then by continuity of W, the state-
ment follows for all u1 ∈ cl{φσ(u), σ ≥ σ∗}.

Suppose there exist sequences σn →∞, wn ∈ cl(γ(w)), with

φσn(u) 6= wn, kn := W (φσn(u), wn) 6= k(w).

We may assume, passing to a subsequence if necessary, that for all n we
have that either kn > k(w) or kn < k(w). We will split the proof in two
cases.
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Case 1: kn < k(w). Again passing to a subsequence if necessary, we
may assume that either wn ∈ α(w) for all n or else wn ∈ cl(γ(w)) \ α(w)

for all n. Since α(w) and ω(w) are disjoint by assumption, it follows that
cl(γ(w)) \ α(w) = γ(w) ∪ ω(w). Choose now w1 ∈ ω(w) in case wn ∈ α(w),

and w1 ∈ α(w) in case wn ∈ γ(w) ∪ ω(w). In both cases we have w1 ∈ ω(u),

hence we can choose a sequence σ̃n with σ̃n > σn, for every n such that

w1 := lim
n→∞

φσ̃n(u).

In case wn ∈ γ(w) ∪ ω(w) we may assume that σ̃n − σn is so large that
φσ̃n−σn(wn) ∈ cl{φσ(w), σ > 0}. For a further subsequence, we have con-
vergence of φσ̃n−σn(wn). Call

w2 := lim
n→∞

φσ̃n−σn(wn).

Note that w1, w2 ∈ cl(γ(w)), and w1 6= w2 since α(w) ∩ ω(w) = ∅. In fact,
by construction it follows that either w1 ∈ ω(w) and w2 ∈ α(w), or else
w1 ∈ α(w) and w2 ∈ cl{γ(w), σ ≥ 0} = {φσ(w), σ ≥ 0} ∪ ω(w). By Lemma
5.1 there exists k(w) ∈ Z such that

W (w1, w2) = k(w).

Now, for n big enough, by continuity of W we obtain

kn < k(w) = W (w1, w2) = W (φσ̃n(u), φσ̃n−σn(wn))

= W (φσn+(σ̃n−σn)(u), φσ̃n−σn(wn))

≤ W (φσn(u), wn) = kn,

which is a contradiction.
The final assertion (5.2) follows from the following observation. Sup-

pose, by contradiction that there exist a u1 = φσ1(u), for some σ1 ≥ σ∗ and
w1 ∈ cl(γ(w)), such that π(u1) = π(w1). By what we have just proved, we
then have u1 = w1. Since w1 ∈ cl(γ(w)) and, by assumption, the sets α(w),

γ(w) and ω(w) are disjoint, there are only three different possibilities.

(a) w1 ∈ ω(w). Then φσ1(u) ∈ ω(w). By invariance ω(u) ⊆ ω(ω(w)) =

ω(w). Since α(w) ⊆ ω(u) ⊆ ω(w), this contradicts α(w) ∩ ω(w) = ∅.

(b) w1 ∈ α(w). Then φσ1(u) ∈ α(w). By invariance ω(u) ⊆ ω(α(w)) =

α(w). Since ω(w) ⊆ ω(u) ⊆ α(w), this contradicts α(w) ∩ ω(w) = ∅.

19



(c) w1 ∈ γ(w). Then φσ1(u) ∈ γ(w). By invariance ω(u) = ω(w). But
α(w) ⊆ ω(u) = ω(w), again contradicting α(w) ∩ ω(w) = ∅.

Case 2: kn > k(w). This case is analogous to the previous one. It is
enough to exchange the roles of α(w) and ω(w). See [6, Lemma 3.2] for
further details.

Remark 5.3. Lemma 5.2 implies that the commutative diagram (4.4) ex-
tends from cl(γ(w)) to cl(γ(w) ∪ {φσ(u), σ ≥ σ∗}), if α(w) ∩ ω(w) = ∅.
Additionally, by Remark 4.6, the assertions of Lemma 4.5 hold for every
x ∈ V (defined in (4.5)) that is not an equilibrium.

Lemma 5.4. Let u ∈ X and let γ1 and γ2 be (not necessarily distinct) stationary
or periodic orbits in ω(u). Then, there exists a k = k(γ1, γ2), k ∈ Z, such that

W (p1, p2) = k, (5.3)

for every pj ∈ γj , p1 6= p2. In particular, the projections of disjoint periodic orbits
are disjoint.

Proof. See [6, Lemma 3.3]. We consider the case where γ1 and γ2 are both
periodic, the others are analogous or even simpler. We first claim that
W (p1, p2) is defined for every p1 ∈ γ1 and every p2 ∈ γ2 with p1 6= p2.

Suppose, by contradiction, that there exist p1 ∈ γ1 and p2 ∈ γ2 with p1 6= p2

such that (p1, p2) ∈ Σ \ ∆. Then, by Axiom (A4) and (A5) there exists an
ε0 > 0, such that (φσ(p1), φσ(p2)) 6∈ Σ for every σ ∈ (−ε0, ε0) \ {0} and

W (φσ
′
(p1), φσ

′
(p2)) < W (φσ(p1), φσ(p2)), (5.4)

for σ′ ∈ (0, ε0) and σ ∈ (−ε0, 0). Set σ′ = ε0
2 and σ = − ε0

2 . By continuity of
W there exists an η ∈ (0, ε02 ) such that W is constant on the set

U =
{

(φσ1(p1), φσ2(p2)) | − ε0
2 − η < σ1, σ2 <

ε0
2 + η

}
.

By periodicity of γ1 and γ2 there is a σ3 > ε0 such that (φσ3(p1), φσ3(p2)) ∈
U (both in the periodic and the quasi-periodic case). Now, by (5.4)

W (φε0/2(p1), φε0/2(p2)) < W (φ−ε0/2(p1), φ−ε0/2(p2)) = W (φσ3(p1), φσ3(p2)).

Since σ3 > ε0
2 , this contradicts Lemma 4.1. Hence (p1, p2) 6∈ Σ andW (p1, p2)

is well defined for every p1 ∈ γ1 and every p2 ∈ γ2, with p1 6= p2.
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This implies, by continuity of W , that the map

(p1, p2)→W (p1, p2)

is locally constant on

{(p1, p2) ∈ γ1 × γ2 | p1 6= p2}.

This set is connected, which proves (5.3).

Lemma 5.5. Let u ∈ X and e ∈ E. For every w ∈ ω(u) with w 6= e it holds
(w, e) 6∈ Σ. If, furthermore, e 6= ω(u) then there exists a σ̄ ∈ R such that the map
σ 7→W (φσ(u), e) is constant for σ > σ̄.

Proof. The proof resembles the one of Lemma 4.2. We repeat the argument.
Let w ∈ ω(u). Since w 6= e, we can assume that (w, e) 6∈ ∆. Suppose, by
contradiction, that (w, e) ∈ Σ \ ∆, then by Axioms (A4) and (A5), there
exists an ε0 > 0 such that (φσ(w), e) 6∈ Σ, for all σ ∈ (−ε0, ε0) \ {0} and

W (φσ(w), e) > W (φσ
′
(w), e),

for all σ ∈ (−ε0, 0) and all σ′ ∈ (0, ε0). Set σ = −ε and σ′ = ε, with 0 < ε <

ε0. Then we have
W (φ−ε(w), e) > W (φε(w), e). (5.5)

By definition of the ω-limit set and the fact that ω is invariant, we have that
there exists a sequence σn →∞, as n→∞ such that

φσn±ε(u)→ φ±ε(w). (5.6)

Since σn is divergent we assume that

σn+1 > σn + 2ε, for all n ∈ N. (5.7)

Inequality (5.5), convergence in (5.6) and Lemma 4.1 imply, for σn → ∞,
that

W (φσn+ε(u), e) = W (φ+ε(w), e)

< W (φ−ε(w), e)

= W (φσn−ε(u), e).

Combining the latter with (5.7) and the fact that W is non-increasing, we
obtain

W (φσn+1−ε(u), e) < W (φσn−ε(u), e),
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for all n. From this, we deduce that σ 7→ W (φσ(u), e) has infinitely many
jumps and therefore

W (φσ(u), e)→ −∞ as σ →∞.

On the other hand, continuity of W and (5.6) imply, for σn →∞, that

W (φσn+ε(u), e) = W (φε(w), e) > −∞,

which is a contradiction.
To prove the final assertion, suppose, by contradiction, that such a σ̄

does not exist. Then there exists a sequence σn →∞ such that (φσn(u), e) ∈
Σ. Now choose a w ∈ ω(u) \ {e} 6= ∅. There exists a sequence σ̃n → ∞
such that φσ̃n(u)→ w. By the first part of the lemma, W (w, e) ∈ Z. We may
choose σ̃n > σn without loss of generality. By continuity of W and axiom
(A5) it follows that

W (w, e) = lim
n→∞

W (φσ̃n(u), e) = −∞,

a contradiction. This concludes the proof.

Lemma 5.6. Let u be in X. There exists an integer k0 ∈ Z such that

W (w, e) = k0 (5.8)

for every w ∈ ω(u), and for every equilibrium e ∈ ω(u) such that w 6= e.

Proof. Fix e ∈ E∩ω(u). Letw ∈ ω(u)\{e}.According to Lemma 5.5,W (w, e)

is well-defined. Since φσn(u)→ w for some σn →∞,

W (w, e) = lim
n→∞

W (φσn(u), e)

= lim
σ→∞

W (φσ(u), e) = ke,

where the second limit exists by Lemma 5.5. Since the above statement
holds for any w ∈ ω(u) \ {e}, this implies that W (w, e) is independent of
w ∈ ω(u) \ {e}.

We still need to show that W (w, e) is independent of e ∈ E ∩ ω(u).

Therefore let e, ẽ ∈ E ∩ ω(u), e 6= ẽ. Then, by Axiom (A1), by the fact that
e, ẽ ∈ ω(u), and by Lemma 5.5 it holds that

ke = W (w, e) = W (ẽ, e) = W (e, ẽ) = W (w, ẽ) = kẽ.

This shows (5.8) and concludes the proof.
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5.2 Proof of the strong version

In this section we prove Propositions 3.3 and 3.4. This completes the proof
of Theorem 3.1. We finish by proving Theorem 1.2 (in the abstract setting
of Section 3).

Proof of Proposition 3.3. Let u ∈ X and w ∈ ω(u). Suppose, by contradiction,
that there is a non-equilibrium w∗ ∈ ω(w) and that γ(w) is not periodic.
Lemma 4.3 implies that π ◦ φσ is a planar flow on the set ω(w) ⊆ cl(γ(w)).

By Corollary 4.4, the point π(w∗) is not an equilibrium for π◦φσ.According
to Lemma 4.5 there exist a section C through π(w∗). Consider first π◦φσ(w)

and recall that by Lemma 4.3 the map σ → π ◦ φσ(w) is one-to-one since
γ(w) is not periodic. Let σn →∞ denote those positive times for which π ◦
φσn(w) ∈ C . Note that {π◦φσn(w)}∞n=1 are all distinct, and for n sufficiently
large y1 = π ◦ φσn(w) and y2 = π ◦ φσn+1(w) both lie in C0. Denote σ̃ =

σn+1 − σn, so that y2 = ψσ̃(y1). We apply the construction of Remark 4.7(i)
to these y1 and y2. In addition to J0 and J± we obtain three more Jordan
curves (the first two are the same as in the proof of Proposition 4.8)

G− = {ψσ(y1) : σ−1 ≤ σ ≤ σ̃ + σ−2 } ∪ `−
G+ = {ψσ(y1) : σ+1 ≤ σ ≤ σ̃ + σ+2 } ∪ `+
G0 = {ψσ(y1) : σ01 ≤ σ ≤ σ̃ + σ02} ∪ `0.

These three curves separate R2 into two open sets, say A1
j and A2

j , with
j ∈ {−, 0,+}. To fix notation, we require that J0 ⊂ A1

+ and J0 ⊂ A2
− and

J+ ⊂ A2
0, see Figure 4. In particular, this implies that A2

+ ⊂ A2
0 ⊂ A2

− and
A2

+ ∩ A1
− = ∅, as well as A2

+ ∩ A1
0 = ∅ and A1

− ∩ A2
0 = ∅. It follows from

the properties of J0 and J± described in Remark 4.7(ii) and invariance of
{ψσ(y1) : σ−1 ≤ σ ≤ σ̃ + σ+2 } that in forward time once a flow line is in A2

+

it can never enter A1
0, while in backward time once a flow line is in A1

− it can
never enter A2

0. We note that Remark 4.7(iii) implies that x1 = π ◦ φσn−δ(w)

lies in A1
−, while x2 = π ◦ φσn+1+δ(w) lies in A2

+. We therefore conclude
that, as illustrated in Figure 4, πω(w) ⊂ A2

0, while πα(w) ⊂ A1
0, hence

πω(w) ∩ πα(w) = ∅. We infer from Lemma 4.3 that α(w) ∩ ω(w) = ∅.
Now consider the orbit of u. The assumptions of Lemma 5.2 are satis-

fied and hence there exists a time σ∗, such that the curve {π◦φσ(u) : σ ≥ σ∗}
cannot cross the curve π ◦φσ(w). Furthermore, it follows from Remarks 4.6
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Figure 4: Sketch of the construction of A1
0 and A2

0. Note that J+ = A2
− ∩ A2

0

and J− = A1
+ ∩A1

0.

and 5.3 and the above construction, that once the flow line π ◦ φσ(u) is in
A2

+ it can never enter A1
0 (in forward time). Moreover, by Remark 4.7(ii),

once a flow line is in A2
0 then it must enter A2

+ in forward time, after which
it can no longer enter A1

0. On the other hand, since both ω(w) and α(w) are
contained in ω(u), the forward orbit π◦φσ(u) will have ω-limit points when
σ →∞ in both πα(w) ⊂ A1

0 and πω(w) ⊂ A2
0. This is a contradiction.

Proof of Proposition 3.4. See [6, Proposition 2]. Suppose that ω(u) strictly
contains a periodic orbit γ(p). Let V ⊆ X be a closed tubular neighborhood
of γ(p). Choose V small enough such that it does not contain equilibria and
such that ω(u) still has elements outside V. Since there are accumulation
points (for φσ(u) when σ goes to infinity) both inside and outside V, then
φσ(u) must enter and leave V infinitely often. Let σn → ∞ be a sequence
such that

p = lim
n→∞

φσn(u)

and such that φσ(u) leaves V between any two consecutive times σn. Let
In := [σn − αn, σn + βn] be the maximal time interval containing σn such
that

φσ(u) ∈ V for all σ ∈ In.

Since ∂V is closed, we may assume convergence (passing to a subsequence,
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if necessary) of φσn−αn(u). Note that σn−1 < σn − αn thus σn − αn → ∞.
Let

q := lim
n→∞

φσn−αn(u) ∈ ω(u).

We have that q ∈ ∂V. Moreover we may assume that αn + βn →∞ (at least
for a subsequence) since ω(u) contains a periodic orbit in the interior of V.
We have thus

ω(q) ⊆ cl(φσ(q)) ⊆ V, σ > 0.

By Proposition 3.3 we have that γ(q) is periodic. By construction γ(q) and
γ(p) are distinct and γ(q) is contained in V. By continuity of the flow and
the projection π, and compactness of V, πγ(p) and πγ(q) are close to each
other with the standard topology of R2, provided that we take the tubu-
lar neighborhood V sufficiently small. From this it follows that πγ(q) and
πγ(p) are nested closed curves. Reducing V to separate γ(p) from γ(q), a
periodic solution γ(r) can be constructed in the same way. Note once more
that πγ(q), πγ(p) and πγ(r) are nested closed curves. Applying Lemma 5.4
to the trajectories γ(p) and γ(q) we conclude that there exists a k ∈ Z such
that

W (p1, q1) = k,

for all p1 ∈ γ(p) and q1 ∈ γ(q). By continuity ofW (Axiom (A1)) this implies
that

W (p1, φσn−αn(u)) = k,

for all p1 ∈ γ(p) when n is big enough, since φσn−αn(u) → q ∈ γ(q). By
Assumption (A5) we get π ◦ φσ(u) 6∈ πγ(p) for every σ in the open interval
with endpoints σn − αn, σm − αm, provided n,m are chosen large enough.
Since σm − αm → ∞, as m → ∞, it follows that π ◦ φσ(u) 6∈ πγ(p), for
any σ large enough. In an analogous manner we can prove that, for σ large
enough, the curve π ◦ φσ(u) can never intersect πγ(q) and πγ(r), but this
is a contradiction since π ◦ φσ(u) has ω-limit points as σ → ∞ in the three
nested curves πγ(p), πγ(q), πγ(r).

Proposition 5.7. Let u ∈ X then

π : ω(u)→ π(ω(u))

is a homeomorphism onto its image. Hence π ◦ φσ is a flow on π(ω(u)).
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Proof. See also [6, Theorem 2]. By Axiom (A5) it is enough to show that
there exists a k0 ∈ Z such that

W (w1, w2) = k0, (5.9)

for all w1, w2 ∈ ω(u), w1 6= w2. We now apply Theorem 3.1 (Poincaré-
Bendixson). If ω(u) consists of a single periodic orbit, then (5.9) holds
by Lemma 5.4. We may therefore assume for the remainder of the proof
that for every w ∈ ω(u) we have α(w), ω(w) ⊆ E. If either w1 or w2 is an
equilibrium then (5.9) holds with k0 defined in Lemma 5.6. We may there-
fore assume that w1 6∈ E. Suppose now, by contradiction, that there exist
(w1, w2) ∈ Σ\∆. By Axioms (A4) and (A5), there exists an ε0 > 0, such that(
φσ(w1), φσ(w2)

)
6∈ Σ, for all σ ∈ (−ε0, ε0) \ {0} and

W (φσ
′
(w1), φσ

′
(w2)) < W (φσ(w1), φσ(w2))

for all σ ∈ (−ε0, 0) and all σ′ ∈ (0, ε0). Set σ = −ε and σ′ = ε, with
0 < ε < ε0. Since w1 ∈ ω(u), there exists σn →∞ such that

w1 = lim
n→∞

φσn(u),

and
0 < σn+1 − σn →∞, as n→∞.

Define σ̂n := (σn+1 − σn)→∞ then, passing to a subsequence if necessary,
the limits

e := lim
n→∞

φ−σ̂n(φ−ε(w2)) and ẽ := lim
n→∞

φσ̂n(φε(w2))

exist, and e, ẽ ∈ E, since α(w2) ⊆ E and ω(w2) ⊆ E. By Axiom (A1),
Lemma 4.1, Lemma 5.6 and the fact that w1 6∈ E we infer that, for n suffi-
ciently large (slightly shifting ε if necessary to make W well-defined for all

26



relevant pairs)

W (φε(w1), φε(w2)) < W (φ−ε(w1), φ−ε(w2))

= W (φσn+1−ε(u), φ−ε(w2))

≤ W (φσn+1−σ̂n−ε(u), φ−σ̂n−ε(w2))

= W (φσn−ε(u), e)

= W (φ−ε(w1), e)

= W (φ−ε(w1), ẽ)

= W (φε(w1), ẽ)

= W (φσn+1+ε(u), ẽ)

= W (φσ̂n+σn+ε(u), φσ̂n+ε(w2))

≤ W (φσn+ε(u), φε(w2))

= W (φε(w1), φε(w2)),

which is a contradiction. In the sixth and in the seventh equality we used
Lemma 5.6.

Since the Cauchy-Riemann Equations satisfy the Axioms (A1)-(A5) The-
orem 1.2 follows from Proposition 5.7.

6 Proofs of Propositions 2.1 and 2.3

In this section we give the proofs of Propositions 2.1 and 2.3. Consider the
operators

∂ = ∂s − J∂t and ∂ = ∂s + J∂t,

and recall the following regularity estimates:

Lemma 6.1. Let g be a function in ∈ C∞c (R × S1;R2). For every 1 < p < ∞,
there exists a constant Cp > 0, such that

||∇g||Lp(R×S1) ≤ Cp||∂̄g||Lp(R×S1). (6.1)

The same estimate holds for ∂ via t 7→ −t.

Proof. See [1], [5] [8], [9, appendix B].

Proof of Proposition 2.1. For a solution u ∈ X, we can write

∂u = −JF (t, u) = f(s, t), (6.2)
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where F, and therefore f , are uniformly bounded since for every u ∈ X we
have |u(s, t)| ≤ 1 for all (s, t) ∈ R× S1, i.e. u satisfies the a priori estimate

||u||L∞(R×S1) ≤ 1. (6.3)

Extend f and u via periodic extension in the t-direction to a function on R2.
By (6.3) we obtain the existence of a constant M > 0, such that

||f ||L∞(R2) ≤M. (6.4)

We use (6.1) to obtain the interior regularity estimates for the Cauchy-
Riemann operators.

Let K,L,G be compact sets contained in R2 such that K b L b G ⊂ R2,

and let ε be positive such that ε < dist(L, ∂G). By compactness, L can be
covered by finitely many open balls of radius ε/2 :

L ⊂
Nε⋃
i=1

Bε/2(xi).

Consider a partition of unity {ρε,xi}i=1,...,Nε on L subordinate to
{Bε(xi)}i=1,...,Nε

. In particular the supports of ρε,xi are contained in Bε(xi),
for every i = 1 . . . Nε. Then, for every u, every small ε > 0 and every
i = 1 . . . Nε, the function vε,i := ρε,xiu belongs to W k,p

0 (R2), for every p ≥ 1,

and every k ∈ N. Using the Poincaré inequality and Lemma 6.1 we get
(with C changing from line to line)

||vε,i||W 1,p(R2) = ||vε,i||W 1,p(Bε(xi)) ≤ C||vε,i||W 1,p
0 (Bε(xi))

≤ C||∂vε,i||Lp(Bε(xi))
≤ C||ρε,xi∂u||Lp(Bε(xi)) + C||u∂ρε,xi ||Lp(Bε(xi))
≤ C||∂u||Lp(G) + C||u||Lp(G).

(6.5)

As {ρε,xi}i=1,...,Nε
is a partition of unity it follows that

||u||W 1,p(L) =

∣∣∣∣∣
∣∣∣∣∣
Nε∑
i=1

vε,i

∣∣∣∣∣
∣∣∣∣∣
W 1,p(L)

≤
Nε∑
i=1

||vε,i||W 1,p(Bε(xi))
. (6.6)

By (6.5) and (6.6) we obtain

||u||W 1,p(L) ≤ Cp,L,G
(
||∂u||Lp(G) + ||u||Lp(G)

)
. (6.7)
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Combining (6.7) with (6.2), (6.3) and (6.4) yields

||u||W 1,p(L) ≤ Cp,L,G
(
||f ||Lp(G) + ||u||Lp(G)

)
≤ C1

p,L,G, (6.8)

where the constant C1
p,L,G depends on p, L,G, but not on u. By the Sobolev

compact embedding W 1,p(L) ↪→ C0(L), cf. [2], which implies that se-
quences {un} ⊂ X have convergent subsequences in C0

loc(L). Since the lat-
ter holds for every L ⊂ R2, the convergence is in C0

loc(R
2), and the limit u

is a continuous function. It remains to show that the limit u solves Equa-
tion (1.2). Consider a partition of unity of K b L, denoted {ρε,xi}i=1,...Nε ,
where 0 < ε < dist(K, ∂L). On balls Bε(xi) we obtain

||ρε,xiu||W 2,p(Bε) ≤ C||ρε,xiu||W 2,p
0 (Bε(xi))

≤ C||∂(ρε,xiu)||W 1,p(Bε(xi))

≤ C
(
||ρε,xi∂u||W 1,p(Bε(xi)) + ||u∂ρε,xi ||W 1,p(Bε(xi))

)
≤ C

(
||∂u||L∞(L) + ||∂u||W 1,p(L) + ||u||L∞(L) + ||u||W 1,p(L)

)
.

As in (6.6), using (6.2), we obtain

||u||W 2,p(K) ≤ C̃p,K,L,G
(
||f ||L∞(L) + ||f ||W 1,p(L) + ||u||L∞(L) + ||u||W 1,p(L)

)
.

(6.9)
To estimate the three terms ||f ||L∞(L), ||u||L∞(L) and ||u||W 1,p(L) we use (6.3),
(6.4), and (6.8). In order to control ||f ||W 1,p(L), differentiate the smooth vec-
tor field F :

fs(s, t) = (F (t, u))s = Dt,uX(t, u)(0, us)

ft(s, t) = (F (t, u))t = Dt,uX(t, u)(1, ut).

Both right-hand sides lie in Lp(L) and hence Df = (fs, ft) is in Lp(L). By
(6.9) there exists a constant C2

p,K,L,G, independent of u, such that

||u||W 2,p(K) ≤ C2
p,K,L,G.

By taking p > 2 the compact Sobolev embedding W 2,p(K) ↪→ C1(K) im-
plies that u ∈ X.

Proof of Proposition 2.3. As in the proof of Lemma 4.3 if suffices to show
that ι is injective. Suppose there exist u1, u2 ∈ X such that ι(u1) = ι(u2). By
definition of ι we have

u1(0, ·) = u2(0, ·). (6.10)
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Define v(s, t) := u1(s, t) − u2(s, t) for all (s, t) ∈ R × S1. By (6.10) we have
v(0, t) = 0 for all t ∈ S1. By smoothness of the vector field F we can write

F (t, u1) = F (t, u2) +R(t, u1, u2 − u1)(u2 − u1),

whereR is a smooth function of its arguments. Upon substitution this gives

vs − Jvt +A(s, t)v = 0, v(0, t) = 0 for all t ∈ S1, (6.11)

and A(s, t) = R(t, u1(s, t), v(s, t)) is (at least) continuous on R× S1. Evalu-
ating (6.11) at t = 0 we obtain,

vs − Jvt +A(s, t)v = 0, v(0, 0) = 0. (6.12)

Introducing complex coordinates z := s+ it, (6.12) becomes

∂zv +A(z)v = 0, v(0) = 0, (6.13)

where the operator ∂z := ∂s − i∂t is the standard anti-holomorphic deriva-
tive. We used the identification between the complex structure J in R2 and
i in C. Multiplying (6.13) by e

∫ z
0 A(ζ)dζ and defining

w(z) := e
∫ z
0 A(ζ)dζv(z),

gives
∂zw = 0, w(0) = 0,

which implies that w is analytic. The latter yields that either 0 is an isolated
zero for w, or there exists a δ > 0, such that w(z) = 0, on Uδ := {z ∈ C :

|z| ≤ δ}. By (6.11) we conclude that 0 cannot be an isolated zero for w,
hence w ≡ 0 in Uδ := {z ∈ C : |z| ≤ δ}. Repeating these arguments we
obtain that w(s, t) = 0 for all (s, t) ∈ R × S1 and hence v ≡ 0. This implies
u1 = u2, which concludes the proof.

Remark 6.2. The same proof can be carried out in case J is a smooth map
R × S1 → Sp(2,R) such that J2 = − Id. In this case one can prove that the
equation us − J(s, t)(ut − F (t, u)) = 0 can be transformed into (1.2) using
[8, Theorem 12, Appendix A.6].
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Floer homology, to appear in Journ. Diff. Eqns (2015).

31


