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Abstract

Ground state solutions of elliptic problems have been analyzed extensively in the theory of partial
differential equations, as they represent fundamental spatial patterns in many model equations. While
the results for scalar equations, as well as certain specific classes of elliptic systems, are comprehensive,
much less is known about these localized solutions in generic system of nonlinear elliptic equations.
In this paper we present a general method to prove constructively the existence of localized radially
symmetric solutions of elliptic systems on Rd. Such solutions are essentially described by systems
of non-autonomous ordinary differential equations. We study these systems using dynamical sys-
tems theory and computer-assisted proof techniques, combining a suitably chosen Lyapunov-Perron
operator with a Newton-Kantorovich type theorem. We demonstrate the power of this methodol-
ogy by proving specific localized radial solutions of the cubic Klein-Gordon equation on R3, the
Swift-Hohenberg equation on R2, and a three-component FitzHugh-Nagumo system on R2. These
results illustrate that ground state solutions in a wide range of elliptic systems are tractable through
constructive proofs.

Key words. Semilinear elliptic systems, Unbounded domains, Radial solutions, Computer-assisted proof,

Lyapunov-Perron operator, Newton-Kantorovich theorem

1 Introduction

The study of solutions of semilinear elliptic partial differential equations (PDEs) on Rd is vast and has
received a tremendous amount of attention since the middle of the twentieth century. The fact that these
PDEs are posed on all of Rd often forces radially symmetric solutions to exist, that is to say solutions
of the form U(x) = u((x2

1 + . . . + x2
d)

1/2). A canonical example of such a result is given by the scalar
equation

∆U + Up = 0, U = U(x) ∈ R, x ∈ Rd, (1)

for which it was proven in the case d ≥ 3 and critical exponent p = (d+ 2)/(d− 2) that all the positive
solutions are radially symmetric (e.g. see [1, 2, 3]). Existence of radial solutions for more general scalar
models

∆U + N(U) = 0, U = U(x) ∈ R, x ∈ Rd,

with N nonlinear, was proven using variational methods [4, 5, 6, 7], dynamical systems techniques [8],
shooting methods [9, 10] and moving plane techniques [11], while uniqueness was also extensively inves-
tigated [12, 13, 14, 15].
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The generalization of these methods to systems of elliptic equations is hindered by the fact that
variational techniques, shooting methods and the maximum principle are in general only available for
scalar equations. Thus, it is not surprising that existence results for radial solutions of systems of
semilinear elliptic equations are more sparse. Nevertheless, there are several examples of existence results
for radial solutions on Rd for systems with specific structures. For instance, cooperative systems [16]
or systems involving the notion of c-positive functions [17] (in both case, a form of maximum principle
holds), Lane-Emden systems [18, 19] and Hamiltonian systems [20]. It remains however a challenging
problem to obtain proofs of radial solutions for elliptic systems without any additional structure.

In this paper, we propose a general (computer-assisted) technique to constructively prove the existence
of localized radial solutions of elliptic semilinear systems of the form

∆U + N(U) = 0, U = U(x) ∈ Rq, x ∈ Rd, (2)

where N is a nonlinear function. For the sake of clarity and uniformity of the presentation, we assume
that N is polynomial; although, as made clear in Remark 1.4, this restriction may be lifted to study
certain non-polynomial elliptic systems via essentially the same methodology. Furthermore, since our
interest lies in localized patterns, we assume the existence of a zero of N, that is to say a constant
solution c ∈ Rq of (2), such that the Jacobian matrix DN(c) does not have any eigenvalues in [0,∞).
This hypothesis will be justified later. It suffices to say here that it corresponds to a well-defined notion
of hyperbolicity of the constant state. The condition is natural from that perspective, but does exclude
the case of a monomial nonlinearity like the one in (1).

We then look for solutions of the form U(x) = u(r(x)), where r(x)
def
= (x2

1 + . . . + x2
d)

1/2, with
asymptotic behaviour

lim
r→∞

u(r) = c and lim
r→∞

u′(r) = 0. (3)

The function u solves the second-order non-autonomous system of ordinary differential equations (ODEs)(
d2

dr2
+
d− 1

r

d

dr

)
u(r) + N(u(r)) = 0, u(r) ∈ Rq, r ∈ [0,∞). (4)

Our strategy for proving existence of localized radial solutions of (2) reduces to establishing solutions
of (4) satisfying the boundary condition u′(0) = 0 and asymptotic behaviour (3). We subdivide the
domain [0,∞) of u into the three subdomains [0, l1], [l1, l2] and [l2,∞), with 0 < l1 < l2, on which we
solve (4) with different methods, namely a Taylor expansion on [0, l1], a Chebyshev expansion on [l1, l2]
and a center-manifold parametrization (graph) on [l2,∞). Let us briefly describe each method separately,
as well as how they fit together.

For r ∈ [0, l1] we substitute a Taylor series into (4) and look for a solution (in the space of Taylor
series coefficients) of the resulting recurrence relation, where the leading Taylor coefficient u(0) is a priori
unknown.

For r ≥ l1, we rewrite (4) as a (2q + 1)-dimensional system of first-order polynomial autonomous
ODEs. This technique is commonly used in the literature (e.g. see [21, § 3]). More explicitly, we
introduce w(1), w(2), w(3) representing the maps r 7→ r−1, r 7→ u(r), r 7→ d

dru(r) respectively. Denoting

w = (w(1), w(2), w(3)), we obtain

d

dr
w(r) = f(w(r))

def
=

 −w(1)(r)2

w(3)(r)
−(d− 1)w(1)(r)w(3)(r)−N(w(2)(r))

 . (5)

For a fixed l2 > l1, we solve (5) on [l1, l2] using Chebyshev series.
Since the equilibrium c = (0, c, 0) ∈ R × Rq × Rq of (5) represents the constant equilibrium c ∈ Rq

of (4) in the limit r →∞, a localized radial solution converges to c in system (5). As explained in detail
in Section 2, the assumption that DN(c) does not have eigenvalues in [0,∞) implies that c has a q + 1-
dimensional center-stable manifold. Revisiting Chapter 4.1 of [22], we use a Lyapunov-Perron operator to
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(a) (b)

Figure 1: Numerical localized radial stationary solutions of the cubic Klein-Gordon equation (6) on R3 at
parameter values β1 = β2 = 1. (a) This approximation is proven to be 2.9× 10−7 close (in C0-norm) to
a strictly positive localized radial stationary solution. (b) This approximation is proven to be 5.5× 10−6

close (in C0-norm) to a localized radial stationary solution with one zero.

control the center-stable manifold of c. In comparison with the estimates in [22], in Section 2 we leverage
our precise knowledge of the center manifold, and the dynamics therein, to widen the verifiable domain
of the local graph of the center-stable manifold and to improve control on the location of the manifold in
terms of (generalized) Lipschitz bounds.

The three strategies on the three subintervals are combined to define a projected boundary value
problem (BVP) with a boundary condition at r = l2 forcing the solution to lie in a center-stable manifold.
The final step is to solve the BVP with a Newton-Kantorovich type theorem of which the hypotheses
are verified with the help of a computer. This computer-assisted proof technique, referred to as the
radii polynomial approach, is set in a Banach space of the coefficients of some series representation of the
solution, see e.g. [23, 24, 25, 26] for some relevant works. As shown in Section 3, the (generalized) Lipschitz
bounds on the center-stable manifold that originate from the Lyapunov-Perron method fit seamlessly into
the estimates needed for the Newton-Kantorovich type method. This leads to a constructive proof and
yields a rigorous C0-error bound on a numerical approximation of the desired localized radial solution of
(2). To illustrate the efficacy of the method we present three examples, for which the details are provided
in Section 4.

Example 1. The cubic Klein-Gordon equation

Utt = ∆U − U + β1U
2 + β2U

3, U = U(t, x) ∈ R, t ≥ 0, x ∈ R3, (6)

with parameters β1, β2 ∈ R, is a relativistic wave equation serving as a model in scalar field theory (see
e.g. [27]). Ground states of (6) solve (2) with q = 1, d = 3 and N(U) = −U + β1U

2 + β2U
3. It is known

that for any positive values of β2 and any given integer m ≥ 0, there exists a localized radial stationary
solution of (6) with exactly m zeros (see e.g. [8]). We prove the following constructive existence result,
see Section 4.1.

Theorem 1.1. For β1 = β2 = 1, there exist two distinct localized radial stationary solutions of the Klein-
Gordon equation (6) on R3. Both solutions lie, respectively, within a distance 2.9× 10−7 and 5.5× 10−6

(in the C0-norm) of their numerical approximation depicted in Figure 1.
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Figure 2: Numerical stationary ring of the Swift-Hohenberg equation (7) on R2 at parameter values
(β1, β2, β3, β4) = (− 3

5 ,
√

6,− 1
10 , 1). This approximation is proven to be 2.4× 10−5 close (in C0-norm) to

a true localized radial stationary solution.

Example 2. The Swift-Hohenberg equation on R2

Ut = −(β4 + ∆)2U + β1U + β2U
2 + β3U

3, U = U(t, x) ∈ R, t ≥ 0, x ∈ R2, (7)

with parameters β1, β2, β3, β4 ∈ R, was introduced in [28] to model thermal fluctuations. Notably, the
Swift-Hohenberg equation has been studied extensively in the field of pattern formation. Ground states
of (7) solve (2) with q = 2, d = 2 and N(U1, U2) = (β4U1 − U2, β4U2 − β1U1 − β2U

2
1 − β3U

3
1 ). Small

amplitude existence results for localized stationary rings of (7) were obtained in [21]. We prove the
following constructive large-amplitude existence result, see Section 4.2.

Theorem 1.2. For (β1, β2, β3, β4) = (− 3
5 ,
√

6,− 1
10 , 1), there exists a localized radial stationary solution

of the Swift-Hohenberg equation (7) on R2. This solution lies within distance 2.4×10−5 (in the C0-norm)
of the numerical approximation depicted in Figure 2.

Example 3. Consider the three-component FitzHugh-Nagumo type equation
(U1)t = ε2∆U1 + U1 − U3

1 − ε(β1 + β2U2 + β3U3),

τ(U2)t = ∆U2 + U1 − U2,

θ(U3)t = β2
4∆U3 + U1 − U3,

Ui = Ui(t, x) for i = 1, 2, 3, t ≥ 0, x ∈ R2,

(8)
with parameters, τ, θ, ε > 0, β1, β2, β3 ∈ R and β4 > 0. Originally, the FitzHugh-Nagumo model was
introduced in [29] as a simple excitable-oscillatory system to describe nerve impulses in an axon. For the
three-component variant (8) ground states solve (2) with q = 3, d = 2 and N(U) =

(
ε−2(U1 − U3

1 ) −
ε−1(β1 + β2U2 + β3U3), U1 − U2, β

−2
4 (U1 − U3)

)
. For 0 < ε� 1 there exist stationary planar radial spots

of (8), see e.g. Theorem 1.3 in [30]. This result requires ε to be asymptotically small. Our method does
not impose any condition on the smallness of ε which, to the best of our knowledge, constitutes a novel
result. We prove the following constructive existence result, see Section 4.3.

Theorem 1.3. For ε = 3
10 and (β1, β2, β3, β4) = ( 1

2 ,
1
2 , 1, 3), there exists a localized radial stationary

solution of the three-component FitzHugh-Nagumo type equation (8) on R2. This solution lies within
distance 9.8× 10−7 (in the C0-norm) of the numerical approximation depicted in Figure 3.

All computational aspects are implemented in Julia (cf. [31]) via the package RadiiPolynomial.jl
(cf. [32]) which relies on the package IntervalArithmetic.jl (cf. [33]) for rigorous floating-point computa-
tions. The code is available at [34].
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(a) (b) (c)

Figure 3: Numerical stationary planar radial spot of the three-component FitzHugh-Nagumo type equa-
tion (8) on R2 at parameter values ε = 3

10 and (β1, β2, β3, β4) = ( 1
2 ,

1
2 , 1, 3); the three components are

represented in the subfigures (a), (b) and (c), respectively. This approximation is proven to be 9.8×10−7

close (in C0-norm) to a true localized radial stationary solution.

Remark 1.4 (The case of non-polynomial nonlinearities). If the nonlinearity N appearing in (4) is
non-polynomial and involves elementary functions (namely, exponentials, logarithms, algebraic functions
or compositions thereof), then a change of coordinates may be introduced to transform (4) into a higher
dimensional system of polynomial ODEs (e.g. see [35, 36, 37]). The approach proposed in the present
paper may be readily adapted, although with some additional work in extending the construction of the
center-stable manifold.

The paper is organized as follows. In Section 2 we obtain a Lipschitz error bound for the center-stable
manifold via Lyapunov-Perron’s method. In Section 3 we present the projected boundary value problem
on [0, l2], which connects at r = l2 to the center-stable manifold. This boundary value problem is then
split into two subintervals, as explained above, and subsequently solved using a Newton-Kantorovich
type theorem. Section 4 presents applications where we rigorously compute localized radial solutions of
the cubic Klein-Gordon equation on R3, the Swift-Hohenberg equation on R2 and a three-components
FitzHugh-Nagumo type equation on R2.

2 Local enclosure of the centre-stable manifold

In this section, we employ the Lyapunov-Perron method to find a Lipschitz bound for the local graph
of a center-stable manifold of the equilibrium c = (0, c, 0) of (5). We note that we could have opted to
apply the results in Chapter 4.1 of [22], which are valid for general local invariant manifolds, directly to
our situation. However, for the center-stable manifold in our setting we can obtain improved bounds by
incorporating the specific splitting of the center direction and the stable directions in the estimates.

Linearizing (5) about c yields

Df(c) =

0 0 0
0 0 I
0 −DN(c) 0

 .

Evidently, 0 is an eigenvalue, which originates from the removal of the non-autonomous term r−1 in (4).
Hence, a localized solution to (4) is, in the context of (5), a trajectory in a center-stable manifold of c.

The other eigenvalues of Df(c) are the square roots of the eigenvalues of −DN(c). Since we assumed
DN(c) has no eigenvalues in [0,∞), the Jacobian Df(c) has no eigenvalues on the imaginary axis, apart
from the simple 0 eigenvalue already mentioned. Furthermore, when 0 6= λ ∈ C is an eigenvalue, so is −λ.
To reduce technicalities and simplify notation, we continue the analysis under the assumption that all
stable and unstable eigenvalues of Df(c) are simple. This is the generic case. We stress that the analysis
below can be generalized in a relatively straightforward manner to the case of eigenvalues with higher
multiplicity and associated generalized eigenvectors.
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Let Λ : Cq → Cq denote the diagonal matrix of eigenvalues λ1, . . . , λq of Df(c) with positive real
part, and let Γ : Cq → Cq be the matrix satisfying −DN(c)Γ = ΓΛ2. It follows that

Df(c)

 0
Γ
ΓΛ

 =

 0
ΓΛ
ΓΛ2

 =

 0
Γ
ΓΛ

Λ.

For the corresponding eigenvalues −Λ with negative real part we have

Df(c)

 0
Γ
−ΓΛ

 =

 0
−ΓΛ

ΓΛ2

 =

 0
Γ
−ΓΛ

 (−Λ).

Therefore, the matrix of eigenvectors of Df(c) is given by

M =

1 0 0
0 Γ Γ
0 −ΓΛ ΓΛ

 ,

and its inverse is

M−1 =

1 0 0
0 1

2Γ−1 − 1
2Λ−1Γ−1

0 1
2Γ−1 1

2Λ−1Γ−1

 .

Since

M−1f(c +M(x, y, z))

= M−1Df(c)M(x, y, z) +M−1
(
f(c +M(x, y, z))−Df(c)M(x, y, z)

)
=

 0
−Λy
Λz

+M−1

 −x2

0
−(d− 1)xΓΛ(−y + z)−N(c+ Γ(y + z)) +DN(c)Γ(y + z)

 ,

the transformed “normal” form of (5) reads

d

dr

xy
z

 =

 −x2

−Λy + ψ(x, y, z)
Λz − ψ(x, y, z)

 , (9)

where x ∈ R is the center variable, y, z ∈ Cq, and

ψ(x, y, z)
def
=

1

2

(
(d− 1)x(−y + z) + Λ−1Γ−1

(
N(c+ Γ(y + z))−DN(c)Γ(y + z)

))
∈ Cq. (10)

The domain of the local graph of the desired center-stable manifold is a bounded connected subset
of [0,∞) × Cq containing the stationary point 0 of (9). We note that the positive x-axis is invariant,
corresponding to the equilibrium state u = c. The function space modeling the local center-stable
manifold is given by

Gδ,µ,Lx,Ly
def
=
{
α : {(x, y) ∈ [0,∞)× Cq : x ∈ [0, δ], |y|Cq ≤µ} → Cq :

α(x, 0) = 0,

|α(x1, y)− α(x2, y)|Cq ≤ Lx|y|Cq |x1 − x2|,
|α(x, y1)− α(x, y2)|Cq ≤ Ly|y1 − y2|Cq

}
.
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The positive parameters δ and µ controlling the size of the chart, as well as the Lipschitz constants Ly
and the “mixed term” Lipschitz constant Lx, will be chosen later, and the choice will depend on the
application. Notably, Gδ,µ,Lx,Ly equipped with the norm

|α|Gδ,µ,Lx,Ly
def
= sup

x∈[0,δ],
0<|y|Cq≤µ

|α(x, y)|Cq
|y|Cq

,

is a Banach space (cf. Chapter 4.1, Proposition A of [22]).

Remark 2.1. Throughout this paper, we always endow Cq with the infinity norm, which we keep denoting
by |y|Cq

def
= maxi=1,...,q |yi|. Also, we denote by B(X,Y ) the set of bounded linear operators from X to

Y and by | · |B(X,Y ) the induced operator norm.

In the following, we will need estimates on the linear flow. To this end, defining

λ̂
def
= min

i=1,...,q
<(λi), (11)

we recall that
|e−rΛ|B(Cq,Cq) ≤ e−λ̂r, for all r ≥ 0.

Under a set of explicit constraints on δ, µ,Lx,Ly, the following proposition guarantees that Gδ,µ,Lx,Ly
contains the local graph of the center-stable manifold of the stationary point 0 of (9). The trajectories
in this forward invariant manifold converge to 0 as r tends to ∞.

Proposition 2.2. Let δ, µ,Lx,Ly > 0. Let ψ̂ = ψ̂(µ,Ly) > 0 be a bound satisfying

ψ̂ ≥ 1

2
sup

|y|Cq≤µ, |z|Cq≤Lyµ

∣∣∣Λ−1Γ−1
(
DN(c+ Γ(y + z))−DN(c)

)
Γ
∣∣∣
B(Cq,Cq)

. (12)

Assume that the following three inequalities hold:

λ̂ > (d−1
2 δ + ψ̂)(1 + Ly), (13a)

Lx ≥

 1

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

+

(
d−1

2 δ + ψ̂
)

(1 + Ly)

(2λ̂− ( 3(d−1)
2 δ + 2ψ̂)(1 + Ly))(2λ̂− (d−1

2 δ + ψ̂)(1 + Ly))


×
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
, (13b)

Ly ≥
(d−1

2 δ + ψ̂)(1 + Ly)

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

. (13c)

Then, Gδ,µ,Lx,Ly contains the local graph α̃ of a center-stable manifold of the stationary point 0 of (9).
Additionally, for any initial condition (x(0), y(0), z(0)) = (ξ, η, α̃(ξ, η)) such that ξ ∈ [0, δ] and |η|Cq ≤ µ,
there exists a unique solution (x(r), y(r), z(r)) of (9) for all r ≥ 0 which satisfies z(r) = α̃(x(r), y(r)),
for all r ≥ 0, and limr→∞(x(r), y(r), z(r)) = 0.

Proof. We follow the proof strategy of [22, §4.1] adapted to our context. Given a function α ∈ Gδ,µ,Lx,Ly ,
we denote by (x(r; ξ), yα(r; ξ, η)) the unique solution of the initial value problem

dx

dr
= −x2,

dy

dr
= −Λy + ψ(x, y, α(x, y)),

(x(0), y(0)) = (ξ, η),
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where ξ ∈ [0, δ] and |η|Cq ≤ µ.
The proof essentially consists in showing that the Lyapunov-Perron operator, defined formally by

[GLP(α)](ξ, η)
def
=

∫ ∞
0

e−Λrψ
(
x(r; ξ), yα(r; ξ, η), α

(
x(r; ξ), yα(r; ξ, η)

))
dr, (14)

satisfies the assumptions of the Banach Fixed-Point Theorem on Gδ,µ,Lx,Ly .
On the one hand, the flow of x is known exactly to be (with initial condition x(0) = ξ ≥ 0)

x(r; ξ) =
ξ

1 + ξr
≥ 0. (15)

In principle, one could carry on this expression throughout the estimates. However, the resulting expres-
sions involve exponential integrals and are laborious to work with in practice. Henceforth, we resort to
the bounds

x(r; ξ) ≤ ξ and |x(r; ξ1)− x(r; ξ2)| ≤ |ξ1 − ξ2|, for all ξ, ξ1, ξ2 ∈ [0, δ].

On the other hand, the flow of the y-variable (with initial condition x(0) = ξ and y(0) = η) is only
accessible through an implicit variation of constant formula

yα(r; ξ, η) = e−Λrη +

∫ r

0

e−Λ(r−s)ψ
(
x(s; ξ), yα(s; ξ, η), α

(
x(s; ξ), yα(s; ξ, η)

))
ds. (16)

We will now derive a series of estimates which will help to establish that GLP is a contraction on
Gδ,µ,Lx,Ly . We start with an estimate on the change in ψ when taking different initial conditions (ξ1, η1)
and (ξ2, η2) for the same (but arbitrary) α ∈ Gδ,µ,Lx,Ly . Indeed, an application of the Mean Value Theorem
yields, after some bookkeeping and by using also the triangle inequality, that, as long as |yα(r, ξi, ηi)|Cq ≤
µ for i = 1, 2, we have∣∣∣ψ(x(r; ξ1), yα(r; ξ1, η1), α

(
x(r; ξ1), yα(r; ξ1, η1)

))
− ψ

(
x(r; ξ2), yα(r; ξ2, η2), α

(
x(r; ξ2), yα(r; ξ2, η2)

))∣∣∣
Cq

≤ d−1
2 (1 + Ly)|yα(r; ξ2, η2)|Cq |x(r; ξ1)− x(r; ξ2)|

+
(
d−1

2 δ + ψ̂
)
|yα(r; ξ1, η1)− yα(r; ξ2, η2)|Cq

+
(
d−1

2 δ + ψ̂
)
|α(x(r; ξ1), yα(r; ξ1, η1))− α(x(r; ξ2), yα(r; ξ2, η2))|Cq

≤ d−1
2 (1 + Ly)|yα(r; ξ2, η2)|Cq |x(r; ξ1)− x(r; ξ2)|

+
(
d−1

2 δ + ψ̂
)
|yα(r; ξ1, η1)− yα(r; ξ2, η2)|Cq

+
(
d−1

2 δ + ψ̂
)

(Lx|yα(r; ξ2, η2)|Cq |x(r; ξ1)− x(r; ξ2)|+ Ly|yα(r; ξ1, η1)− yα(r; ξ2, η2)|Cq )

≤
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
|yα(r; ξ2, η2)|Cq |ξ1 − ξ2|

+
(
d−1

2 δ + ψ̂
)

(1 + Ly) |yα(r; ξ1, η1)− yα(r; ξ2, η2)|Cq . (17)

Similarly, we estimate the change in ψ when taking different α1, α2 ∈ Gδ,µ,Lx,Ly with the same
initial condition (ξ, η). Again, an application of the Mean Value Theorem implies that, as long as
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|yαi(r, ξ, η)|Cq ≤ µ for i = 1, 2, we have∣∣∣ψ(ξ, yα1(r; ξ, η), α1

(
ξ, yα1(r; ξ, η)

))
− ψ

(
ξ, yα2(r; ξ, η), α2

(
ξ, yα2(r; ξ, η)

))∣∣∣
Cq

≤
(
d−1

2 δ + ψ̂
)
|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq

+
(
d−1

2 δ + ψ̂
)
|α1(ξ, yα1(r; ξ, η))− α2(ξ, yα2(r; ξ, η))|Cq

≤
(
d−1

2 δ + ψ̂
)
|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq

+
(
d−1

2 δ + ψ̂
)(
Ly|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq + |α1 − α2|Gδ,µ,Lx,Ly |yα2(r; ξ, η)|Cq

)
=
(
d−1

2 δ + ψ̂
)(

(1 + Ly)|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq + |α1 − α2|Gδ,µ,Lx,Ly |yα2(r; ξ, η)|Cq
)
. (18)

Then, from the variation of constant formula (16), we have

eλ̂r|yα(r; ξ, η)|Cq ≤ |η|Cq +

∫ r

0

eλ̂s
∣∣∣ψ(x(s; ξ), yα(s; ξ, η), α

(
x(s; ξ), yα(s; ξ, η)

))∣∣∣
Cq
ds

≤ |η|Cq +

(
d− 1

2
δ + ψ̂

)
(1 + Ly)

∫ r

0

eλ̂s|yα(r; ξ, η)|Cq ds,

where the last inequality follows from (17) with ξ1 = ξ2 = ξ, η1 = η, η2 = 0, so that yα(r; ξ2, η2) = 0
since α ∈ Gδ,µ,Lx,Ly and ψ(x, 0, 0) = 0 for any x ∈ [0, δ]. By Grönwall’s inequality, we obtain

|yα(r; ξ, η)|Cq ≤ |η|Cqe(( d−1
2 δ+ψ̂)(1+Ly)−λ̂)r. (19)

Therefore, ∫ ∞
0

e−λ̂r|yα(r; ξ, η)|Cq dr ≤
1

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

|η|Cq . (20)

Due to the constraint (13a), we conclude from (19) that yα decays to 0 at exponential rate, and
|yα(r; ξ, η)|Cq ≤ |η|Cq ≤ µ for all r ≥ 0. We infer that the estimates (17) and (18) hold for all r ≥ 0.

It then follows that ψ
(
ξ, yα(r; ξ, η), α

(
ξ, yα(r; ξ, η)

))
tends to 0 as r → ∞, hence the Lyapunov-Perron

operator GLP in (14) is well-defined.
Next, we estimate the difference between two solutions of dy

dr = −Λy + ψ(x, y, α(x, y)) with different
initial conditions. We first take initial data with different values for ξ only. From the variation of constant
formula (16) we have

eλ̂r|yα(r; ξ1, η)− yα(r; ξ2, η)|Cq

≤
∫ r

0

eλ̂s
[(

d−1
2 (1 + Ly) +

(
d−1

2 δ + ψ̂
)
Lx
)
|yα(r; ξ2, η)|Cq |ξ1 − ξ2|

+
(
d−1

2 δ + ψ̂
)

(1 + Ly) |yα(r; ξ1, η)− yα(r; ξ2, η)|Cq
]
ds

≤
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
|η|Cq |ξ1 − ξ2|

e( d−1
2 δ+ψ̂)(1+Ly)r − 1

(d−1
2 δ + ψ̂)(1 + Ly)

+
(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ r

0

eλ̂s|yα(r; ξ1, η)− yα(r; ξ2, η)|Cq ds,

where the first inequality follows from (17) with η1 = η2 = η and the second inequality is inferred from
(19). By Grönwall’s inequality, we obtain

|yα(r; ξ1, η)− yα(r; ξ2, η)|Cq

≤
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
|η|Cq |ξ1 − ξ2|

e( d−1
2 δ+ψ̂)(1+Ly)r − 1

(d−1
2 δ + ψ̂)(1 + Ly)

e(( d−1
2 δ+ψ̂)(1+Ly)−λ̂)r.
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Therefore, ∫ ∞
0

e−λ̂r|yα(r; ξ1, η)− yα(r; ξ2, η)|Cq dr

≤
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx

(2λ̂− ( 3(d−1)
2 δ + 2ψ̂)(1 + Ly))(2λ̂− (d−1

2 δ + ψ̂)(1 + Ly))
|η|Cq |ξ1 − ξ2|. (21)

Similarly, for initial data with different values for η, the variation of constant formula (16) gives

eλ̂r|yα(r; ξ, η1)− yα(r; ξ, η2)|Cq

≤ |η1 − η2|Cq +
(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ r

0

eλ̂s|yα(r; ξ, η1)− yα(r; ξ, η2)|Cq ds,

where the inequality follows from (17) with ξ1 = ξ2 = ξ. By Grönwall’s inequality, we obtain

|yα(r; ξ, η1)− yα(r; ξ, η2)|Cq ≤ |η1 − η2|Cqe(( d−1
2 δ+ψ̂)(1+Ly)−λ̂)r.

Therefore, ∫ ∞
0

e−λ̂r|yα(r; ξ, η1)− yα(r; ξ, η2)|Cq dr ≤
1

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

|η1 − η2|Cq . (22)

Repeating this process one last time for two solutions with the same initial data but different α, from
the variation of constant formula (16) we have that

eλ̂r|yα1
(r; ξ, η)− yα2

(r; ξ, η)|Cq ≤
∫ r

0

eλ̂s
(
d−1

2 δ + ψ̂
) [

(1 + Ly)|yα1
(r; ξ, η)− yα2

(r; ξ, η)|Cq

+ |α1 − α2|Gδ,µ,Lx,Ly |yα2
(r; ξ, η)|Cq

]
ds

≤
(
d−1

2 δ + ψ̂
) e( d−1

2 δ+ψ̂)(1+Ly)r − 1

(d−1
2 δ + ψ̂)(1 + Ly)

|α1 − α2|Gδ,µ,Lx,Ly |η|Cq

+
(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ r

0

eλ̂s|yα1
(r; ξ, η)− yα2

(r; ξ, η)|Cq ds,

where the first inequality follows from (18) and the second inequality is inferred from (19). By Grönwall’s
inequality, we obtain

|yα1
(r; ξ, η)− yα2

(r; ξ, η)|Cq

≤
(
d−1

2 δ + ψ̂
)
|α1 − α2|Gδ,µ,Lx,Ly |η|Cq

e( d−1
2 δ+ψ̂)(1+Ly)r − 1

(d−1
2 δ + ψ̂)(1 + Ly)

e(( d−1
2 δ+ψ̂)(1+Ly)−λ̂)r.

Therefore,∫ ∞
0

e−λ̂r|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq dr

≤
d−1

2 δ + ψ̂

(2λ̂− ( 3(d−1)
2 δ + 2ψ̂)(1 + Ly))(2λ̂− (d−1

2 δ + ψ̂)(1 + Ly))
|α1 − α2|Gδ,µ,Lx,Ly |η|Cq . (23)

We are now ready to show that GLP is a contraction on Gδ,µ,Lx,Ly . We start by establishing that GLP

maps Gδ,µ,Lx,Ly to itself. Since α ∈ Gδ,µ,Lx,Ly and ψ(x, 0, 0) = 0, we have that yα = 0 whenever η = 0. It
follows that

[GLP(α)](ξ, 0) =

∫ ∞
0

e−Λrψ(x(r; ξ), 0, α(x(r; ξ), 0)) dr =

∫ ∞
0

e−Λrψ(x(r; ξ), 0, 0) dr = 0.
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Furthermore, we have that∣∣[GLP(α)](ξ1, η)− [GLP(α)](ξ2, η)
∣∣
Cq

≤
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
|ξ1 − ξ2|

∫ ∞
0

e−λ̂r|yα(r; ξ2, η)|Cq dr

+
(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ ∞
0

e−λ̂r|yα(r; ξ1, η)− yα(r; ξ2, η)|Cq dr

≤

 1

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

+

(
d−1

2 δ + ψ̂
)

(1 + Ly)

(2λ̂− ( 3(d−1)
2 δ + 2ψ̂)(1 + Ly))(2λ̂− (d−1

2 δ + ψ̂)(1 + Ly))


×
(
d−1

2 (1 + Ly) +
(
d−1

2 δ + ψ̂
)
Lx
)
|η|Cq |ξ1 − ξ2|

≤ Lx|η|Cq |ξ1 − ξ2|,

where the first inequality follows from (17) with η1 = η2 = η, the second inequality follows from (20) and
(21), while the last inequality follows from the constraint (13b). Similarly,

[
GLP(α)](ξ, η1)− [GLP(α)](ξ, η2)

∣∣
Cq ≤

(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ ∞
0

e−λ̂r|yα(r; ξ, η1)− yα(r; ξ, η2)|Cq dr

≤
(d−1

2 δ + ψ̂)(1 + Ly)

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)

|η1 − η2|Cq

≤ Ly|η1 − η2|Cq ,

where the first inequality follows from (17) with ξ1 = ξ2 = ξ, the second inequality follows from (22) and
the last inequality follows from the constraint (13c). Hence, GLP maps Gδ,µ,Lx,Ly to itself.

Next, we prove that GLP is a contraction on Gδ,µ,Lx,Ly :∣∣[GLP(α1)](ξ, η)− [GLP(α2)](ξ, η)
∣∣
Cq

≤
(
d−1

2 δ + ψ̂
)

(1 + Ly)

∫ ∞
0

e−λ̂r|yα1(r; ξ, η)− yα2(r; ξ, η)|Cq dr

+
(
d−1

2 δ + ψ̂
)
|α1 − α2|Gδ,µ,Lx,Ly

∫ ∞
0

e−λ̂r|yα2(r; ξ, η)|Cq dr

≤


(
d−1

2 δ + ψ̂
)

(1 + Ly)

(2λ̂− ( 3(d−1)
2 δ + 2ψ̂)(1 + Ly))(2λ̂− (d−1

2 δ + ψ̂)(1 + Ly))
+

1

2λ̂− (d−1
2 δ + ψ̂)(1 + Ly)


×
(
d−1

2 δ + ψ̂
)
|α1 − α2|Gδ,µ,Lx,Ly |η|Cq

≤

[
1−

d−1
2 (1 + Ly)

Lx

]
|α1 − α2|Gδ,µ,Lx,Ly |η|Cq ,

where the first inequality follows from (18), the second inequality is inferred from (20) and (23), while
the last inequality follows from (13b).

Therefore, we can apply the Banach Fixed-Point Theorem to GLP, which yields a unique fixed-point
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α̃ ∈ Gδ,µ,Lx,Ly . Since

d

dr

(
e−Λrα̃

(
x(r; ξ),yα̃(r; ξ, η)

))
=

d

dr

(
e−Λr[GLP(α̃)](x(r; ξ), yα̃(r; ξ, η))

)
=

d

dr

∫ ∞
0

e−Λ(s+r)ψ
(
x(s+ r; ξ), yα̃(s+ r; ξ, η), α̃

(
x(s+ r; ξ), yα̃(s+ r; ξ, η)

))
ds

=
d

dr

∫ ∞
r

e−Λsψ
(
x(s; ξ), yα̃(s; ξ, η), α̃

(
x(s; ξ), yα̃(s; ξ, η)

))
ds

= −e−Λrψ
(
x(r; ξ), yα̃(r; ξ, η), α̃

(
x(r; ξ), yα̃(r; ξ, η)

))
,

we have that

d

dr
α̃
(
x(r; ξ), yα̃(r; ξ, η)

)
= Λα̃

(
x(r; ξ), yα̃(r; ξ, η)

)
− ψ

(
x(r; ξ), yα̃(r; ξ, η), α̃

(
x(r; ξ), yα̃(r; ξ, η)

))
.

Hence
(
x(r; ξ), yα̃(r; ξ, η), α̃

(
x(r; ξ), yα̃(r; ξ, η)

))
solves (9) for all r ≥ 0, which shows that the local graph

of α̃ is an invariant manifold. As mentioned before, it follows from (19) and the constraint (13a)
that yα̃(r; ξ, η) decays to 0 as r → ∞. Likewise, limr→∞ x(r; ξ) = 0 by (15). Finally, by continuity
limr→∞ z(r) = limr→∞ α̃

(
x(r; ξ), yα̃(r; ξ, η)

)
= α̃(0, 0) = 0.

In conclusion of this section, we highlight that Proposition 2.2 not just provides bounds on the local
graph of the center-stable manifold, but also describes the dynamics inside this invariant manifold: it is
comprised of solutions of (9) which converge to the stationary point 0. Therefore, a localized solution
of (4), limiting to the equilibrium c, yields a trajectory in this local center-stable manifold.

3 The Newton-Kantorovich argument

We begin this section by assuming that there exist δ, µ,Lx,Ly > 0 such that the hypotheses of Proposi-
tion 2.2 are verified, yielding the existence of a local graph α̃ ∈ Gδ,µ,Lx,Ly of a center-stable manifold of
the stationary point 0 of (9). As presented in Section 3.1, this allows introducing a nonlinear zero-finding
problem whose solution corresponds to a localized radial solution of (2). Constructive existence of a zero
of F , defined in (31), is proven using a Newton-Kantorovich argument which we now briefly overview,
see Section 3.2 for details.

The starting point of the argument is a general nonlinear map F defined on a Banach space (X, | · |X)
for which a proof of existence of a zero is desired. Considering a finite dimensional projection, one
computes a numerical approximation x̄ such that F (x̄) ≈ 0. An injective linear operator A is then
constructed such that AF : X → X and such that |I − ADF (x̄)|B(X,X) < 1 (hence, A serves as an
approximate inverse for the Fréchet derivative DF (x̄)). Next, one defines the Newton-like operator
T (x)

def
= x − AF (x), and proves that there exists a radius ρ̄ > 0 such that T : cl(Bρ̄(x̄)) → cl(Bρ̄(x̄))

is a contraction, where cl(Bρ̄(x̄)) is the closed ball of radius ρ̄ centered at x̄. The Banach Fixed-Point
Theorem yields the existence of a unique x̃ ∈ cl(Bρ̄(x̄)) such that x̃ = T (x̃) = x̃−AF (x̃). By injectivity
of A, the fixed point x̃ of T is the unique zero of F in cl(Bρ̄(x̄)). For this to work in practice, sufficient
and computable, explicit conditions for the verification that T (cl(Bρ̄(x̄)) ⊂ cl(Bρ̄(x̄)) and that T is
a contraction need to be derived, see the Newton-Kantorovich Theorem 3.2. The hypotheses of this
theorem are finally verified with the computer, yielding a (computer-assisted) proof of existence.

The above general framework falls in the field of computer-assisted proofs (also called rigorous com-
putations or rigorous numerics) in nonlinear analysis. Examples of early pioneering works in the field of
computer-assisted proofs in dynamics is the proof of the universality of the Feigenbaum constant [38] and
the proof of existence of the strange attractor in the Lorenz system [39]. Several computer-assisted proofs
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of existence of solutions to PDEs have also been presented in the last decades, including eigenvalues en-
closure methods [40, 41], self-consistent a priori bounds [42, 43], a priori error estimates for finite element
approximations combined with the Schauder fixed point theorem [44], and topological methods based on
Conley index theory [45, 46]. We refer the interested reader to the survey papers [47, 48, 49, 50, 51], as
well as the recent book [52].

Let us now introduce a zero-finding problem of the form F ( · ; α̃) = 0 whose solution corresponds to
a localized radial solution of (2).

3.1 Formulation of the zero-finding problem

For the formulation of the zero-finding problem we will split the domain [0,∞) of the function u into
subintervals. First, near r = 0 we set out to solve (4) by taking advantage of the analyticity of the
solution. Let ` > 0 represent an anticipated (lower bound on the) radius of convergence of the power
series representation of the localized radial solution. We rescale [0, `] to [0, 1] by setting u(r) = v(`r) and
write

v(r)
def
= {v}0 +

∑
n≥2

{v}nrn, for all r ∈ [0, 1].

Solving (4) with the initial condition (u, ddru)(0) = (φ, 0) for φ ∈ Rq, is equivalent to finding the Taylor
coefficients {v}n ∈ Rq, for n ≥ 0, satisfying

{v}0 − φ = 0,

{v}1 = 0,

n(n+ d− 2){v}n + `2{N(v)}n−2 = 0, n ≥ 2.

(24)

We will solve for the sequence of Taylor coefficients in

T
def
=

{
a ∈ CN∪{0} : |a|T

def
=
∑
n≥0

|{a}n| <∞
}
,

which is a Banach algebra with the Cauchy product

a ∗T b
def
=

{
n∑

m=0

{a}n−m{b}m

}
n≥0

. (25)

We denote w = (w(1), w(2), w(3)) with w(1) = w1, w(2) = (w2, . . . , w1+q) and w(3) = (w2+q, . . . , w1+2q).
Transforming the coordinates of the “normal” form (9) to the variables (w(1), w(2), w(3)), the local graph
of the center-stable manifold of the equilibrium c of (5) is given by

(ξ, η) 7→

0
c
0

+

1 0 0
0 Γ Γ
0 −ΓΛ ΓΛ

 ξ
η

α̃(ξ, η)

 ,

where α̃ ∈ Gδ,µ,Lx,Ly was obtained in Section 2. In principle, there could exist r∗ ∈ (0, 1) such that v(r∗)
already connects to this local graph, but in general one should not expect this. Thus, we solve (5) on
[0, L] for some L > 0, subject to the initial condition (w(1), w(2), w(3))(0) = ((`r∗)

−1, v(r∗), `
−1 d

drv(r∗)) to
ensure that the solution connects smoothly to v. Although the first intuition might be to set r∗ = 1, we
will need to choose r∗ < 1 to guarantee differentiability at r = r∗ of the power series v with coefficients
in T . In a nutshell, this requires bounding the sequence nrn∗ for all n > nT ; this sequence is strictly
decreasing when r∗ ∈ (0, e−1/(nT +1)].

For the boundary value problem for w we favour, in the spirit of [53], the use of Chebyshev polynomials
of the first kind given by

Tn(s) = cos(n arccos(s)), n = 0, 1, 2, . . . and s ∈ [−1, 1]. (26)
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Since these are defined on [−1, 1], we rescale the domain of w from [`r∗, `r∗+L] to [−1, 1]. Integrating (5)
using the initial condition mentioned above, yields (`r∗)

−1

v(r∗)

`−1 d

dr
v(r∗)

+
L

2

∫ s

−1

f(w(s′)) ds′ − w(s) = 0, for all s ∈ [−1, 1]. (27)

The rescaling implies that w(2)(s) = u(`r∗ + s+1
2 L) for s ∈ [−1, 1]. Expanding w as a Chebyshev series

w(s)
def
= {w}0 + 2

∑
n≥1

{w}nTn(s), for all s ∈ [−1, 1],

the integral equation (27) is equivalent to

 (`r∗)
−1∑

m≥0{v}mrm∗∑
m≥1

m
` {v}mr

m
∗

+
L

2

(
{f(w)}0 −

1

2
{f(w)}1 − 2

∑
m≥2

(−1)m

m2 − 1
{f(w)}m

)
− {w}0 = 0, n = 0

L

2

{f(w)}n−1 − {f(w)}n+1

2n
− {w}n = 0, n ≥ 1.

(28)
We look for Chebyshev coefficients {wi}, i = 1, . . . , 1 + 2q solving (28) in the sequence space (for some
weight ν > 1)

Cν
def
=

a ∈ CN∪{0} : |a|Cν
def
= |{a}0|+ 2

∑
n≥1

|{a}n|νn <∞

 .

This is a Banach algebra with the discrete convolution product

a ∗C b
def
=

{∑
m∈Z
{a}|n−m|{b}|m|

}
n≥0

, (29)

which corresponds to the natural convolution in Fourier space through (26).
At s = 1 (i.e. r = `r∗ + L) we need the solution to lie in the local center-stable manifold, hence(

{w(2)}0 + 2
∑
n≥1{w(2)}n

{w(3)}0 + 2
∑
n≥1{w(3)}n

)
−
(
c
0

)
−
(

Γ Γ
−ΓΛ ΓΛ

)(
η

α̃
(
(`r∗ + L)−1, η

)) = 0, (30)

with w(1)(1) = (`r∗ + L)−1 being satisfied automatically since w(1)(1) = (`r∗)
−1. Consequently, when

{v} and {w} solve (24), (28) and (30), then the function

u(r)
def
=


∑
n≥0

{v}n(`−1r)n, r ∈ [0, `r∗],

{w(2)}0 + 2
∑
n≥1

{w(2)}nTn( 2
L (r − `r∗)− 1), r ∈ (`r∗, `r∗ + L],

represents a localized radial solution of (2): its orbit connects at r = `r∗+L to the center-stable manifold
of c and converges to c as r →∞ by Proposition 2.2.

To formulate the above in the framework of a single zero-finding problem, we define, for some ν > 1,
the product Banach space

X
def
= Cq × Cq ×T q × C 1+2q

ν ,

equipped with the norm

|x|X
def
= max

{
|η|Cq , |φ|Cq , max

i=1,...,q
|vi|T , max

i=1,...,1+2q
|wi|Cν

}
, for all x = (η, φ, v, w) ∈ X.
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Given α̃ ∈ Gδ,µ,Lx,Ly , the local graph of a center-stable manifold of the stationary point 0 of (9), we
define F ( · ; α̃) on X, without specifying the co-domain for now, as

F (x; α̃)
def
=


{w(2)}0 + 2

∑
n≥1{w(2)}n − c− Γ(η + α̃((`r∗ + L)−1, η))

{w(3)}0 + 2
∑
n≥1{w(3)}n − ΓΛ(−η + α̃((`r∗ + L)−1, η))

g(x)
h(x)

 , (31)

where g(x) ∈ (C1+2q)N∪{0} is given by

{g}n
def
=


{v}0 − φ, n = 0,

{v}1, n = 1,

n(n+ d− 2){v}n + `2{N(v)}n−2, n ≥ 2,

and h(x) ∈ (C1+2q)N∪{0} is given by

{h}n
def
=



 (`r∗)
−1∑

m≥0{v}mrm∗∑
m≥1

m
` {v}mr

m
∗

+
L

2

(
{f(w)}0 −

1

2
{f(w)}1 − 2

∑
m≥2

(−1)m

m2 − 1
{f(w)}m

)
− {w}0, n = 0,

L

2

{f(w)}n−1 − {f(w)}n+1

2n
− {w}n, n ≥ 1.

Here,

• N is understood as a mapping from T q to itself by identifying each multiplication with the Cauchy
product ∗T defined in (25);

• f is understood as a mapping from C 1+2q
ν to itself by identifying each multiplication with the

discrete convolution ∗C defined in (29).

Furthermore, we introduce the notation F ( · ; 0) to mean the mapping F ( · ; α̃) where the terms involving
α̃ are removed.

To conduct the computer-assisted proof, we will approximate a finite number of Taylor and Chebyshev
coefficients of the solution numerically. Formally, given nmax ∈ N∪{0}, we define the truncation operator
πnmax : CN∪{0} → CN∪{0} by

{πnmaxa}n
def
=

{
{a}n, n ≤ nmax,

0, n > nmax,
for all a ∈ CN∪{0}.

Given nT , nC ∈ N ∪ {0}, this operator extends in a natural fashion to T q, C 1+2q
ν and X as follows:

πnT v
def
= (πnT v1, . . . , π

nT vq), for all v = (v1, . . . , vq) ∈ T q,

πnCw
def
= (πnCw1, . . . , π

nCw1+2q), for all w = (w1, . . . , w1+2q) ∈ C 1+2q
ν ,

πnT ,nCx
def
= (η, φ, πnT v, πnCw), for all x = (η, φ, v, w) ∈ X.

The complementary operators representing the tail of the coefficients are denoted by

π∞(nmax)a
def
= a− πnmaxa, for all a ∈ CN∪{0},

π∞(nT )v
def
= (π∞(nT )v1, . . . , π

∞(nT )vq), for all v = (v1, . . . , vq) ∈ T q,

π∞(nC )w
def
= (π∞(nC )w1, . . . , π

∞(nC )w1+2q), for all w = (w1, . . . , w1+2q) ∈ C 1+2q
ν ,

π∞(nT ),∞(nC )x
def
= (0, 0, π∞(nT )v, π∞(nC )w), for all x = (η, φ, v, w) ∈ X.
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3.2 The Newton-Kantorovich Theorem

In this section, we formulate the Newton-Kantorovich Theorem which gives sufficient conditions to prove
the existence of a localized radial solution of (2). In the estimates we will need the monomial coefficients
of the polynomials, hence we fix their notation in the next remark.

Remark 3.1. Recall that N = (N1, . . . ,Nq) : T q → T q and f = (f1, . . . , f1+2q) : C 1+2q
ν → C 1+2q

ν are

polynomials of the same order K ≥ 2. That is to say, there exist coefficients a
(i)
k1,...,kq

and b
(i)
k1,...,kq

such
that

Ni(v) =
∑

k1,...,kq∈N∪{0}
0≤k1+...+kq≤K

a
(i)
k1,...,kq

vk1
1 ∗T . . . ∗T vkqq , for v ∈ T q, 1 ≤ i ≤ q,

fi(w) =
∑

k1,...,k1+2q∈N∪{0}
0≤k1+...+kq≤K

b
(i)
k1,...,k1+2q

wk1
1 ∗C . . . ∗C w

k1+2q

1+2q , for w ∈ C 1+2q
ν , 1 ≤ i ≤ 1 + 2q.

We denote by Nabs = (Nabs,1, . . . ,Nabs,q) : Rq → Rq and fabs = (fabs,1, . . . , fabs,1+2q) : R1+2q → R1+2q

the polynomials given by

Nabs,i(ζ) =
∑

k1,...,kq∈N∪{0}
0≤k1+...+kq≤K

∣∣a(i)
k1,...,kq

∣∣ q∏
j=1

ζ
kj
j , for ζ ∈ Rq, 1 ≤ i ≤ q,

fabs,i(ζ) =
∑

k1,...,k1+2q∈N∪{0}
0≤k1+...+kq≤K

∣∣b(i)k1,...,k1+2q

∣∣ 1+2q∏
j=1

ζ
kj
j , for ζ ∈ R1+2q, 1 ≤ i ≤ 1 + 2q.

We denote by
cl(Bρ(x̄))

def
= {x ∈ X : |x− x̄|X ≤ ρ}

the closure of the ball of radius ρ ≥ 0 in X, centered at x̄ ∈ X. In the computer-assisted proof it is
natural to take x̄ ∈ πnT ,nCX for some choice of nT , nC ∈ N.

Theorem 3.2 (Newton-Kantorovich). Denote by K ≥ 2 the order of the polynomial N and fix `, L >
0, nT ≥ 2, nC ≥ 1, r∗ ∈ (0, e−1/(nT +1)], ν > 1, Lx,Ly > 0 and % > 0. Let x̄ = (ξ̄, η̄, φ̄, v̄, w̄) ∈ πnT ,nCX
and let A : πnT ,nCX → πnT ,nCX be an injective linear operator.

Suppose Proposition 2.2 holds true for δ = (`r∗+L)−1, µ = |η̄|Cq +% and the chosen Lipschitz constant
Lx,Ly such that Gδ,µ,Lx,Ly contains the local graph, denoted by α̃, of the center-stable manifold of the
stationary point 0 of (9).

Define

Y
def
= |AπnT ,nCF (x̄; 0)|X

+ max

{
`2|π∞(nT )N(v̄)|T q

(nT + 1)(nT + d− 1)
,
L(ν + ν−1)|π∞(nC )f(w̄)|C 1+2q

ν

4(nC + 1)

}
,

Z1
def
= |πnT ,nC −AπnT ,nCDF (x̄; 0)πnT ,KnC +1|B(X,X)

+ max

{
`2|DN(v̄)|B(T q,T q)

(nT + 1)(nT + d− 1)
,
L(ν + ν−1)|Df(w̄)|B(C 1+2q

ν ,C 1+2q
ν )

4(nC + 1)

}
+ |A|B(X,X) max

{
2

νKnC +2
, rnT +1
∗ max{1, `−1(nT + 1)}+

L|Df(w̄)|B(C 1+2q
ν ,C 1+2q

ν )

νnC +2((nC + 2)2 − 1)

}
,

Z2
def
=
(
|A|B(X,X) + 1

)
max

{
`2|D2Nabs(|v̄1|T + %, . . . , |v̄q|T + %)|B(Cq,Cq),

L(1 + ν)

2
|D2fabs(|w̄1|Cν + %, . . . , |w̄1+2q|Cν + %)|B(C1+2q,C1+2q)

}
.
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If there exists ρ̄ ∈ [0, %] such that the two inequalities

Y + |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly|η̄|Cq − (1− Z1 − |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly)ρ̄+
Z2

2
ρ̄2 ≤ 0, (32a)

|A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly + Z1 + Z2ρ̄ < 1, (32b)

hold, then there exists a unique x̃ ∈ cl(Bρ̄(x̄)) such that F (x̃; α̃) = 0.

Proof. Consider the bounded linear operator A def
= AπnT ,nC + A∞ with A∞ : X → π∞(nT ),∞(nC )X

given by
A∞x

def
= (0, 0, v∞,−π∞(nC )w), for all x = (η, φ, v, w) ∈ X,

where

{v∞}n
def
=

0 for n ≤ nT ,
{v}n

n(n+ d− 2)
for n > nT .

Define T ( · ; α̃) : cl(B%(x̄))→ X by

T (x; α̃)
def
= x−AF (x; α̃), for all x ∈ cl(B%(x̄)).

This operator is well-defined since, for any x = (η, φ, v, w) ∈ cl(B%(x̄)), we have that |η|Cq ≤ |η̄|Cq +% = µ
and it follows that α̃(δ, η) is well-defined. By construction, specifically the action of A∞, the operator
AF ( · ; α̃) maps cl(B%(x̄)) into X. Moreover, T (x; 0)

def
= x − AF (x; 0) is twice Fréchet differentiable for

all x ∈ cl(B%(x̄)).
Let ρ̄ ∈ [0, %] be such that (32a) and (32b) hold. It is enough to show that T ( · ; α̃) satisfies the

assumptions of the Banach Fixed-Point Theorem in cl(Bρ̄(x̄)). Indeed, A is injective in view of its
definition and injectivity of the matrix A, which implies that a fixed-point of T ( · ; α̃) is a zero of F ( · ; α̃).

Assume for now that

Y ≥ |T (x̄; 0)− x̄|X , (33a)

Z1 ≥ |DT (x̄; 0)|B(X,X), (33b)

Z2 ≥ sup
x∈cl(B%(x̄))

|D2T (x; 0)|B(X2,X). (33c)

Let x = (η, φ, v, w) ∈ cl(Bρ̄(x̄)). From Taylor’s Theorem we have that

|T (x; 0)− x̄|X

= |T (x̄; 0)− x̄+ [DT (x̄; 0)](x− x̄) +

∫ 1

0

(1− t)[D2T (x̄+ t(x− x̄); 0)](x− x̄, x− x̄) dt|X

≤ |T (x̄; 0)− x̄|X + |[DT (x̄; 0)](x− x̄)|X +

∫ 1

0

(1− t)|[D2T (x̄+ t(x− x̄); 0)](x− x̄, x− x̄)|X dt

≤ Y + Z1ρ̄+ Z2ρ̄
2

∫ 1

0

(1− t) dt

= Y + Z1ρ̄+
Z2

2
ρ̄2.

Since F (x;α) is affine linear in α, it follows from (32a) that

|T (x; α̃)− x̄|X = |T (x; 0)− x̄+A(F (x; 0)− F (x; α̃)|X
≤ |T (x; 0)− x̄|X + |A(F (x; 0)− F (x; α̃)|X
= |T (x; 0)− x̄|X + |A

(
Γα̃(δ, η),ΓΛα̃(δ, η), 0, 0

)
|X

≤ Y + Z1ρ̄+ 1
2Z2ρ̄

2 + |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly(|η̄|Cq + ρ̄)

≤ ρ̄,
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which implies that T ( · ; α̃) maps cl(Bρ̄(x̄)) into itself.
Next, let x = (η, φ, v, w), x′ = (η′, φ′, v′, w′) ∈ cl(Bρ̄(x̄)). By the Mean Value Theorem, we have that

|T (x; 0)− T (x′; 0)|X
≤ sup
h∈cl(Bρ̄(x̄))

|DT (h)|B(X,X)|x− x′|X

≤ sup
h∈cl(Bρ̄(x̄))

(
|DT (x̄)|B(X,X) +

∫ 1

0

|D2T (x̄+ t(h− x̄); 0)|B(X2,X)|h− x̄|X dt
)
|x− x′|X

≤ (Z1 + Z2ρ̄) |x− x′|X .

We infer that

|T (x; α̃)− T (x′; α̃)|X = |T (x; 0)− T (x′; 0) +A(F (x; 0)− F (x; α̃)− (F (x′; 0)− F (x′; α̃)))|X
≤ |T (x; 0)− T (x′; 0)|X + |A(F (x; 0)− F (x; α̃)− (F (x′; 0)− F (x′; α̃)))|X
= |T (x; 0)− T (x′; 0)|X + |A

(
Γ(α̃(δ, η)− α̃(δ, η′)),ΓΛ(α̃(δ, η)− α̃(δ, η′)), 0, 0

)
|X

≤ (Z1 + Z2ρ̄+ |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly)|x− x′|X ,

which, in view of (32b), shows that T ( · ; α̃) is a contraction on cl(Bρ̄(x̄)).
Therefore, provided the bounds (33a), (33b) and (33c) are valid, the operator T ( · ; α̃) satisfies the

Banach Fixed-Point Theorem whenever (32a) and (32b) hold.
The proofs of the inequalities (33a), (33b) and (33c) can be found in Appendix A.

There is a subtle technicality arising from our definition of X. Indeed, we choose to work in C to
seamlessly allow Λ to be comprised of complex eigenvalues. Consequently, we must ensure that x̃ =
(η̃, φ̃, ṽ, w̃) ∈ cl(Bρ̄(x̄)), obtained from Theorem 3.2, satisfies φ̃ ∈ Rq, ṽ ∈ (RN∪{0})q, w̃ ∈ (RN∪{0})1+2q.
Fortunately, this property is “inherited” from the numerical approximation x̄.

Lemma 3.3. Let x̄ = (η̄, φ̄, v̄, w̄) and x̃ = (η̃, φ̃, ṽ, w̃) as in Theorem 3.2. If φ̄ ∈ Rq, v̄ ∈ (RN∪{0})q, w̄ ∈
(RN∪{0})1+2q, then φ̃ ∈ Rq, ṽ ∈ (RN∪{0})q, w̃ ∈ (RN∪{0})1+2q.

Proof. Suppose there are 2q′ (≤ q) complex eigenvalues. Without loss of generality, Λ and Γ =
(
Γ1 · · ·Γq

)
satisfy Λi,i = Λ†i+1,i+1 and Γi = Γ†i+1 for all i = 1, 3, . . . , 2q′ − 1 where † denotes complex conjugation.
Consider S : X → X given by

S(x)
def
= (S0(η), φ†, v†, w†), for all x = (η, φ, v, w) ∈ X,

where S0 : Cq → Cq is defined by

(
S0(η)

)
i

def
=


η†i+1, i ∈ {1, 3, . . . , 2q′ − 1},
η†i−1, i ∈ {2, 4, . . . , 2q′},
η†i , i ∈ {2q′ + 1, . . . , q},

for all η ∈ Cq.

It is straightforward to see that φ ∈ Rq, v ∈ (RN∪{0})q, w ∈ (RN∪{0})1+2q whenever x = (η, φ, v, w) ∈ X
satisfies x = S(x). Hence, the lemma claims that if x̄ = S(x̄), then x̃ = S(x̃).

Observe that for x ∈ cl(Bρ̄(x̄)) we have S(x) ∈ cl(Bρ̄(x̄)) since |S(x) − x̄|X = |S(x) − S(x̄)|X =
|S(x− x̄)|X = |x− x̄|X ≤ ρ̄.

Furthermore, our ordering of Γ and Λ yields ΓS0(η) = (Γη)
†

and ΛS0(η) = S0(Λη) for all η ∈ Cq; in
particular, η† = (ΓΓ−1η)† = ΓS0(Γ−1η). Thus, for all y, z ∈ Cq, we have that

ψ(x,S0(y),S0(z)) =
1

2

(
(d− 1)xS0(−y + z) + Λ−1Γ−1

(
N(c+ ΓS0(y + z))−DN(c)ΓS0(y + z)

))
=

1

2

(
(d− 1)xS0(−y + z) + Λ−1Γ−1

(
N(c+ Γ(y + z))−DN(c)Γ(y + z)

)†)
=

1

2

(
(d− 1)xS0(−y + z) + Λ−1S0

(
Γ−1

(
N(c+ Γ(y + z))−DN(c)Γ(y + z)

)))
= S0(ψ(x, y, z)).
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Recall that we place ourselves in the context of Theorem 3.2. Hence we consider α̃ ∈ Gδ,µ,Lx,Ly to be
the local graph of the centre-stable manifold as in the theorem. Define [S1(α̃)](ξ, η)

def
= S0(α̃(ξ,S0(η))) and

observe that S1(α̃) ∈ Gδ,µ,Lx,Ly . We shall follow the notation introduced in the proof of Proposition 2.2.
Namely, we denote by (x(r; ξ), yα(r; ξ, η)) the unique solution of the initial value problem

dx

dr
= −x2,

dy

dr
= −Λy + ψ(x, y, α(x, y)),

(x(0), y(0)) = (ξ, η),

where ξ ∈ [0, δ] and |η|Cq ≤ µ. Fix η ∈ Cq, then

d

dr
S0yS1(α̃)(r; ξ, η) = S0

[
−ΛyS1(α̃)(r; ξ, η) + ψ

(
x(r; ξ), yS1(α̃)(r; ξ, η),S1

(
α̃
(
x(r; ξ), yS1(α̃)(r; ξ, η)

)))]
= −ΛS0(yS1(α̃)(r; ξ, η)) + ψ

(
x(r; ξ),S0(yS1(α̃)(r; ξ, η)), α̃

(
x,S0(yS1(α̃)(r; ξ, η))

))
.

Since S0(yS1(α̃)(0; ξ, η)) = S0(η), it follows, by definition, that S0(yS1(α̃)(r; ξ, η)) = yα̃(r; ξ,S0(η)). Hence,
yS1(α̃)(r; ξ, η) = S0(yα̃(r; ξ,S0(η))). Thus,

[S1(α̃)](ξ, η) = S0(α̃(ξ,S0(η)))

= S0

(
[GLP(α̃)](ξ,S0(η))

)
= S0

∫ ∞
0

e−Λrψ
(
x(r; ξ), yα̃(r; ξ,S0(η)), α̃

(
x(r; ξ), yα̃(r; ξ,S0(η))

))
dr

=

∫ ∞
0

e−Λrψ
(
x(r; ξ),S0(yα̃(r; ξ,S0(η))),S0

(
α̃
(
x(r; ξ), yα̃(r; ξ,S0(η))

)))
dr

=

∫ ∞
0

e−Λrψ
(
x(r; ξ), yS1(α̃)(r; ξ, η),S0

(
α̃
(
x(r; ξ),S0yS1(α̃)(r; ξ, η)

)))
dr

=

∫ ∞
0

e−Λrψ
(
x(r; ξ), yS1(α̃)(r; ξ, η), [S1(α̃)]

(
x(r; ξ), yS1(α̃)(r; ξ, η)

))
dr

= [GLP(S1(α̃))](ξ, η).

However, according to Proposition 2.2, α̃ is the unique fixed-point of GLP in Gδ,µ,Lx,Ly , which implies
that S1(α̃) = α̃. In particular, α̃(ξ,S0(η)) = [S1(α̃)](ξ,S0(η)) = S0(α̃(ξ,S0(η))).

Therefore,

F (S(x̃); α̃) =


{w̃(2)}†0 + 2

∑
n≥1{w̃(2)}†n − c− Γ(S0(η̃) + α̃((`r∗ + L)−1,S0(η̃)))

{w̃(3)}†0 + 2
∑
n≥1{w̃(3)}†n − ΓΛ(−S0(η̃) + α̃((`r∗ + L)−1,S0(η̃)))

g(S(x̃))
h(S(x̃))



=


[
{w̃(2)}0 + 2

∑
n≥1{w̃(2)}n − c− Γ(η̃ + α̃((`r∗ + L)−1, η̃))

]†[
{w̃(3)}†0 + 2

∑
n≥1{w̃(3)}†n − ΓΛ(−η̃ + α̃((`r∗ + L)−1, η̃))

]†
g(x̃)†

h(x̃)†


= F (x̃; α̃)†

= 0.

Since x̃ is the unique zero of F ( · ; α̃) in cl(Bρ̄(x̄)), it follows that x̃ = S(x̃) as desired.
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To end this section, we retrieve an a posteriori C0-error bound for a localized radial solution of (2).
To formulate the result, we first need an expression for the solution in the local center-stable manifold.
We set r0

def
= `r∗ + L and ξ̃

def
= r−1

0 and

η̃
def
= 1

2Γ−1
(
{w̃(2)}0 + 2

∑
n≥1{w̃(2)}n − c

)
− 1

2Λ−1Γ−1
(
{w̃(3)}0 + 2

∑
n≥1{w̃(3)}n

)
.

Then the solution in the local-center manifold is given by

ũα̃(r)
def
= c+ Γ

(
yα̃(r − r0; ξ̃, η̃) + α̃

(
ξ̃

1+ξ̃(r−r0)
, yα̃(r − r0; ξ̃, η̃)

))
, for all r ∈ (r0,∞),

where yα is given implicitly by the variation of constants formula (16).

Corollary 3.4. Let x̃ = (η̃, φ̃, ṽ, w̃) ∈ cl(Bρ̄(x̄)) be the zero of F ( · ; α̃) obtained by applying Theorem 3.2
to a case where x̄ = S(x̄). Consider the resulting localized radial solution r ∈ [0,∞) 7→ ũ(r) of (2)
satisfying

ũ(r) =



∑
n≥0

{ṽ}n(`−1r)n, r ∈ [0, `r∗],

{w̃(2)}0 + 2
∑
n≥1

{w̃(2)}nTn( 2
L (r − `r∗)− 1), r ∈ (`r∗, r0],

ũα̃(r) r ∈ (r0,∞).

Define

ū(r)
def
=



nT∑
n=0

{v̄}n(`−1r)n, r ∈ [0, `r∗],

{w̄(2)}0 + 2

nC∑
n=1

{w̄(2)}nTn( 2
L (r − `r∗)− 1), r ∈ (`r∗, r0],

c+ Γe−Λ(r−r0)η̄, r ∈ (r0,∞).

Then,
sup

r∈[0,∞)

|ũ(r)− ū(r)|Cq ≤ max
{
ρ̄, |Γ|B(Cq,Cq)(ρ̄+ Ly(|η̄|Cq + ρ̄))

}
. (34)

Proof. On the one hand,

sup
r∈[0,r0]

|ũ(r)− ū(r)|Cq ≤ max
(
|ṽ − v̄|T q , |w̃(2) − w̄(2)|C q

ν

)
≤ |x̃− x̄|X ≤ ρ̄,

since the supremum norm of a Taylor or Chebyshev series is bounded by the weighted `1 norm of its
coefficients (namely, the norm of T and Cν respectively).

On the other hand,

sup
r∈[r0,∞)

|ũ(r)− ū(r)|Cq = sup
r∈[r0,∞)

|ũα̃(r)− ū(r)|Cq

≤ |Γ|B(Cq,Cq) sup
r∈[r0,∞)

∣∣∣yα̃(r − r0; ξ̃, η̃)− e−Λ(r−r0)η̄ + α̃
(

ξ̃

1+ξ̃(r−r0)
, yα̃(r − r0; ξ̃, η̃)

)∣∣∣
Cq

≤ |Γ|B(Cq,Cq)(ρ̄+ Ly(|η̄|Cq + ρ̄)),

where we used the variation of constant formula (16) to derive the uniform bound |yα̃(r − r0; ξ̃, η̃) −
e−Λ(r−r0)η̄|Cq ≤ ρ̄ in a similar vein as we did to obtain (19) in the proof of Proposition 2.2.
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4 Applications

We begin this section with a practical note on Theorem 3.2. In Section 3, we demonstrated that a zero
of F ( · ; α̃) yields a localized radial solution of (2) which reaches the local centre-stable manifold α̃ of the
stationary point 0 of (9). The main result, Theorem 3.2, revolves around a contraction occurring in a
vicinity of a numerical approximation x̄ = (η̄, φ̄, v̄, w̄) of a zero of F ( · ; 0). In other words, we pursue a
zero of F ( · ; α̃) by hunting with F ( · ; 0), and in particular its finite dimensional truncation.

The ingredients involved in Theorem 3.2 are correlated. The larger ` and L, the smaller the center-
stable coordinates δ and µ will be and the smaller we may choose Lx,Ly. On the other hand, larger `
and L results in higher truncation orders nT and nC for the Taylor and Chebyshev series to represent
the desired functions sufficiently well.

To shed some light on applying Theorem 3.2 in practice, we list the main steps of the procedure:

1. (A numerical approximate solution). By some suitable method, which depends on the PDE under
consideration, compute numerically a localized solution u0 : [0, r0]→ Rq of (4), with u0(r0) ≈ c for
some zero c of N. Set φ̄ = u0(0).

2. (The eigenvalue problem). Solve rigorously −DN(c)Γ = ΓΛ2 for Λ,Γ : Cq → Cq such that Λ is a
diagonal matrix whose diagonal entries have strictly positive real parts; in other words, the diagonal
entries correspond to the unstable eigenvalues of Df(c). If there are 2q′ (≤ q) complex eigenvalues,

organize the columns of Λ and Γ =
(
Γ1 · · · Γq

)
such that Λi,i = Λ†i+1,i+1 and Γi = Γ†i+1 for

all i = 1, 3, . . . , 2q′ − 1. Then, compute a numerical solution η̄ ∈ Cq of u0(r0) = c + Γη̄. Enforce
η̄ = S0(η̄).

3. (Series representation). Fix ` ∈ (0, r0] and approximate r ∈ [0, `] 7→ u0(r) by a Taylor series
r ∈ [0, 1] 7→ v̄(r) ≈ u0(`−1r) of order nT ≥ 2. Then fix r∗ ∈ (0, e−1/(nT +1)], and approximate
r ∈ [`r∗, r0] 7→ u0(r) by a Chebyshev series s ∈ [−1, 1] 7→ w̄(s) ≈ u0( 1−s

2 `r∗ + s+1
2 r0) of order

nC ≥ 1; in particular, L = r0 − `r∗.

4. (Refine the approximate solution). At this stage, we have obtained (η̄, φ̄, v̄, w̄) ∈ πnT ,nCX such
that x̄ lies in the scope of Lemma 3.3. As explained at the beginning of this section, one may refine
the constructed approximate zero x̄ of the mapping x ∈ πnT ,nCX 7→ πnT ,nCF ( · ; 0) by applying
Newton’s method. As a rule of thumb, the truncation orders nT , nC are chosen such that the last
coefficients of the series expansions are of the order of machine epsilon (e.g. ∼ 10−16 in double
precision). Nevertheless, in practice, higher truncation orders may be required to bring about the
desired contraction.

5. (The center-stable manifold). Retrieve λ̂ as defined in (11). Compute δ = (`r∗ + L)−1. Fix an a

priori maximal error bound % > 0 and set µ = |η̄|Cq +%. Determine ψ̂ satisfying the inequality (12).
Choose Lx,Ly > 0 and verify the inequalities (13a), (13b) and (13c) to prove that Proposition 2.2
holds.

6. (Choose A and check the Newton-Kantorovich inequalities). Compute a numerical inverse A of
πnT ,nCDF (x̄; 0)πnT ,nC . Choose a decay rate ν > 1 for the Chebyshev sequence space. The
approximate Chebyshev coefficients w̄ guide this choice: ν cannot exceed their decay rate. Finally,
compute rigorously Y , Z1 and Z2. Note that to satisfy inequality (32a), then the a priori maximal
error % must necessarily be greater than Y + |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly|η̄|Cq . Verify the inequalities
(32a) and (32b) to prove that Theorem 3.2 holds.

In the following applications, all the computations have been performed in Julia [31] via the pack-
age RadiiPolynomial.jl (cf. [32]) which relies on the package IntervalArithmetic.jl (cf. [33]) for rigorous
floating-point computations. The code is available at [34]. All figures have been generated via the package
Makie.jl (cf. [54]).
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4.1 Example 1: cubic Klein-Gordon equation

Our first example consists in proving localized radial stationary solutions of the cubic Klein-Gordon
equation as described in Theorem 1.1. Recall that the equation (6) under study reads

Utt = ∆U − U + β1U
2 + β2U

3, U = U(t, x) ∈ R, t ≥ 0, x ∈ R3,

with parameters β1, β2 ∈ R. Hence, the stationary solutions solve (2) with q = 1, d = 3 and

N(U) = −U + β1U
2 + β2U

3.

For β1 = β2 = 1, we compute numerical approximations of two distinct localized radial stationary
solutions about the constant equilibrium c = 0.

Since DN(0) = −1, the equation −DN(0)Γ = Λ2Γ is satisfied for Γ = Λ = 1; it follows that λ̂ = 1.
Moreover, for any µ > 0, the inequality (12) is satisfied for

ψ̂ =

(
|β1|+

3

2
|β2|(1 + Ly)µ

)
(1 + Ly)µ.

Figure 4 shows the numerical approximations of the two localized radial stationary solution of the
cubic Klein-Gordon equation (6). We successfully verified Proposition 2.2 and Theorem 3.2 and obtained
a C0-error bound (34) for each numerical approximation depicted in Figures 1 and 4: 2.9 × 10−7 and
5.5 × 10−6, respectively. For both proofs, we chose the Lipschitz constants of the local graph of the
centre-stable manifold to be Lx = 1 and Ly ≈ 0.05. The domain of the local graph is contained in
[0, 0.068]× [−2.3× 10−7, 2.3× 10−7] and [0, 0.066]× [−5.1× 10−6, 5.1× 10−6], respectively.

The proofs show a disparity between the order of the Taylor and Chebyshev series expansions needed
to have a good approximation of the solutions and the order required to trigger the contraction involved
in Theorem 3.2. Specifically, the truncation orders nT , nC used for Theorem 3.2 are split as follows.
The numerical truncation orders nT ,num, nC ,num mark the limit beyond which the Taylor and Chebyshev
series coefficients, respectively, are judged negligible (these coefficients are approximated by zeros). The
padding orders nT ,pad, nC ,pad correspond to the integers nT ,num, nC ,num such that nT = nT ,num+nT ,pad

and nC = nC ,num+nC ,pad are sufficiently large to satisfy all assumptions in Theorem 3.2. This dichotomy
is especially noticeable for the Chebyshev series expansion of the second solution of (5). For the proof
of the first solution depicted in Figure 4a, we used nT ,num = 60, nT ,pad = 100 and nC ,num = 85,
nC ,pad = 200, whereas for the proof of the second solution depicted in Figure 4b, we used nT ,num = 150,
nT ,pad = 100 and nC ,num = 200, nC ,pad = 15, 000.

As noted in Example 1, for any given integer m ≥ 0, there exists a localized radial stationary solution
of (6) with exactly m zeros. Here, we only looked at the case m = 0 and m = 1. While in principle
our methodology seamlessly applies for larger m, the profile of these solutions warrants caution. Indeed,
numerical simulations suggest that as m grows, the height of the solution at r = 0 and its steepness
increase. This transpires in Theorem 3.2 as a drastic growth of the Z1 bound which is mitigated by
taking nC much larger. In such cases, we emphasize that combining the present methodology with the
domain decomposition strategy in [55] should relieve the burden of having only one Chebyshev series
representing such a “wild” profile.

4.2 Example 2: Swift-Hohenberg equation

Our second example consists in proving localized radial stationary solutions of the Swift-Hohenberg
equation as described in Theorem 1.2. Recall that the equation (7) under study reads

Ut = −(β4 + ∆)2U + β1U + β2U
2 + β3U

3, U = U(t, x) ∈ R, t ≥ 0, x ∈ R2,

with parameters β1, β2, β3, β4 ∈ R. Observe that if U is a stationary solution of (7), then (U1, U2) =
(U, (β4 + ∆)U) solves {

∆U1 + β4U1 − U2 = 0,

∆U2 + β4U2 − β1U1 − β2U
2
1 − β3U

3
1 = 0.
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(a) (b)

Figure 4: Numerical localized radial stationary solutions of the cubic Klein-Gordon equation (6) on R3

at parameter values β1 = β2 = 1. (a) This approximation is proven to be 2.9 × 10−7 close (in C0-
norm) to a strictly positive localized radial stationary solution. (b) This approximation is proven to be
5.5× 10−6 close (in C0-norm) to a localized radial stationary solution with one zero. Panel A shows the
approximation as a cut-out in R3. Panel B shows the approximation as a function of the radius r.

Conversely, if (U1, U2) is a solution of the previous system, then U1 is a stationary solution of (7). Hence,
the stationary solutions of (7) correspond to solutions of (2) with q = 2, d = 2 and

N(U1, U2) =

(
β4U1 − U2

β4U2 − β1U1 − β2U
2
1 − β3U

3
1

)
.

Following the parameter values studied in [21] (note that in the cited article, the authors consider β4 ≡ 1
and use µ, ν, κ instead of −β1, β2,−β3, respectively), for (β1, β2, β3, β4) = (− 3

5 ,
√

6,− 1
10 , 1), we com-

pute a numerical approximation of a localized radial stationary solutions oscillating about the constant
equilibrium c = (0, 0).

The equation −DN(0, 0)Γ = ΓΛ2 is satisfied for

Λ =

(√
−
√
β3 − β4 0

0
√√

β3 − β4

)
and Γ =

(
1 1

−
√
β3

√
β3

)
,

and it follows that λ̂ = <(
√
−
√
β3 − β4). Moreover, for any µ > 0, the inequality (12) is satisfied for

ψ̂ =

(
|β2|+

3

2
|β3|(1 + Ly)µ

)
(1 + Ly)µ|Λ−1Γ−1|B(C2,C2)|Γ|B(C2,C2).

Figure 5 shows the numerical approximation of a localized radial stationary solution of the Swift-
Hohenberg equation (7). We successfully verified Proposition 2.2 and Theorem 3.2 and obtained a C0-
error bound for the numerical approximation depicted in Figures 2 and 5: 2.4× 10−5. For the proof, we
chose the Lipschitz constants of the local graph of the centre-stable manifold to be Lx = 1 and Ly ≈ 0.03.
The domain of the local graph is contained in [0, 0.031]× {y ∈ C : |y| ≤ 10−6}2.

4.3 Example 3: three-component FitzHugh–Nagumo type equation

Our third example consists in proving localized radial stationary solutions of the three-component FitzHugh-
Nagumo type equation as described in Theorem 1.3. Recall that the equation (7) under study reads

(U1)t = ε2∆U1 + U1 − U3
1 − ε(β1 + β2U2 + β3U3),

τ(U2)t = ∆U2 + U1 − U2,

θ(U3)t = β2
4∆U3 + U1 − U3,

Ui = Ui(t, x) for i = 1, 2, 3, t ≥ 0, x ∈ R2,
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Figure 5: Numerical stationary ring of the Swift-Hohenberg equation (7) on R2 at parameter values
(β1, β2, β3, β4) = (− 3

5 ,
√

6,− 1
10 , 1). This approximation is proven to be 2.4×10−5 close (in C0-norm) to a

true localized radial stationary solution. Panel A shows the approximation as a graph over R2. Panel B
shows its variation on the domain [−(`r∗+L), `r∗+L]2; the dashed grey circle marks the boundary of the
validated local centre-stable manifold. Panel C shows the approximation as a function of the radius r.

with parameters, τ, θ, ε > 0, β1, β2, β3 ∈ R and β4 > 1. Hence, the stationary solutions solve (2) with
q = 3, d = 2 and

N(U1, U2, U3) =

ε−2(U1 − U3
1 )− ε−1(β1 + β2U2 + β3U3)

U1 − U2

β−2
4 (U1 − U3)

 .

Following the parameter values studied in [30] (note that in the cited article, the authors use γ, α, β,D
instead of β1, β2, β3, β4, respectively), for ε = 3

10 and (β1, β2, β3, β4) = (1
2 ,

1
2 , 1, 3) we compute a numerical

approximation of a localized radial stationary solution about the constant equilibrium c = (c∗, c∗, c∗)
where c∗ is the smallest root of the cubic polynomial υ − υ3 − ε(β1 + β2υ + β3υ). For the prescribed
parameter values, we find c∗ = −20−1(5 +

√
145).

To circumvent tedious algebraic manipulations, we solve −DN(c)Γ = ΓΛ2 via a rigorous numerical
method (also based on a Newton-Kantorovich type theorem) whose details is developed in Appendix B.

It follows that λ̂ ∈ 0.3687766247191 + [−10−14, 10−14]. Moreover, for any µ > 0, the inequality (12) is
satisfied for

ψ̂ =
3

2ε2
(
(2c∗ + (1 + Ly)µ

)
(1 + Ly)µ|Λ−1Γ−1|B(C3,C3)|Γ|B(C3,C3).

Figure 6 shows the numerical approximation of a localized radial stationary solution of the three-
component FitzHugh-Nagumo type equation (8). We successfully verified Proposition 2.2 and Theo-
rem 3.2 and obtained a C0-error bound for the numerical approximation depicted in Figure 3 and 6:
9.8× 10−7. For the proof, we chose the Lipschitz constants of the local graph of the centre-stable mani-
fold to be Lx = 1 and Ly ≈ 0.02. The domain of the local graph is contained in [0, 0.023]×[−10−7, 10−7]3.
Similarly to the proof of the second solution of the cubic Klein-Gordon equation, there is a sizeable gap
between the numerical truncation order and the padding order. To prove the existence of the solution
depicted in Figures 6(a-c), we used nT ,num = 60, nT ,pad = 100 and nC ,num = 250, nC ,pad = 10, 000.
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Let us now point out the difficult aspects of this computer-assisted proof. The success of Theorem 3.2
depends on the roots of the left-hand-side of (32a), which are real if

(1− Z1 − |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly)2 ≥ 2Z2(Y + |A(Γ,ΓΛ, 0, 0)|B(Cq,X)Ly|η̄|Cq ).

In particular, both the product Z2Y and the product Z2Ly|η̄|Cq needs to be sufficiently small. As
explained at the beginning of Section 4, successive Newton iterations allow the Y bound to be as small
as we need (provided the Taylor and Chebyshev series expansions include enough modes). However, the
values of |η̄|Cq and Ly are controlled by L: the larger the latter, the smaller the former. In turn, this
worsens the Z1 bound such that we need to take a larger nC .

Unfortunately, for our choice of parameters, the real part of the slowest eigenvalue λ̂ is fairly small
which impedes the asymptotic convergence of the localized radial solution to the constant equilibrium c.
In other words, L must be substantially increased to overcome Z2. Then, large nC needs be chosen in
order to attain Z1 < 1, which is necessary for inequality (32b) to hold. Once again, we believe that
combining the domain decomposition method developed in this paper with [55] should alleviate this
difficulty.

(a) (b) (c)

Figure 6: Numerical stationary planar radial spot of the three-component FitzHugh-Nagumo type equa-
tion (8) on R2 at parameter values ε = 3

10 and (β1, β2, β3, β4) = ( 1
2 ,

1
2 , 1, 3); the three components are

represented in the subfigures (a), (b) and (c), respectively. This approximation is proven to be 9.8×10−7

close (in C0-norm) to a true localized radial stationary solution. Panel A shows the approximation as
graphs over R2. Panel B shows its variation on the domain [−(`r∗ +L), `r∗ +L]2; the dashed grey circle
marks the boundary of the validated local centre-stable manifold. Panel C shows the approximation as
a function of the radius r.

A The Newton-Kantorovich bounds

In this appendix we present the proofs of the inequalities (33a), (33b) and (33c) in the proof of Theo-
rem 3.2. We will use the notation from that proof without reintroducing it here.

Firstly, by the triangle inequality,

|T (x̄; 0)− x̄|X = |AF (x̄; 0)|X ≤ |AπnT ,nCF (x̄; 0)|X + |A∞F (x̄; 0)|X .

Since π∞(nT ),∞(nC )x̄ = 0, we have

A∞π∞(nT ),∞(nC )F (x̄; 0) = (0, 0, g∞, h∞),
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where

{g∞}n
def
=

0, n ≤ nT ,
`2{N(v̄)}n−2

n(n+ d− 2)
, n > nT ,

{h∞}n
def
=

0, n ≤ nC ,
L

2

{f(w̄)}n−1 − {f(w̄)}n+1

2n
, n > nC .

We infer that

|A∞F (x̄; 0)|X = max(|g|T q , |h|C 1+2q
ν

)

≤ max

(
`2|π∞(nT )N(v̄)|T q

(nT + 1)(nT + d− 1)
,
L(ν + ν−1)|π∞(nC )f(w̄)|C 1+2q

ν

4(nC + 1)

)
.

By definition of Y , this proves (33a).
Secondly, by the triangle inequality,

|DT (x̄; 0)|B(X,X) = |I −ADF (x̄; 0)|B(X,X)

= |I − (AπnT ,nC +A∞)DF (x̄; 0)|B(X,X)

≤ |I −AπnT ,nCDF (x̄; 0)πnT ,KnC +1 −A∞DF (x̄; 0)π∞(nT ),∞(nC )|B(X,X)

+ |A∞DF (x̄; 0)πnT ,nC |B(X,X) + |AπnT ,nCDF (x̄; 0)π∞(nT ),∞(KnC +1)|B(X,X).

We then have

A∞π∞(nT ),∞(nC )DF (x̄; 0)π∞(nT ),∞(nC )x =


0
0

π∞(nT )v
π∞(nC )w

 = π∞(nT ),∞(nC )x,

for all x = (η, φ, v, w) ∈ X, which implies

|I −AπnT ,nCDF (x̄; 0)πnT ,KnC +1 −A∞DF (x̄; 0)π∞(nT ),∞(nC )|B(X,X)

= |πnT ,nC −AπnT ,nCDF (x̄; 0)πnT ,KnC +1|B(X,X).

Moreover,
A∞DF (x̄; 0)πnT ,nCx = (0, 0, gnT

∞ , hnC
∞ ), for all x = (η, φ, v, w) ∈ X,

where

{gnT
∞ }n

def
=

0, n ≤ nT ,
`2{DN(v̄)πnT v}n−2

n(n+ d− 2)
, n > nT ,

{hnC
∞ }n

def
=

0, n ≤ nC ,
L

2

{Df(w̄)πnCw}n−1 − {Df(w̄)πnCw}n+1

2n
, n > nC .

We infer that

|A∞DF (x̄; 0)πnT ,nC |B(X,X) ≤ max

(
`2|DN(v̄)|B(T q,T q)

(nT + 1)(nT + d− 1)
,
L(ν + ν−1)|Df(w̄)|B(C 1+2q

ν ,C 1+2q
ν )

4(nC + 1)

)
.

26



Furthermore,

AπnT ,nCDF (x̄; 0)π∞(nT ),∞(KnC +1)x = A

(
2

∑
n>KnC +1

{w2}n , 2
∑

n>KnC +1

{w3}n , 0 , h̃

)
,

for all x = (η, φ, v, w) ∈ X, where

{h̃}n =


 0∑

m>nT
{v}mrm∗

`−1
∑
m>nT

m{v}mrm∗

− L ∑
m>nC +1

(−1)m

m2 − 1
{Df(w̄)π∞(KnC +1)w}m, n = 0,

0, n ≥ 1,

since, according to (29), {Df(w̄)π∞(KnC +1)w}n = 0 for all n ≤ nC + 1. As it was assumed that
r∗ ∈ (0, e−1/(nT +1)], we have that nrn∗ is a decreasing sequence for all n > nT . It follows that

|AπnT ,nCDF (x̄; 0)π∞(nT ),∞(KnC +1)|B(X,X)

≤ |A|B(X,X) max

(
2

νKnC +2
, rnT +1
∗ max(1, `−1(nT + 1)) +

L|Df(w̄)|B(C 1+2q
ν ,C 1+2q

ν )

νnC +2((nC + 2)2 − 1)

)
.

By definition of Z1, this proves (33b).
Thirdly, by the triangle inequality,

sup
x∈cl(B%(x̄))

|D2T (x; 0)|B(X2,X) = sup
x∈cl(B%(x̄))

|AD2F (x; 0)|B(X2,X)

≤ |A|B(X,X) sup
x∈cl(B%(x̄))

|D2F (x; 0)|B(X2,X).

We have

|A|B(X,X) ≤ |A|B(X,X) + max

(
1

(nT + 1)(nT + d− 1)
, 1

)
= |A|B(X,X) + 1.

Additionally,
[D2F (x; 0)](x′, x′′) = (0, 0, `2[D2N(v)](v′, v′′), ĥ),

for all x = (η, φ, v, w), x′ = (η′, φ′, v′, w′), x′′ = (η′′, φ′′, v′′, w′′) ∈ X, where

{ĥ}n
def
=
L

2

(
{[D2f(w)](w′, w′′)}0 −

1

2
{[D2f(w)](w′, w′′)}1 − 2

∑
m≥2

(−1)m

m2 − 1
{[D2f(w)](w′, w′′)}m

)
, n = 0,

L

2

{[D2f(w)](w′, w′′)}n−1 − {[D2f(w)](w′, w′′)}n+1

2n
, n ≥ 1.

Subsequently, by extensively applying the triangle inequality and the Banach algebra property, we obtain

|[D2N(v)](v′, v′′)|T q = max
i=1,...,q

q∑
j,k=1

| ∂2

∂vj∂vk
Ni(v) ∗ v′j ∗ v′′k |T

≤ max
i=1,...,q

q∑
j,k=1

∂2

∂vj∂vk
Nabs,i(|v1|T , . . . , |vq|T )|v′j |T |v′′k |T ,

|[D2f(w)](w′, w′′)|C 1+2q
ν

= max
i=1,...,q

1+2q∑
j,k=1

| ∂2

∂wj∂wk
fi(w) ∗ w′j ∗ w′′k |Cν

≤ max
i=1,...,q

q∑
j,k=1

∂2

∂wj∂wk
fabs,i(|w1|Cν , . . . , |w1+2q|Cν )|w′j |Cν |w′′k |Cν .
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Then, introducing ζ
def
= [D2f(w)](w′, w′′) for convenience, for any i = 1, . . . , 1 + 2q we have

|ĥi|Cν =
L

2

(
|{ζi}0 −

1

2
{ζi}1 − 2

∑
n≥2

(−1)n

n2 − 1
{ζi}n|+

∑
n≥1

|{ζi}n−1 − {ζi}n+1|
n

νn
)

=
L

2

(
|{ζi}0 −

1

2
{ζi}1 − 2

∑
n≥2

(−1)n

n2 − 1
{ζi}n|+ ν

∑
n≥0

|{ζi}n − {ζi}n+2|
n+ 1

νn
)

≤ L

2

(
(1 + ν)|{ζi}0|+

1 + ν2

2
|{ζi}1|+ 2

∑
n≥2

|{ζi}n|
( 1

n2 − 1
+
νn+1

n+ 1

))
=
L(1 + ν)

2

(
|{ζi}0|+

1 + ν2

2(1 + ν)
|{ζi}1|+ 2

∑
n≥2

(n+ 1)ν−n + (n2 − 1)ν

(n+ 1)(n2 − 1)(1 + ν)
|{ζi}n|νn

)
≤ L(1 + ν)

2

(
|{ζi}0|+ 2|{ζi}1|ν + 2

∑
n≥2

|{ζi}n|νn
)

=
L(1 + ν)

2
|ζi|Cν .

It follows that (with the infinity norm on both Cq and C1+2q)

sup
x∈cl(B%(x̄))

|D2F (x; 0)|B(X2,X) ≤ max

(
`2|D2Nabs(|v̄1|T + %, . . . , |v̄q|T + %)|B(Cq,Cq),

L(1 + ν)

2
|D2fabs(|w̄1|Cν + %, . . . , |w̄1+2q|Cν + %)|B(C1+2q,C1+2q)

)
.

By definition of Z2, this proves (33c).

B Rigorous computation of eigenvalues and eigenvectors for
FitzHugh-Nagumo

For the three-component FitzHugh-Nagumo type equation (8), we show how to rigorously compute λ ∈ C
and g ∈ C3 satisfying

DN(c∗, c∗, c∗)g + gλ2 = 0, (35)

where

DN(c∗, c∗, c∗) =

ε−2(1− 3c2∗) −ε−1β2 −ε−1β3

1 −1 0
β−2

4 0 −β−2
4

 .

It is straightforward to verify that if (35) holds, then the first component g1 of g cannot vanish. A pair
(λ, g/g1) ∈ C× C3 solving (35) forms an isolated zero of the mapping Feig : C× C3 → C× C3 given by

Feig(λ, g)
def
=

(
g1 − 1

DN(c∗, c∗, c∗)g + gλ2

)
, for all (λ, g) ∈ C× C3.

Fix %eig > 0. Let x̄eig = (λ̄, ḡ) be a numerical zero of Feig and Aeig a numerical inverse of DFeig(x̄eig).
Define Yeig

def
= |AeigFeig(x̄eig)|C3 and Zeig

def
= supx∈cl(B%eig

(x̄eig)) |I − AeigDFeig(x)|B(C3,C3). Observe that

Yeig and Zeig can be rigorously computed using interval arithmetic.
If Zeig < 1 and ρ̄eig

def
= Yeig/(1−Zeig) ∈ [0, %eig], then the operator Teig

def
= I−AeigFeig is a contraction

in cl(B%eig
(x̄eig)). Consequently, ρ̄eig is an a posteriori error bound on x̄eig.
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