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Abstract

To make progress towards better computability of Morse-Floer homology, and thus
enhance the applicability of Floer theory, it is essential to have tools to determine the
relative index of equilibria. Since even the existence of nontrivial stationary points is
often difficult to accomplish, extracting their index information is usually out of reach.
In this paper we establish a computer-assisted proof approach to determining relative
indices of stationary states. We introduce the general framework and then focus on
three example problems described by partial differential equations to show how these
ideas work in practice. Based on a rigorous implementation, with accompanying code
made available, we determine the relative indices of many stationary points. Moreover,
we show how forcing results can be then used to prove theorems about connecting
orbits and traveling waves in partial differential equations.
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1 Introduction

Morse-Floer homology is a flourishing algebraic-topological construction in the mathematical
toolbox for studying variational problems. The precursor to Floer homology was first created
as a dynamical systems alternative for the intrinsic construction of the homology of compact
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manifolds — Morse homology [31, 32, 40]. Subsequently it has been generalized to many
other contexts in analysis and geometry, including infinite dimensional settings.

Without giving a comprehensive description (we refer to [28, 30]), we nevertheless first
sketch an outline of Morse-Floer homology to set the scene. A Morse-Floer homology is built
from the critical points of the objective functional A, which are described by solutions of the
Euler-Lagrange equation dA(u) = 0, as well as the non-equilibrium orbits of an associated
(formal) gradient flow u′ = −∇A(u), which depends on the choice of inner product. Besides
these two types of solutions (equilibria and connecting orbits) of differential equations,
the third ingredient in the homology construction is an (integer valued) index i(u∗) that
is associated to each non-degenerate critical point u∗. In the classical, finite dimensional
setting, this index counts the number n(u∗) of negative eigenvalues of the Hessian matrix
d2A(u∗), the Morse index, which is interpreted dynamically as the dimension of the unstable
manifold of u∗ for the gradient flow.

In an infinite dimensional semi-flow setting the number n(u∗) is usually finite (although
the number of positive eigenvalues is infinite now), and one may again use i(u∗) = n(u∗)
as the index, and the resulting construction is usually still called a Morse homology. In
other cases, so-called strongly indefinite problems, however, the linear operator associated
to the second derivative of A has both infinitely many negative and infinitely many positive
eigenvalues, hence an alternative definition of the index is needed. The breakthrough idea
put forward by Floer [13, 14] in the context of Hamiltonian dynamics, is to define a relative
index: we have no absolute index but only ever compare the indices of two critical points, say
u1
∗ and u2

∗. In essence this relative index i(u1
∗, u

2
∗) counts how many eigenvalues cross over

from negative to positive when one follows a path of linear operators along a homotopy from
d2A(u1

∗) to d2A(u2
∗) — spectral flow (e.g. see [26]). Once such a relative index is properly

defined (e.g. taking into account eigenvalues can cross 0 in both directions), the homology
construction can be carried out under suitable compactness and generic transversality con-
ditions. For strongly indefinite problems the resulting homology, based on a relative index
rather than a Morse index, is usually called a Floer homology. Clearly Floer homology is
a generalization of Morse homology, whereas the Morse index can be seen as a special case
of a relative index: i(u1

∗, u
2
∗) = n(u1

∗) − n(u2
∗). On the other hand, by choosing a fixed

critical point u0
∗, one can attach an index to any critical point by setting ñ(u∗) = i(u0

∗, u∗),
and one may even choose any fixed hyperbolic linear operator as the “base point” rather
than an equilibrium, see Section 2 for more details. We will refer to the collective of such
constructions as Morse-Floer theory.

In this paper we discuss how to compute relative indices of critical points in strongly
indefinite variational problems using computer-assisted proof techniques. For all its popular-
ity and success, Morse-Floer homology is renowned for being difficult to compute explicitly.
Recent developments in rigorous computer-assisted analysis of dynamical systems [36] brings
the opportunity to compute at least some of the ingredients of the Morse-Floer homology
construction explicitly, namely critical points and their relative (or Morse) indices. We men-
tion that progress on connecting orbits in infinite dimensions is also being made [8, 9, 11], but
the central topic of the current paper is the computations of relative indices. As hinted at
above, this requires the understanding, in a mathematically rigorous computational frame-
work, of the spectral flow along a homotopy between two linear operators on some infinite
dimensional space. Using relatively simple model equations (so that we can focus on the
ideas rather than the technicalities, which may become quite involved in more complex
systems), we show that equilibria and, in particular, their relative/Morse indices are com-
putable. We shall also see that the difficulties in computing relative indices are analogous
to those for Morse indices (in infinite dimensions, e.g. semi-flows).
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Although it is exciting to be able to compute relative indices in view of the long term
goal of advancing the applicability of Morse-Floer theory, there are also more direct benefits.
In particular, the index information improves the concrete forcing results that we obtain
from Morse-Floer homology. Indeed, the chain groups in the homology are generated by the
critical points, graded by their relative or Morse indices, while connecting orbits between
critical points with index difference one are used to construct the boundary operator. Hence,
the homology encodes information about the relation between critical points, their indices,
and the connecting orbits between them. Exploiting that the homology is an algebraic-
topological invariant allows us to compare the homology of related systems, for example at
different parameter values. Seeded with computed information about equilibria and their
relative indices, this leads to forcing results about the existence of additional critical points
as well as connecting orbits. Although some of the forcing results follow from the mere
existence of equilibria, the (relative) indices provide refined information, leading to enhanced
forcing relations. We discuss examples of such forcing results below, where we simultaneously
compute and prove equilibria and their relative indices, and then draw conclusions about
the minimal set of connecting orbits that is forced by these. Even though our choice of
model equations are relatively simple so that we can focus on the concepts, some of the
forcing results are nevertheless novel.

Before proceeding any further, it is worth mentioning that methods for computing en-
closures of solutions of nonlinear partial differential equations (PDEs) based on computing
the spectra of operators have been developed, see e.g. [5, 39]. Using the rigorous control on
the spectrum of a certain linear operator (typically the linearization of the PDE about a
numerical solution) a bound on the norm of its inverse is obtained and then used in a fixed
point theorem to prove (constructively) the existence of a solution.

Three example problems

To illustrate the central ideas of this paper, we will use three problems, for which we have
implemented the computer-assisted computations to obtain the indices of critical points.
The first example is the classical application of Floer theory: the Cauchy-Riemann equations

ut = vx + ψλ(u),

vt = −ux + v,

v(t, 0) = v(t, π) = 0,

(1)

where ψλ : R → R is some smooth nonlinear function. Throughout this paper we will
restrict attention to

ψλ(u)
def
= λ1u− λ2u

3,

where λ1, λ2 ∈ R are parameters, but the method works for much more general nonlinear-
ities. Although rescaling could reduce the number of parameters when the signs of λ1 and
λ2 are fixed, keeping two parameters turns out to be advantageous when capitalizing on
continuation arguments. In particular, while from the viewpoint of pattern formation and
forcing results the interesting case to consider is when both parameters are positive, when
homotoping it is convenient to allow λ1 to change sign and then allow λ2 to vanish when
λ1 is negative. We come back to this later.

In (1) we have chosen Neumann boundary condition on u and Dirichlet boundary condi-
tions on v. In this and all other examples we choose Neumann/Dirichlet boundary conditions
rather than periodic ones in order to avoid the issues related to shift invariance (which would
make all critical points degenerate). The time variable is t, but this problem is ill-posed
hence there is no flow in forward or backward time.
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The equation has a variational structure, as (1) is the formal (negative) L2-gradient flow
of the action functional

ACR
def
=

∫ π

0

[
vux −

1

2
v2 −Ψλ(u)

]
dx, (2)

where Ψλ(u) = λ1

2 u
2 − λ2

4 u
4 is an anti-derivative of ψλ(u).

Our second example is
utt − cut + ux1x1

+ ux2x2
+ ψλ(u) = 0 for x = (x1, x2) ∈ [0, π]× [0, π],

ux1(t, 0, x2) = ux1(t, π, x2) = 0,

ux2(t, x1, 0) = ux2(t, x1, π) = 0.

(3)

Here c > 0 is a parameter that has the interpretation of the wave speed, since (3) results
from substituting a travelling wave Ansatz into the parabolic equation

ut = ∆u+ ψλ(u) = ux1x1
+ ux2x2

+ ux3x3
+ ψλ(u), for t, x3 ∈ R, x1, x2 ∈ [0, π], (4)

with Neumann boundary conditions on the “cylindrical” spatial domain [0, π]2 × R. Hence
solutions of (3) correspond to travelling wave solutions of (4) on the infinite cylinder, see
e.g. [4, 12, 15, 21]. The problem (3) is not quite a gradient flow, but rather it is gradient-like.
This still suffices for a Morse-Floer homology construction. Indeed, for the problem (3) the
details of this construction can be found in [4]. The functional

ATW
def
=

∫ π

0

∫ π

0

[
−1

2
(ut)

2 +
1

2
((ux1

)2 + (ux2
)2)−Ψλ(u)

]
dx1dx2 (5)

serves as Lyapunov function for solutions of (3) for any c > 0.
Our third example is the Ohta-Kawasaki equation [25]

ut = −uxxxx − (ψλ(u))xx − λ3u, for x ∈ [0, π],

ux(t, 0) = ux(t, π) = 0,

uxxx(t, 0) = uxxx(t, π) = 0,∫ π
0
u(0, x)dx = 0,

(6)

which is used to model diblock copolymers [24, 7, 3]. The extra parameter λ3 ≥ 0 describes
the strength of the (attractive) long range interactions in the mixture. The space of functions
u satisfying

∫ π
0
u(x)dx = 0 is invariant (the general Ohta-Kawasaki model has a parameter

m that denotes the mass ratio of the two constituents in the mixture; for simplicity we
consider the case m = 0 only, corresponding to a 50%-50% mixture). Equation (6) does
not have an ill-posed initial value problem, but generates a semi-flow. Indeed, we use it to
illustrate that the computation of a Morse and a relative index can be treated in a unified
framework. The flow generated by (6) is the negative gradient flow in H−1 for the functional

AOK
def
=

∫ π

0

[1

2
(ux)2 −Ψλ(u) +

λ3

2
(φx)2

]
dx, (7)

where φ is the unique solution of the elliptic problem
−φxx = u, for x ∈ [0, π],

φx(0) = φx(π) = 0,∫ π
0
φ(x)dx = 0.
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Sample results

In gradient(-like) systems the only type of (bounded) solutions that exist for all time t ∈ R
are equilibria and heteroclinic connections. We will not assume all the equilibria to be
nondegenerate (since that is very difficult to check). Therefore, we define connecting orbits
as orbits for which the α and ω limit sets are disjoint and consists of equilibria only. Although
generically these are classical connecting orbits between nondegenerate equilibria (indeed,
the definition of Morse-Floer homology is built on that), this broader definition allows one
to draw more general conclusions.

For the Cauchy-Riemann problem (1) we determine the Floer homology by continuation

to the linear case ψ̃(u) = −u. In that case there is a unique equilibrium solution (u, v)(x) ≡
(0, 0). This stationary point is hyperbolic and we use the associated linear operator as the
base point relative to which we define indices.

Theorem 1.1. For λ1 = λ2 = 6 the Cauchy-Riemann problem (1) has at least seven
equilibrium solutions with relative indices 0, 0, 1, 1, 2, 2, 3. Moreover, there are at least three
connecting orbits, of which at least two have nontrivial spatial dependence.

Outline of proof. Continuation of the nonlinearity ψλ for λ = (6, 6) to the base point at
λ = (−1, 0) can be performed within the class of coercive nonlinearities (i.e. ψ′(u)u < 0 as
|u| → ∞) by using a piecewise linear homotopy in parameter space via the intermediate point
λ = (−1, 6). This guarantees the necessary compactness properties, see Proposition 2.1. We
obtain β0 = 1 and βk = 0 for k 6= 0, where βk are the Betti numbers of the Floer homology
HFk

(
S∞, ψ

)
, where S∞ is maximal invariant set in N = C1([0, π]). cf. Section 2.3.

At λ = (6, 6) the indices of the homogeneous equilibria (u, v) = (±1, 0) and (u, v) = (0, 0)
are 0 and 3, respectively, as can be verified by hand or computer. Two of the other equilibria
are depicted in Figure 1; see Section 3.1 for an explanation about the rigorous error control
on the distance between the graphs depicted and the true solutions. Their relative indices
are 1 and 2. The remaining two equilibria are related to these via the transformation
(u, v) 7→ (−u,−v).

The results on the number and type of connecting orbits follow from the forcing Lemma 2.8.
As mentioned when we chose the base point, the only nonzero Betti number is β0 = 1. On
the other hand, the relative index information on the seven equilibria implies that we may
set

ζ0 = 2, ζ1 = 2, ζ2 = 2, ζ3 = 1.

The multiplicity result then follows directly from the forcing Lemma 2.8. Additionally it
implies that each of the four nonhomogeneous equilibria (the ones with relative index 1
and 2) forms the α or ω limit set of at least one connecting orbit.

The remaining details of the proof are filled in Sections 3 (existence theorem for equilibria
and computation of the relative indices) and 4 (bounds needed for the computer-assisted
part of the proof).

We note that large parts of the analysis of (1) can be done by hand, since the equilibria
for the particular choice of the right-hand side coincide with those of the Allen-Cahn or
Chaffee-Infante parabolic problem

ut = uxx + ψλ(u).

This (bifurcation) problem is analyzed in detail in [16, 22]. Furthermore, by using the
symmetry one could obtain somewhat stronger forcing results, but we do not pursue that
here as it is beside the point of this paper.
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For the other two examples we obtain similar results, but here no alternative using
pencil-and-paper analysis is available. For the problem (3) we again first select a base
point, relative to which we define the indices. Namely, as for the problem (1), for the linear

case ψ̃(u) = −u there is a unique, hyperbolic equilibrium solution u(x) ≡ 0. We choose the
associated linear operator (where we may pick any c > 0) as our base point. We can now
formulate the following sample results.

Theorem 1.2. For λ1 = λ2 = 12 the travelling wave problem (3) has at least 71 equilibrium
solutions with relative indices 0 (2×), 2 (8×), 3 (8×), 4 (8×), 5 (8×), 6 (12×), 7 (8×), 8
(6×), 10 (4×), 11 (4×), 12 (2×), and 13 (1×). Moreover, for any c > 0 there are at least 35
connecting orbits, corresponding to travelling waves of (4). Each of the 68 nonhomogeneous
equilibria is the α or ω limit set of a connecting orbit.

The nonhomogeneous equilibria are depicted in Figure 2. The problem allows a symme-
try group of order 16, generated by the operations

x1 7→ π − x1 x2 7→ π − x2 (x1, x2) 7→ (x2, x1) u 7→ −u.

For each equilibrium represented in Figure 2 there are additional ones generated by these op-
erations (the orbit under the action of the symmetry group). The number of such symmetry-
related equilibria is indicated in Figure 2. The proof of Theorem 1.2 is essentially the same
as the one of Theorem 1.1, although of course the estimates and computational details are
somewhat different (see Section 5) and the Floer theory constructed in this case has some
less classical aspects, see [4]. The result in Theorem 1.2 complements the ones obtained
in [12], where a result similar to Lemma 2.8 is proven using the Conley index, but without
the information on the existence of equilibria provided by our computer-assisted approach.

For the problem (6) choosing a base point is not an issue. Since the problem is not
ill-posed, one may just use the classical Morse index. Nevertheless, it is useful to note that
for the linear case ψ̃(u) = −u and any λ3 ≥ 0 there is a unique, hyperbolic equilibrium
solution u(x) ≡ 0, which is a (global) minimizer, i.e., it has Morse index 0. Hence indices
can also be interpreted as relative to the linearization at this equilibrium.

Theorem 1.3. For λ1 = λ2 = 9 and λ3 = 4.5 the Ohta-Kawasaki problem (6) has at least
9 equilibrium solutions with Morse indices 0 (4×), 1 (4×) and 2 (1×). Moreover, there are
at least 4 connecting orbits, each having nontrivial spatial dependence.

The nontrivial equilibria are depicted in Figure 3. The proof is analogous to those
discussed above, with some computational details for this particular problem provided in
Section 6. This complements results from [9], where constructive computer-assisted proofs
of existence of connecting orbits in Ohta-Kawasaki are obtained.

Outline of the paper

The outline of this papers is as follows. In Section 2 we give a concise outline of the
construction of Morse-Conley-Floer homology, and we discuss the forcing relation in Morse-
Conley-Floer theory between critical points (with their indices) and connecting orbits. In
Section 3 we introduce the computational setup for computing-proving the equilibria and
their (relative, Morse) indices, as well as the spectral-flow and homotopy arguments that
turn the computational results into rigorous ones. We use that in a Fourier series setting,
which the three problems (1), (3) and (6) all fit in, the spectral flow properties that we need
are particularly convenient from a computational point of view. This is due to the lack of
explicit boundary conditions (which are absorbed in the Banach spaces we choose to work
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Figure 1: Equilibrium solutions of (1) for λ1 = λ2 = 6. The error in the plots in the C0 norm
is no more than 5 · 10−11. To each equilibrium (u(x), v(x)) corresponds another equilibrium
(−u(x),−v(x)) with the same relative index. Moreover, the homogeneous states (−1, 0),
(0, 0) and (1, 0) are also equilibria. The states (±1, 0) have relative index 0, the equilibrium
on the left has index 1, the one on the right has index 2, and the state (0, 0) has relative
index 3.

in) and the fact that the dominant differential operators are diagonal in the Fourier basis. In
Sections 4, 5 and 6 we provide computational details for each of the example problems (1),
(3) and (6), respectively. Since the computational particulars are not the core of the present
paper, and many of the estimates are available elsewhere, we keep those sections brief, using
citations to the literature where appropriate. All computer-assisted parts of the proofs are
performed with code available at [33].

2 Morse-Conley-Floer homology

In order to establish connecting orbits in various classes of partial differential equations,
including strongly indefinite ones, we want to use a topological-algebraic invariant. Since the
systems under study are either gradient or gradient-like systems, a natural choice is to use an
intrinsically defined invariant such as a Morse homology or Floer homology. For definiteness,
to define an appropriate index theory we focus on the Cauchy-Riemann equations in R2. We
emphasize that the same methods apply more generally, in particular to the other problems
introduced in Section 1.

Consider equations of the form ®
ut = vx + ψλ(u)

vt = −ux + v,
(8)

where z = (u, v) : R × [0, π] → R2, with the boundary conditions ux(0) = ux(π) = 0 and
v(0) = v(π) = 0. The above equations are the negative L2-gradient flow of the functional

AεCR(z)
def
=

∫ π

0

[
vux −

1

2
v2 −Ψ(u)− εh(x, u, v)

]
dx,

when ε = 0. The values ε > 0 are referred to as the perturbed problem. For simplicity, sup-
pose that Ψ is a superquadratic polynomial in u. For the function h we assume throughout
that |hz(x, u, v)| ≤ o(|u|+ |v|) uniformly in x ∈ [0, π]. The perturbed equations are®

ut = vx + ψλ(u) + εhu(x, u, v),

vt = −ux + v + εhv(x, u, v).
(9)

7



Figure 2: Nonhomogenous equilibrium solutions of (3) for λ1 = λ2 = 12. The relative
index is indicated above each graph. The error in the plots in the C0 norm is less than
3 · 10−5. Additionally, the homogenous solutions u ≡ ±1 and u ≡ 0 have indices 0 and
13, respectively. The multiplicity mentioned above each graph is the number of symmetry-
related equilibria, as explained in the main text.
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Figure 3: (Left) Bifurcation diagram of equilibria of (6) when λ1 = λ2 varies over the interval
[0, 9] with Morse indices 0 (blue), 1 (red) and 2 (green). (Right) Equilibrium solutions of (6)
for λ1 = λ2 = 9 and λ3 = 4.5. The trivial solution (in green) has index 2. The equilibria in
blue have index 0 while the one in red has index 1. To each blue equilibrium solution u(x)
corresponds a solution −u(x) having the same index. Moreover, to the red solution u(x)
corresponds the three other equilibria −u(x) and ±u(π − x). The error in the plots in the
C0 norm is no more than 6 · 10−14.

2.1 The relative Morse index

As pointed out in the introduction, strongly indefinite problems have infinite Morse (co)-
index. This complication defies a standard counting definition for an index. Instead we use
the approach proposed by Floer in his treatment of the Hamilton action (e.g. see [1, 14]).
Let z be a solution of Problem (9) with limt→±∞ z(t, ·) = w±, where w± are hyperbolic
critical points of AεCR. Linearizing the equations in (9) yields a linear operatorÅ

ξ
η

ã
7→
Å
ξt − ηx − ψ′λ(u)ξ − εhuu(x, u, v)ξ − εhuv(x, u, v)η
ηt + ξx − η − εhuv(x, u, v)ξ − εhvv(x, u, v)η

ã
. (10)

Such linearized Cauchy-Riemann equations are written compactly as

LK
def
= ∂t − J∂x −K(t, x), (11)

where J =
(

0 1
−1 0

)
is the standard symplectic 2× 2-matrix and K is a (2× 2) matrix-valued

function with asymptotic limits limt→±∞K(t, x) = K±(x). The operators LK of this type
are Fredholm operators on W 1,2(R× [0, π]) and the Fredholm index ind(LK) only depends
on the limits K±, which we denote by

ind(LK) = ι(K−,K+),

cf. [26]. When J∂x + K± = −d2AεCR(w±) we define the relative Morse index i(w−, w+) of
w− and w+ as the Fredholm index

i(w−, w+)
def
= ι(K−,K+),

where K± = −J∂x − d2AεCR(w±). The Fredholm index satisfies the co-cycle property,
which expresses that concatenation of paths corresponds to addition of Fredholm indices.
In particular, if w, w′ and w′′ are critical points of AεCR then

i(w,w′) + i(w′, w′′) = i(w,w′′).
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This property implies that the relative index function on the critical points is well-defined.
One may normalize the index, for example by setting

µ(w)
def
= ι(K,K0),

where J∂x+K = −d2AεCR(w) and K0 = ( 1 0
0 1 ). With the normalized Morse index we obtain

ι(w,w′) = µ(w)− µ(w′).

In the Fredholm theory for operators LK of the form (11), the Fredholm index can be related
to another characteristic of self-adjoint operators: spectral flow. Let σ 7→ B(σ), σ ∈ [−1, 1],
be a smooth path of self-adjoint operators such that

B(±1) = −d2AεCR(w±).

A path can be deformed slightly to be a generic path, that is B(σ) is singular only for
finitely many values of σ, [26, Sect. 4]. We denote I = {σ ∈ (−1, 1) : B(σ) is singular},
where we assume that the end points B(−1) and B(+1) are regular (w± are hyperbolic
critical points). Moreover, at any σ0 ∈ I the kernel of B(σ0) is 1-dimensional, and the
single eigenvalue such that λ(σ0) = 0 crosses zero transversally: λ′(σ0) 6= 0. One defines
the spectral flow of a generic path as

specflow(B(σ))
def
=
∑
σ0∈I

sign(λ′(σ0)).

The spectral flow does not depend on the chosen (generic) path, hence the definition of
the spectral flow can be extended to nongeneric paths. The spectral flow is related to the
Fredholm operators LK as follows:

i(w−, w+) = ind
(
LK
)

= specflow(J∂x +K(σ, x)).

The link between the relative index and the Fredholm operator is used again in the next
section to determine the dimension of sets of bounded solutions.

2.2 Isolating neighborhoods

Problem (8) is ill-posed when viewed as an initial value problem. It does however make
sense to consider the set of bounded solutions

Wε,h
def
=
{
z = (u, v) : R× [0, π]→ R2

∣∣∣ z solves (9) and

∫
R×[0,π]

|zt|2 <∞
}
.

When ψ(u) = Ψ′(u) is a coercive nonlinearity, that is ψ(u)u < 0 for |u| → ∞, then we have
the following compactness result:

Proposition 2.1. Suppose ψ is coercive. Then the set Wε,h is compact in C1
loc(R× [0, π]),

for all ε and all h.

The compactness result is based on elliptic estimates and the “geometric type” of the
nonlinearity ψ (coercivity). The latter provides an a priori L∞-bound on complete trajec-
tories z(t, x). The global compactness result is a crucial pillar for defining invariants, cf.
[1, 34, 14]. Nonetheless, when such a property is not available, for example when ψ(u)u > 0
for |u| → ∞, one way to circumvent this problem is to consider bounded solutions restricted
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to a subset N ⊂ C1([0, π]). In fact, we will use isolating neighborhoods N (see Definition 2.3
below) even for coercive nonlinearities. We define

Wε,h(N )
def
=
{
z ∈ Wε,h

∣∣ z(t, ·) ∈ N for all t ∈ R
}
.

Bounded solutions define the equivalent of an invariant set since t-translation of bounded
solutions of the nonlinear Cauchy-Riemann equations in Wε,h(N ) induces a (continuous)
R-flow on the (metric) space Wε,h (compact-open topology). We define

Sε,h(N )
def
=
{
z(0, ·)

∣∣ z ∈ Wε,h(N )
}
⊂ N , (12)

which is called the maximal invariant set in N . Points in Sε,h(N ) will be denoted by w.
The Cauchy-Riemann equations are special in the sense that the unique continuation

property yields an R-flow on S(N ), cf. [2, 29]. This induced R-flow on Sε,h(N ) is denoted
by φε,h. In the case ε = 0 we write W(N ) and φ : R×S(N )→ S(N ) for the set of bounded
solutions and the induced R-flow, respectively.

In general, while the t-translation flow on W(N ) always defines a R-flow, for parabolic
equations such as (6) the induced flow on S(N ) may yield only a semi-flow. The most
important reason for using the induced flow φ is to have a straightforward definition of
isolation and isolating neighborhood, leading to a compact metric space S(N ), on which
the theory of attractors and Morse representations from [18, 19] can be used.

Proposition 2.2 ([34, 14]). Let N ⊂ C1([0, π]) be a closed set. If Sε,h(N ) ⊂ N is bounded,
then the set Wε,h(N ) is compact in C1

loc(R× [0, π]).

As a consequence Sε,h(N ) is a compact subset in C1([0, π]).

Definition 2.3 ([1, 34, 14]). A subset N ⊂ C1([0, π]) is called an isolating neighborhood
for Problem (9), if

(i) Sε,h(N ) is compact;

(ii) Sε,h(N ) ⊂ int(N ).

A sufficient condition to guarantee the boundedness of Sε,h(N ) is an action bound:

a ≤ AεCR(z(t, x)) ≤ b, ∀z ∈ N , a < b ∈ R,

cf. [14, 28]. A second important pillar for defining intrinsic invariants is a generic structure
theorem for gradient systems. We say that Problem (9) is generic if (i): the critical points
w of AεCR are non-degenerate, i.e. d2AεCR(w) is an invertible operator, and (ii): the adjoint
of the linearized problem (10) is onto for every bounded trajectory z ∈ Wε,h(N ). The pair
(ε, h) is called generic in this case.

Proposition 2.4. For every ε 6= 0 and for almost every (in a well-defined sense) perturba-
tion h, Problem (9) is generic.

When ε = 0 and N is an isolating neighborhood, then N is also isolating for ε 6= 0
sufficiently small. For isolating neighborhoods and generic pairs (ε, h) we have the following
structure theorem:

Theorem 2.5. Let N be an isolating neighborhood and let (ε, h) be a generic pair. Then,

Wε,h(N ) =
⋃

w−,w+

Wε,h(w−, w+;N ),

11



where
Wε,h(w−, w+;N )

def
=
{
z ∈ Wε,h(N )

∣∣ lim
t→±∞

z(t, ·) = w±
}
,

and w± are (the finitely many) critical points of AεCR in N . The sets Wε,h(w−, w+;N ) are
smooth embedding manifolds (without boundary) and

dimWε,h(w−, w+;N ) = ι(w−, w+).

2.3 The homology construction

Theorem 2.5 states that, generically, bounded solutions are connecting orbits or critical
points. This allows us to carry out a standard construction of chain complexes. To reduce
notational clutter we fix a base point for the index and consider the normalized index µ(w).
Given an isolating neighborhood N and a generic pair (ε, h) we define

Ck(ε, h;N )
def
=

⊕
dAεCR(w)=0
µ(w)=k

Z2〈w〉,

called the k-dimensional chain groups over Z2. The latter are finite dimensional since
Wε,h(N ) is compact. Also by compactness Wε,h(w−, w+;N ) is a finite set of trajectories
whenever i(w−, w+) = µ(w−)− µ(w+) = 1. This allows us to define the boundary operator

∂k(ε, h;N ) : Ck(ε, h;N )→ Ck−1(ε, h;N ),

given by

∂k〈w〉
def
=

∑
µ(w′)=k−1

n(w,w′)〈w′〉,

where n(w,w′) ∈ Z2 is the number of trajectories in Wε,h(w−, w+;N ) modulo 2. In order
to justify the terminology boundary operator we observe that(

∂k−1 ◦ ∂k
)
〈w〉 =

∑
µ(w′′)=k−2

∑
µ(w′)=k−1

n(w,w′)n(w′, w′′)〈w′′〉. (13)

The inner sum counts the number of 2-chain connections between w and w′′. The structure
theorem can be appended with the statement that every (of the finitely many) components
of Wε,h(w−, w+;N ) with i(w−, w+) = 2, is either a circle of trajectories or an open interval
of trajectories with distinct ends. The latter implies that the sum in (13) is even and
therefore ∂k−1 ◦ ∂k = 0 for all k, proving that ∂k is indeed a boundary operator. Hence(

Ck(ε, h;N ), ∂k(ε, h;N )
)
, k ∈ Z,

is a finite dimensional chain complex over the critical points of AεCR in N . The homology
of the chain complex is defined as

HFk(ε, h;N )
def
=

ker ∂k(ε, h;N )

im ∂k+1(ε, h;N )
, (14)

which is the Floer homology of the triple (ε, h;N ). A priori the Floer homology depends on
the three parameters ε, h and N . Basic properties of the Cauchy-Riemann equations can
be used to show various invariance properties of the Floer homology.

12



Proposition 2.6 ([14]). Let N ⊂ C1([0, π]) be a closed set and let (εs, hs)s∈[0,1] be a
homotopy. Suppose that

(i) N is an isolating neighborhood for every pair (εs, hs), s ∈ [0, 1];

(ii) the pairs (ε0, h0) and (ε1, h1) are generic.

Then, HFk(ε0, h0;N ) ∼= HFk(ε1, h1;N ) for all k, and concatenations of homotopies yield
compositions of isomorphisms.

We may thus interpret the Floer homology as a Conley-Floer index HF∗(N ) of the
isolating neighborhood N . Note that for isolating neighborhoods N and N ′ with S(N ) =
S(N ′) the index is the same, which motivates the definition as an index for S:

HFk(S) = HFk(N ) ∼= HFk(N ′), for all k ∈ Z,

which can be formalized via the usual inverse limit construction.
The next step is to see how the Conley-Floer index depends on the nonlinearity ψ.

Consider a homotopy ψs, s ∈ [0, 1], which represents a continuous family of functions ψs(u)
of superlinear polynomial growth.

Theorem 2.7 (Continuation, cf. [1, 14, 29]). Let N ⊂ C1([0, π]) be a closed set and let
(ψs)s∈[0,1] be a homotopy. Suppose N is isolating for all s ∈ [0, 1]. Then

HFk(S0, ψ
0) ∼= HFk(S1, ψ

1), for all k ∈ Z,

where S0 and S1 are the isolated invariant sets in N with respect to ψ0 and ψ1 respectively.

In advantageous circumstances, the continuation theorem can be used to compute the
Conley-Floer index, e.g. by continuation to a situation where there is just a single critical
point (or none). We denote the Betti numbers by

βk
def
= rank HFk

(
S(N ), ψ

)
.

Furthermore, to formulate a forcing result for connecting orbits, we assume that the number
of hyperbolic critical points of relative index k is bounded below by ζk. If ζk > βk for some k,
then there must be at least one connecting orbit. We can be a bit more precise in the context
where we have computationally found a finite set of hyperbolic critical points U =

⋃
k Uk =⋃

k{uk,i}
ζk
i=1, where uk,i has relative index k. We use the notation n+ = max{n, 0}.

Lemma 2.8. The number of points in Uk that is not the ω or α limit set of any connecting
orbit is at most βk. The number of connecting orbits with ω or α limit set in U is bounded
below by

1

2

∑
k

(ζk − βk)+. (15)

Proof. We outline the proof, cf. [4, Theorem 10.2]. We first consider small perturbations to

a generic pair, with a perturbed set of hyperbolic critical points U ε =
⋃
k U

ε
k =

⋃
k{uεk,i}

ζk
i=1.

Let ξεk be the number of critical points in U εk without a connecting orbit to it (i.e. it is not
in the ω or α limit set of any connecting orbit). It follows from the homology construction
that ξεk ≤ βk. Taking the limit ε→ 0 we find that number of points in Uk that is not the ω
or α limit set of any connecting orbit for ε = 0 is at most βk.

Furthermore, for all sufficiently small ε > 0 there must be at least (ζk − βk)+ critical
points in U εk with a connecting orbit “attached” to it. Taking the limits of these connecting
orbits (for all k) as ε→ 0, and noticing that no more than two of the points in U can be in
the union of the ω and α limit set of a single connecting orbit (for ε = 0), we arrive at the
lower bound (15).
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While for the cases encountered in our applications we are satisfied with the forcing
result provided by this lemma, there is definitely room for improvement. For example,
the ordering in terms of energy of the critical points contains additional information that
can lead to stronger forcing results. In such situations one will need a refinement of the
setup in terms of Morse representations, which we may indeed introduce in the current
(Morse-Conley-Floer) context along the lines presented in [18, 19]. We leave this for future
work.

3 Computing the equilibria and their relative indices

In this section, we introduce, in the context of the Cauchy-Riemann action functional ACR,
the rigorous computational method to obtain the critical points and their relative indices.
The approach is analogous for the action functionals ATW and AOK, see Sections 5 and 6
for a discussion of the minor differences. In Section 3.1, we introduce the rigorous method to
compute the critical points. This is done by solving a problem of the form F (a) = 0 posed
on a Banach space of Fourier coefficients a = (ak)k decaying to zero geometrically. Then,
in Section 3.2 we introduce a method to control the spectrum of the derivative DF (ã) for
each rigorously computed critical points ã. Finally, in Section 3.3, we show how to compute
rigorously the relative index of critical points.

3.1 Computation of the critical points

Studying a critical point (u(x), v(x)) of the action functional ACR reduces to study the
steady states (time independent solutions) of Problem (1), that is

0 = vx + λ1u− λ2u
3,

0 = −ux + v,

ux(0) = ux(π) = 0,

v(0) = v(π) = 0.

(16)

Here we have added the redundant Neumann boundary conditions for u (they follow imme-
diately from the second equation) to make the symmetries more obvious.

Due to the Neumann boundary conditions imposed on u and the Dirichlet boundary con-
ditions imposed on v, a solution (u, v) of (16) can be expressed using the Fourier expansions

u(x) =
∑
k∈Z

(a1)ke
ikx, (a1)k ∈ R and (a1)−k = (a1)k for k > 0, (17a)

v(x) =
∑
k∈Z

i(a2)ke
ikx, (a2)k ∈ R and (a2)−k = −(a2)k for k > 0. (17b)

There are several ways to transform the problem (16) to the Fourier setting. Since the
variational formulation is a crucial viewpoint, we choose to start by writing the action in
terms of the Fourier (or rather cosine and sine) coefficients explicitly:

ACR(a1, a2) = 2

∞∑
k=1

k(a1)k(a2)k −
∞∑
k=1

(a2)2
k −

λ1

2
(a2

1)0 +
λ2

4
(a4

1)0,

where a1 = {(a1)k}k≥0 and a2 = {(a2)k}k>0 are real variables. This creates a notationally
inconvenient asymmetry between a1 and a2, and we use (a2)0 = 0 throughout without
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further ado. The convolution powers are the natural ones stemming from the convolution
product

(a1 ∗ ã1)k =
∑
k′∈Z

(a1)k′(ã1)k−k′ , (18)

when taking into account the symmetries in (17), for example

(a2
1)0 = (a1)2

0 + 2

∞∑
k=1

(a1)2
k,

(a4
1)0 =

∑
k1+k2+k3+k4=0

ki∈Z

(a1)|k1|(a1)|k2|(a1)|k3|(a1)|k4|.

We have scaled out an irrelevant factor π in the action compared to (2). We choose as the
inner product 〈

(a1, a2), (ã1, ã2)
〉 def

=
∑
k≥0

(a1)k(ã1)k +
∑
k>0

(a2)k(ã2)k, (19)

so that the Hessian will have the straightforward appearance of a symmetric matrix (when
restricted to natural finite dimensional projections).

Remark 3.1. We note that the alternative inner product〈〈
(a1, a2), (ã1, ã2)

〉〉 def
= (a1)0(ã1)0 + 2

∑
k>0

(a1)k(ã1)k + 2
∑
k>0

(a2)k(ã2)k,

is the one corresponding to the L2 inner product in function space, which was used to in-
terpret the Cauchy-Rieman equations (1) as the negative gradient flow of the action func-
tional (2). In terms of reading of symmetry properties from matrix representations this
alternative inner product is less convenient, although this could be remedied by rescaling
(ai)k for k > 0 by a factor

√
2. On the other hand, a disadvantage of using such rescaled

Fourier coefficients is that it would complicate the description of the convolution product.
Since the relative index is independent of the particular choice of inner product, we choose
to work with (19) in the setup for the relative index computations.

We write a = (a1, a2). Taking the negative gradient of ACR with respect to the inner
product (19), we arrive at the system

(F1(a))0
def
= λ1(a1)0 − λ2(a3

1)0 = 0

(F1(a))k
def
= 2[−k(a2)k + λ1(a1)k − λ2(a3

1)k] = 0 for k > 0,

(F2(a))k
def
= 2[−k(a1)k + (a2)k] = 0 for k > 0.

(20)

We use (20) as the Fourier equivalent of (16). The factors 2 in (20) for k > 0 are the result
of the symmetries in (17) in combination with the inner product choice (19).

We set F (a) = ({F1(a)}k≥0, {F2(a)}k>0). Given a weight ν ≥ 1, consider the Banach
spaces (i.e., unrelated the inner product)

`1ν
def
=

{
ã = (ãk)k≥0 : ‖ã‖1,ν

def
= |ã0|+ 2

∞∑
k=1

|ãk|νk <∞

}
, (21)

and `1,0ν = {ã ∈ `1ν : ã0 = 0}, and define X
def
= `1ν × `1,0ν , with the induced norm, given

a = (a1, a2) ∈ X,
‖a‖X

def
= max{‖a1‖1,ν , ‖a2‖1,ν}. (22)
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The problem of looking for solutions of (16) therefore reduces to finding a ∈ X such that
F (a) = 0, where the map F is defined component-wise in (20). Solving the problem F = 0 in
X is done using computer-assisted proofs. The following Newton-Kantorovich type theorem
provides an efficient means of performing that task.

Denote by Br(a)
def
= {x ∈ X : ‖x− a‖X ≤ r} the closed ball of radius r > 0 centered at

a given a ∈ X.

Theorem 3.2 (A Newton-Kantorovich type theorem). Let X and X ′ be Banach
spaces, A† ∈ B(X,X ′) and A ∈ B(X ′, X) be bounded linear operators. Assume F : X → X ′

is Fréchet differentiable at ā ∈ X, A is injective and AF : X → X. Let Y0, Z0 and Z1 be
nonnegative constants, and a function Z2 : (0,∞)→ (0,∞) satisfying

‖AF (ā)‖X ≤ Y0 (23)

‖I −AA†‖B(X) ≤ Z0 (24)

‖A[A† −DF (ā)]‖B(X) ≤ Z1, (25)

‖A[DF (c)−DF (ā)]‖B(X) ≤ Z2(r)r, for all c ∈ Br(ā), (26)

where ‖ · ‖B(X) denotes the operator norm. Define the radii polynomial by

p(r)
def
= Z2(r)r2 − (1− Z1 − Z0)r + Y0. (27)

If there exists r0 > 0 such that p(r0) < 0, then there exists a unique ã ∈ Br0(ā) such that
F (ã) = 0.

Proof. The idea of the proof (for the details, see Appendix A in [20]) is to show that the
Newton-like operator T (a)

def
= a−AF (a) satisfies T : Br0(ā)→ Br0(ā) and it is a contraction

mapping, that is, there exists κ ∈ [0, 1) such that ‖T (x) − T (y)‖X ≤ κ‖x − y‖X , for all
x, y ∈ Br0(ā). The proof follows from Banach fixed point theorem.

Proving the existence of a solution of F = 0 using Theorem 3.2 is often called the radii
polynomial approach (see e.g. [10, 35]). In practice, this approach consists of considering
a finite dimensional projection of (20), computing an approximate solution ā (i.e. such
that F (ā) ≈ 0), considering an approximate derivative A† of the derivative DF (ā) and
an approximate inverse A of DF (ā). Once the numerical approximation ā and the linear
operators A and A† are obtained, formulas for the bounds Y0, Z0, Z1 and Z2(r) are derived
analytically and finally implemented in a computer-program using interval arithmetic (see
[23]). The final step is to find (if possible) a radius r0 > 0 for which p(r0) < 0. In case
such an r0 exists, it naturally provides a C0 bound for the error between the approximate
solution (ū(x), v̄(x)) and the exact solution (ũ(x), ṽ(x)), which have Fourier coefficients ā
and ã, respectively, see (17). The following remark makes this statement explicit.

Remark 3.3 (Explicit error control). Assume that r0 > 0 satisfies p(r0) < 0, where p
is the radii polynomial defined in (27). Then the unique ã ∈ Br0(ā) such that F (ã) = 0
satisfies

‖ã− ā‖X = max {‖ã1 − ā1‖1,ν , ‖ã2 − ā2‖1,ν} ≤ r0,

which implies that

‖ũ− ū‖C0 = sup
x∈[0,π]

|ũ(x)− ū(x)| = sup
x∈[0,π]

∣∣∣∣∣∑
k∈Z

[(ã1)k − (ā1)k]eikx

∣∣∣∣∣
≤
∑
k∈Z
|(ã1)k − (ā1)k| ≤

∑
k∈Z
|(ã1)k − (ā1)k|ν|k| = ‖ã1 − ā1‖1,ν ≤ r0.

Analogously, we obtain the bound ‖ṽ − v̄‖C0 ≤ r0.
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As mentioned previously, the radii polynomial approach begins by computing an ap-
proximate solution ā of F = 0. This first requires considering a finite dimensional projec-
tion. Fixing a projection size m ∈ N, denote a finite dimensional projection of a ∈ X by
a(m) =

(
((a1)k)m−1

k=0 , ((a2)k)m−1
k=1

)
∈ R2m−1. The finite dimensional projection of F is then

given by F (m) = (F
(m)
1 , F

(m)
2 ) : R2m−1 → R2m−1 defined by

F (m)(a(m))
def
=

ñ(
F1(a(m))k

)
0≤k<m(

F2(a(m))k
)

1≤k<m

ô
. (28)

Assume that a solution ā(m) such that F (m)(ā(m)) ≈ 0 has been computed (e.g. using
Newton’s method). Given i = 1, 2, denote āi = ((āi)0, . . . , (āi)m−1, 0, 0, 0, . . . ) the vector

which consists of embedding ā
(m)
i ∈ Rm in the infinite dimensional space `1ν by padding the

tail by infinitely many zeroes. We recall we set (ā2)0 = 0 by symmetry convention. Denote
ā = (ā1, ā2), and for the sake of simplicity of the presentation, we use the same notation ā
to denote ā ∈ X and ā(m) ∈ R2m−1. Denote by DF (m)(ā) the Jacobian of F (m) at ā, and
let us write it as

DF (m)(ā) =

Ç
Da1

F
(m)
1 (ā) Da2

F
(m)
1 (ā)

Da1
F

(m)
2 (ā) Da2

F
(m)
2 (ā)

å
∈M2m−1(R).

The next step is to construct the linear operator A† (an approximate derivative of the
derivative DF (ā)), and the linear operator A (an approximate inverse of DF (ā)). Let

A† =

Ç
A†1,1 A†1,2
A†2,1 A†2,2

å
, (29)

whose action on an element h = (h1, h2) ∈ X is defined by (A†h)i = A†i,1h1 + A†i,2h2, for

i = 1, 2. Here the action of A†i,j is defined as

(A†i,1h1)k =

®(
Da1

F
(m)
i (ā)h

(m)
1

)
k

for 0 ≤ k < m,

−δi,2k(h1)k for k ≥ m,

(A†i,2h2)k =

®(
Da2F

(m)
i (ā)h

(m)
2

)
k

for 1 ≤ k < m,

−δi,1k(h2)k for k ≥ m,

where δi,j is the Kronecker δ. Consider now a matrix A(m) ∈M2m−1(R) computed so that

A(m) ≈ DF (m)(ā)
−1

. We decompose it into four blocks:

A(m) =

Ç
A

(m)
1,1 A

(m)
1,2

A
(m)
2,1 A

(m)
2,2

å
.

This allows defining the linear operator A as

A =

Å
A1,1 A1,2

A2,1 A2,2

ã
, (30)

whose action on an element h = (h1, h2) ∈ X is defined by (Ah)i = Ai,1h1 + Ai,2h2, for
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i = 1, 2. The action of Ai,j is defined as

(Ai,1h1)k =

{Ä
A

(m)
i,1 h

(m)
1

ä
k

for 0 ≤ k < m

−δi,2 1
k (h1)k for k ≥ m

(Ai,2h2)k =

{Ä
A

(m)
i,2 h

(m)
2

ä
k

for 1 ≤ k < m

−δi,1 1
k (h2)k for k ≥ m.

Having obtained an approximate solution ā and the linear operators A† and A, the next
step is to construct the bounds Y0, Z0, Z1 and Z2(r) satisfying (23), (24), (25) and (26),
respectively. Their analytic derivation will be done explicitly in Section 4 for the Cauchy-
Riemann equations. Assume that using these explicit bounds we applied the radii polyno-
mial approach and obtained r0 > 0 such that p(r0) < 0. As the following remark shows,
this implies that A is an injective operator.

Remark 3.4 (Injectivity of the linear operator A). If r0 > 0 satisfies p(r0) < 0,
then Z2(r0)r2

0 + (Z0 + Z1)r0 + Y0 < r0. Since Y0, Z0, Z1 and Z2(r0) are nonnegative, this
implies that ‖I − AA†‖B(X) ≤ Z0 < 1. By construction of the linear operators A and A†,
this implies that

‖IR2m−1 −A(m)DF (m)(ā)‖ < 1,

which in turns implies that both A(m) and DF (m)(ā) are invertible matrices in M2m−1(R).
Since A(m) is invertible and the tail part of A is invertible by construction, A is injective.

As consequence of Remark 3.4, if r0 > 0 satisfies p(r0) < 0, then A is injective, and
therefore there exists a unique ã ∈ Br0(ā) such that F (ã) = 0.

Remark 3.5. Using a finite dimensional projection of size m = 100 we computed two nu-
merical approximations ā(1) and ā(2). In Figure 1, the approximate solutions ā(1) (left) and
ā(2) (right) are plotted. For each approximation, the code script proofs CR.m (available at
[33]) computes with interval arithmetic (using INTLAB, see [27]) the bounds Y0, Z0, Z1 and
Z2 using the explicit formulas presented in Section 4 with ν = 1.01. For each ā(i) (i = 1, 2),
the code verifies that p(ri0) < 0. From this, we conclude that there exists ã(i) ∈ X such that
F (ã(i)) = 0 and such that ‖ã(i) − ā(i)‖X ≤ ri0, where r1

0 = 4.7 · 10−11 and r2
0 = 1.1 · 10−13.

Having introduced the ingredients to compute a critical point ã, we now turn to the
question of controlling the spectrum of DF (ã).

3.2 Controlling the spectrum of DF (ã)

In this section, we assume that using the radii polynomial approach of Theorem 3.2, we
have proven existence of a unique ã ∈ Br0(ā) ⊂ X such that F (ã) = 0 for some r0 > 0
satisfying p(r0) < 0. Denote by DF (ã) the derivative at ã. Recall that when we rigorously
compute this solution we use an operator A†, defined by (29), which approximates the
Jacobian DF (ā).

Both the Hessian DF (a) and the approximation A† of DF (ā) are symmetric with respect
to the inner product (19), hence their eigenvalues are real-valued. Given any c ∈ X, we
define the homotopy between DF (c) and A† by

Dc(σ)
def
= (1− σ)DF (c) + σA†, for σ ∈ [0, 1]. (31)

Theorem 3.6. Assume that r0 > 0 satisfies p(r0) < 0 with p given in (27). For any
c ∈ Br0(ā), we have

specflow(Dc(σ)) = 0.
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Proof. From the hypothesis that p(r0) < 0, we obtain

Z2(r0)r0 + Z0 + Z1 +
Y0

r0
=

1

r0
(Y0 + (Z0 + Z1)r0 + Z2(r0)r2

0) < 1. (32)

Hence
‖I −AA†‖X ≤ Z0 < 1 and sup

c∈Br0 (ā)

‖I −ADF (c)‖X < 1, (33)

where the first inequality follows from the fact that Z0 < 1, and the second inequality holds
since, for any c ∈ Br0(ā),

‖I −ADF (c)‖X = ‖I −AA† +A[A† −DF (ā)] +A[DF (ā)−DF (c)]‖X
≤ ‖I −AA†‖X + ‖A[A† −DF (ā)]‖X + ‖A[DF (ā)−DF (c)]‖X
≤ Z0 + Z1 + Z2(r0)r0 < 1,

where the final inequality follows from (32). Hence, given any c ∈ Br0(ā) and any σ ∈ [0, 1],

‖I −ADc(σ)‖X = ‖I −A(σA† + (1− σ)DF (c))‖X
= ‖(σI + (1− σ)I −A(σA† + (1− σ)DF (c))‖X
≤ σ‖I −AA†‖X + (1− σ)‖I −ADF (c))‖X
< σ + (1− σ) = 1.

By a standard Neumann series argument, the composition ADc(σ) is invertible. This implies
that ker(Dc(σ)) = {0}. Hence specflow(Dc(σ)) = 0.

Assume that we have proven the existence of two critical points ã and b̃ of the Cauchy-
Riemann problem (20) using the radii polynomial approach (Theorem 3.2). Denote by ā and

b̄ the numerical approximation of ã and b̃, and by A†ā and A†
b̄

the approximate derivatives
used to obtain the computer-assisted proofs. In addition to the paths Dã(σ) and Db̃(σ)
discussed above, we introduce the following paths of linear operators:

Dã→b̃(σ) = (1− σ)DF (ã) + σDF (b̃), for σ ∈ [0, 1],

D†
ā→b̄(σ) = (1− σ)A†ā + σA†

b̄
, for σ ∈ [0, 1].

To compute the relative index of ã and b̃ we use the identity

i
(
ã, b̃
)

= specflow
(
Dã→b̃(σ)

)
= specflow

(
Dã(σ)

)
+ specflow

(
D†
ā→b̄(σ)

)
− specflow

(
Db̃(σ)

)
= specflow

(
D†
ā→b̄(σ)

)
, (34)

where we have used independence with respect to the chosen path, as well as Theorem 3.6.
In the next section we discuss how to compute the spectral flow in the righthand side of (34).

3.3 Computing the relative indices

To continue the discussion from Section 3.2, we assume that we have proven the existence of
two critical points ã and b̃ of the Cauchy-Riemann problem (20) using the radii polynomial
approach (Theorem 3.2) in balls around the numerical approximations ā and b̄. We denote
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by mā and mb̄ the dimensions of the finite dimensional projections used, and we set m =
max{mā,mb̄}.

Ordering the components of a as

a = ((a1)0, (a1)1, (a2)1, . . . , (a1)k, (a2)k, . . . )

leads to the following representation of the linear operator A†ā:

A†ā =

á
DF (mā)(ā)

Λmā
Λmā+1

. . .

ë
, Λk

def
=

Å
0 −k
−k 0

ã
,

and similarly for A†
b̄
. Alternatively, we may write

A†ā =

á
(A†ā)(m)

Λm
Λm+1

. . .

ë
,

and similarly for A†
b̄
. The latter representation allows us to write the homotopy

D†
ā→b̄(σ) =

á
(1− σ)(A†ā)(m) + σ(A†

b̄
)(m)

Λm
Λm+1

. . .

ë
.

The tail of D†
ā→b̄(σ) is independent of σ and has eigenvalues {±k : k ≥ m}. Hence, any

crossing of eigenvalues of D†
ā→b̄(σ) must come from the finite dimensional part

(D†
ā→b̄)

(m)(σ) = (1− σ)(A†ā)(m) + σ(A†
b̄
)(m).

We may perturb this finite dimensional path to a generic one to conclude that

specflow
(
D†
ā→b̄(σ)

)
= specflow

(
(D†

ā→b̄)
(m)(σ)

)
= n2m−1

(
(A†ā)(m)

)
− n2m−1

(
(A†

b̄
)(m)

)
, (35)

where n2m−1(Q) denotes the number of positive eigenvalues of a (2m−1)×(2m−1) matrix Q.
Using the tools of validated numerics, one can use interval arithmetic and the contraction

mapping theorem (e.g. via the method [6]) to enclose rigorously all eigenvalues of (A†ā)(m)

and therefore compute n2m−1

(
(A†ā)(m)

)
. A convenient alternative, especially when there

are repeated eigenvalues (for example due to symmetry, such as in Problem (4) posed on
the square [0, π]2, see also Section 5) or when m is large, is to determine n2m−1(Q) via a
similarity argument (cf. [38]). Namely, one can determine a basis transformation V using
approximate eigenvectors of Q, enclose the inverse of V by interval arithmetic methods,
and compute the (interval-valued) matrix Q0 = V −1QV . Then Q0 has the same eigenvalues
as Q, and it is approximately diagonal. When none of the Gershgorin circles associated to Q0

intersect the imaginary axis, one may read of n2m−1(Q0) = n2m−1(Q) from the diagonal
of Q0.

20



In conclusion, by combining (34) and (35) we find that the (computable) formula

i
(
ã, b̃
)

= n2m−1

(
(A†ā)(m)

)
− n2m−1

(
(A†

b̄
)(m)

)
for the relative index of ã and b̃.

4 The bounds for the Cauchy-Riemann equations

In this section, we present the explicit construction of the bounds Y0, Z0, Z1 and Z2(r)
satisfying (23), (24), (25) and (26), in the context of the Cauchy-Riemann zero finding
problem F = (F1, F2) = 0 given in (20). Denote by ā an approximate solution of F = 0,
and recall from (29) and (30) the definition of the linear operators A† and A, respectively.

Before proceeding with the presentation of the bounds, we begin by introducing some
elementary functional analytic results useful for the computation of the bounds. We omit
the elementary proofs, which can mostly be found in [17]. We use the convention (F2)0 = 0
whenever convenient. To keep the notation light, throughout we implicitly use the projection
π0 : `1ν → `1,0ν and natural embedding ι0 : `1,0ν → `1ν liberally, e.g., without further ado we
identify an operator Γ0 ∈ B(`1,0ν ) with its counterpart Γ = ι0Γ0π0 ∈ B(`1ν), etc.

4.1 Elementary functional analytic results

Recall the definition of the Banach space `1ν given in (21).

Lemma 4.1. The dual space (`1ν)∗ is isometrically isomorphic to

`∞ν−1 =

®
c = (ck)k≥0 : ‖c‖∞,ν−1

def
= max

Ç
|c0|, 1

2 sup
k≥1
|ck|ν−k

å
<∞

´
.

For all b ∈ `1ν and c ∈ `∞ν−1 we have∣∣∣∑
k≥0

ckbk

∣∣∣ ≤ ‖c‖∞,ν−1‖b‖1,ν . (36)

Given a sequence in `1ν we extend it symmetrically to negative indices. The discrete
convolution product (18) then naturally works on `1ν by

(b ∗ b̃)k =
∑

k1+k2=k
k1,k2∈Z

b|k1|b̃|k2|.

The following result states that `1ν is a Banach algebra under discrete convolutions and is
useful for the analysis of nonlinear problems.

Remark 4.2. We use the bound (36) to estimate the convolution

sup
‖v‖1,ν≤1

|(b ∗ v)k| = sup
‖v‖1,ν≤1

∣∣∣∣∣∑
k′∈Z

v|k′|b|k−k′|

∣∣∣∣∣ ≤ max

®
|bk|, sup

k′≥1

|b|k−k′| + b|k+k′||
2νk′

´
def
= Qk(b).

Given v = (vk)k≥0 ∈ `1ν , define v̂ ∈ `1ν as follows:

v̂k
def
=

®
0 if k < m,

vk if k ≥ m.
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A similar estimate as the one above leads to

sup
‖v‖1,ν≤1

|(b ∗ v̂)k| ≤ sup
k′≥m

|b|k−k′| + b|k+k′||
2νk′

def
= Q̂k(b). (37)

Inequality (37) is useful when computing the Z1 bound (e.g. see Section 4.4).

Lemma 4.3. If ν ≥ 1 and b, b̃ ∈ `1ν , then b ∗ b̃ ∈ `1ν and

‖b ∗ b̃‖1,ν ≤ ‖b‖1,ν‖b̃‖1,ν . (38)

The final results of this short section concern the computation of norms of bounded
linear operators defined on `1ν , and are useful when computing the bounds Z0 and Z2.

Lemma 4.4. Let Γ ∈ B(`1ν), the space of bounded linear operators from `1ν to itself, acting
as (Γb)k =

∑
m≥0 Γk,mbm for k ≥ 0. Define the weights ω = (ωk)k≥0 by ω0 = 1 and

ωk = 2νk for k ≥ 1. Then

‖Γ‖B(`1ν) = sup
k≥0

1

ωk

∑
m≥0

|Γk,m|ωk.

The following consequence of Lemma 4.4 provides an explicit bound on norms of bounded
linear operators on `1ν with a specific structure, namely as in (39).

Corollary 4.5. Let Γ(m) be an m×m matrix, {µn}∞n=m be a sequence of numbers with

|µn| ≤ |µm|, for all n ≥ m,

and Γ: `1ν → `1ν be the linear operator defined by

Γb =

á
Γ(m) 0

µm
0 µm+1

. . .

ëá
b(m)

bm
bm+1

...

ë
. (39)

Here b(m) = (b0, . . . , bm−1)T ∈ Rm. Then Γ ∈ B(`1ν) and

‖Γ‖B(`1ν) = max(K, |µm|), (40)

where

K
def
= max

0≤j≤m−1

1

ωj

m−1∑
i=0

|Γi,j |ωi.

4.2 The Y0 bound

The nonlinear term of F1(ā) given in (20) involves the convolution product (ā1 ∗ ā1 ∗ ā1)k,
which vanishes for k ≥ 3m − 2. This implies that (F1(ā))k = 0 for all k ≥ 3m − 2. Also,
(F2(ā))k = 0, for all k ≥ m. We set

Y
(1)
0

def
=

∣∣∣∣ 2∑
j=1

Ä
A

(m)
1,j F

(m)
j (ā)

ä
0

∣∣∣∣+ 2

m−1∑
k=1

∣∣∣∣ 2∑
j=1

Ä
A

(m)
1,j F

(m)
j (ā)

ä
k

∣∣∣∣νk
Y

(2)
0

def
=

∣∣∣∣ 2∑
j=1

Ä
A

(m)
2,j F

(m)
j (ā)

ä
0

∣∣∣∣+ 2

m−1∑
k=1

∣∣∣∣ 2∑
j=1

Ä
A

(m)
2,j F

(m)
j (ā)

ä
k

∣∣∣∣νk + 2

3m−3∑
k=m

∣∣∣∣1k (F1(ā))k

∣∣∣∣νk
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which is a collection of finite sums that can be evaluated with interval arithmetic. We infer
that

‖[AF (ā)]i‖1,ν =

∥∥∥∥ 2∑
j=1

Ai,jFj(ā)

∥∥∥∥
1,ν

≤ Y (i)
0 , for i = 1, 2,

and we set
Y0

def
= max

Ä
Y

(1)
0 , Y

(2)
0

ä
. (41)

4.3 The Z0 bound

We look for a bound of the form ‖I − AA†‖B(X) ≤ Z0. Recalling the definitions of A and

A† given in (30) and (29), let B
def
= I −AA† the bounded linear operator represented as

B =

Å
B1,1 B1,2

B2,1 B2,2

ã
.

We remark that (Bi,j)n1,n2
= 0 for any i, j = 1, 2 whenever n1 ≥ m or n2 ≥ m. Hence we

can compute the norms ‖Bi,j‖B(`1ν) using Lemma 4.4. Given h = (h1, h2) ∈ X = `1ν × `1ν
with ‖h‖X = max(‖h1‖1,ν , ‖h2‖1,ν) ≤ 1, we obtain

‖(Bh)i‖1,ν =

∥∥∥∥ 2∑
j=1

Bi,jhj

∥∥∥∥
1,ν

≤
2∑
i=1

‖Bi,j‖B(`1ν).

Hence we define

Z0
def
= max

(
‖B1,1‖B(`1ν) + ‖B1,2‖B(`1ν), ‖B2,1‖B(`1ν) + ‖B2,2‖B(`1ν)

)
, (42)

where each norm ‖Bi,j‖B(`1ν) can be computed using formula (40) with vanishing tail terms.

4.4 The Z1 bound

Recall that we look for the bound ‖A[DF (x̄) − A†]‖B(X) ≤ Z1. Given h = (h1, h2) ∈ X
with ‖h‖X ≤ 1, set

z
def
= [DF (ā)−A†]h.

Since in z some of the terms involving ((h1)k)m−1
k=0 will cancel, it is useful to introduce ĥ1 as

follows:

(ĥ1)k
def
=

®
0 if k < m,

(h1)k if k ≥ m.

Then,

(z1)k =

®
−3λ(ā1 ∗ ā1 ∗ ĥ1)k for k = 0, . . . ,m− 1

λ(h1)k − 3λ(ā1 ∗ ā1 ∗ h1)k for k ≥ m

(z2)k =

®
0 for k = 0, . . . ,m− 1

(h2)k for k ≥ m.

By (37), we get that

|(z1)k| ≤ 3|λ|Q̂k(ā1 ∗ ā1), for k = 0, . . . ,m− 1.
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Hence,

‖(Az)1‖1,ν ≤
2∑
j=1

‖A1,jzj‖1,ν =

m−1∑
k=0

∣∣(A(m)
1,1 z

(m)
1

)
k

∣∣νk +
∑
k≥m

1

k
|(z2)k|νk

≤ 3|λ|
m−1∑
k=0

∣∣(|A(m)
1,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
1

2m

Ñ
2
∑
k≥m

|(z2)k|νk
é

≤ 3|λ|
m−1∑
k=0

∣∣(|A(m)
1,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
1

2m
‖h2‖1,ν

≤ 3|λ|
m−1∑
k=0

∣∣(|A(m)
1,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
1

2m

def
= Z

(1)
1 ,

and similarly, now using the Banach algebra property of Lemma 4.3,

‖(Az)2‖1,ν ≤
2∑
j=1

‖A2,jzj‖1,ν = ‖A2,1z1‖1,ν =

m−1∑
k=0

∣∣(A(m)
2,1 z

(m)
1

)
k

∣∣νk +
∑
k≥m

1

k
|(z1)k|νk

≤ 3|λ|
m−1∑
k=0

∣∣(|A(m)
2,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
1

2m

Ñ
2
∑
k≥m

|(z1)k|νk
é

≤ 3|λ|
m−1∑
k=0

∣∣(|A(m)
2,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
|λ|
2m

(
‖h1‖1,ν + 3(‖ā1‖1,ν)2‖h1‖1,ν

)
≤ 3|λ|

m−1∑
k=0

∣∣(|A(m)
2,1 |Q̂(m)(ā1 ∗ ā1)

)
k

∣∣νk +
|λ|
2m

(
1 + 3(‖ā1‖1,ν)2

) def
= Z

(2)
1 .

We thus define
Z1

def
= max

Ä
Z

(1)
1 , Z

(2)
1

ä
. (43)

4.4.1 The Z2 bound

Let r > 0 and c = (c1, c2) ∈ Br(ā), that is ‖c− ā‖X = max(‖c1 − ā1‖1,ν , ‖c2 − ā2‖1,ν) ≤ r.
Given ‖h‖X ≤ 1, note that ([DF2(c)−DF2(ā)]h)k = 0 and that

([DF1(c)−DF1(ā)]h)k = −3λ ((c1 ∗ c1 − ā1 ∗ ā1) ∗ h1)k

so that

‖A[DF (c)−DF (ā)]‖B(X) = sup
‖h‖X≤1

‖A[DF (c)−DF (ā)]h‖X

≤ ‖A‖B(X) sup
‖h‖X≤1

‖[DF (c)−DF (ā)]h‖X

= 3|λ|‖A‖B(X) sup
‖h‖X≤1

‖(c1 − ā1) ∗ (c1 + ā1) ∗ h1‖1,ν

≤ 3|λ|‖A‖B(X) sup
‖h‖X≤1

‖c1 − ā1‖1,ν‖c1 + ā1‖1,ν‖h1‖1,ν

≤ 3|λ|‖A‖B(X)r(‖c1‖1,ν + ‖ā1‖1,ν)

≤ 3|λ|‖A‖B(X)r(r + 2‖ā1‖1,ν).
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Then, assuming a loose a priori bound r ≤ 1 on the radius, we set

Z2
def
= 3|λ|‖A‖B(X)(1 + 2‖ā1‖1,ν), (44)

with
‖A‖B(X) = max

(
‖A1,1‖B(`1ν) + ‖A1,2‖B(`1ν), ‖A2,1‖B(`1ν) + ‖A2,2‖B(`1ν)

)
,

where each operator norm ‖Ai,j‖B(`1ν) can be computed using formula (40).

5 The travelling wave problem

Before we discuss the existence results for the travelling wave problem (3) we discuss its
spectral properties.

5.1 Spectral properties

Equation (3) may be written as a system of first order equations®
ut = v,

vt = cv − ux1x1
− ux2x2

− ψλ(u),
(45)

with Neumann boundary conditions on the square. The spectral problem for (45) is directly
related to the spectral problem for the parabolic equation

ut = ux1x1
+ ux2x2

+ ψλ(u), (46)

again with Neumann boundary conditions on the square. First, we note that any equilibrium
of (3) is of the form (u, v) = (u∗, 0), with u∗ an equilibrium of (46). Furthermore, the
eigenvalue problems of the linearized operators at these equilibria are®

ρu = v,

ρv = cv − ux1x1
− ux2x2

− ψ′λ(u∗)u,
(47)

and
σu = ux1x1 + ux2x2 + ψ′λ(u∗)u, (48)

respectively, both with Neumann boundary conditions. Hence eigenvalues ρ of (47) and
eigenvalues σ of (48) are related through

σ = cρ− ρ2. (49)

Since the elliptic operator in (48) is self-adjoint, all eigenvalues σ are real. Each negative
eigenvalue σ of (48), of which there are infinitely many, corresponds to a pair of eigenvalues

ρ = ρ±(σ) =
c

2
±
Å
c2

2
− σ
ã1/2

,

one positive and one negative (which is of course consistent with (45) being strongly indefi-
nite). For each positive σ, of which there are at most finitely many, there are two eigenvalues
ρ = ρ± (a double eigenvalue for σ = − 1

2 ), both with positive real part. In particular, all
eigenvalues of (47) lie in the union {Im(z) = 0}∪{Re(z) = c

2} ⊂ C. Hence, when parameters
are varied eigenvalues can only pass from the left half-plane to the right half-plane through
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the origin. It is thus reasonable to expect that for c > 0 (or c < 0) the spectral flow for the
linearization of (45) is well-defined, and this is indeed the case, see [4, 26]. Furthermore,
it follows from (49) that along a homotopy eigenvalues ρ of (47) and σ of (48) cross the
origin simultaneously and in the same direction. The spectral flows for (45) and (46) are
thus “the same” in the sense that the relative index of a pair of equilibria for (45) is equal
to the relative index of this pair for (46). Since the latter is easier to analyse (it is scalar),
we compute relative indices using the parabolic equation (46) and then draw conclusions for
the strongly indefinite system (45), or, equivalently, the travelling wave problem (3).

5.2 Problem reformulation

As explained in Section 5.1, to draw conclusions about (3), we compute equilibria and
associated Morse indices of the parabolic equation

ut = ∆u+ ψλ(u) = ∆u+ λ(u− u3), (50)

with Neumann boundary conditions on the square [0, π] × [0, π]. We perform the cosine
transform

u(x) =
∑
k∈Z2

ake
ik·x =

∑
k∈N2

mkak cos(k1x1) cos(k2x2)

where the multiplicities are

mk = mk1,k2

def
=


1 for k1 = k2 = 0

2 for k1 = 0, k2 > 0

2 for k1 > 0, k2 = 0

4 for k1 > 0, k2 > 0.

We will from now on assume ak1,k2
= a|k1|,|k2| ∈ R. The equilibrium equations for the

unknowns (ak)k∈N2 become

Fk(a)
def
= mk

[
(−(k2

1 + k2
2) + λ)ak − λ(a ∗ a ∗ a)k

]
, (51)

with the usual convolution. Here the choice to include the factor mk is for the same reason
as the factor 2 in (20): it makes the symmetry of the Jacobian DF apparent. We denote
F (a) = {Fk(a)}k∈N2 . For the norm in Fourier space we select an (exponentially) weighted
`1-norm:

‖a‖1,ν
def
=
∑
k∈N2

mk|ak| ν|k| (52)

with |k| def
= max{|k1|, |k2|} and ν ≥ 1 (one may alternatively use another norm on k in the

exponent of ν, e.g. |k| = |k1|+ |k2|). One nice thing about the weigted `1-norm (52) is that
‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν . This makes our space

X = {a = (ak)k∈N2 : ak ∈ R , ‖a‖1,ν <∞} (53)

into a Banach algebra.
Computing equilibria of (50) reduces to find a ∈ X such that F (a) = 0, where F is given

component-wise by (51). The Newton-Kantorovich approach of Theorem 3.2 is applied to
achieve this task. Following a similar approach as in Section 4, we compute an approximate
solution ā of F = 0, define the linear operators A† and A, and compute the bounds Y0, Z0,
Z1 and Z2(r) satisfying (23), (24), (25) and (26). The derivation of the detailed expressions
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for Y0, Z0, Z1 and Z2(r) is omitted, as this analysis is analogous to Section 4, see also [37]
for a similar (but more involved) problem in two space dimensions. Defining the radii
polynomial p(r) as in (27), if there is r0 > 0 such that p(r0) < 0, then there exists a unique
ã with ‖ã − ā‖ < r0 such that F (ã) = 0. After having obtained computer-assisted proofs
of a solution ã of F = 0, we use the theory of Section 3.2 and Section 3.3 to compute their
relative indices. Using this approach, we proved the solutions and relative indices depicted
in Figure 2. All proofs used weight ν = 1 + 10−8 and truncation dimension m = 20 in
Fourier space. The code proveall12.m, available at [33], performs all the computations
with interval arithmetic.

6 The Ohta-Kawasaki problem

Our third example is the Ohta-Kawasaki equation (6), which we recall is given by
ut = −uxxxx − (ψλ(u))xx − λσu, for x ∈ [0, π],

ux(t, 0) = ux(t, π) = 0,

uxxx(t, 0) = uxxx(t, π) = 0,∫ π
0
u(0, x)dx = 0.

Plugging the cosine Fourier expansion (using the symmetry coming from the Neumann
boundary conditions and the fact that

∫ π
0
u(0, x)dx = 0)

u(x) =
∑
k∈Z

ake
ikx, with ak ∈ R, a−k = ak, and a0 = 0,

into the steady state equation −uxxxx − (ψλ(u))xx − λσu = 0 yields

Fk(a)
def
=
(
−k4 + λk2 − λσ

)
ak − λk2(a3)k = 0. (54)

Here a = (ak)k≥1 and

(a3)k
def
=

∑
k1+k2+k3=k

ki∈Z\{0}

a|k1|a|k2|a|k3|.

The relations F−k = Fk and F0(a) = 0 imply that we only need to solve Fk = 0 for k ≥ 1.
We thus set F

def
= (Fk)k≥1. The Banach space X used in the present example is

X =

a = {ak}k≥1 : ‖a‖1,ν
def
= 2

∑
k≥1

|ak|νk <∞

 , (55)

for some weight ν ≥ 1.
Computing equilibria of (6) reduces to find a ∈ X such that F (a) = 0, where F is given

component-wise by (54). This is done by applying Theorem 3.2. As in the other examples,
we compute an approximate solution ā of F = 0, define the linear operators A† and A, and
compute the bounds Y0, Z0, Z1 and Z2(r) satisfying (23), (24), (25) and (26). We omit the
derivation of these bounds. Defining the radii polynomial p(r) as in (27), if there is r0 > 0
such that p(r0) < 0, then there exists a unique ã with ‖ã−ā‖ < r0 such that F (ã) = 0. After
having obtained computer-assisted proofs of a solution ã of F = 0, we use the theory of
Section 3.2 and Section 3.3 to compute their relative indices. Using this approach, we proved
the solutions and relative indices depicted in Figure 3. All proofs used weight ν = 1.01 and
truncation dimension m = 40 in Fourier space. The code script proofs OK.m, available
at [33], performs all the computations with interval arithmetic.
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