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We develop techniques for computing the (un)stable manifold at a hyperbolic
equilibrium of an analytic vector field. Our approach is based on the so-called
parametrization method for invariant manifolds. A feature of this approach is
that it leads to a-posteriori analysis of truncation errors which, when combined
with careful management of round off errors, yields a mathematically rigorous
enclosure of the manifold. The main novelty of the present work is that, by
conjugating the dynamics on the manifold to a polynomial rather than a linear
vector field, the computer assisted analysis is successful even in the case when
the eigenvalues fail to satisfy non resonance conditions.
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1. Introduction

Stable and unstable manifolds are fundamental building blocks for understanding the
global dynamics of nonlinear differential equations. Since closed form analytic ex-
pressions for stable/unstable manifolds are rarely available, considerable effort goes
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into developing numerical techniques for their approximation, see e.g. [23, 18, 2, 11]
and the references therein. One powerful tool for studying invariant manifolds is
the parameterization method of Cabré, Fontich, and de la Llave [5, 6, 7]. The pa-
rameterization method is based on formulating certain operator equations (invariance
equations) which simultaneously describe both the dynamics on the manifold and its
embedding. The method has been implemented in order to numerically study a va-
riety of problems involving stable/unstable manifolds of equilibria and fixed points
[27, 29, 30, 16, 31], stable/unstable manifolds of periodic orbits for differential equa-
tions [15, 20, 11], quasi-periodic invariant sets in dynamical systems [19], and more
recently in order to simultaneously compute invariant manifolds with their unknown
dynamics [8, 17], to mention just a few examples. The last reference is a book which
provides many other examples and much fuller discussion of the literature.
In addition to facilitating efficient numerical computations, the functional ana-

lytic framework of the parameterization method also provides a natural setting for
a-posteriori analysis of errors. The works of [31, 29, 28] exploit this a-posteriori anal-
ysis and implement mathematically rigorous numerical validation methods for the
stable and unstable manifolds. The term “validation” here expresses the fact that the
computations provide explicit bounds on all approximation errors involved.
Approximate parametrizations are often computed by plugging a power series ansatz

into the invariance equation and deriving a sequence of homological equations for the
power series coefficients. These homological equations are then solved recursively to
any desired order. In this paper we employ an alternative methodology for solving
the invariance equation. We recast the infinite system of homological equations as a
nonlinear zero finding problem on a Banach space of geometrically decaying sequences,
and we implement a parametrized Newton-Kantorovich argument in the style of [37].
There are three advantages to this change of perspective. First, we note the works

of [31, 29, 28] are predicated on the assumption that certain non-resonance conditions
between the eigenvalues are satisfied. The main goal of the present work is to remove
this assumption. We build on the theory of [5, 6, 7] and develop computer assisted
methods for rigorous error bounding even in the face of a resonance. More precisely we
develop validation schemes which apply at any co-dimension one resonance between
the eigenvalues. The formulation of the resonant as well as non resonant zero finding
problems on an infinite sequence space unifies the presentation and implementation as
well as the necessary a-posteriori analysis.
Second, the zero finding methodology based on a numerical Newton method for

the truncated problem, leads to improved numerical performance even in the case
where validated numerics are not desired. The Newton iteration can always be started
from the linear approximation of the manifold by its eigenvectors, however one has
the option of improving the convergence by starting the iteration from a polynomial
obtained by solving a few of the lower order homological equations recursively. Once
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the iteration begins the order of the polynomial approximation is roughly doubled
at each step. The freedom one has in choosing the lengths of the eigenvectors is
exploited in order to guarantee that the Taylor coefficients decay at the desired rate.
A similar numerical Newton scheme for computing invariant manifolds in discrete time
dynamical systems (without rigorous validation) was used in [30]. Indeed this kind
of Newton scheme is always needed when the parameterization method is applied in
Fourier space, see again [17] and the references therein.
Third, existing rigorous continuation methods [32, 4] are directly applicable to our

novel approach, thus putting the rigorous computation of branches of connecting orbits
within direct reach. Of course, from the viewpoint of continuation, all three advan-
tages are crucial. Indeed, while continuing along one parameter families of (un)stable
manifolds resonances are encountered generically and are thus unavoidable.
Our use of parameterized Newton-Kantorovich arguments is guided by the work of a

number of authors on the so called method of radii-polynomials. This method provides
a tool kit for solution and continuation of zero finding problems in infinite dimensions.
In this method one derives certain polynomials whose coefficients encode information
about the approximate solution, the choice of approximate inverse of the derivative,
the local regularity properties of the problem, and the choice of Banach space on which
to work. Once these givens are fixed the roots of the radii-polynomials yield not only
existence and uniqueness results, but also tight error estimates and isolation bounds
for the problem. Radii-polynomial methods have been applied successfully to a number
of problems in dynamical systems, partial differential equations, and delay equations,
and we refer the interested reader to [12, 4, 32, 31, 21, 33] for more discussion and
references.
Let us now be more explicit about the above mentioned resonance conditions (see

Sections 2.2–2.4 and [5, 6, 7] for full details). We consider a stationary point of an
analytic vector field u′ = g(u), with u ∈ Rn. Focusing on the stable manifold, we
denote the eigenvalues with negative real parts by λ1, . . . , λd, where d is the dimension
of the manifold. A resonance is a nontrivial relation

k̃ · λ def
= k̃1λ1 + k̃2λ2 + · · ·+ k̃dλd = λı̃,

for some ı̃ ∈ {1, . . . , d} and k̃i ∈ N for i = 1, . . . , d. The trivial, excluded case is
k̃ = eı̃, where we use the notation ei for the i-th unit vector. If there are no resonances
between the stable eigenvalues (the “non-resonant” case), then there is an analytic
conjugacy between the flow of u′ = g(u) on the local stable manifold and the linear
flow θ′i = λiθi, i = 1, . . . , d. Since the conjugacy map u = P (θ) is analytic, P can be
written as a convergent power series in θ.
When there is a resonance between the stable eigenvalues, the conjugacy map P

as constructed above is no longer analytic and cannot be expressed as a convergent
power series. One way to resolve this obstacle is to change the flow θ′ = h(θ) in
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parameter space to a nonlinear “normal form”, in such a way that the conjugacy is again
analytic. In this paper we consider two types of resonances in particular, namely the co-
dimension one resonances. The first type of resonance is a single “regular” resonance
k̃ · λ = λı̃ ∈ R for some 1 ≤ ı̃ ≤ d and k̃ ∈ Nd with

∑d
i=1 k̃i ≥ 2, and no other

resonances. The second type is a double real eigenvalue (k̃ = ei for some i 6= ı̃) with
geometric multiplicity one, and no other resonances. These are the only co-dimension
one resonances, hence they are the types that are encountered generically in one-
parameter continuation. For this reason we restrict our attention to these resonance
types as our examples. We note that a completely analogous approach works for
resonances of higher co-dimension, but here omit the details.
In order to illustrate the application of our methods we discuss three example prob-

lems in detail. First we analyze the stable manifold of the origin in the well-known
Lorenz equations. We use this model system to scrutinize our method in the non-
resonant case and show how the structure of the vector field is directly reflected in the
bounds used for validation. Second we tune the parameter in the Lorenz system to
obtain double stable eigenvalues at the origin to showcase our method in this context.
In the final example the validated computation of stable and unstable manifolds is

used as ingredient for the rigorous computation of connecting orbits. In particular
we consider also the case of regular resonant eigenvalues. Specifically we compute
connecting orbits in the system{

u′′= − 1
4γu−

√
2
4 v

2 + 3
8u

3 + 3uv2,

v′′= −γv −
√
2
2 uv + 9v3 + 3u2v,

(1)

which arises as amplitude equations for the pattern formation model

∂tU = −(1 + ∆)2U + µU − β |∇U |2 − U3, (2)

as shown in [13]. Here U = U(t, x), t ≥ 0 and x ∈ R2. Equation (2) arises in the
study of the interplay between trivial, hexagonal and role patterns near the onset of
instability of the zero solution. The parameters γ, µ and β are related via γ = µ

β2 . See
[13, 33] for further details for the relation between (1) and (2).
Following the approach of [33] we prove the existence of a heteroclinic connection

between the hexagon and ground states. The proof is based on rigorous numerics
for a boundary value problem, where the validated manifolds are used to formulate
the boundary conditions. We settle a case left open in [33] due to the presence of
resonances in the stable eigenvalues at the origin. In Figure 1 we depict the verified
connecting orbit of (1) as well as the corresponding stationary transition layer between
hexagonal spots and the uniform state of (2).
Finally we remark that the references mentioned in this introductory discussion are

far from exhaustive, and a comprehensive overview of the literature is beyond the scope
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Figure 1: Left: co-existing hexagonal and trivial patterns in (2) for β = 1 and µ =

− 2
135 . Right: corresponding connecting orbit in (1) with u and v components

in red and blue, respectively.

of the present work. In recent years a number of authors have developed numerical
validation procedures which provide mathematically rigorous a posteriori error bounds
on approximations of invariant manifolds associated to various kinds of invariant sets.
We refer the interested reader to [9, 10, 22, 36, 35] for fuller discussion of methods
other than those presented here.
The outline of the paper is as follows. Section 2 is dedicated to the description of

the general setup of our approach. In Section 3 we give more details on how we derive
the zero finding problem. In Section 4 we transform it to an equivalent local fixed
point problem to be solved by a parametrized Newton-Kantorovich type argument.
In Section 5 we illustrate the performance of our method with the three examples
described above. The code implementing these examples can be found at the webpage
[1].

2. Setup

We consider the validated computation of a parametrization of the local stable manifold
of a hyperbolic fixed point p ∈ Rn of a dynamical system induced by a nonlinear ODE

u′ = g(u) g : Rn → Rn (3)

using the parametrization method developed in [5, 6, 7]. Local unstable manifolds can
be obtained by replacing g with −g. We assume that g is analytic, allowing us to
look for parametrizations in the analytic category. In particular we assume that g is
locally (near p) analytically extendable to the complex plane. As a consequence the
coefficients in the power series expansion of the parametrization decay geometrically,
at an a priori unknown rate. We come back to the role of this decay rate later, see in
particular Section 5.1.
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2.1. The invariance equation

We denote by λ1, . . . , λd the eigenvalues with negative real part of the Jacobian Dg(p)

at the fixed point p. To fix notation, let there be s pairs of complex conjugate eigenval-
ues λ1, λ2, . . . , λ2s−1, λ2s with negative real part and d − 2s real negative eigenvalues
λ2s+1, . . . , λd. The corresponding (generalized) eigenvectors are denoted by ξ1, . . . , ξd.
We do not assume that the algebraic multiplicity of the eigenvalues is one. For sim-
plicity, in this paper we assume p, λi and ξi to be a priori determined analytically.
However, it is straightforward to append equations for the equilibrium, as well as for
the linearization around it, to the computational part of the analysis.
We call the set of stable eigenvalues non-resonant if for every i = 1, . . . , d

k · λ 6= λi (4)

for all k = (k1, . . . , kd) ∈ Nd with k 6= ei (the i-th unit vector). We shall use the
notation

|k| def
=

d∑
i=1

ki.

As a new feature of the present work in comparison to the analysis in [31, 29, 28] we
are able to incorporate resonant cases directly in our novel framework for solving and
validating the parametrization of the (un)stable manifold. In particular, we focus on
the two types of co-dimension one resonances, namely a single regular resonance and
an algebraically double, geometrically simple eigenvalue. We have a regular resonant
case when

k̃ · λ = λı̃ (5)

for some ı̃ ∈ {1, . . . , d} and a k̃ ∈ Nd with |k̃| ≥ 2. We work out in detail the
cases where a regular resonance occurs as the only resonance, and where a double
real eigenvalue occurs as the only resonance. In both cases, in the co-dimension one
situation, the resonant eigenvalue is real valued. Higher co-dimension resonances, in
particular multiple or simultaneous resonances (combinations of regular resonances
and/or eigenvalues with higher multiplicity), can be dealt with analogously in our
general framework.
In the parametrization method one looks for a map P that conjugates the flow of (3)

on the stable manifold to a d-dimensional flow θ′ = h(θ) for a suitably simple choice
of h. Specifically, let P : Cd ⊃ Bν → Cn be analytic on the complex polydisc

Bν
def
=
{
z ∈ Cd : |zi| ≤ νi

}
, (6)

where ν = (ν1, . . . , νd) with νi > 0. We commonly refer to its domain as the parameter
space. In particular, the map P possesses a d-variate series expansion

P (θ) =

∞∑
|k|=0

akθ
k (7)
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with ak = (a1k, . . . , a
n
k ) ∈ Cn for |k| ≥ 0. We use the usual multi index notation, where

for k = (k1, . . . , kd) we set θk = θk11 · · · θ
kd
d . The invariance equation for P is given by

g(P (θ)) = DP (θ)h(θ), θ ∈ Bν . (8)

Additionally, we prescribe the linear constraints

a0 = p (9a)

aei = ξi for i = 1, . . . , d. (9b)

We shall always choose h(θ) such that the origin is a (globally) attracting sink in
parameter space. In particular, we will see that we can find a subset Bν̂ ⊂ Bν such
that the orbits under the flow θ′ = h(θ) of initial data in Bν̂ do not leave Bν . We
establish the explicit relation between ν and ν̂ in the three cases under consideration
in Lemma 2.7. By the conjugation property of P and (9a), a suitable real valued
restriction (see below) of the image of Bν̂ under P thus gives us a parametrization of
the local stable manifold W s(p). We explain the conjugacy of the flows in Section 2.5.
Let us describe how we can define a real valued parametrization of the stable

manifold starting with a complex valued solution of (8) fulfilling (9). Recall that
λ = (λ1, . . . , λ2s, λ2s+1 . . . λd) consists of s pairs of complex conjugate eigenvalues and
d − 2s real eigenvalues. We introduce the involutory permutation matrix σs of the
form

σs
def
=


σ 0 0 0

0
. . . 0 0

0 0 σ 0

0 0 0 Id−2s

 ∈ Rd,d with σ =

(
0 1

1 0

)
, (10)

and Id−2s denoting the d− 2s dimensional identity matrix. In essence, this involution
plays the role of a symmetry. We introduce an involution on d-tuples (including but
not limited to Cd, Rd and Nd) by

(v∗)
def
= σsv, (11)

where v denotes complex conjugation. In particular, we have the involution k 7→ k∗ on
Nd. We have ordered the eigenvalues so that λ∗ = λ, and normalized the (generalized)
eigenvectors so that ξ∗ = ξ. Furthermore, for any variables q = (qk)k∈Nd that allow
complex conjugation, we denote (again an involution)

(q∗)k
def
= qk∗ . (12)

Next, consider the set
Bsym
ν

def
= {θ ∈ Bν : θ∗ = θ}, (13)

7



for any compatible choice of ν ∈ Rd+, i.e. ν∗ = ν. The set Bsym
ν is d-dimensional when

interpreted as a real linear space (intersected with the ball Bν), and in the particular
case of all eigenvalues being real this boils down to Bsym

ν = {θ ∈ Rd, |θi| ≤ νi}.
Moreover, we will find, see Section 4, that the coefficients a of P have the symmetry
property

a∗ = a. (14)

Under condition (14) we obtain the following lemma.

Lemma 2.1 Assume (14) to be fulfilled. The map P is real-valued on the invariant
subspace Bsym

ν .

Proof 2.1 Using the properties of the involution (11) in the second equality, together
with θ∗ = θ (on Bsym

ν ) and a∗ = a (assumed) in the third, we compute∑
k∈Nd

akθ
k =

∑
k∈Nd

ākθ̄
k =

∑
k∈Nd

a∗k∗θ
∗k∗ =

∑
k∈Nd

ak∗θ
k∗ =

∑
k∈Nd

akθ
k,

where the last equality uses the invariance of the summation domain under the invo-
lution ∗.

Together with Lemma 2.6 which explains the conjugation property of P in more detail,
this establishes that P restricted to Bsym

ν̂ parametrizes the real local stable manifold
of p (see Lemma 2.7 for the relation between ν and ν̂).
Our goal is to compute a numerical approximation of P together with rigorous

bounds on the approximation error and its range of validity Bν by using the method
presented in [12]. This amounts to first formulating an equivalent zero finding problem
on an appropriate Banach space. Second, using an approximate zero, we define a
Newton-like fixed point operator T . We establish contractivity of T on a ball around
the approximate zero by deriving bounds on the residual, as well as bounds on the
derivative that depend polynomially on the radius of the ball. These bounds are used
to define so-called “radii polynomials” as ingredients for a finite set of inequalities
encoding the prerequisites for the Banach fixed point theorem. We stress that in this
way the radius of the ball on which we obtain contractivity is a variable for which
we solve. This is an essential difference of the method in [12] compared to classical
Newton-Kantorovich type arguments. Let us assemble the ingredients to define the
zero finding problem.

2.2. Non-resonant eigenvalues

We distinguish two approaches for solving the invariance equation: the recursive ap-
proach and the zero finding approach. The zero finding approach will pave the way to
an application of a fixed point argument in the space of power series coefficients. To be
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concrete, in order to explain the difference between the two approaches, we consider
first the case that λ1, . . . , λd are non-resonant. In this case we choose

h(θ) = Λsθ, (15)

where Λs is the diagonal matrix containing the stable eigenvalues on the diagonal.
Clearly, the origin is the global attractor for θ′ = h(θ). Moreover, Λsσs = σsΛs, hence
h(θ∗) = h(θ)∗.
By plugging the series expansion (7) into the invariance equation (8), we derive

equations for the series coefficients ak = (a1k, . . . , a
n
k ) ∈ Cn for |k| ≥ 2. This leads to

the homological equations for all |k| ≥ 2:

(Dg(p)− k · λ In) ak = bk, (16)

where bk only depends on ak̂ with |k̂| < |k|. Note that bk vanishes for |k| = 1, hence
(16) reduces to the eigenvalue-eigenvector equation, which is solved by (9b).
Using the initial constraints (9) for ak with |k| = 0, 1 and the fact that λ1, . . . , λd

are non-resonant, (16) can be used to compute ak recursively to any desired order
(|k| ≤ N). This is what we refer to as the recursive approach. The recursive approach
shows that there is (a priori) a unique solution of (8) satisfying the constraints (9),
although the decay of the sequence is not guaranteed a priori. The validation in
[31, 29, 28] relies on analysis in function spaces of so-called N -tails.
Equation (16) is derived by writing g(P (θ)) as a power series expansion in θ and

matching like powers in the left and right hand sides of (8). In particular,

g(P (θ)) =

∞∑
|k|=0

ckθ
k with ck = ck(a) = ck

(
{ak̂, k̂ � k}

)
, (17)

where the notation k̂ � k means k̂i ≤ ki for i = 1, . . . , d. For later use, we also
introduce the notation k̂ ≺ k for those k̂ � k with k̂ 6= k. Plugging (17) into the
invariance equation (8) leads to the equations

ck = (k · λ) ak. (18)

By observing that bk is defined by the splitting

ck = Dg(p)ak + bk, (19)

where bk depends only on ak̂ with k̂ ≺ k, one derives (16). In contrast, in the zero
finding approach we omit the splitting (19) and instead interpret (18) as a zero finding
problem

(k · λ) ak − ck = 0 for all |k| ≥ 2 (20)
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on a space of geometrically decaying sequences {ak = (a1k, . . . , a
n
k )}k∈Nd ,see Section 3.

The recursive approach shows that the initial constraints (9) for ak with |k| = 0, 1

determine ak for |k| ≥ 2 uniquely. While a0 = p is uniquely fixed by the problem at
hand, we enjoy the freedom to scale ak for |k| = 1 as those are given by the eigenvectors
of Dg(p). The following lemma illuminates how such a scaling influences ak for |k| ≥ 2.
Let µ ∈ Cd be given such that µ∗ = µ. We define the scaling µa def

= (µkak)k∈Nd . In this
way scaling preserves the symmetry (14). Moreover, for any analytic nonlinearity g,
it follows from the power series representation (17) that

ck(µa) = µkck(a). (21)

We have the following invariance of the conjugation map under rescaling by µ.

Lemma 2.2 Let a = (ak)k∈N fulfill (9) together with (20) for all |k| ≥ 2. Then µa

also solves (20) for all |k| ≥ 2, whereas (µa)ei = µiξi for i = 1, . . . , d.

This follows from (21) and (20). For more details see [3].
We note that the above lemma is equivalent to the observation that the scaling

θi → µiθi leaves the flow in parameter space invariant, and hence by the conjugacy
property, µa solves the homological equations whenever a does. In Remark 5.1 we
come back to the practical implications of this scaling invariance.

2.3. Double eigenvalues

We now consider a single repeated (real) eigenvalue with geometric multiplicity one
(and no other resonances). Assume without loss of generality that λ2s+1 = λ2s+2,
with the rest of the eigenvalues being distinct and non-resonant. We choose ξ2s+1

to be a (real valued) eigenvector for the double eigenvalue, and ξ2s+2 a (real valued)
generalized eigenvector such that

[Dg(p)− λ2s+1In]ξ2s+2 = ξ2s+1. (22)

Furthermore, we choose the flow in parameter space to be (cf. Jordan normal form)

h(θ) = Λsθ + θ2s+2e2s+1, (23)

so that it is compatible with (22) through (8).
We observe, again, that the origin is the global attractor for θ′ = h(θ), and that

h(θ∗) = h(θ)∗. The corresponding version of (18) is

ck = (k · λ) ak + (k2s+1 + 1)ak+e2s+1−e2s+2
, (24)

for all |k| ≥ 2 with k2s+2 ≥ 1. We note that the additional term (k2s+1+1)ak+e2s+1−e2s+2

occurs at the same “level of recursion” as the term ak, i.e. |k + e2s+1 − e2s+2| = |k|.
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While this necessitates caution in the recursive computation of ak (which can still be
done with the correct ordering), it does not introduce difficulties for our interpretation
of (27) as a zero finding problem. Concerning the influence of scaling ak with µ ∈ Cd

(µ∗ = µ) we obtain the following.

Lemma 2.3 Let a = (ak)k∈N fulfill (9) together with (24) for all |k| ≥ 2. Let µ ∈ Cd

be such that µ∗ = µ and µ2s+1 = µ2s+2. Then µa also solves (24) for all |k| ≥ 2,
whereas (µa)ei = µiξi for i = 1, . . . , d.

Proof 2.2 The proof follows from (24) by noticing that µk+e2s+1−e2s+2 = µk.

If one chooses a rescaling with µ2s+1 6= µ2s+2 the normal form (23) needs to be adapted
accordingly.

2.4. Regular resonant eigenvalues

As discussed before, the two co-dimension one resonances are the (real) double eigen-
value (Section 2.3) and the regular resonant eigenvalue (the other co-dimension one
resonance) given by

k̃ · λ = λı̃ (25)

for some ı̃ > 2s (i.e. λı̃ ∈ R) and a k̃ ∈ Nd with |k̃| ≥ 2 and k̃∗ = k̃. Here we assume
that no other resonances occur.
It follows from the discussion in Section 2.2 that for the choice h(θ) = Λsθ the

mathematically equivalent recursive and the zero-finding approaches are bound to fail.
More precisely, assuming (25) to be fulfilled, it is apparent from (16) that the equation
for ak̃ is in general not solvable. To resolve this, we modify h to the nonlinear “normal
form”

h(θ) = Λsθ + τθk̃eı̃, (26)

where τ ∈ R is to be determined later. This alters (18) for k � k̃ (note that k̃ı̃ = 0) to

ck = (k · λ) ak + τ(kı̃ + 1)ak+eı̃−k̃ . (27)

Note that |k̃| ≥ 2 and thus |k + eı̃ − k̃| = |k| + 1 − |k̃| < |k|. This implies that (27)
is amenable to recursive solving for k � k̃, as in the non-resonant case. Obviously,
for k = k̃ Equation (27) can be solved only if τ satisfies a solvability condition, which
will be discussed below. We note that the choice (26) for h represents the simplest
effective one. It facilitates an application of bordered matrix techniques [14] to solve
(27) in an efficient way while also providing a means to obtain uniqueness of ak̃, see
below. The defining properties of the regular co-dimension one resonance imply that
k̃∗ = k̃ and e∗ı̃ = eı̃. Hence, for any τ ∈ R we infer that h(θ∗) = h(θ)∗. However, since
τ is a priori unknown, one needs to derive that τ is real indeed, see Equation (30).
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We now turn our attention to solving (27) for k = k̃. As we will see below, there is a
unique τ making (27) for k = k̃ solvable for ak̃, and by appending a suitable additional
constraint we can make this solution unique. Using that k̃ı̃ = 0, we rephrase (27) for
k = k̃ as

(Dg(p)− λı̃In)︸ ︷︷ ︸
A

ak̃ + τaeı̃ = bk̃, (28)

with bk̃ depending only on ak̂ with k̂ ≺ k̃. Note that by construction aeı̃ ∈ ker(A), as
it is an eigenvector of Dg(p) corresponding to the eigenvalue λı̃. The following lemma
shows that appending an additional constraint on ak̃ brings about unique solvability
of (28) for the pair (τ, ak̃).

Lemma 2.4 Let A ∈ Rn,n have an algebraically simple eigenvalue 0 with eigenvec-
tor ξ. Let ζ ∈ Rn, ζ 6= 0 be such that AT ζ = 0. Then ζT ξ 6= 0 and the matrix(

ξ A

0 ζT

)
∈ Rn+1,n+1

is non-singular.

Proof 2.3 The proof of this lemma can for example be found in [24, p. 174].

We choose a real vector ζ ∈ ker(AT ). From Lemma 2.4 we see that there is unique
pair (τ, ak̃) satisfying (

aeı̃ A

0 ζT

)(
τ

ak̃

)
=

(
bk̃
0

)
.

This pair (τ, ak̃) solves (28), and in addition

ζTak̃ = 0. (29)

Moreover, one derives that

τ =
ζT bk̃
ζTaeı̃

, (30)

showing that the value of τ is independent of the choice of ζ. Furthermore, since bk
is real for real a by its definition (19), τ is real whenever a is (ζ can be chosen to be
real-valued since λı̃ is real). In this case we also obtain a scaling result.

Lemma 2.5 Let a = (ak)k∈N fulfill (9) together with (27) for all |k| ≥ 2 for the unique
τ determined by (30). Let µ ∈ Cd be such that µ∗ = µ. Then µa solves (27) for all
|k| ≥ 2 with τ replaced by τµ = µk̃−eı̃τ , whereas (µa)ei = µiξi for i = 1, . . . , d.

Proof 2.4 The proof follows from (27) by using µk̃−eı̃τ(µa)k−k̃+eı̃ = µkτak−k̃+eı̃ .

Note that the scaling of τµ is easily understood by combining (21) with (30). Finally,
to a large extent the double eigenvalue case in Section 2.3 may be interpreted as a
regular resonance with ı̃ = 2s + 1 and k̃ = e2s+2 and τ = 1 known a priori (fixed by
choosing the standard Jordan normal form).
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2.5. Explicit dynamics in parameter space

Let us explain how the invariance equation (8) encodes the conjugation of the flows
of u′ = g(u) and θ′ = h(θ) that we denote by Φ(t, u) and Ψ(t, θ) for concreteness. In
particular we explain when a restriction to a smaller ball Bν̂ is in order. The following
lemma contains the key observation and makes the role of P as a conjugation of flows
precise.

Lemma 2.6 Assume g(P (θ)) = DP (θ)h(θ) for θ ∈ Bν and let θ ∈ Bν be chosen such
that Ψ(t, θ) ∈ Bν for all t ≥ 0. Then u(t)

def
= P (Ψ(t, θ)) solves u′ = g(u), u(0) = P (θ).

Furthermore Φ(t, P (θ)) = P (Ψ(t, θ))) and limt→∞ u(t) = p.

Proof 2.5 Let θ ∈ Bν be fixed. Recall that d
dtΨ(t, θ) = h(Ψ(t, θ)).We compute

d

dt
P (Ψ(t, θ)) = DP (Ψ(t, θ))h(Ψ(t, θ)) = g(P (Ψ(t, θ))), (31)

where the last equality follows from (8) by the fact that Ψ(t, θ) ∈ Bν for t ≥ 0.
By definition u(0) = P (Ψ(0, θ)) = P (θ) and thus by uniqueness of the solution to

the initial value problem u′ = g(u), u(0) = P (θ) we get g(P (Ψ(t, θ))) = d
dtΦ(t, P (θ)).

Together with (31), this yields Φ(t, P (θ)) = P (Ψ(t, θ))) for t ≥ 0. Since 0 is the global
attractor for the flow Ψ, we conclude that limt→∞ u(t) = limt→∞ P (Ψ(t, θ)) = P (0) =

p.

In resonant cases we may need to restrict θ to a subset of Bν to ensure that P (θ) ∈
W s(p). For example, one may choose a smaller ball Bν̂ ⊂ Bν to ensure Ψ(t, θ) ∈ Bν
for all θ ∈ Bν̂ and t ≥ 0. To be able to formulate a criterion for all three cases
simultaneously, we introduce

`0(y1, y2)
def
= max

{
|y1|, |y2|emin{0,−1+y1/y2}

}
, (32)

and

`(ν̂)
def
=


ν̂ for the non-resonant case,

ν̂ +
[
`0
(
ν̂2s+1,

ν̂2s+2

|λ2s+1|
)
− ν̂2s+1

]
e2s+1 for the double eigenvalue case,

ν̂ +
[
`0
(
ν̂ı̃,
|τ |ν̂k̃

|λı̃|
)
− ν̂ı̃

]
eı̃ for the regular resonant case.

(33)
The following lemma establishes both a uniform and a pointwise criterion. The for-
mer establishes a parametrization of W s

loc(p), whereas the latter is convenient when
analyzing a specific orbit.
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Lemma 2.7 Let g(P (θ)) = DP (θ)h(θ) for θ ∈ Bν . Let `0 and ` be as defined in (32)
and (33).
(a) For all three cases: if `(ν̂) � ν, then P (Bν̂) ⊂W s(p).
(b) For the double eigenvalue case: if θ ∈ Bν and `0

(
θ2s+1,

θ2s+2

|λ|
)
≤ ν2s+1, then

P (θ) ∈W s(p).
(c) For the regular resonant case: if θ ∈ Bν and `0

(
θı̃,

τθk̃

|λı̃|
)
≤ νı̃, then P (θ) ∈W s(p).

Proof 2.6 For the non-resonant case this is a direct consequence of Lemma 2.6 and
the fact that Ψi(t, θ) ≤ θi for all t ≥ 0. For the regular resonant case, the explicit flow
for θ′ = h(θ) is given by

Ψ(t, θ) = exp(Λst)θ +
(
τθk̃teλı̃t

)
eı̃.

For i 6= ı̃ we have |Ψi(t, θ)| ≤ θi for all t ≥ 0. For the resonant coordinate we infer

|Ψı̃(t, θ)| = |θı̃ + τθk̃t|eλı̃t ≤ `0
(
θı̃,

τθk̃

|λı̃|
)

for all t ≥ 0.

This proves part (c), and part (a) for the regular resonant case follows from the in-
equality `0(y1, y2) ≤ `0(|y1|, |y2|). Finally, the proof for the double eigenvalue case
follows by putting ı̃ = 2s+ 1, k̃ = e2s+2 and τ = 1 in the above arguments.

3. The zero finding problem

In this section we derive the zero finding problem on the space of geometrically decaying
series coefficients whose solution corresponds to a solution P of (8) via (7). The
functional analytic setup is close to the one utilized in [21] with the main difference
lying in the convolution structure.

3.1. Spaces and norms

As we work with analytical parametrizations P of the form (7), we consider the complex
sequence spaces

W ν def
= {w = (wk)k∈Nd , wk ∈ C : ‖w‖ν

def
=

∞∑
|k|=0

|wk|νk <∞}, (34)

with ν ∈ Rd+. Note that if aj ∈ W ν for all j = 1, . . . , n, then P is well-defined in Bν .
If we define for w, w̃ ∈W ν the convolution operation

(w ∗ w̃)k
def
=
∑
k̂�k

wk−k̂ w̃k̂, (35)
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the Banach space (W ν , ‖ · ‖ν) becomes a Banach algebra with multiplication ∗. In
particular,

‖w ∗ w̃‖ν ≤ ‖w‖ν‖w̃‖ν .
Taking scalar constraints necessary in the resonant case into account we define the
space

X νl0
def
= Cl0 × (W ν)n, (36)

where l0 denotes the number of extra variables (as well as the number of constraints).
In particular l0 = 0 in the non-resonant case and for double eigenvalues, whereas
l0 = 1 for (single) regular resonances. We have chosen this somewhat convoluted
general notation to deal with all cases in one framework. The notation naturally
allows incorporation of multiple (simultaneous) resonances by taking l0 > 1. We
denote elements x ∈ X νl0 by

x = (x−1, . . . , x−l0 ;x1, . . . , xn).

We use the somewhat awkward looking, but compact, notation {x−l}l0l=1 for the scalar
part of x, since using projection operators is too cumbersome for our present purposes.
We endow X νl0 with the norm

‖x‖ def
= max

(
max

l=1,...,l0
|x−l|, max

j=1,...,n
‖xj‖ν

)
. (37)

3.2. Zero finding problem: non-resonant case

We define an operator fnonres on X ν0 whose zeros correspond to analytic solutions P
of (8) subject to the linear constraints (9). Based on (20), we set

fnonres
k (x)

def
=


ak − p k = 0

ak − ξi k = ei (i = 1, . . . , d)

(k · λ) ak − ck(a) |k| ≥ 2,

(38)

where x = a and Dg(p)ξi = λiξi. Via (7) zeros of (38) correspond to a parametrization
of the local stable manifold of p.

3.3. Zero finding problem: double eigenvalue

Based on (24), we define the operator fdouble on X ν0 by

fdouble
k (x)

def
=


ak − p k = 0

ak − ξi k = ei (i = 1, . . . , d)

(k · λ) ak − ck |k| ≥ 2 ∧ k2s+2 = 0

(k · λ) ak + (k2s+1 + 1)ak+e2s+1−e2s+2 − ck(a) |k| ≥ 2 ∧ k2s+2 ≥ 1,

(39)
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where x = a, and ξi are the (generalized) eigenvectors, as discussed in Section 2.3.

3.4. Zero finding problem: regular resonant case

In the regular resonant case, we choose a setup with τ as an extra unknown and (29)
as appended equation. Based on (27) we define the operator f regres on X ν1 by

f regres
k (x)

def
=



ζTak̃ k = −1

ak − p k = 0

ak − ξi k = ei (i = 1, . . . , d)

(k · λ) ak − ck |k| ≥ 2 ∧ k 6� k̃
(k · λ) ak + τ(kı̃ + 1)ak+eı̃−k̃ − ck(a) |k| ≥ 2 ∧ k � k̃,

(40)

where x = (τ ; a) and ζ ∈ ker((Dg(p)− λı̃)T ) is fixed (and real-valued). We recall that
we use negative indices to number scalar constraints, hence we have slightly abused
notation here by using k = −1 to denote the scalar part of f regres, whereas everywhere
else k ∈ Nd.

4. Fixed point operator and radii polynomials

To give an intermediate summary, we note that we are now equipped with operators
fnonres, fdouble and f regres given by (38) defined on X ν0 , (39) defined on X ν0 , and (40)
defined on X ν1 , respectively. We simply use the notation f defined on X if this does
not lead to confusion. The zero of f corresponds to a parametrization of the stable
manifold, a fact we still need to make more precise in due course. We follow the setup
of [12, 21] and derive an equivalent fixed point operator, whose contractivity on a ball
around an approximate solution we establish using the so-called “radii polynomials”.
The structure of the fixed point operator T : X → X is Newton-like, i.e.

T (x)
def
= x−Af(x), (41)

where A, which is specified below, plays the role of an approximate inverse of Df(x̄),
with x̄ an approximate solution to f(x) = 0. We extend the symmetry from Section 2.1
to x ∈ X νl0 by setting

x∗
def
= (x−1, . . . , x−l0 ; (x1)∗, . . . , (xn)∗).

We define T , and in particular A, in such a way that T allows a well-defined restriction
to the closed symmetric subspace X sym given by

X sym = X ν,sym
l0

def
= {x ∈ X : x∗ = x} ∼= Rl0 × (W ν,sym)n, (42)
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where
W ν,sym = {w ∈W ν : w∗ = w}. (43)

The function f defined in the three cases (38), (39) and (40) respects the symmetry.

Lemma 4.1 We have f(x∗) = f(x)∗.

Proof 4.1 We start by showing that c(a∗) = c(a)∗. The vector field u′ = g(u) is real,
hence g(u) = g(u). Considering the definition (17) of c(a), we will exploit the identity
g(P (a, θ)) = g(P (a, θ)), where we write P (θ) = P (a, θ) for clarity. We first observe,
by using that the summation domain is invariant under the involution k 7→ k∗, that

P (a, θ) =
∑
k∈Nd

akθ
k

=
∑
k∈Nd

(a∗)k∗(θ∗)k
∗

=
∑
k∈Nd

(a∗)k(θ∗)k = P (a∗, θ∗).

It follows that
g(P (a, θ)) = g(P (a∗, θ∗)) =

∑
k∈Nd

c(a∗)k(θ∗)k. (44)

On the other hand

g(P (a, θ)) =
∑
k∈Nd

c(a)kθ
k

=
∑
k∈Nd

c(a)k∗θ
k∗

=
∑
k∈Nd

c(a)∗k(θ∗)k. (45)

By combining (44) and (45) we infer that∑
k∈Nd

c(a∗)k(θ∗)k =
∑
k∈Nd

c(a)∗k(θ∗)k.

It follows from uniqueness of the Taylor coefficients that c(a∗) = c(a)∗. Using that
(k · λ) = k∗ · λ this proves the assertion for the non-resonant case. Additionally, for
the case of double eigenvalue and regular resonant cases we observe that the conditions
k2s+2 ≥ 1 and k � k̃ are invariant under the involution, since k∗i = ki for i > 2s + 1

and k̃∗ = k̃. Finally, the symmetry of the scalar part f−1 in (40) follows from ζ = ζ

and k̃∗ = k̃.

We now can make the correspondence between zeros of f and parametrizations of local
stable manifolds more precise.

Lemma 4.2 If f(x) = 0 for x ∈ X νl0 , then x∗ = x. In particular a = (x1, . . . , xn)

defines via (7) a parametrization P : Bν̂ → Rn of the local stable manifold of p provided
ν̂ and ν satisfy the condition `(ν̂) � ν in Lemma 2.7(a).

Proof 4.2 Assume f(x) = 0. Then using Lemma 4.1

f(x∗) = f(x)∗ = 0∗ = 0.

17



By uniqueness of zeros of f it follows that x∗ = x. By construction of f in (38),
(39) or (40), P defined through a via (7) solves (8) under the constraints (9a) and
(9b) with h specified by (15), (23) or (26) respectively. Hence the statement follows by
combining Lemma 2.1 and Lemma 2.6.

To define the linear operator A that appears in (41), we start by defining a finite
dimensional projection πm on X . For m = (m1, . . . ,md), we introduce the index set

Im
def
= {−1, . . . ,−l0} t {k ∈ Nd : k � m}. (46)

Note that we require m∗ = m in the case of s complex conjugate eigenvalue pairs, so
that k ∈ Im if and only if k∗ ∈ Im. Using this notation we set

πmx
def
= (xk)k∈Im .

The range of πm can be identified with CM where M = l0 + n
∏d
i=1(mi + 1). The

symmetry operation descends to an involution Σs on CM through

Σsπm(x)
def
= πm(x∗). (47)

An element xF in the range of πm can be lifted to X through the trivial embedding

(ιxF )k
def
=

{
(xF )k k ∈ Im
0 k /∈ Im

We define the “Galerkin” projection

fm(xF )
def
= πmf(ιxF ).

We now assume an approximate zero x̂F of fm has been computed (e.g. using a
standard Newton method), and that Am is a numerical approximation of the inverse
of the Jacobian, i.e. Am ≈ (Dfm(x̂F ))−1. We denote by Asm

def
= 1

2

(
Am + ΣsAmΣs

)
its

symmetrized version, which has the property

AsmΣs = ΣsAsm. (48)

Remark 4.1 Since in practice x̂∗F ≈ x̂F , it follows from f(x∗) = f(x)∗ that Asm ≈ Am.
Consequently, AsmDfm(x̂F ) ≈ IM . Furthermore, replacing Am by it symmetriza-
tion Asm is not strictly necessary, since the symmetry of the fixed point, derived in
Lemma 4.5 below, can also be obtained from the a priori uniqueness through Lemma 4.2.

We define the linear operator A by

(Ax)k
def
=

{
(Asmπmx)k k ∈ Im,

1
λ1k1+...+λdkd

xk k /∈ Im.
(49)

By construction, A conserves the symmetry, as expressed by the following lemma.

18



Lemma 4.3 Let A be defined by (49). Then Ax∗ = (Ax)∗.

Proof 4.3 Since m∗ = m and λ∗ = λ, it follows that (Ax∗)k = ((Ax)∗)k for k /∈ Im.
It remains to establish that Asmx∗F = (AsmxF )∗, which follows from (47) and (48).

Lemma 4.4 We have T (x∗) = T (x)∗. In particular, T maps X sym into itself.

Proof 4.4 This follows directly from Lemmas 4.1 and 4.3.

We aim to show that T is contraction on a small ball around an approximate zero
x̂ = ιx̂F ∈ X . It follows from Lemma 4.5 that if x̂ is symmetric (x̂∗ = x̂) or almost
symmetric, then the unique fixed point of T in the ball is a symmetric zero of f
(provided A is injective).

Lemma 4.5 Assume that T is a contraction on the ball Bx̂(r) with Bx̂(r)∩X sym 6= ∅.
Then T has a unique fixed point x̃ in Bx̂(r), and x̃∗ = x̃. If, in addition, Asm is
invertible, then x̃ is a zero of f , and hence corresponds a parametrization of the real
stable manifold.

Proof 4.5 The first part follows from the Banach fixed point theorem. Since T leaves
X sym invariant, T is a contraction mapping on Bx̂(r)∩X sym 6= ∅, hence its fixed point
lies in X sym. If Asm is injective, then the fixed point x̃ corresponds to a zero of f , and
the rest of the proof follows directly from Lemma 4.2.

As explained in Remark 4.1, the assertions of Lemma 4.5 also hold if one replaces Asm
by its unsymmetrized analogue Am, provided it is invertible. We now describe how we
show the contractivity of T on a suitable ball. Let us introduce the operator A† given
by

(A†x)
def
=

{
(Dfm(x̂F )πmx)k k ∈ Im
(λ1k1 + . . .+ λdkd) ak k /∈ Im,

(50)

which acts as an approximation to the derivative of f at ιx̂F . Note that in particular
AA† ≈ Id. For later use we note that DT (x)y can be split as

DT (x)y = (Id−ADf(x))y = (Id−AA†)y −A(Df(x)y −A†y). (51)

We continue by defining bounds that will be used to prove contractivity of T .

Defintion 4.1 Let x̂ = ιx̂F ∈ X be given. Let Y = (Y−1, . . . , Y−l0 ;Y 1, . . . , Y n) ∈
Rl0+n+ be bounds such that

|(T x̂− x̂)−l| ≤ Y−l for l = 1, . . . , l0 (52a)

‖(T x̂− x̂)j‖ν ≤ Y j for j = 1, . . . , n. (52b)

19



Let Z(r) = (Z−1(r), . . . , Z−l0(r);Z1(r), . . . , Zn(r)) be l0+n polynomials in r with non-
negative coefficients, such that for all v, w with ‖v‖ ≤ 1 and ‖w‖ ≤ 1 the following
bounds hold for all r ≥ 0:

|(DT (x̂+ rv)rw)−l| ≤ Z−l(r) for l = 1, . . . , l0 (53a)

‖(DT (x̂+ rv)rw)j‖ν ≤ Zj(r) for j = 1, . . . , n. (53b)

We define the radii polynomials by

p−l(r)
def
= Y−l + Z−l(r)− r for l = 1, . . . , l0 (54a)

pj(r)
def
= Y j + Zj(r)− r for j = 1, . . . , n. (54b)

The crux of this definition is that the bounds Y on the residue and Z on the derivative
of T can be constructed explicitly, see the examples in Section 5. We note that the
inclusion of the scalar r in (53) trivially scales the bounds on DT by a factor r. We
include this factor here to keep the notation compatible with earlier papers (going back
to [37]). The radius r of the ball is not fixed a priori and the l0+n radii polynomials p(r)
are used in the following parametrized version of the Newton-Kantorovich theorem.

Lemma 4.6 Let r > 0 be such that p−l(r) < 0 for l = 1, . . . , l0 and pj(r) < 0 for
j = 1, . . . , n. Then T is a contraction on Bx̂(r) and there is a unique fixed point of T
in Bx̂(r).

A proof of this lemma can be found e.g. in [37, 12, 21].

Remark 4.2 We emphasize three consequences.

1. The l0 + n conditions p(r) < 0 reduce the validation of zeros of the operators f
defined on the infinite dimensional spaces X to a finite set of inequalities that
can be checked rigorously using interval arithmetic.

2. We can translate p(r) < 0 to a statement about the error of the image of the
parametrization in phase space. Denote by Pm(θ) =

∑
k∈Im âkθ

k the approxi-
mate parametrization corresponding to x̂, and by P (θ) =

∑
k∈Nd ãkθ

k the exact
parametrization corresponding to x̃. Then for all θ ∈ Bsym

ν and all j = 1, . . . , n

|P j(θ)− P jm(θ)| ≤
∑
k∈Nd

|ãjk − â
j
k||θ

k| ≤ ‖ãj − âj‖ν ≤ ‖x̃− x̂‖ ≤ r. (55)

3. Another consequence is that

|ãjk| ≤
r

νk
for all k /∈ Im and j = 1, . . . , n. (56)

This gives control over the tail coefficients in the exact parametrization. Note
that it is this information that is crucial to the method in [31] for deriving a-
posteriori bounds on the derivative of the truncation error in the parametrization
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(see [31, Section 5.2, Eqn. (87)]). As a consequence, the analysis in [31] is
applicable with the radius r obtained from the current approach.

To derive the bounds (52) and (53) good analytical control on the operator f and its
derivative Df at x̂ is essential. In Sections 5.1 and 5.2 we illustrate the “mechanics”
involved in the derivation of these bounds.

5. Applications

In this section we consider three applications to illustrate the performance of our
method. We start with the well-known Lorenz equations and compute a 2D local
stable manifold at the classical parameter values yielding non-resonant eigenvalues.
Subsequently, we consider non-standard parameter values in the Lorenz system to
investigate the specific issues in the double eigenvalue case. Finally we consider the
case of regular resonant eigenvalues in a system of ODEs originating from a pattern
formation model. We compute (un)stable manifolds that serve as ingredient for a
connecting orbit computation in this system.

5.1. Local manifolds in the Lorenz system

We consider the Lorenz differential equations [26]

u̇ = g(u) =

 σ(u2 − u1)

ρu1 − u2 − u1u3
u1u2 − βu3

 . (57)

In Section 5.1.1 we choose the classical parameter values β = 8
3 and σ = 10 and ρ = 28

and describe the validation process including the derivation of the necessary bounds
for the 2D local stable manifold of the origin (local Lorenz manifold) in some detail. In
particular, we investigate how to choose the various computational parameters involved
in the validation process taking different objectives into account. In Section 5.1.2 we
use the fact that we have explicit formulas for the stable eigenvalues at the origin to
tune the parameters β, ρ, σ such that there are double eigenvalues at the origin. We
explain the validation analysis in this context, which serves as preparation for the
regular resonant case.

5.1.1. Detailed analysis for the local Lorenz manifold: non-resonant eigenvalues

The dimension of the manifold is d = 2 and the phase space dimension is n = 3.
Denote the stable eigenvalues by λ1,2 and the corresponding eigenvectors by ξ1,2. As a
matter of fact λ1,2 ∈ R. Hence, we search for a map P : R2 ⊃ Bν → R3 together with

21



ν = (ν1, ν2) fulfilling (8), with g given by the Lorenz vector field (57), and the linear
constraints (9). As we are in the non-resonant case we can choose ν = ν̂ as discussed in
Section 2.5. We make the power series ansatz (7) with ak = (a1k1k2 , a

2
k1k2

, a3k1k2) ∈ R3.
Note that the coefficients ck = (c1k1k2 , c

2
k1k2

, c3k1k2) in the expansion (17) are

ck1k2 =

 σ
(
a2k1k2 − a

1
k1k2

)
ρa1k1k2 − a

2
k1k2
− (a1 ∗ a3)k1k2

(a1 ∗ a2)k1k2 − βa3k1k2

 (58)

with ∗ defined in (35). Together with p = 0 ∈ R3 this completes the ingredients for
fnonres defined in (38).
Recalling the definition of the radii polynomials in (54b), we notice that a necessary

condition for finding a radius r fulfilling pi(r) < 0 for i = 1, 2, 3 is that the components
of Z1 derived in (63) be smaller than one. The parameters that are under our direct
control are m = (m1,m2) and ν = (ν1, ν2). Let us describe the dependence of the
coefficients of pi(r) on these computational parameters in more detail by deriving
explicit formulas for the radii polynomials.

Derivation of the bounds: details To define the radii polynomials specified in (54b)
we first need to compute the bounds Y j and Zj (j = 1, 2, 3) defined in (52) and (53).
Assume we have already calculated an approximate zero x̂ = (â1, â2, â3) = (x̂F , 0∞),
and set Am = Dfm(x̂F ). We start by noting that (f(x̂))k = 0 for k /∈ I2m, since g(u)

is quadratic. Using this and the fact that T x̂− x̂ = Af(x̂) we set yjk = (|(Amfm(x̂))jk|)
for k ∈ Im, yjk = 1

k1|λ1|+k2|λ2| ((|f
2m(x̂))jk|) for k ∈ I2m \ Im and yk = 0 ∈ R3 for

k /∈ I2m. The bounds Y j (j = 1, 2, 3) are then obtained by computing the finite sums
‖yj‖ν .
To derive the bounds Zj(r) defined in (53) we use the splitting (51). Let v, w ∈

B1(0). We start by deriving an expansion

(Df(x̂+ rv)rw −A†rw)k = zk,1r + zk,2r
2 with zk,1, zk,2 ∈ R3. (59)

The explicit expressions for z are listed in Table 1.

k ∈ Im k /∈ Im

zk,1

0

0

0


 σ(w2

k − w1
k)

ρw1
k − w2

k − ((â1 ∗ w3)k + (â3 ∗ w1)k)

(â1 ∗ w2)k + (â2 ∗ w1)k − βw3
k


zk,2

 0

−((w1 ∗ v3)k + (w3 ∗ v1)k)

(w1 ∗ v2)k + (w2 ∗ v1)k


 0

−((w1 ∗ v3)k + (w3 ∗ v1)k)

(w1 ∗ v2)k + (w2 ∗ v1)k


Table 1: Expansion coefficients for (Df(x̄+ rv)rw −A†rw)k in (59).
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Our next goal is to compute a bound

|(DT (x̂+ rv)rw)jk| ≤ Z
j
k,1r + Zjk,2r

2. (60)

The first term to estimate is (Id−AA†)w. We introduce the notation A†m
def
= Dfm(x̂F ),

and by using |wjk| ≤
1
νk we compute, by a direct computation, εk ∈ R3, k ∈ Im such

that
|((Id−AA†)w)jk| ≤ (|Id−AmA†m| |wF |)

j
k ≤ ε

j
k for all k ∈ Im, (61)

where absolute values are to be understood component-wise. Furthermore, for the tail
terms we have ((Id−AA†)w)k = 0 ∈ R3 for k /∈ Im by construction. To accommodate
matrix multiplication we collect all estimates of zk,2 for k ∈ Im in a vector. Namely,
we define the vector χ2 ∈ R3nm with nm = (m1 + 1)(m2 + 1) such that

|zjk,2| ≤ χ
3(k2(m1+1)+k1)+j
2 for 0 ≤ k1 ≤ m1, 0 ≤ k2 ≤ m2, j = 1, 2, 3. (62)

To be explicit, we use the estimate

χ
3(k2(m1+1)+k1)+1
2 = 0, χ

3(k2(m1+1)+k1)+2
2 =

2

νk
, χ

3(k2(m1+1)+k1)+3
2 =

2

νk
.

Then applying the definition of A given in (49), and interpreting Am as an 3nm×3nm
matrix, yields the values for Zk,1 and Zk,2 summarized in Table 2.

k ∈ Im k /∈ Im

Zk,1 εk
1

k1|λ1|+k2|λ2|

 σ(|w|2k + |w|1k)

ρ|w|1k + |w|2k + ((|â|1 ∗ |w|3)k + (|â|3 ∗ |w|1)k)

(|â|1 ∗ |w|2)k + (|â|2 ∗ |w|1)k + β|w|3k


Zk,2 (|Am|χ2)k

1
k1|λ1|+k2|λ2|

 0

((|w|1 ∗ |v|3)k + (|w|3 ∗ |v|1)k)

(|w|1 ∗ |v|2)k + (|w|2 ∗ |v|1)k


Table 2: Expansion coefficients for Zk(r) = Zk,1r + Zk,2r

2. All absolute values are to
be understood component-wise. The values of εk are defined in (61).

Finally, by estimating the finite part (k ∈ Im) and the tail part (k /∈ Im) separately,
we can compute Zj(r) = Zj1r + Zj2r

2 by

Z1 =
∑
k∈Im

εkν
k +

1

min
{

(m1 + 1)|λ1|, (m2 + 1)|λ2|
}
 2|σ|
|ρ|+ 1 + ‖â1‖ν + ‖â3‖ν
|β|+ ‖â1‖ν + ‖â2‖ν


(63a)

Z2 =
∑
k∈Im

(|Am|χ2)kν
k +

1

min
{

(m1 + 1)|λ1|, (m2 + 1)|λ2|
}
0

2

2

 , (63b)
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where we have used the Banach algebra convolution estimate in W ν to bound the tail
sums. This completes the ingredients for (54b).
The main influence of ν on these estimates is via the terms ‖âi‖ν (i = 1, 2, 3). On

the other hand these norms are also controlled by the length of the stable eigenvectors
ξ1,2 appearing in definition (38), and also, albeit weakly, by m = (m1,m2). Let us
analyze this interplay.

Choice of m, ν and ‖ξ1,2‖ The considerations that lead to the settings of the
computational parameters depend on the goals in the application at hand. One might
for example be interested in uniformly maximizing the image in phase space of the
parametrization, or one might want to capture a particular point in phase space in
the image, i.e. maximize the image in a certain direction. In the following we collect
several observations for either task. Let us begin with a fundamental restriction,
namely the components Zj1 in (63) need to be smaller than one. This can be used as
a first feasibility check for the validation. Next, we note that varying ν1,2 is in the
following precise sense equivalent to varying ξ1,2, which implies that we may as well
fix either ν or ξ.

Remark 5.1 From the scaling operation analyzed in Lemma 2.2, we notice that

‖µaj‖ν = ‖aj‖µν , j = 1, 2, 3.

This implies that we should either vary the decay rates (domain radius) ν or the (eigen-
vector) scalings µ to affect ‖âj‖ν , j = 1, 2, 3 in Z1.

This motivates the following procedure:

1. Choose an order m = (m1,m2). Fix ν = (1, 1) and compute â with ‖ξ1,2‖ = 1.

2. Attempt to check the conditions of Lemma 4.6 using the formulas derived for
(52) and (54b).

3. • In case of failure rescale ξ1,2 = µ1,2ξ1,2 and â = µâ with 0 < µi < 1 (i = 1, 2)

and repeat the second step.

• In case of success rescale ξ1,2 = µ1,2ξ1,2 and â = µâ with µi > 0 (i = 1, 2)

chosen according to the maximization objective and repeat the second step
until stop at failure.

In this procedure there remain two open choices, namely of m = (m1,m2) and µ =

(µ1, µ2). Let us review two options. More thorough discussion of the choice of scalings,
including algorithms and implementations, can be found in [3].
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1. m1 = m2 and µ1 = µ2 > 1: uniformly maximizing the image
We consider the two cases m = (5, 5) and m = (15, 15), see Figure 2. First, for
m = (5, 5), the validation succeeds with ‖ξ1,2‖ = 1 with a radius of r ≈ 10−7.
Recall that by Remark 4.2 the validation radius r can be seen as an accuracy
measure. We thus consider smaller radius r as higher accuracy. After conducting
5 rescalings with factors µ1 = µ2 = 7

6 to uniformly maximize the image we fail
to validate and the accuracy r

we obtain after 4 rescalings decreased to 10−5 (for fixed m the (uniform estimate
on the) accuracy naturally decreases when increasing the domain). Second, for
m = (15, 15) we also succeed to validate for ‖ξ1,2‖ = 1 but with smaller uniform
error bound r ≈ 10−15. We are able to rescale 15 times with the same factors.
This increases ‖ξ1,2‖ to 10.09 and increases the validation radius to 10−2.

2. Fast-slow choice of m and µ: maximizing the image in the slow direc-
tion
Next we consider the cases m1 6= m2 and/or µ1 6= µ2, see Figure 3. We recall
that |λ1| ≈ 10|λ2|, hence we refer to λ1/2 as the fast/slow eigenvalue. For most
orbits the dynamics close to the origin is dominated by the slow direction. This
is for example of interest when computing connecting orbits that approach the
equilibrium along the slow direction. Capturing a large portion of the slow di-
rection can thus be desirable. We choose m2 ≥ m1 and µ2 > 1 > µ1. First
we choose m1 = m2 = 15 . We succeed to validate for ‖ξ1,2‖ = 1 with a ra-
dius r ≈ 10−15. Let µ1 = 6

7 and µ2 = 7
6 . We obtain 14 successful rescalings

with gradually decreasing accuracy (r ≈ 10−3 after 14 rescalings). If we choose
m1 = 5 and m2 = 15 we observe qualitatively different behavior of the validation
radii.

Starting with a success at ‖ξ1,2‖ = 1 and radius r ≈ 10−8 the accuracy increases
to 10−11 in the first 8 rescalings with the factors µ1 = 6

7 and µ2 = 7
6 until the

norms of ‖ξ1,2‖ “align” with the choice of m. Then the accuracy decreases to
10−3 after 18 rescalings.

The above considerations can serve as a starting point for more elaborate future inves-
tigations. One might for example devise an optimization scheme in which one takes
not only the radius r as an unknown in the radii polynomials but also considers ν or
‖ξ1,2‖ respectively as variables.

5.1.2. Analysis for the local Lorenz manifold: double eigenvalues

In order to analyze the situation for double eigenvalues as discussed in Section 2.3, we
choose for the parameters in the Lorenz system (57) the relation ρ = 1+(σ+1)2/(4σ),
leading to double eigenvalues λ = −(σ + 1)/2. Using this data we set up the operator
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Figure 2: Top: change of the validation radii while rescaling the eigenvectors (left:
m = (5, 5), right: m = (15, 15)) We see that for a larger number of modes
we obtain smaller error bounds. Note in addition that the larger the norm of
ξ1,2 is the bigger the uniform error bound r on Bν gets. Bottom: dependence
of the norm of the approximate solution on the number of rescalings, hence
on the norms ‖ξ1,2‖. These are an indicator for the size of the image in phase
space.
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Figure 3: Top left: change of validation radii while rescaling with factor µ = ( 6
7 ,

7
6 ) for

the choice m1 = m2 = 15. We observe qualitatively similar behavior to the
uniform scaling. Top right: change of validation radii while rescaling with
factor µ = ( 6

7 ,
7
6 ) for the choice m1 = 5,m2 = 15. We observe qualitatively

different behavior to the uniform scaling. The maximal accuracy is obtained
for ‖ξ2‖‖ξ1‖ ≈ 11.8. Bottom: dependence of the norm of the approximate solu-
tion on the number of rescalings, hence on the norms ‖ξ1,2‖. Note the clear
dominance of the ‖â3‖ν which reflects the fact that ξ2 = (0, 0, 1)T .
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fdouble specified in (39). Note that the (generalized) eigenvectors ξ1,2 fulfilling (22)
can be computed explicitly in this model case. To discuss the influence of the choice
of parameters m and ν (or ‖ξ1,2‖) we first define the radii polynomials as we did in
5.1.1.
To compute the bounds Y j (j = 1, 2, 3) defined in (52) and Zj (j = 1, 2, 3) defined

in (53) we follow the same strategy as in Section 5.1.1. First the derivation of the
Y -bounds is exactly analogous. In deriving zk,i(r), i = 1, 2 fulfilling in the analogue
of (59) we notice that the only difference from the formulas in Table 1 is induced by
the additional linear term (k1 + 1)ak, with k

def
= (k1 + 1, k2 − 1) in fdouble for |k| ≥ 2

and k2 > 0. For k2 = 0 one should read ak ≡ 0. The resulting differences in zk,1 can
be read off in Table 3.

k ∈ Im k /∈ Im

zk,1 δk1m1
(m1 + 1)wk

 σ(w2
k − w1

k)

ρw1
k − w2

k − ((â1 ∗ w3)k + (â3 ∗ w1)k)

(â1 ∗ w2)k + (â2 ∗ w1)k − βw3
k

+ (k1 + 1)wk

Table 3: Expansion coefficients for (Df(x̂+ rv)rw−A†rw)k for the double eigenvalue
case, using the standard Kronecker δ symbol.

To obtain Zk(r) fulfilling the equivalent of (60) we obtain, in addition to εk from (61)
and χ2 from (62), a vector χ1 ∈ R3nm such that

|zjk,1| ≤ χ
3(k2(m1+1)+k1)+j
1 j = 1, 2, 3.

To be precise, we set χ3(k2(m1+1)+m1)+j
1 = (m1 + 1)ν

−(m1+1)
1 ν

−(k2−1)
2 for all 1 ≤ k2 ≤

m2 and j = 1, 2, 3, whereas all other components of χ1 vanish. To obtain the analogue
of Z1 in (63) we need to bound the sum∑

k/∈Im

k1 + 1

|λ1|(k1 + k2)
|wj
k
|νk11 νk22 =

ν2
ν1

∑
k/∈Im

k1 + 1

|λ1|(k1 + k2)
|wj
k
|νk1+1

1 νk2−12 .

The following lemma can be used to control the factor k1+1
|λ1|(k1+k2) uniformly for k /∈ Im.

We formulate it in this more general form as it will be reused for more general terms
of this type in analyzing resonant eigenvalues in Section 5.2.

Lemma 5.1 Let m ∈ Nd with mı̃ ≥ 1 for an ı̃ ∈ {1, . . . , d}. Let

Qı̃
def
= min{|λi|(mi + 1) : i 6= ı̃}.

Then we have, with Im = {k ∈ Nd : k � m},

max
k∈Nd\Im

kı̃ + 1

|λ1|k1 + . . .+ |λd|kd
≤ max

{
mı̃ + 2

|λı̃|(mı̃ + 1)
,

mı̃ + 1

Qı̃ + |λı̃|mı̃
,

1

Qı̃

}
. (64)
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Proof 5.1 For any k ∈ Im there is at least one j ∈ {1, . . . , d} such that kj ≥ mj + 1.
We distinguish two cases:

• kı̃ ≥ mı̃ + 1. Then

kı̃ + 1

|λ1|k1 + . . .+ |λd|kd
≤ kı̃ + 1

|λı̃|kı̃
≤ mı̃ + 2

|λı̃|(mı̃ + 1)
.

• 0 ≤ kı̃ ≤ mı̃. We estimate

kı̃ + 1

|λ1|k1 + . . .+ |λd|kd
≤ kı̃ + 1

Qı̃ + |λı̃|kı̃
≤ max

{
mı̃ + 1

Qı̃ + |λı̃|mı̃
,

1

Qı̃

}
.

The proof follows from combining these estimates.

Following the same steps as in Section 5.1.1 we obtain Zk,1 as given in Table 4, while
Zk,2 remain unaltered from Table 2.

k ∈ Im k /∈ Im

Zk,1 εk + (|Am|χ1)k
1

|λ1|(k1+k2)

 σ(|w|2k + |w|1k)

ρ|w|1k + |w|2k + ((|â|1 ∗ |w|3)k + (|â|3 ∗ |w|1)k)

(|â|1 ∗ |w|2)k + (|â|2 ∗ |w|1)k + β|w|3k

+ k1+1
|λ1|(k1+k2)

|w|1k|w|2
k

|w|3
k



Table 4: Expansion coefficients for Zk(r) = Zk,1r + Zk,2r
2. The absolute value |Am|

is to be understood component-wise.

Hence, one finds (in all the cases discussed below) that Z1 is given by

Z1 =
∑
k∈Im

Zk,1ν
k +

1

|λ1|min{m1 + 1,m2 + 1}

 2|σ|
|ρ|+ 1 + ‖â1‖ν + ‖â3‖ν
|β|+ ‖â1‖ν + ‖â2‖ν


+
ν2
ν1

m1 + 2

|λ1|(m1 + 1)
.

Recalling the necessary condition Zj1 ≤ 1 from above, we point out that the term
ν2
ν1

m1+2
|λ1|(m1+1) is crucial. In particular, we certainly need ν2

ν1|λ1| < 1. Therefore, in our
analysis of the computational parameters we fix ‖ξ1,2‖ and vary ν1,2.

Remark 5.2 The condition from Lemma 2.7 reads `0
(
ν̂1,

ν̂2
|λ1|
)
≤ ν1. However, the

necessary condition ν2
ν1|λ1| < 1 implies that `0

(
ν1,

ν2
|λ1|
)

= ν1, hence in practice one
simply takes ν̂ = ν.

Let us now consider different choices of parameters β, ρ, σ. We fix β = 8
3 and consider

σ = −3,−5,−11,−21 with ρ = 4
3 ,

9
5 ,

36
11 ,

121
21 . This corresponds to double eigenvalues
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λ1 = 1, 2, 5, 10. Thus we compute 2D unstable manifolds (simply replacing g by −g
everywhere in the analysis). Note that this does not necessitate an adaption of the
formulas for the radii polynomials. Table 5 offers a comparison of the validation success
in terms of the decay rate ν.

λ1 = 1 λ1 = 2 λ1 = 5 λ1 = 10

ν = (7, 0.5) 2.61× 10−8 2.58× 10−12 1.53× 10−13 1.38× 10−14

ν = (7, 1) − 2.06× 10−11 4.96× 10−13 2.40× 10−14

ν = (10, 2) − − 2.66× 10−10 8.11× 10−12

ν = (12, 3) − − − 2.84× 10−10

Table 5: For fixed m = (7, 6) and ‖ξ1,2‖ = 1
50
, we give the corresponding validation radii (if

there was one) on the different domain sizes corresponding to the different decay
rates ν.

Thus we see that the bigger we choose the magnitude of the eigenvalue, the bigger
is the domain of convergence of the parametrization that we are able to validate.
Moreover, the smaller the eigenvalue, the bigger the ratio ν1/ν2 needs to be. This
reflects the crucial role of the term ν2

ν1
m1+2

|λ1|(m1+1) .

5.2. Co-existence of hexagonal and trivial patterns

As an example of an application to a case with regular resonant eigenvalues, we turn
our attention to the existence of solutions of (2) exhibiting certain patterns. The
asymptotic analysis in [13] reduces the problem of finding transition layers between
stationary patterns of (2) to connecting orbit problems for the system of ODEs (1).
We proceed to analyze (1) along the same lines as in [33]. To this end we set u1 =

u, u2 = u′, u3 = v and u4 = v′ in (1) and rewrite it as

u′ = g(u) =


u2

−γ4u1 −
√
2
4 u

2
3 + 3

8u
3
1 + 3u1u

2
3

u4

−γu3 −
√
2
2 u1u3 + 9u33 + 3u21u3

 (65)

with u = (u1, u2, u3, u4)T . The relation between the parameters γ, µ and β is given by
γ = µ

β2 . We refer to [13] for a complete description of the seminal asymptotic reduction
of the PDE (2) to the ODE system (65), obtained via a combination of spatial dynam-
ics, bifurcation theory, and geometric singular perturbation theory. For further details
about the particular form (65) one may consult [33]. We take the same viewpoint as
in [33] and investigate by rigorous numerical techniques, for fixed parameter value γ,
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connecting orbits between equilibria of (65). While in [33] the configuration for the co-
existence of hexagons and rolls (spots and stripes) is considered, we concern ourselves
with the coexistence of the trivial state and hexagonal patterns. In terms of (65) this
corresponds to a connecting orbit between the two fixed points p1 = (

√
2u∗3, 0, u

∗
3, 0)T ,

where u∗3 = 1+
√
1+60γ
30 , and p2 = (0, 0, 0, 0)T . As (65) is Hamiltonian, a necessary

condition for the connection between p1 and p2 to exist is for the equilibria to lie on
the same energy level, which is the case for γ = − 2

135 .
The equilibrium p2 has resonant eigenvalues (λ1 = 2λ2). For this reason the case of

coexistence of the trivial state and the hexagonal spot pattern was not considered in
[33]. However, our current approach to validating the (un)stable manifold is well-suited
for this situation.
To compute the connecting orbit we adapt the approach of [33]. Introducing a

rescaling factor L > 0 we aim at solving
u′(t) = Lg(u(t)) t ∈ [0, 1]

u(0)∈Wu
loc(p1)

u(1)∈W s
loc(p2)

(66)

with u(t) = (u1(t), u2(t), u3(t), u4(t)). The main aim of the current paper is to con-
struct efficient rigorously validated descriptions of the local (un)stable manifolds. As
explained in detail in [33], once we have such parametrizations Pu : R2 ⊃ Bsym

1 → R4

of the local unstable manifold of p1 and P s : R2 ⊃ Bsym
1 → R4 of the local stable

manifold of p2, (66) can be solved by finding a zero of the operator

F (ψ, φ, u)(t) =


u1(1)− P s1 (θ(ψ))

u3(1)− P s3 (θ(ψ))

u4(1)− P s4 (θ(ψ))

u(t)− Pu(φ)−
∫ t

0

Lg(u(s))ds

 , (67)

where θ(ψ)
def
= (ρ cos(ψ), ρ sin(ψ)) with some fixed ρ < 1 (playing the role of the phase

condition in this otherwise autonomous problem). The fact that the second component
u2(1)− P s2 (θ(ψ)) = 0 can be replaced by the a posteriori check of

sign(u2(1)) = sign(P s2 (θ(ψ)))

is explained in Lemma 2 in [33] and is related to the Hamiltonian nature of the problem.
Using the phase condition (i.e. fixing ρ) and omitting the second component deals on
the one hand with the fact that every time shift of a connecting orbit is again a
connecting orbit and on the other hand with the fact that the intersection of the two-
dimensional unstable and stable manifolds corresponding to the connecting orbit is
not transverse in R4. In a nutshell, they guarantee the isolation of the zero of F that
we set out to find.
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To rigorously compute zeros of (67) the time dependence is discretized using a
Chebyshev series. For details on how this is done in this example we refer the reader
to [33] and for the general method to [25]. In this paper we focus on the rigorous
computation of the maps P s,u and especially P s, as there we encounter eigenvalue
resonances. The validated computation of Pu is conducted analogously to the Lorenz
equation explained above and we do not give any further details below. Furthermore,
in order to validate zeros of (67) we need rigorous information on ‖DP s,u(θ)‖ that we
obtain in the same way as explained in Remark 3 in [33]. Note that by Remark 4.2
the a posteriori bound δs,u corresponds to our validation radius r.
We now delve into the validated computation of the stable manifold of the origin,

which has resonant eigenvalues. Explicitly, the eigenvalues of Dg(p2) with negative
real part are given by λ1 = −

√
−γ and λ2 = −

√
−γ
2 with corresponding eigenvectors

ξ1 = (0, 0,− 1√
−γ , 1)T and ξ2 = (− 2√

−γ , 1, 0, 0)T . We note that 2λ2 = λ1, so condition

(5) holds with ı̃ = 1 and k̃ = (0, 2).
Following the approach described in Section 2.4 we choose the nonlinear normal

form

hs(θ) =

(
2λ2θ1 + τθ22

λ2θ2

)
(68)

to describe the dynamics in the (stable) parameter space. The coefficients ck = ck(a; γ)

in (40) are given by

ck =


a2k

−γ4a
1
k −

√
2
4 (a3 ∗ a3)k + 3

8 (a1 ∗ a1 ∗ a1)k + 3(a1 ∗ a3 ∗ a3)k
a4k

−γa3k −
√
2
2 (a1 ∗ a3)k + 9(a3 ∗ a3 ∗ a3)k + 3(a1 ∗ a1 ∗ a3)k

 .

This completes the ingredients for (40) in the particular case of (65). Note that
condition in Lemma 2.7c) reads `0

(
θ1,

τθ22
|λ1|
)
≤ ν1, which we easily check explicitly.

Derivation of the bounds To define the radii polynomials specified in (54b) we first
need to compute the bounds Yk and Zk defined in (52) and (53). Let f = f regres

as specified in (40) where ζ = 1√
1−γ (0, 0,−

√
−γ, 1)T ∈ ker(AT ), with A defined

in (28). Finally, let an approximate solution x̂ = (x̂F , 0∞) = (τ̂ , â1, â2, â3, â4, 0∞)

with fm(x̂F ) ≈ 0 be given, and let Am = Dfm(x̂F ). Concerning the bounds Yk we
(again) note that f(x̂)k = 0 for k /∈ I3m, since g is a cubic nonlinearity. Therefore
the construction of Y fulfilling (52) is analogous to the Lorenz case in Section 5.1.
Again as in Section 5.1, to obtain Zj(r) = Zj1r+Zj2r

2 +Zj3r
3 in (53) we first compute

zk(r) = zk,1r+zk,2r
2 +zk,3r

3 fulfilling the analogue of (59). The result is summarized
in Table 6 in Appendix A. Note that z−1(r) = 0, as f−1 is linear in ak̃ and k̃ � m for
our choice of m.
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The main structural deviation from the non-resonant case is given by the off-diagonal
linear terms introduced by the resonance. Note that this is analogous to the double
eigenvalue case, but with the additional difference given by the presence of the addi-
tional unknown τ . To expand the bounds

|(DT (x̂+rv)rw)jk| ≤ Z
j
k,1r+Zjk,2r

2 +Zjk,3r
3 for k ∈ Im = {0}t{k ∈ N2 : k � m},

we first find bounds εk for k ∈ Im such that

|((Id−AA†)w)jk| ≤ ε
j
k j = 1, 2, 3, 4. (69)

Note that (Id − AA†)wk = 0 ∈ R4 for k /∈ Im by construction. Furthermore we
construct, for i = 1, 2, 3, the vector χi ∈ R4nm+1 with nm = (m1 + 1)(m2 + 1) such
that

|zjk,i| ≤ χ
1+4(k2(m1+1)+k1)+j
i j = 1, 2, 3, 4. (70)

Note that χ1
i = 0 for i = 1, 2, 3, since f−1 is linear. Then, applying the definition

of A given in (49) yields the values for Zk,1, Zk,2 and Zk,3 summarized in Table 7
in Appendix A. Summing up Zk,i component-wise while splitting into a finite and
(infinite) tail part yields Z(r). The result is shown in Table 8 in Appendix A. An
important ingredient in computing Z1 is the control of terms of the form

τ̂
∑
k/∈Im

kı̃
|λ1|k1 + |λ2|k2

|wk|νk11 νk22 , where k def
= (k1 + 1, k2 − 2). (71)

We use Lemma 5.1 to bound the factor kı̃
2|λ2|k1+|λ2|k2 uniformly for k /∈ Im. In the

specific problem under consideration we are in luck, since τ̂ ≈ 0, hence the contribution
from the term (71) is small. This stems from the fact that the exact solution is τ = 0

as we derive analytically in Appendix B.
However, the strength of our method is that one does not need to determine the co-

efficients of the normal form beforehand, as they are part of the overall set of unknowns
for the nonlinear problem.

Numerical implementation The implementation of the validation of an approximate
zero of (67) can be found at the webpage [1]. There a complete instruction on how to
run the codes can be found.
We list the main parameters for the computations, which were chosen after numerical

experimentation. As time rescaling parameter we choose L = 36.6696

in (66). For both the stable and unstable manifold we choose as domain radius in
(6) ν = (1, 1).

• Parametrization order: unstable m = (15, 15), stable m = (15, 15).
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• Scaling of eigenvectors: unstable ‖ξ1‖2 = 0.005, ‖ξ2‖2 = 0.02

stable ‖ξ1‖2 = 0.0085, ‖ξ2‖2 = 0.0214

The Y -bounds are explained below and the Z-bounds which we use to define the radii
polynomials from (54) are summarized in Table 8. Using them to check the conditions
of Lemma 4.6 we obtain the following validation radii:

unstable manifold: r = 1.0823e− 12,

stable manifold: r = 5.2217e− 12.

For the validation of the connection we use the approach of [33] in conjunction with
the implementation of [34]. The validated solution profiles are shown in Figure 4.
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Figure 4: Profiles of the u and v component of the rigorously verified connecting orbit.
The blue part of either orbit is computed using Chebyshev series with the
implementation from [34] and the red and green parts are computed using
the conjugation maps Pu,s harnessing the formula u(t) = P (Ψu,s(t, θ)) with
Ψu,s(t, θ) the flow induced by hu,s for θ ∈ B̂sym

(1,1) (see Lemma 2.6). One time
unit corresponds to L = 36.6695.

A. Formulas for the expansion coefficients zk and Zk

for (65)

Let f = f regres defined in (40) be initiated according to the resonance present in the
stable manifold of the origin in R4 as a fixed point of (65). That is k̃ = (0, 2) and
ı̃ = 1 in (40). Let x̂ = (τ̂ , â) = (τ̂ , â1, â2, â3, â4). To make the expansion

(Df(x̂+ rv)rw −A†rw)k = zk,1r + zk,2r
2 + zk,3r

3
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explicit, we first define the operations

Hij(a) = ai ∗ aj and Hijl(a) = ai ∗ aj ∗ al.

By a direct calculation one derives expansions of the form

Hij(â+ rv)rw = ηij,1r + ηij,2r
2

Hijl(â+ rv)rw = ηijl,1r + ηijl,2r
2 + ηijl,3r

3,

where, for example, ηij,2 = vi ∗ wj + vj ∗ wi.
Recall that the special case k = −1 yields (Df(x̄+rv)rw−A†rw)−1 = 0. The result

for the remaining k is given in Table 6, where we use the notation k = (k1 + 1, k2− 2),
and whenever k2 < 2 one should read 0 for terms involving k. Concerning the bounds
χi defined in (70), we proceed as in Section 5.1. In order to define χ1 we use

|wjk| ≤
1

νk1+1
1 νk2−22

to control the term (71) for k1 = m1. Note that all other components of χ1 vanish.
To define χ2,3 we note, in addition, that

|(ηij,2)jk| ≤
2

νk
, |(ηijl,2)jk| ≤

2

νk
(
‖âi‖ν + ‖âj‖ν + ‖âl‖ν

)
, |(ηijl,3)jk| ≤

3

νk
.

In Table 7 we summarize the coefficients Zk,i appearing in the bounds |(DT (x̄ +

rv)rw)jk| ≤ Z
j
k,1r + Zjk,2r

2 + Zjk,3r
3. We are now ready to define Z−1(r) = Z−1,1r.

The explicit expression for Zj(r) = Zj1r+Zj2r
2 +Zj3r

3, j = 1, 2, 3, 4 are collected in
Table 8.

k ∈ I0,m k /∈ I1,m

zk,1 δk1,m1
τ̂(m1 + 1)wk


w2
k

−γw1
k −

√
2
4 (η33,1)k + 3

8 (η111,1)k + 3(η133,1)k
w4
k

−γw3
k −

√
2
2 (η13,1)k + 9(η333,1)k + 3(η113,1)k

+ τ̂(k1 + 1)wk

zk,2


0

−
√
2
4 (η33,2)k + 3

8 (η111,2)k + 3(η133,2)k
0

−
√
2
2 (η13,2)k + 9(η333,2)k + 3(η113,2)k

+ (k1 + 1)(v−1wk + w−1vk)


0

−
√
2
4 (η33,2)k + 3

8 (η111,2)k + 3(η133,2)k
0

−
√
2
2 (η13,2)k + 9(η333,2)k + 3(η113,2)k

+ (k1 + 1)(v−1wk + w−1vk)

zk,3


0

3
8 (η111,3)k + 3(η133,3)k

0

9(η333,3)k + 3(η113,3)k




0
3
8 (η111,3)k + 3(η133,3)k

0

9(η333,3)k + 3(η113,3)k



Table 6: Expansion coefficients for (Df(x̂+ rv)rw −A†rw)k
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k ∈ I1,m k /∈ I1,m

Zk,1 εk + (|Am|χ1)k
1

k1|λ1|+k2|λ2|


|w2
k|

|γ||w1
k|+

√
2
4 |(η33,1)k|+ 3

8 |(η111,1)k|+ 3|(η133,1)k|
|w4
k|

γ|w3
k|+

√
2
2 |(η13,1)k|+ 9|(η333,1)k|+ 3|(η113,1)k|

+ |τ̂ |(k1+1)
k1|λ1|+k2|λ2| |wk|

Zk,2 (|Am|χ2)k
1

k1|λ1|+k2|λ2|


0√

2
4 |(η33,2)k|+ 3

8 |(η111,2)k|+ 3|(η133,2)k|
0√

2
2 |(η13,2)k|+ 9|(η333,2)k|+ 3|(η113,2)k|

+ |(k1+1)
k1|λ1|+k2|λ2| (|wk|+ |vk|)

Zk,3 (|Am|χ3)k
1

k1|λ1|+k2|λ2|


0

3
8 |(η111,3)k|+ 3|(η133,3)k|

0

9|(η333,3)k|+ 3|(η113,3)k|



Table 7: Bounds for |(DT (x̂+ rv)rw)jk|

Z1

∑
k∈I0,m


|Z1
k,1|
|Z2
k,1|
|Z3
k,1|
|Z4
k,1|

 νk +
1

min{|λ1|(m1 + 1), |λ2|(m2 + 1)|}


1

|γ|+
√

2‖â3‖ν + 9
8‖â

1‖2ν + 3
(
2‖â1‖ν‖â3‖ν + ‖â3‖2ν

)
1

|γ|+
√
2
2

(
‖â1‖ν + ‖â3‖ν

)
+ 27‖â3‖2ν + 3

(
2‖â1‖ν‖â3‖ν + ‖â1‖2ν

)
+

|τ̂ |ν22
ν1

m1 + 1

|λ1|m1


1

1

1

1



Z2

∑
k∈I0,m


|Z1
k,2|
|Z2
k,2|
|Z3
k,2|
|Z4
k,2|

 νk +
1

min{|λ1|(m1 + 1), |λ2|(m2 + 1)}


0√

2
2 + 54

8 ‖â
1‖ν + 3

(
2‖â1‖ν + 4‖â3‖ν

)
0√

2
2 + 54‖â3‖ν + 3

(
4‖â1‖ν + 2‖â1‖2ν

)
+

ν22
ν1

m1 + 1

|λ1|m1


2

2

2

2



Z3

∑
k∈I0,m


|Z1
k,3|
|Z2
k,3|
|Z3
k,3|
|Z4
k,3|

 νk +
1

min{|λ1|(m1 + 1), |λ2|(m2 + 1)}


0
81
8

0
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

Table 8: Z-bounds

B. Analytical proof that τ = 0.

In the following we show analytically that the additional parameter τ in (68) vanishes
for the exact solution.
Imposing the linear constraints (9) we obtain

a00 = (0, 0, 0, 0)T a10 = (0, 0,− 1√
−γ

, 1)T a01 = (− 2√
−γ

, 1, 0, 0)T . (72)

In order to show that τ = 0 we use the formula (30). Recall that we computed
ζ = 1√

1−γ (0, 0,−
√
−γ, 1)T . Considering (28) with ı̃ = 1 and k̃ = (0, 2) with the

equilibrium p = (0, 0, 0, 0) for g specified in (65) we compute a concrete formula for
b02:

b02 =


0

−
√
2
4 (a301)2 + 9

8a
1
00(a101)2 + 3

(
a300(a101)2 + 2a301a

1
00a

1
01

)
0

−
√
2
2 a

1
01a

3
01 + 27a300a

3
01a

3
01 + 3

(
a100(a301)2 + 2a101a

3
00a

3
01

)
 .

Using (72) we see that b02 = (0, 0, 0, 0), which implies τ = 0. As a result one could
deal with this particular resonance in an ad-hoc fashion by prescribing in addition to
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(72) a02 as any solution of (Dg(0)− λ1I4)a02 = 0 and choosing

hs(θ) =

(
λ1θ1
λ2θ2

)

just as in the non-resonant case. The one we singled out by imposing (29) is a02 =

(0, 0, 0, 0).
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