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Abstract. We study forcing of periodic points in orientation reversing twist maps. First,

we observe that the fourth iterate of an orientation reversing twist map can be expressed as

the composition of four orientation preserving positive twist maps. We then reformulate the

problem in terms of parabolic flows, which form the natural dynamics on a certain space

of braid diagrams. Second, we focus our attention on period-4 points, which we classify

in terms of their corresponding braid diagrams. They can be categorized in two types. If

an orientation reversing twist map has a period-4 point of one type, then there is a semi-

conjugacy to symbolic dynamics and the system is forced to be chaotic. We also show that

this result is sharp in the sense that the remaining type does not necessarily lead to chaos.

1. Introduction

Orientation preserving twist maps have been studied by many authors over the past

decades. In particular we mention the important contributions by Moser [22, 23],

Mather [20], Aubry & Le Daeron [4], Angenent [1, 2], Boyland [8] and Le Calvez [10].

Most of these works consider area and orientation preserving twist maps and make use of

the variational principle that comes with it. This is a powerful tool for studying periodic

points, in particular when the domain of the map is an annulus.

In this paper we are interested in dynamical systems generated by orientation reversing

twist maps that do not necessarily preserve area and that are defined on the whole plane.

Specifically, we are interested in periodic orbits and the minimal dynamics they force. We
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postpone a discussion of related work to the end of this introductory section. First, we give

the necessary definitions and introduce a topological principle for such orientation reversing

maps.

A well-known example of a two dimensional orientation reversing twist map is the family

of Hénon maps. The discrete time dynamics that are obtained by iterating such maps

have emerged as models from various applications in the physical sciences. Orientation

preserving (twist) maps of (sub-regions of) the plane are often obtained as time-1 maps in

non-autonomous Hamiltonian systems in the plane, or as first return maps to a Poincaré

section in three dimensional dynamical systems. On the other hand, maps that reverse

orientation do not occur as such section maps.

In this paper we are mainly concerned with diffeomorphisms of the plane, i.e. bijective

C1 maps.

Definition 1.1. A diffeomorphism f : R
2 → R

2 is called an orientation reversing twist

diffeomorphism of the plane if there exist global coordinates (x, y) ∈ R
2 such that f is given

by (x′, y′) = f(x, y) and satisfies the assumptions: (i) det(df) < 0, and (ii) ∂x′

∂y
> 0. Due to

the latter condition, which we will refer to as the twist property, f is said to have positive

twist. If the bijectivity assumption is dropped but f is still C1 and satisfies properties (i)

and (ii) then f is called an orientation reversing twist map.

In the following, to indicate the coordinate functions x′ and y′ of f , we use the composition

with the orthogonal projections πx and πy onto the x- and y-coordinate respectively, i.e.

x′ = πxf(x, y) and y′ = πyf(x, y).

As will be explained in Section 3 (see also [15]) (compositions of) orientation preserving

(positive) twist maps have a natural topological structure, which is less straightforward in

the orientation reversing case. There exists an easy procedure to circumvent this obstacle

and find a useful topological tool for orientation reversing twist maps. Note that even powers

of f are orientation preserving maps, but compositions of twist maps are in general not twist

maps. The second composite iterate f 2 can be written as a composition of two orientation

preserving twist maps as follows: f 2 = f+ ◦ f−, with f+ = f ◦ Rx, and f− = Rx ◦ f , where

Rx is a linear reflection in the y-axis. The drawback is that f+ is a positive twist map and
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f− a negative twist map. If we consider the fourth iterate f 4 we have the decomposition

f 4 = f3 ◦ f2 ◦ f1 ◦ f0, (1)

where the maps fi are defined as follows:

f0 = −f−, f1 = −f+ ◦ (−id), f2 = f− ◦ (−id), and f3 = f+.

One can easily verify that all four maps are orientation preserving maps with positive twist.

The theory of parabolic recurrence relations in [15] (summarized in Section 3) is now appli-

cable since it applies to compositions of orientation preserving positive twist maps. Using

this formulation we can study periodic points of period n = 4k (for other periods symmetry

requirements could be imposed, but we will not pursue this issue here).

Recall that a point z = (x, y) is a period-n point for f if fn(z) = z, where fn denotes the

n-th iterate of f . The period n is assumed to be minimal, i.e. fk(z) 6= z for all 0 < k < n.

Instead of describing a period-4 point in terms of the images of f , i.e. (z, f(z), f 2(z), f 3(z)), a

natural way to describe orbits is to do so in accordance to the decomposition given by (1). We

write an orbit as {zi}3
i=0, with zi = fi(zi−1). This applies to period-4k points, by defining fi

via fi+4 = fi, for all i ∈ Z. The theory of parabolic recurrence relations in [15] now dictates

that orbits {zi} should be represented as braid diagrams, which we will explain next.

Let z be a period-4 point of f . By choosing the points z, f(z), f 2(z), and f 3(z) as

different initial points we obtain four different orbits for the composition f3 ◦ f2 ◦ f1 ◦ f0,

namely the orbits defined by zi = fi(zi−1) while setting z0 = fk(z) for k = 0, 1, 2, 3. For

each orbit we connect the consecutive points (i, zi) via piecewise linear functions. This

yields a piecewise linear closed braid consisting of four strands. By projecting the braid

on the x-coordinates one obtains a closed braid diagram. Braid diagrams are discussed

in more detail in Section 3.1. Figure 1 depicts the braid diagrams which result from this

construction starting from two different period-4 orbits. Since the braid diagram is only

concerned with the x-coordinates the construction of the braid diagram is, for all practical

purposes, equivalent to the following: let (x0, x1, x2, x3) be the x-coordinates of a period-4

point orbit {fk(z)}3
k=0, i.e. xi = πxf

i(z), then perform a flip on these coordinates to obtain

(x0, x1, x2, x3) = (−x0, x1, x2,−x3), and finally connect the points (i, xi) in the plane by line

segments. This gives one strand and the total braid diagram is obtained by performing this

transformation to all shifts of the orbit through z.
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Figure 1. Period-4 points lead to two possible braid classes. In the braid

diagrams on the right one may think of all the crossings as being positive, i.e.

the strand with the larger slope going on top.

Notice that period-4 points can occur in a variety of six different “permutations” (of the

x-coordinates, see also Section 4). However, permutations do not have topological meaning

with respect to parabolic recurrence relations and permutations are thus not suitable for

classifying period-4 points. On the other hand, via the above construction each permutation

yields a unique braid class that has a topological meaning. It follows that period-4 points

give rise to exactly two types of braid classes. Figure 1 shows the two possible braid classes:

type I and type II. In other words, any period-4 orbits is either of type I or of type II,

according to the braid class that results from the above transformations. More details on

this classification are supplied in Section 4. Period-4 points of type I imply chaos, while

those of type II do not, as is stated in our main theorem.

Theorem 1.2. An orientation reversing twist diffeomorphism of the plane that has a

type I period-4 point is a chaotic system, i.e., there exists a compact invariant subset Λ ⊂
R

2 for which f |Λ has positive topological entropy. Conversely, there exists an orientation

reversing twist diffeomorphism with a type II period-4 point that has zero entropy.

We want to point out that the theorem is stated under quite weak assumptions; in

particular, there are no compactness assumptions (the twist property in a way compensates

this lack of compactness). The bijectivity assumption in the theorem is certainly stronger
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than strictly necessary. In fact, instead, for twist maps it is more natural to assume the

infinite twist condition: a twist map is said to satisfy the infinite twist condition if

lim
y→±∞

πxf(x, y) = ±∞ for all x ∈ R. (2)

For twist maps on the plane this condition in some sense means that the map has positive

twist at infinity (not an infinite amount of twist). Under the infinite twist condition we have

the same result as for diffeomorphisms.

Theorem 1.3. An orientation reversing twist map of the plane that satisfies the infinite

twist condition and that has a type I period-4 point, is a chaotic system — chaotic as explained

in Theorem 1.2. Conversely, there exists an orientation reversing twist map that satisfies

the infinite twist condition, has a type II period-4 point, and that has zero entropy.

We can also give a lower bounds on the entropy for Theorems 1.2 and 1.3. Namely the

entropy satisfies h(f) ≥ 1
2
ln(1+

√
2) and h(f) ≥ 1

2
ln 3 in Theorems 1.2 and 1.3 respectively.

The infinite twist condition makes the topological/variational principle we use easier to

apply and the proof less technical. This is strongly related to the fact that the infinite twist

condition is a more natural assumption in the context of twist maps than bijectivity. We will

therefore explain all the details by proving Theorem 1.3. In Section 7 we make the necessary

technical adaptations to the method in order to prove Theorem 1.2.

The method discussed in this paper makes extensive use of the twist property. On the

other hand, we stress that it needs no compactness conditions, nor information about the

asymptotics of f near infinity. It allows us to study periodic solutions of orientation reversing

twist maps, in particular those of which the period is a multiple of four (but other periods

can be dealt with as well). Theorems 1.2 and 1.3 are representative for the kind of results

that can be obtained, but the method is much more general. We note that there is an

additional variational structure that can be exploited in this setting if the (absolute value of

the) area is preserved (see Remarks 2.2 and 3.8).

Of course the theorem does not detect all occurrences of chaos. An important example of

orientation reversing twist maps is the Hénon map f(x, y) = (βy, 1−αy2 + x), where α ∈ R

and β > 0 are parameters. It is well known that for various parameter choices the system is

chaotic, while a type I period-4 point is hard/impossible to find. Nevertheless, concerning

the practical aspects of the above theorem we note that to establish chaos one can search for



6 J.B. VAN DEN BERG, R.C. VANDERVORST, AND W. WÓJCIK
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Figure 2. Orbits of the map f(x, y) = (y, x+ 17
3
y − 5

3
y3). A period-4 orbit

of type I is indicated by the large dots.

a type I period-4 point with the help of a computer. This can be done in a mathematically

rigorous manner, for example with the help of a software package like GAIO, see [14, 12].

Furthermore, in the family of generalized Hénon maps f(x, y) = (y, x + ay − by3), which

are orientation reversing twist maps, a period-4 orbit of type I can be found analytically

(exploiting the symmetry) for a > 4
√

2 and any b > 0. In Figure 2 a period-4 orbit of type I

is indicated and the chaotic nature of the dynamics is apparent.

To obtain an example of a non-chaotic map with a period-4 orbit of type II we return

to the classical Hénon map, for convenience rescaled to read f(x, y) = (y, εx + λ[y − y2]).

For ε = 0 this is a one dimensional map and for λ not too large it is non-chaotic. For small

positive ε the 1-dimensional map perturbs to a 2-dimensional map, which for appropriately

chosen λ has a period-4 point of type II and which remains non-chaotic. The details of the

construction are given in Section 6. This provides a proof of second statements in Theorems

1.2 and 1.3.

We like to point out the similarity of the above theorem and the famous Sharkovskii theo-

rem [25, 19], which states that a one dimensional system having a period-3 point necessarily

has periodic points of all periods. In our case chaos is forced by certain period-4 points. In a

one dimensional system the Sharkovskii ordering has little implications for a map containing

a period-4 point. Nevertheless, also in the one dimensional case certain types of period-4
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orbits (depending on the permutation of the points) force chaos (proved via the usual one

dimensional techniques).

On compact surfaces of genus G (with or without boundary) the results in [16] and [6]

show that if an orientation reversing diffeomorphism has at least G + 2 periodic points of

distinct odd periods, then there exist periodic points for infinitely many different periods,

and in particular the topological entropy of the map is positive. The maps in this paper

are maps on R
2 and therefore the above result does not immediately apply. However, in the

special circumstance that an orientation reversing map on R
2 allows extension to S2 with

a fixed point at infinity, then the existence of a period-3 point, or any other odd period for

that matter, implies, by the above mentioned result, that the map has positive topological

entropy. To translate this result back to the context of the original map on R
2 one needs

(detailed) information about the local behavior near the point at infinity (the asymptotics

of the map). In contrast, Theorems 1.2 and 1.3 are applicable without prior knowledge

of asymptotic behavior. Moreover, our result gives insight in what happens when we have

information about period-4 points, which complements the results on periodic orbits with

odd periods in [6, 16].

The relation to Thurston’s theory. Once again, the method of proof in this paper

strongly relies on the fact that we consider (compositions of) twist maps, which allows

an elementary construction of infinitely many periodic points and a semi-conjugacy to a

(sub-)shift on 3 symbols. This draws strongly on the elegant topological principle for twist

maps. A different approach would be to employ Thurston’s classification theorem of surface

diffeomorphisms [26]. Thurston’s result does not restrict to twist maps, however compactness

is required (we come back to this point in a moment).

Since the results for arbitrary maps on compact surfaces via Thurston’s theory are com-

plementary to those for twist maps on the (non-compact) plane in the present paper, let us

explain how our results relate to Thurston’s theory. For sake of simplicity, let us assume that

the maps can be extended to homeomorphisms on for example D2. In that case the classifi-

cation theorem is applicable. In order to follow the approach using Thurston’s classification

theorem we first need to decide what distinguishes period-4 points. In our approach there

is a natural distinction into two types of period-4 points via discrete four strand braids. In
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Figure 3. The map f0 is orientation preserving and has the twist property,

hence the suspension looks like a distorted rotation, which leads to a positive

braid.

the approach using Thurston’s result the braids are used to determine the isotopy class of a

map in question, see e.g. [8].

It is easier to visualize this for orientation preserving maps, so we consider g = f 4,

which is an orientation preserving map and which can be written as a composition of four

orientation preserving positive twist maps g = f3 ◦ f2 ◦ f1 ◦ f0. In the case of a period-4

orbit P = {f i(z)}3
i=0 for f , the map g has four fixed points P . Therefore one considers the

mapping class group MCG(D2 rel P ), where the maps are orientation preserving and fix P

(as a set) and ∂D2 (a homeomorphism of the boundary). Using the results in [5] it can be

shown easily that MCG(D2 rel P ) ' B4/center, where B4 is Artin’s braid group on four

strands, and the center of the braid group B4 is the infinite cyclic subgroup generated by

(σ1σ2σ3)
4, the full twists.

In general it is quite hard to determine the mapping class of a map, but for twist maps

this is a little easier. In fact, identifying the mapping class with the braid group, the mapping

class for f 4 is exactly the positive braid we have constructed above. We illustrate this for the

first of the composite maps f0 for a type I period-4 orbit in Figure 3. Besides the permutation

of the (x-coordinates of the) points in P , the twist property gives global information about

the map, so that the suspension can be understood (note that f0 does not fix P , but this does

not lead to undue complications). The other three maps are similar and the total braid is

obtained by the natural addition in the braid group. We refer to [7] for a further discussion

on the application of Thurston’s theory to twist maps on an annulus. As a final point, the

same construction can be carried out for g̃ = f 2 = f+ ◦ f−. One needs to take into account
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that f− has negative twist and thus leads to a braid with negative generators. Of course,

repeating the braid for g̃ twice leads to a braid that is equivalent to the one for g.

Using Thurston’s classification the braid of type I is pseudo-Anosov, and thus the corre-

sponding mapping class is also pseudo-Anosov, hence chaotic. In order to draw conclusions

for the original map on R
2 one needs to find a compact invariant set in the interior of D2

on which the entropy is positive. This requires detailed information about the behavior near

∂D2, and thus about the asymptotic behavior of the original map on R
2. This is not needed

in our results however. The braid of type II is reducible and contains only components of

finite type (and thus no pseudo-Anosov component, in fact the braid is a cable of cabled

braids), hence the corresponding map is not necessarily chaotic. We point out that our con-

struction of a non-chaotic map with a type II period-4 point confirms the latter conclusion.

However, Thurston’s classification theorem does not provide a non-chaotic map within the

class of twist maps as required here. See also [9] for details on pseudo-Anosov maps and

mapping classes.

The organization of the paper is as follows. In Section 2 we recall some facts about twist

maps and for orientation reversing maps we introduce a transformation that associates a

parabolic recurrence relation to such maps. In Section 3 we summarize the concepts we need

from braid theory and parabolic flows, which were thoroughly studied in [15]. In Section 4

the focus shifts to period-4 orbits and their classification in types I and II. We combine these

concepts in Section 5 to prove the first assertion in Theorem 1.3 by constructing a semi-

conjugacy to the shift on three symbols. In Section 6 we show an example of a non-chaotic

map with a period-4 orbit of type II, which establishes the second part of the theorem.

Finally, Section 7 is devoted to extending the techniques to bijective maps and proving

Theorem 1.2.

Acknowledgement. The authors wish to thank R.W. Ghrist for a number of fruitful

discussions on this subject.

2. Twist Maps

We collect some facts about both orientation preserving and reversing twist maps.

2.1. Recurrence relations for twist maps. A C1 map from R
2 to R

2, denoted by

f(x, y) = (πxf, πyf), is a (positive) twist map if ∂πxf
∂y

> 0. It is orientation preserving if
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det(df) > 0 and orientation reversing if det(df) < 0. Of course, one could also consider

∂πyf
∂x

> 0 and/or negative twist, but a change of coordinates reduces these cases to ∂πxf
∂y

> 0.

Note that iterates fk of a twist map are not necessarily twist maps, but the crucial

property of twist maps is that they allow us to retrieve whole trajectories {(xk, yk)} =

{fk(x0, y0)} from just the sequence {xk}. To show this we follow [2] (see also [1]). Let us

start with the observation that the twist property implies that there exists an open set U

such that for any pair x, x′ ∈ U there exists a unique solution Y (x, x′) of the equation

πxf(x, Y (x, x′)) = x′.

It also follows from the twist property that Y is monotone in x′:

∂Y

∂x′
> 0.

From the function Y we construct yet another function:

Ỹ (x, x′)
def
= πyf(x, Y (x, x′)).

This second function Ỹ also has a monotonicity property that follows directly from the

inverse function theorem. The map f is locally invertible and the derivative of its inverse

f−1 is given by ∂2(πxf
−1) = −(det(df))−1∂2(πxf) ◦ f−1, hence

∂2(πxf
−1) < 0 and

∂Ỹ

∂x
< 0 if f is orientation preserving,

∂2(πxf
−1) > 0 and

∂Ỹ

∂x
> 0 if f is orientation reversing.

Obviously the reason for these definitions is that if (xk+1, yk+1) = f(xk, yk) then

yk = Y (xk, xk+1) and yk+1 = Ỹ (xk, xk+1).

That is, the functions Y and Ỹ can be used to retrieve the whole trajectory {(xk, yk)} from

the sequence {xk}. It easily follows that a sequence {(xk, yk)} forms an orbit of f if and only

if the x-coordinates satisfy

Y (xk, xk+1) − Ỹ (xk−1, xk) = 0 for all k ∈ Z.

We therefore introduce the notation

R(xk−1, xk, xk+1)
def
= Y (xk, xk+1) − Ỹ (xk−1, xk). (3)
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Solutions {xk} of the recurrence relation R(xk−1, xk, xk+1) = 0 thus correspond to trajec-

tories of the map f . From the properties of Y and Ỹ we see that R is increasing in xk+1,

and if f is orientation preserving then R is also increasing in xk−1. In this case R will be

referred to as a parabolic recurrence relation. When f is orientation reversing then R is

not increasing, but decreasing in xk−1. In Section 2.2 we explain how we can, nevertheless,

associate a parabolic recurrence relation to an orientation reversing map.

The function Y (and similarly Ỹ ) has a domain of the form

D = {(x, x′) | x ∈ R, g(x) < x′ < h(x)},

where the functions g, h : R → [−∞,∞] are upper/lower semi-continuous with g(x) < h(x),

see Section 7 for more details. A way to ensure that the domain D is the whole plane, is to

assume the infinite twist condition (2). To simplify the exposition in the following sections

we assume that D = R
2. In Section 7 we show how to extend our results to maps that are

bijective to R
2 (i.e. diffeomorphisms of the plane). Note that bijectivity does not imply the

infinite twist condition, nor does it guarantee that D = R
2.

Remark 2.1. Any twist map that satisfies the infinite twist condition is injective.

Namely, let f(x0, y0) = f(x1, y1) = (x′, y′). If x0 = x1 then it follows from the twist

property that y0 = y1. Suppose x0 6= x1, say x0 < x1, then the infinite twist condition

implies that for any x ∈ [x0, x1] there is a (unique) y(x) such that πxf(x, y(x)) = x′, with

y(x0) = y0 and y(x1) = y1. Since ∂Ỹ (x,x′)
∂x

≶ 0 we have dπyf(x,y(x))
dx

≶ 0, contradiction the fact

that πyf(x0, y(x0)) = πyf(x1, y(x1)) = y′.

Remark 2.2. When f is an orientation and area preserving twist map there exists an

additional structure, namely generating functions (see e.g. [3]). A smooth function S : R
2 →

R exists with the property that if (x′, y′) = f(x, y), then y = ∂1S(x, x′), and y′ = −∂2S(x, x′).

This generating function S allows one to formulate the existence of periodic points in terms

of critical points of an action function. A period-n point corresponds to a critical point of

W (x0, x1, . . . , xn−1)
def
=

n−1∑

i=0

S(xi, xi+1), with xn = x0.

The parabolic recurrence relation is then given by the gradient of W : R(xi−1, xi, xi+1) = ∂W
∂xi

.

For orientation reversing area preserving maps a similar variational structure exists. The

difference is that the relations between the generating function S and the y coordinates are
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y = ∂1S(x, x′) and y′ = ∂2S(x, x′), i.e. with the same sign. A period-2m point corresponds

to a critical point of

W (x0, x1, . . . , x2m−1)
def
=

2m−1∑

i=0

(−1)iS(xi, xi+1), with x2m = x0.

The recurrence relation is not quite given by the gradient, but by ∂W
∂xi

=

(−1)iR(xi−1, xi, xi+1), so there is still a correspondence between critical points of W and

solutions of R. However, it is more convenient to deal with such a situation through the

(flip) transformation described in Section 2.2 below.

We finish this section with an example.

Example 2.3. Let us consider the well known Hénon map. The Hénon map is a two-

dimensional invertible map given by formula:

f :

(
x

y

)
7→

(
βy

1 − αy2 + x

)
.

It is an orientation reversing twist map for all β > 0 and α ∈ R. It is bijective and also

satisfies the infinite twist condition (2). It is not difficult to construct the recurrence relation:

R(xk−1, xk, xk+1) = −1 − xk−1 + αβ−2x2
k + β−1xk+1.

2.2. Parabolic recurrence relations for orientation reversing twist maps. Con-

sider the case that f is an orientation reversing twist map. From the previous subsection it

then follows that the trajectory of a periodic point can be retrieved from the sequence {xk}
satisfying the recurrence relation

R̃(xk−1, xk, xk+1) = 0,

where R̃ is defined by (3), with ∂1R̃ < 0 and ∂3R̃ > 0. Since the theory of braid flows

(see Section 3.2) is defined using parabolic recurrence relations (i.e. ∂1R > 0 and ∂3R > 0),

we need to make a modification. In Section 1 we explained that f 4 can be written as a

composition of four orientation preserving positive twist maps fi. For each fi we can derive

the recurrence function Ri, which has the properties that

∂1Ri > 0 and ∂3Ri > 0.



CHAOS IN ORIENTATION REVERSING TWIST MAPS 13

This is equivalent to defining the functions Ri as follows

R0(x−1, x0, x1)
def
= R̃(−x−1,−x0, x1)

R1(x0, x1, x2)
def
= R̃(−x0, x1, x2)

R2(x1, x2, x3)
def
= −R̃(x1, x2,−x3)

R3(x2, x3, x4)
def
= −R̃(x2,−x3,−x4).

It is easily verified that the recurrence functions are indeed parabolic and we define the

sequence {Ri} periodically: Ri+4 = Ri. This change of coordinates naturally also effects

the trajectory x = {xk}. To make this precise we define the transformation

λ(x)k =





−xk for k = 0, 3 mod 4

xk for k = 1, 2 mod 4
(4)

We call the transformation λ on sequences a flip. Clearly λ2 = id and it commutes with σ4,

where σ is the shift map σ(x)k = xk+1. Now x = {xk} solves R̃ = 0 if and only if λ(x) solves

Ri = 0.

Lemma 2.4. Every solution x = {xk} of Ri = 0 yields a solution λ(x) of R̃ = 0, and

thus corresponds to a trajectory of f , namely
{(
λ(x)k, Y (λ(x)k, λ(x)k+1)

)}
.

3. Braid diagrams and the Conley index

3.1. Discretized braids and braid diagrams. In this section we define and describe

the main topological structure which is used in the proofs of Theorems 1.2 and 1.3. As

pointed out in Section 1 the way we deal with sequences is to consider them as piecewise

linear functions by connecting the consecutive points via linear interpolation.

Definition 3.1 ([15]). The space of discretized period d braids on n strands, denoted

Dn
d , is the space of all pairs (u, τ), where τ ∈ Sn is a permutation on n elements, and u is

an unordered collection of n strands u = {uα}n
α=1, which satisfy the following properties:

(a) Each strand consist of d+ 1 anchor points: uα = (uα
0 , u

α
1 , . . . , u

α
d ) ∈ R

d+1.

(b) periodicity – For all α = 1, . . . , n, one has: uα
d = u

τ(α)
0 .

(c) transversality – For any pair of distinct strands α and α′ such that uα
i = uα′

i for

some i, we have:

(uα
i−1 − uα′

i−1)(u
α
i+1 − uα′

i+1) < 0. (5)
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We equip Dn
d with the standard topology of R

nd on the strands, and the discrete topology

with respect to the permutation τ , modulo permutations which change the order of the

strands (i.e., two pairs (u, τ) and (ũ, τ̃) are close if there exists a permutation σ ∈ Sn with

σ ◦ τ̃ = τ ◦ σ), such that uσ(α) is close to ũα (as points in R
nd) for all α.

We will say that two discretized braids u,u′ ∈ Dn
d are of the same discretized braid class

(denoted [u] = [u′]) if they are in the same path component of Dn
d . The discrete topology on

the permutations leads to the following useful interpretation. Consider a continuous family

of braids and pick one of the permutations in the equivalence class (subsequently dropped

from the notation). These discretized braids of period d on n strands are then completely

determined by their coordinates {uα
i }α=1...n

i=1...d , i.e., every discretized braid corresponds to a

point in the configuration space R
nd. We come back to this point of view later.

Let us now compare the notion of a discretized braid with that of a topological braid.

In topology a braid β on n strands is a collection of embeddings {βα : [0, 1] → R
3}n

α=1 with

disjoint images such that (a) βα(0) = (0, α, 0), (b) βα(1) = (1, τ(α), 0) for some permutation

τ ∈ Sn, and (c) the image of each βα is transverse to all the planes {x = constant}.
The projection of a topological braid onto an appropriate plane, e.g. the (x, y)-plane, is

called a braid diagram if all crossings of strands are transversal in this projection. In this

braid diagram a marking (+) indicates a crossing which is “bottom over top”, whereas a

marking (−) indicates a crossing “top over bottom”. A positive (+) crossing of the i-th and

(i + 1)-st strands corresponds to a generator σi, while a negative crossing corresponds to

σ−1
i . The use of these generators σi leads to a natural group structure (see e.g. [5] for more

background). The sequence of generators (“reading” the braid from left to right) is called

the braid word.

The link between discretized braids and topological braids is the following. Any dis-

cretized braid u can be interpreted as the braid diagram of a topological braid when we use

linear interpolation between the points (i, uα
i ) ∈ R

2, where uα
i are the anchor points of strand

α. Here we choose the convention that all crossings in this discretized braid diagram are

positive. The resulting positive piecewise linear braid diagram is denoted by β(u). It is also

useful to consider braid diagrams that are not piecewise linear. A (positive, closed) topologi-

cal braid diagram is a collection of strands {βα ∈ C([0, 1])}n
α=1 such that (a) βα(1) = βτ(α)(0)

for some permutation τ ∈ Sn, and (b) all intersections among pairs of strands are isolated
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Figure 4. Example of a braid on three strands. [left] A braid with all cross-

ings positive (bottom over top), [middle] its 2-d projection, and [right] the

associated piecewise linear braid diagram, a discretized braid. Its braid word

is σ2σ1σ2σ
2
1σ

2
2.

and topologically transverse. The topological braid class {u} is a path component of β(u)

in the space of positive topological braid diagrams. Figure 4 depicts a braid in its various

appearances. Since for positive braids the braid word consists of positive generators only, it

follows that the number of generators in the braid word, the braid word length, is an invari-

ant of a discretized braid class, and even of a topological braid class. For a more detailed

account we refer to [15].

Since discretized braids are periodic we extend all strands periodically:

uα
i+d = u

τ(α)
i for all i ∈ Z, α = 1, . . . , n.

As explained above, Dn
d is a subset of a collection of copies of R

nd (one for each equivalence

class of permutations). Fixing an appropriate permutation, we may identify a discretized

braid class with a subset of R
nd, its configuration space. The connected components of Dn

d ,

i.e. the discretized braid classes, are separated by co-dimension-1 varieties in R
nd, called the

singular braids:

Definition 3.2. Let Dn
d denote the collection of nd-dimensional vector spaces of all

discretized braid diagrams u satisfying properties (1) and (2) of Definition 3.1. Now Σ
def
=

Dn
d \ Dn

d is the set of singular discretized braids.

The set Dn
d is the closure of Dn

d , hence its elements do not necessarily satisfy the transver-

sality condition (5). The braids in Σ are said to have a tangency. A moments reflection shows

that in singular braids of sufficiently high co-dimension (m ≥ d), different strands can col-

lapse onto each other. This set of specific singularities plays an important role later on and

is defined as

Σ− def
= {u ∈ Σ | uα

i = uα′

i , ∀i ∈ Z, for some α 6= α′}.
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If one wants to braid a strand, one needs something to braid it through. This leads us

to the introduction of a so-called skeleton braid through which we can braid so-called free

strands. Define u∪v ∈ Dn+m
d , with u ∈ Dn

d and v ∈ Dm
d as the (unordered) union of strands.

Then for given a v ∈ Dm
d we define

Dn
d rel v

def
= {u ∈ Dn

d |u ∪ v ∈ Dn+m
d }.

It is important to remember that the transversality condition (5) is imposed on the strands

in u ∪ v.

The path components of Dn
d rel v form relative discretized braid classes, denoted by

[u rel v]. The braid v is usually called the skeleton, and u are called the free strands. Now

it is easy to define relative versions of the concepts presented above, i.e. Σ rel v, Σ− rel v,

Dn
d rel v, and {u rel v} (as topological relative braid class).

It is also possible that two classes [u rel v] and [u′ rel v′] are topologically the same.

The set of equivalent topological relative braid classes
{
u rel {v}

}
is defined by the rela-

tion {u rel v} ∼ {u′ rel v′} if and only if there exist a continuous family of topological

(positive, closed) braid diagram pairs deforming (u,v) to (u′,v′). See [15] for more details.

3.2. Parabolic flows on braid diagrams. In [15] the topology of discretized braids

is used to find solutions of parabolic recurrence relations. This is done by embedding the

problem into an appropriate dynamical setting. Before briefly explaining the ideas we recall

the definition of parabolic recurrence relations.

Definition 3.3 ([15]). A sequence of functions R = (Ri)i∈Z, with Ri ∈ C1(R3,R),

satisfying

(i) ∂1Ri > 0 and ∂3Ri ≥ 0 for all i ∈ Z,

(ii) for some d ∈ N we have Ri+d = Ri for all i ∈ Z,

is called a parabolic recurrence relation.

Here we only consider parabolic recurrence relations defined on R
3, although one can

also study parabolic recurrence relations on more general domains, see Section 7.

Let R be a parabolic recurrence relation and consider the differential equation

dui

dt
= Ri(ui−1, ui, ui+1) where u(t) ∈ X = R

Z and t ∈ R.
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u

Σ

i− 1 i

[u rel v]

i+ 1

Figure 5. A schematic picture of a parabolic flow on a (bounded and proper)

braid class.

It is straightforward to show that such an equation defines a (local) C1-flow ψt on X under

periodic boundary conditions, provided they are of period nd. We call such a flow, generated

by a parabolic recurrence relation, a parabolic flow on X. Notice that it is easy to regard

this flow as a flow on the space Dn
d by considering the equation

duα
i

dt
= Ri(u

α
i−1, u

α
i , u

α
i+1), where u ∈ Dn

d . (6)

This equation is well-defined by the periodicity requirement in Definition 3.3. The next-

neighbor coupling and the monotonicity of a parabolic recurrence relation have far reaching

consequences for the corresponding parabolic flow. Namely, along flow lines the total number

of intersections in a braid, i.e. the braid word length, can only decrease in time (as indicated

in Figure 5). The following proposition is a precise statement of this property.

Proposition 3.4 ([15]). Let ψt be a parabolic flow on Dn
d .

(a) For each point u ∈ Σ\Σ−, the local orbit {ψt(u) | t ∈ [−ε, ε]} intersects Σ uniquely

at u for all ε sufficiently small.

(b) For any such u, the braid word length of the braid diagram ψt(u) for t > 0 is strictly

less then that of the braid diagram ψt(u) for t < 0.

As a direct consequence of this proposition flow lines cannot re-enter a braid class after

leaving it. In other words, the dynamics of (6) obeys the natural co-orientation of the braid

classes, i.e., if we co-orient the boundary Σ \ Σ− in the direction of decreasing intersection

number, then the vector field, and thus the flow, is co-oriented in the same way.



18 J.B. VAN DEN BERG, R.C. VANDERVORST, AND W. WÓJCIK
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Figure 6. Two bounded braids with the same skeleton (black lines); the free

strand is the gray line. The braid on the left is improper (one can deform the

free strand to one of the strands of the skeleton), the one on the right is proper.

In Section 3.3 we will define the Conley index of a braid class, hence we need the braid

class to be isolating, i.e., the flow at the boundary should have no internal tangencies.

Proposition 3.4 shows that we are “in danger” when our system evolves near to Σ−, since

a parabolic flow displays invariant behavior in Σ−. For this reason, a discretized relative

braid class [u rel v] is called proper if its boundary (which is a subset of Σ rel v) does

not intersect Σ− rel v. Figure 6 gives a simple examples of a proper and an improper braid

class. Besides properness we also need the braid classes to be compact. A discretized relative

braid class [u rel v] is called bounded if the set [u rel v] ⊂ R
(n+m)d is bounded.

3.3. Conley index for braids. The Conley index is a powerful tool for studying the

complexity of dynamical systems. For braid classes the Conley index is defined in [15] and we

refer to that paper for all details, proofs and much additional information. For more details

about the general setting of the Conley index, see [11, 21]. Proposition 3.4 implies that

cl([u rel v]) is isolating for the flow generated by a parabolic recurrence relation, provided

the braid class is proper and bounded. Let N denote cl([u rel v]), and let N− ⊂ ∂N be

the exit set for a parabolic flow ψt. Then the Conley index h(u rel v) is the homotopy

type of the pointed space (N/N−, [N−]), denoted by [N/N−]. Note that N− can also be

characterized purely in terms of braids by using the co-orientation of Σ \ Σ−.

Proposition 3.5 ([15]). Suppose [u rel v] is a bounded proper relative discretized braid

class and ψt is a parabolic flow that fixes the skeleton v. Then
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(1) cl([u rel v]) is an isolating neighborhood for ψt, which yields a well-defined Conley

index h(u rel v, ψt).

(2) The index h(u rel v, ψt) is independent of the choice of the parabolic flow ψt as

long as ψt(v) = v. Therefore the index is denoted by h(u rel v).

Remark 3.6. The Conley index is in fact an invariant of the topological relative braid

class {u rel v}, provided one slightly generalizes the definitions. First, the definitions of

proper and bounded are extended in a straightforward manner to {u rel v}. Furthermore,

an equivalence class of topological relative braids {u rel {v}} is proper/bounded if for all

v′ ∈ {v} any class {u′ rel v′} ∈ {u rel {v}} is proper/bounded.

Second, several discretized braid classes may be part of equivalent topological braid

classes. For fixed period d, let [u(0) rel v′] be a discretized braid class such that on the

topological level {u(0) rel v′} ∈
{
u rel {v}

}
. Let [u(j) rel v′], j = 0, . . . , m denote all

the different discretized braid classes relative to v′ such that {u(j) rel v′} ∈
{
u rel {v}

}
.

The set Ñ =
⋃m

j=0 cl([u(j) rel v′]) is isolating for any parabolic flow fixing v′, and the exit

set is denoted by Ñ−. The Conley index H(u rel v′) of the topological relative braid class

{u rel v′} is the homotopy type of the pointed space (Ñ/Ñ−, [Ñ−]). It does not depend

on the period d, the choice of v′ or the parabolic flow. The Conley index H(u rel v′) is an

invariant of
{
u rel {v}

}
.

The homotopy index is usually not very convenient to work with and therefore we use

the homological Conley index

CH∗(u rel v)
def
= H∗(N,N

−)

where N = cl([u rel v]), N− is its exit set, and H∗ is the relative homology of the pair

(N,N−). One can assign to such an index a characteristic polynomial

CPt(u rel v)
def
=

∑

k≥0

βkt
k,

where βk is a free rank of CHk(u rel v). For the parabolic flows under consideration Morse

inequality can be used to draw conclusions from the characteristic polynomial about fixed

points and periodic orbits (see Section 7 of [15]). In this paper we use the only the simplest

consequence:
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u0

u1

u0

u0

u1

⊂

Σ

Figure 7. In the relative braid on the left black lines denote the skeleton and

gray lines the free strand. In the middle its configuration space is shown and

the direction of the parabolic flow on the boundary is indicated. On the right

we see how the configuration space is positioned with respect to the stationary

points of the skeleton, represented by the four dots.

Lemma 3.7. Let [u rel v] be a discretized relative braid class that is bounded and proper.

If CP−1(u rel v) is nonzero, then there is at least one stationary point in [u rel v] for any

parabolic flow ψt that leaves v invariant.

Remark 3.8. A special situation occurs when the recurrence relation is exact, i.e., when

there exists a d-periodic sequence of C2(R2) functions Si such that

Ri(ui−1, ui, ui+1) = ∂2Si−1(ui−1, ui) + ∂1Si(ui, ui+1) for all i ∈ Z.

Note that a recurrence relation is exact if it originates from a composition of area preserving

twist maps, see Remark 2.2. The main example in our context is when the orientation

reversing twist map f is area preserving. SettingW (u) =
∑d

i=1 Si(ui, ui+1) the corresponding

parabolic flow is a gradient flow: du
dt

= ∇W . This implies that invariant sets consists of fixed

points and connecting orbits only. The second order character of the recurrence relation

leads to the following strong result (see [15, section 7]): for an exact parabolic flow on a

bounded proper relative braid class [u rel v], the number of fixed points is bounded below

by the number of distinct nonzero monomials in the characteristic polynomial CPt(u rel v).

Example 3.9. We calculate the homotopy index of the braid shown at the left in Figure 7.

It is of period two and it is proper and bounded. A braid can evolve only in such a way

as to decrease the number of intersections (cf. Proposition 3.4 and Figure 5). Hence along

the flow the free anchor point u0 cannot cross the anchor points of skeleton since this would
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lead to an increased number of crossing, i.e., u0 is “trapped” between anchor points of the

skeleton. On the other hand, the middle point u1 of the free strand can evolve in such a way

that it crosses the nearest anchor points, since this decreases the number of crossings. Of

course, on crossing the anchor point of the skeleton, the free strand leaves the braid class.

The configuration space and the flow on the boundary are shown in the middle in Figure 7.

The exit set N− consists of the top and bottom boundaries. The homotopy index of this

braid class is [N/N−] ' (S1, pt), hence CPt = t and any parabolic flow leaving v invariant

has at least one fixed point inside the braid class.

4. Period-4 points for orientation reversing twist maps

We now apply the theory of braids and parabolic flows to orientation reversing twist maps.

Let f be an orientation reversing twist map. As explained in the introduction and Section 2

we can write it as the composition of four orientation preserving twist maps. This leads to a

parabolic recurrence relation R = (Ri)i∈Z which is 4-periodic: Ri+4 = Ri. Lemma 2.4 gives

the correspondence between trajectories of f and solutions of the recurrence relation via the

flip transformation (4).

Suppose now that {(xi, yi)}4
i=1 is a period-4 orbit of f , i.e., its minimal period is four. Let

x = {xi}i∈Z, then the flipped sequence λ(x) is a solution of the recurrence relation R = 0.

Obviously, any shift σα(x) of the sequence x corresponds to the same period-4 orbit of f .

Hence λ(σα(x)) for α = 1, 2, 3, 4 are four solutions of the parabolic recurrence relation R = 0,

labeled v1,v2,v3,v4 respectively, and they thus form the four stationary strands of a closed

discretized braid diagram v = {vα} ∈ D4
4. A priori v is only in D4

4, but if v ∈ Σ, then

necessarily v ∈ Σ−, since Proposition 3.4 implies there are no stationary points of a parabolic

flow on Σ \ Σ−. On the other hand, if v ∈ Σ−, then at least two of the strands λ(σα(x))

coincide, hence the minimal period is smaller than four. However, we are assuming that

the initial orbit is a true period-4 orbit and hence the corresponding braid diagram v is a

discretized braid in D4
4.

The next question is: which braid classes do these period-4 orbits represent? Because we

need to make sure that we consider all possible cases, we start simply from the quadruple
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flipped flipped flipped

i=0 i=1 i=2 i=3 i=4
(i=0)

i=0 i=1 i=2 i=3 i=4

Figure 8. Starting from an ordering of the points (x0, x1, x2, x3) on the left

(f permutes the ordered points), one uses four iterates (middle) and then

applies the flip (i.e. inverting the order at the zeroth and third coordinates)

to obtain the braid diagram on the right.

(x0, x1, x2, x3). Assume, without loss of generality, that x0 = min{xi}. There are six non-

degenerate orderings (degenerate ones are discussed below), namely

x0 < x1 < x2 < x3, x0 < x1 < x3 < x2, x0 < x2 < x1 < x3,

x0 < x2 < x3 < x1, x0 < x3 < x1 < x2, x0 < x3 < x2 < x1.
(7)

For each of these six possibilities the procedure described above leads to a closed discretized

braid diagram. The easiest way to do this is depicted in Figure 8. Namely, one draws the

four iterates of the four shifts of the periodic solution. Then one inverts the order of the

points at the zeroth and third coordinates to obtain a braid diagram. It is perhaps good to

point out that the picture in the middle of Figure 8, i.e. before the flip, is not interpreted

as a braid diagram, since it is not related to a parabolic flow. For the six possible orderings

the resulting braid diagrams are shown shown in Figure 9.

The six discretized braid diagrams can be grouped in two distinct topological braid

classes, type I and type II, see Figure 9. We note that they are in four distinct discretized

braid classes in D4
4, but on the topologically level these reduce to two classes. Type I has

(periodic) braid word σ2
2σ

2
1σ

2
3σ

2
2σ

2
1σ

2
3 and corresponds to orderings x0 < x3 < x1 < x2 and

x0 < x1 < x3 < x2, while the (periodic) braid word of type II is σ2
1σ2σ

2
1σ2σ

2
3σ2σ

2
3σ2.

As discussed above, since the braid consists of stationary solutions of a parabolic flow,

the braid cannot have tangencies. Of course, anchor points can nevertheless coincide, which

corresponds to a degenerate case in the ordering of the quadruple x0, x1, x2, x3. That is, some
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Figure 9. The six period-4 orbits and their corresponding braid diagrams.

of the inequalities in (7) are replaced by equalities. Since tangencies in the braid diagram

are excluded and since we start from a true period-4 orbit, the only possible degenerate cases

turn out to be

x0 < x1 = x2 < x3 and x0 < x2 = x3 < x1,

which both lead to a braid of type II.

Remark 4.1. The fact that we have four different discretized braid diagrams but only

two topological braid classes may lead to notational difficulties that we clarify here while we

are at it. The two discretized braid classes within one topological braid class are related by

a shift σ or a double shift σ2. We can thus go back and forth between the two by applying

shifts to both v and R. When we obtain results for a parabolic flow generated by R that has

stationary braid v, then these results carry over to σ(R) and σ(v), since σ(R) is a parabolic
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recurrence relation that fixes σ(v). We may thus restrict our attention to just one of the

discretized braid classes in each topological braid class.

5. Positive topological entropy

We are ready to assemble the machinery previously presented in order to prove that a

twist map with a period-4 point of type I is chaotic. Throughout this section we assume the

infinite twist condition (2), which leads to a proof of Theorem 1.3, see Section 7 for the case

of a diffeomorphism. We will show that for f there exists a compact invariant set Λ ⊂ R
2

on which f has positive topological entropy.

Our strategy is to first consider the second iterate f 2 and to show that there is a compact

set Λ1 ⊂ R
2, invariant under f 2, on which it is semi-conjugate to the shift map on three

symbols, which has positive entropy. Standard results about the entropy then imply that

the map f also has positive entropy on Λ = Λ1 ∪ f(Λ1). The set of all sequences on three

symbols is denoted by Σ3 = {−1, 0,+1}Z, and σ : Σ3 → Σ3 maps {an}n∈Z to the shifted

sequence {an+1}n∈Z.

Let z be a period-4 point of type I. According to Section 4 this means that we may

assume that the x-coordinates of its orbit, denoted by xi = πxf
i(z), are ordered in a certain

way. In particular, in view of Remark 4.1 and considering an iterate of z if necessary, we

may without loss of generality assume that

x0 < x3 < x1 < x2.

Let S ⊂ R
2 be the set of all complete orbits of f and define

Λ1
def
= { z ∈ S | πxf

2i(z) ∈ [x0, x2] and πxf
2i+1(z) ∈ [x3, x1] for all i ∈ Z }. (8)

Remark 2.1 shows that f−1 is well-defined (at least on the image of f). We note that z and

f 2(z) are elements of Λ1. The set Λ1 is invariant under f 2 and it is bounded. By definition

the x-coordinates are uniformly bounded on Λ1, while boundedness of the y-coordinate

follows from the fact that the functions Y (x, x′) and Ỹ (x, x′) from Section 2 are continuous

on R
2 and thus bounded on bounded sets. Furthermore, since f and f−1 are continuous

(differentiable) functions it is not hard to see that Λ1 is compact.
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Let ϕ : Λ1 → Σ3 be the function that assigns a symbol sequence to each point in Λ1 as

follows:

ϕ(z) = {an}n∈Z ⇐⇒





an = +1 if πxf
2n(z) ∈ (x1, x2],

an = 0 if πxf
2n(z) ∈ [x3, x1],

an = −1 if πxf
2n(z) ∈ [x0, x3).

(9)

The sequence {an}n∈Z will be called the symbolic description of a point (trajectory) in Λ1.

We note that

ϕ(z) = {(−1)n−1}n∈Z and ϕ(f 2(z)) = {(−1)n}n∈Z. (10)

Our goal is to show that ϕ is a semi-conjugacy. It follows from the construction that

ϕ◦f 2(z) = σ ◦ϕ(z) for all z ∈ Λ1. We still need to show that ϕ is surjective and continuous.

Continuity is proved in Lemma 5.4, while surjectivity follows from Lemma 5.3. Leading

up to that we first state and prove the crucial lemma, which uses the concepts of the flip

transformation, braid diagrams and their Conley index.

Lemma 5.1. For any periodic symbol sequence {an}n∈Z ∈ Σ3 there exists a point in Λ1

that has {an}n∈Z as its symbolic description.

Proof. Let p be the minimal period of the sequence {an}n∈Z, and let 4q denote the

smallest common multiple of 2p and 4.

Step 1. Construction of relative braid classes.

In Section 4 we explained in detail how a period-4 point yields a braid v ∈ D4
4 that is

stationary for the parabolic flow associated to the recurrence relation R = (Ri)i∈Z. In this

section v is assumed to be a type I braid. By concatenating v (just repeating it) we obtain

more stationary skeletons. To be precise, define #qv to be the q-concatenation of v. Clearly

#qv ∈ D4
4q, and it is a stationary skeleton for R (cf. Figure 10).

Using the skeletons #qv we can now construct numerous relative braid classes by weaving

in a free strand with the skeletal strands. Given a periodic symbol sequence {an}, a free

strand u = (ui)
4q−1
i=0 can be characterized as follows:

(i) For i odd, ui ∈ (x3, x1) when i = 1 mod 4, and ui ∈ (−x1,−x3) when i = 3 mod 4.
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Figure 10. Braid diagrams corresponding to

{. . . , a0, a1, a2, a3, a4, a5, a6, . . . } = {. . . , 0,+1,+1, 0,−1,+1, 0, . . .}. At

the top is a generic non-symmetric situation, while at the bottom the skeleton

is deformed into a symmetric one, which has the same topological information

and has the advantage that it is a lot easier to survey. The homotopy type of

this braid class is the pointed space (S2, pt).

(ii) The position of the even anchors is determined by the sequence {an}2q−1
n=0 :

if an = +1 then u2n ∈ (x1, x2) for n odd, and u2n ∈ (−x2,−x1) for n even;

if an = 0 then u2n ∈ (x3, x1) for n odd, and u2n ∈ (−x1,−x3) for n even;

if an = −1 then u2n ∈ (x0, x3) for n odd, and u2n ∈ (−x3,−x0) for n even.

Moreover, let u4q = u0. The subdivision of the range of n (basically n = 0, 3 mod 4 and

n = 1, 2 mod 4) is needed since we are working with the (flipped) coordinates for parabolic

recurrence relations. Figure 10 shows an example of a relative braid class obtained in this

way. Denote the equivalence class of the relative braids described above by [u rel #qv].

If an 6≡ ±(−1)n, then the these braid classes are bounded and proper. For the sequences

an ≡ ±(−1)n the corresponding points in Λ1 are given by (10), and we will exclude these

special sequences from our considerations.
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Step 2. Non-triviality of the Conley index.

We now calculate the Conley index for the braid classes described in step 1. Since each

coordinate ui can only move in the designated intervals as described above, the configuration

space N = cl([u rel #qv]) is a cartesian product of intervals, i.e. N ' I4q, a 4q-dimensional

hypercube. We now proceed by determining N−, the exit set. As in Example 3.9 the flow

can only decrease the total number of intersections if u2n ∈ (x3, x1) or u2n ∈ (−x1,−x3).

Then the number of intersections decreases when u2n moves through the boundary of these

intervals. The number of anchor points for which this is possible is equal to the number of

zeroes in {an}2q−1
n=0 . Denote this number by k. This way N− consists only of opposite faces.

Therefore, h = [N/N−] ' (Sk, pt). A standard result from homology theory then shows that

H∗(N,N
−) = H∗((S

k, pt)) =





R if ∗ = k,

0 otherwise,

and CPt(h) = tk, proving that the Conley index is non-trivial for any periodic symbol

sequence {an} with an 6≡ ±(−1)n. Such symbol sequences will be earmarked as non-trivial.

Step 3. Existence of periodic points.

From the previous step we have that CP−1(h) = (−1)k 6= 0. Lemma 3.7 then proves that

there exists at least one stationary point, i.e. a solution of R = 0, in the relative braid class

[u rel #qv] that is associated to each of the non-trivial periodic symbol sequences {an}.
The considerations in Section 2, in particular Lemma 2.4, imply that the stationary solution

u constructed this way corresponds to a periodic point of f . Hence it corresponds to a 2q

periodic orbit of f 2 and the construction of the braid classes ensures that this periodic orbit

is in Λ1 and has symbolic description {an}. �

The proof of Lemma 5.1 does not show that every periodic symbol sequences of minimal

period p corresponds to a periodic trajectory with period p of f 2 (only when p is even this is

clear). Nor do we obtain uniqueness of points in Λ1 that have a particular periodic symbolic

description. However, since we are only building a semi -conjugacy, neither of these points

matter.

Remark 5.2. For any z ∈ Λ1 the x-coordinates of the even iterates cannot be on the

boundary of the intervals distinguishing the different symbolic descriptions, i.e. πxf
2n(z) 6=

x1, x3. Namely, suppose πxf
2n(z) = x1 or x3, then after applying the flip transformation and
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interpreting the flipped trajectory of z as a strand in the braid diagram (see Figure 10), this

strand is stationary and has a tangency at anchor point 2n with one of the strands of the

skeleton. This is impossible, as stated in Proposition 3.4. An alternative is to compare the

trajectories of z and z and to use the twist property of the orientation reversing twist map

f to obtain a contradiction directly.

The periodic symbol sequences from Lemma 5.1 allow us to deal with the general case.

Lemma 5.3. For any sequence {an}n∈Z ∈ Σ3 there exist a point in Λ1 that has {an}n∈Z

as its symbolic description.

Proof. Let a = {an}n∈Z be any sequence in Σ3. We can approach a by periodic se-

quences ak ∈ Σ3, where ak
n = an for |n| ≤ k with periodic extension ak

n = ak
n−2k−1 for all n.

Clearly ak → a as k → ∞, with ak being periodic (the metric is given explicitly in the proof

of the next lemma). Lemma 5.1 shows that there exist points zk ∈ Λ1 such that ϕ(zk) = ak.

Since Λ1 is compact, there exists a convergent subsequence zkm
→ z ∈ Λ1 as m → ∞. Let

ϕ(z) = b ∈ Σ3, then we claim that b = a. For any fixed n ∈ Z, πxf
2n(z) is either in [x0, x3),

(x3, x1) or (x1, x2], because the values x1 and x3 are excluded by Remark 5.2. Hence it

follows that for m sufficiently large πxf
2n(zkm

) is in the same of these intervals as πxf
2n(z).

Since the intervals encode the symbolic description, this implies bn = akm
n for sufficiently

large m, and thus indeed b = a. �

Lemma 5.4. The map ϕ defined in (9) is continuous.

Proof. The arguments resemble the ones used in the previous proof. We use the metric

d(a, b) = 2−max{m|an=bn for |n|<m} on Σ3. Let zk be any convergent sequence in Λ1, zk →
z ∈ Λ1. Let ϕ(z) = b ∈ Σ3 and ϕ(zk) = bk. For any fixed n ∈ Z, πxf

2n(z) is either

in [x0, x3), (x3, x1) or (x1, x2], because the values x1 sand x3 are excluded by Remark 5.2.

Hence it follows that for k sufficiently large πxf
2n(zk) is in the same of these intervals as

πxf
2n(z), which implies bn = bkn for sufficiently large k. In particular, for any (large) m ∈ N

there exists a K(m) ∈ N such that bn = bkn for all |n| ≤ m and k ≥ K. In other words,

|ϕ(z) − ϕ(zk)| ≤ 2−m−1 for k ≥ K, which establishes continuity. �
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From the previous lemmas we conclude that ϕ as defined by (9) is a semi-conjugacy from

f 2|Λ1
to σ|Σ3

. To carry over this information to the map f we define

Λ
def
= Λ1 ∪ f(Λ1),

which is invariant under f , and the entropy of f on Λ can be estimated in terms of the

entropy of the shift on three symbols.

Theorem 5.5. An orientation reversing twist map of the plane that satisfies the infinite

twist condition and that has a type I period-4 point, has positive topological entropy restricted

to the compact invariant set Λ.

Proof. We use the semi-conjugacy ϕ to estimates the entropy h(f |Λ) of f on Λ. Stan-

dard properties of the entropy (e.g. see [13]) give the estimates

h(f |Λ) =
1

2
h(f 2|Λ) ≥ 1

2
h(f 2|Λ1

) ≥ 1

2
h(σ|Σ3

) =
1

2
ln(3).

�

Remark 5.6. As an alternative strategy one can consider the fourth iterate of f instead

of the second one. This is perhaps more natural in view of the decomposition of f 4 in terms

of orientation preserving twist maps, as discussed in the introduction. On the other hand,

the notation becomes a bit more involved. Anyway, it is not difficult to see that arguments

analogous to the ones used for the second iterate lead to a semi-conjugacy of f 4|Λ1
to the

shift on the space Σ9 of sequences on nine symbols. This approach gives exactly the same

lower bound for the topological entropy of f :

h(f |Λ) ≥ 1

4
h(f 4|Λ1

) ≥ 1

4
h(σ|Σ9

) =
1

4
ln(9) =

1

2
ln(3).

6. Type II periodic points

In the previous section we have proved that a period-4 orbit of type I forces orientation

reversing twist maps to be chaotic. Now we will show that the theorem is “sharp” in the

sense that we construct an example of a map with a period-4 orbit of type II that has zero

topological entropy, i.e., the entropy of the dynamics restricted to any bounded invariant set

is zero.
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We start with the well known quadratic family of one dimensional maps

xk+1 = λxk(1 − xk),

where λ is a parameter. This map is a good starting point since it has a simple formula and

its dynamics has been studied extensively. The property of most interest to us is that for λ

slightly larger than

λ∗ = 1 +
√

6,

the system has a period-4 orbit which is stable (the period-2 orbit undergoes a period

doubling bifurcation at λ = λ∗). Moreover, the topological entropy of the map on the

maximal bounded invariant set is zero.

We want to embed this system into R
2 and turn it into an orientation reversing twist

map. To accomplish this we use the family of maps

fε :

(
x

y

)
→

(
y

εx+ λy(1 − y)

)
,

which are orientation reversing twist diffeomorphisms for all ε > 0, while for ε = 0 we retrieve

the quadratic family in disguise (f0 is not a diffeomorphism). Notice that for ε = 0, and λ

slightly larger than λ∗, the period-4 orbit is of type II (cf. Section 4). Intuition suggests that

for small ε > 0 the perturbation εx will not change the dynamics much (in particular, the

entropy remains zero). The remainder of this section is spent on making this precise.

Since our aim is to show that the maps for ε > 0 have zero topological entropy we

prove that their non-wandering sets are all “the same”, and in a sense “copies” of the non-

wandering set at ε = 0, i.e., we will prove a version of Ω-stability for this particular situation.

Let Sε be the set of all all points in R
2 through which there is a complete bounded orbit

of fε, and let Ωε be the set of non-wandering points of fε. We start with proving that all

interesting dynamics is contained in the compact set N
def
= [−1, 2] × [−1, 2].

Lemma 6.1. For ε ∈ [0, 1/2) and λ ∈ [1, 4] it holds that Ωε ⊂ Sε ⊂ int(N).

Proof. The case ε = 0 corresponds to the one-dimensional quadratic map and the

statements are easily seen to hold. We turn to the case ε ∈ (0, 1/2), for which fε is invertible.

First we show that Sε ⊂ N . Let us start with the bound xn, yn < 2. By contradiction, assume
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that x0 ≥ 2, then since λyn(1 − yn) ≤ 1 we have

xn−2 ≥
xn − 1

ε
.

Hence the sequence x−2k → ∞, as k → ∞. This contradicts the fact that trajectory is

bounded, so indeed xn < 2 for all n. Since yn = xn+1 we then also have yn < 2.

Next we prove that xn, yn > −1. If y0 ≤ −1 then the inequality

yn+1 < λyn(1 − yn) + 1

implies that yk → −∞ as k → ∞. Therefore yn > −1 and again the same holds for xn.

We now show that also Ωε ⊂ N . From the previous argument we see that if this is not

the case then there has to be some point (x0, y0) ∈ Ωε for which x0 ≥ 2. It then follows that

x−2k → ∞, and since x0 is non-wandering x−2m+1 has to be arbitrarily close to x0 ≥ 2 for

some m ∈ N. The same reasoning as before then shows that x−2m+1−2k → ∞ as k → ∞,

contradicting the fact that (x0, y0) ∈ Ωε. We have thus established that Ωε ⊂ N . Finally, if

z ∈ Ωε, then fε(z) ∈ Ωε and f−1
ε (z) ∈ Ωε, hence Ωε ⊂ Sε. �

In Ω-stability theory the concept of axiom A maps and the no-cycle property are usually

essential (see for example [24]). Let us recall their standard definitions. For a compact

manifold M , we say that a map f : M → M satisfies axiom A if the set Ω(f) is hyperbolic

and the periodic points are dense in Ω(f). When f satisfies axiom A then the non-wandering

set Ω(f) can be written as a finite disjoint union Ω = Ω0 ∪ · · · ∪ Ωk of closed invariant sets

on which f is topologically transitive (the spectral decomposition theorem, cf. [24]). The

sets Ωi are called basic sets. We say that Ωi ≤ Ωj if (W s(Ωi) \ Ωi) ∩ (W u(Ωj) \ Ωj) 6= ∅,

where the stable and unstable sets are given by

W s(Ωi) = {x ∈M | fn(x) → Ωi as n→ ∞}

W u(Ωi) = {x ∈M | f−n(x) → Ωi as n→ ∞}.

A map f satisfying axiom A has the no-cycle property if for every choice of distinct indices

{ik}n
k=1, n ≥ 1 it is impossible to have the inequalities

Ωi1 ≤ Ωi2 ≤ . . . ≤ Ωin ≤ Ωi1 .
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Figure 11. The graph of the fourth power of the quadratic map. The pa-

rameter λ is set to λ∗ + 0.04. The intervals A1, A2 and A3 (bounded by the

extrema) are indicated.

Since our case does not fit in the usual setting of diffeomorphisms on a compact manifold

we will now adapt these concepts to the family fε. For f0 the invariant set is

S0 = {(x, y) | x ∈ [0, λ/4] and y = λx(1 − x)}.

For values of λ slightly larger than λ∗ there are two unstable fixed points, an unstable

period-2 orbit and stable period-4 orbit. For simplicity we write

• Ω1 – period-4 orbit;

• Ω2 – period-2 orbit;

• Ω3 – non-trivial fixed point;

• Ω4 – fixed point (0, 0).

We would like to show that these are the only non-wandering points. To analyze the dynamics

we observe that for the fourth power F 4
λ of quadratic map Fλ(x) = λx(1−x) eventually maps

any point x0 ∈ (0, 1) into the interval A = [Fλ(λ/4), λ/4] (cf. Figure 11). On the other hand,

in A we can distinguish three intervals A1 = [Fλ(λ/4), F 3
λ(λ/4)], A2 = (F 3

λ (λ/4), F 2
λ(λ/4))

and A3 = [F 2
λ (λ/4), λ/4]. Monotonicity of F 4

λ on A2 ∩ (F 4
λ )−1(A2) guarantees that any point

in A, with the exception of the fixed point Ω2, will eventually enter A1 or A3 under iterates

of F 4
λ . Apart from the period-2 orbit any point in A1 and A3 approaches the period-4 orbit

due to monotonicity of F 4
λ on these intervals (cf. Figure 12). Our choice of λ is sufficiently
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Figure 12. One of the two trapping regions of the period-4 orbit. We choose

λ so close to λ∗ that the function is monotone between the three fixed points

of F 4
λ in the picture.

close to λ∗ so that the function F 4
λ is monotone between the three fixed points of F 4

λ in A1

and A3. Since f0 mimics the dynamics of Fλ, it follows that any point in S0 that is not

eventually periodic has Ω3 as its ω-limit set. Moreover, we have proved that there are no

other non-wandering points then the orbits contained in Ωi for i = 1, 2, 3, 4, i.e.

Ω0 = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4.

One can easily see that the eigenvalues of df0 in a point in Ω0 are α1 = 0 and α2, which is

equal to the eigenvalue of the corresponding point of Fλ. Again, since for λ sufficiently close

to λ∗, and λ > λ∗, we have F ′
λ 6= ±1 at the fixed points, the period-2 and the period-4 orbit.

Hence, they are all hyperbolic, and Ωi is hyperbolic for i = 1, 2, 3, 4.

The reasoning above shows that f0 has a hyperbolic non-wandering set which only consists

of periodic orbits. Moreover, we have identified the basic sets to be Ωi with i = 1, 2, 3, 4. Now

we turn to the no-cycle property. To simplify the notation we write W̃ s(Ωi) = W s(Ωi) \ Ωi

and W̃ u(Ωi) = W u(Ωi) \ Ωi. To exclude the existence of a cycle let us start with the

observation that W̃ s(Ω4) ∩ S0 = ∅. This ensures that Ωi 6≤ Ω4 for i = 1, 2, 3, 4. On the

other hand W̃ u(Ω1) = ∅, so Ω1 6≤ Ωi for i = 1, 2, 3, 4. From the arguments above (illustrated

in Figures 11 and 12) it follows that W̃ u(Ω3) ⊂ W s(Ω1) ∪W s(Ω2) and W̃ u(Ω2) ⊂ W s(Ω1).

Combining these observation we see that there are no cycles among {Ωi}4
i=1. This reasoning

shows that

Lemma 6.2. For λ slightly larger than λ∗ the map f0 has a finite hyperbolic non-wandering

set, and there are no cycles among the basic sets.
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We are now in a position to prove Ω-stability and in particular

Lemma 6.3. There exists an ε∗ such that for all ε ∈ [0, ε∗] the set Ωε is finite.

Proof. We will mimic the proof of Ω-stability theorem for diffeomorphisms on a compact

set in [24]. From the lemmas above we know that Ω0 = per(f0) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. It is

well know that for f0 there exist a Lyapunov function (see [17]). So there exists a function

V : N → R satisfying the following conditions. It is decreasing along trajectories of f0, except

on Ωi, i = 1, 2, 3, 4, where V is constant. Furthermore, because of the no-cycle property we

may assume that V (Ωi) 6= V (Ωj) for i 6= j. Also, we can rescale V so that V : N → (1
2
, 41

2
]

and V (Ωi) = i. We define the (compact) sets

Mj
def
= V −1((−∞, j + 1/2]) ∩ N.

The sets Mj have the properties of a filtration:

(1) N = M4 ⊃M3 ⊃M2 ⊃M1 ⊃M0 = ∅;

(2) f0(Mj) ⊂ int(Mj);

(3) Ωj ⊂ int(Mj \Mj−1);

(4) Ωj =
⋂∞

k=−∞ fk
0 (Mj \Mj−1);

where f−k
0 denotes the k-th pre-image. These properties follow from the definition of Mj

and the structure of Ω0. For simplicity denote

Uj
def
= Mj \Mj−1.

By the continuity of the family fε and the compactness of N we can choose ε1 so small that

property (2) holds for all ε ≤ ε1, i.e. fε(Mj) ⊂ int(Mj) for all j.

Since Ωi consists of a hyperbolic periodic orbit, Ωi continues under perturbations. The

perturbed periodic orbit, denoted by Ωε
i , is again hyperbolic for ε sufficiently small, say

ε ≤ ε2 ≤ ε1. Clearly Ωε
i ⊂ Ωε for all i. To conclude the proof we show the other inclusion

Ωε ⊂ Ωε
1 ∪ Ωε

2 ∪ Ωε
3 ∪ Ωε

4.

We will prove the two following claims. Firstly, for ε sufficiently small, Ωε
j = Sε(Uj),

where Sε(Uj) is the set of all points in R
2 whose complete orbits lie entirely in Uj. Secondly,

if z ∈ Ωε ∩ Uj for some ε ≤ ε2 and some j, then f i
ε(z) ∈ Uj for all i ∈ Z. Let us assume for

the moment that the claims are true for ε ≤ ε∗ ≤ ε2. Let z0 ∈ Ωε for some ε ∈ (0, ε∗]. By

property (1) of the sets Mj the point z0 has to be in some Uj0. By the second claim the whole
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trajectory of z0 is contained in Uj0 . Then the first claim shows that z0 ∈ Ωε
j . This proves

that the non-wandering set for fε consists entirely of the perturbation of the non-wandering

set of f0. In particular, Ωε is finite. Now we return to the proof of the claims.

Claim 1: Ωε
j = Sε(Uj) for all j and all ε sufficiently small. Because of property (3) of

the set Mj we get Ωε
j ⊂ Sε(Uj) for ε sufficiently small. For the other inclusion we argue by

contradiction. Setting ε = 1/n we assume that for all n ≥ n0 ∈ N there is a zn ∈ S1/n(Uj)

such that zn 6∈ Ω
1/n
j . By the hyperbolicity of Ωj (and Ωε

j) there is a δ > 0 such that

f
k(n)
1/n (zn) is not in a δ-ball Bδ(Ωj) around Ωj for some k(n) ∈ Z. Set wn = f

k(n)
1/n (zn), then

wn ∈ S1/n(Uj) \ Bδ(Ωj). By compactness of N there exists a subsequence m0(n) so that

wm0(n) → v0 ∈ Uj \ Bδ(Ωj). We want to show that v0 ∈ Uj and that there is an complete

orbit in Uj through v0. First we prove that f i
0(v0) ∈ Uj for all i ≥ 0. If this would not be

the case then f i
0(v0) ∈ Mj−1 for some i ≥ 0. From the property (2) of the sets Mj we get

f i+1
0 (v0) ∈ int(Mj−1), and from the continuity of the family fε and the continuity of the map

it follows that f i+1
1/m0(n)(wm0(n)) ∈ int(Mj−1) for n large, which contradicts the assumption

that wm0(n) ∈ Uj . We thus have that f i
0(v0) ∈ Uj for all i ≥ 0. To get the same for pre-images

of v0 we need to extract further subsequences.

From the sequence m0(n) we extract yet another subsequence m1(n) such that

f−1
1/m1(n)(wm1(n)) converges to, say, v−1. It easily follows that f0(v−1) = v0. Similarly, from

the sequence m1(n) we can extract a subsequence m2(n) such that f−2
1/m2(n)(wm2(n)) → v−2,

and f0(v−2) = v−1. We can repeat this procedure inductively and we end up with a sequence

{vk}0
k=−∞ ⊂ Uj and f0(v−k) = v−k+1. In fact, v−k ∈ Uj (k ∈ N), because if v−k ∈ Uj \ Uj,

then v−k+1 = f(v−k) ∈ int(Mj−1), a contradiction.

We have now constructed a whole trajectory {vk}0
k=−∞ ∪ {fk

0 (v0)}∞k=0 of f0 contained in

S0(Uj). By property (4) of the sets Mj this trajectory has to be contained in Ωj , but since

v0 6∈ Bδ(Ωj) we get a contradiction, which concludes the proof of the claim 1.

Claim 2: For all z ∈ Ωε with ε ∈ (0, ε2] it holds that if z ∈ Uj , then f i
ε(z) ∈ Uj for

all i ∈ Z. It is worth recalling that ε ≤ ε2 implies that fε(Mj) ⊂ int(Mj). Assume that

z ∈ Ωε ∩ Uj for some j.

Firstly, we show that f i
ε(z) ∈ Uj for all i ≥ 0. Since z is in Mj we know that f i

ε(z)

is in the interior of Mj for every positive i. Next, f i
ε(z) /∈ Mj−1 for all i > 0. Namely, if

f i
ε(z) ∈Mj−1 for some i > 0, then the next iterate is in the interior of Mj−1. The continuity
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of the map guarantees that f i+1
ε (Bδ(z)) ⊂ int(Mj−1), for δ sufficiently small, which also

implies f i+1+k
ε (Bδ(z)) ⊂ int(Mj−1) for all k ∈ N. On the other hand, Bδ(z) ∩Mj−1 = ∅, for

sufficiently small δ. Hence, f i+1+k
ε (Bδ(z)) ∩ Bδ(z) = ∅ for all positive k and δ sufficiently

small, which contradicts z ∈ Ωε.

Secondly, we show that also the negative iterates f−i
ε (z) ∈ Uj , for all i > 0. We have

to show that f−i
ε (z) 6∈ Mj−1 and that f−i

ε (z) 6∈ Uj+m, where i,m > 0. As above it follows

that if f−i
ε (z) ∈ Mj−1, then z = f−i+i

ε (z) ∈ int(Mj−1), whereas z ∈ Uj , which shows that

f−i
ε (z) 6∈Mj−1. To prove that f−i

ε (z) 6∈ Uj+m, m > 0, we observe that the non-wandering set

Ωε is invariant under fε and f−1
ε . If we would have that z̃ = f−i

ε (z) ∈ Uj+m for some i > 0

and some m > 0, then z̃ ∈ Ωε and fk
ε (z̃) ∈ Uj+m, for all k ≥ 0, by the result on positive

iterates established above. This contradicts the fact that f i
ε(z̃) = z ∈ Uj , concluding the

proof of claim 2 and therefore the lemma. �

We have thus found our counterexample.

Lemma 6.4. The orientation reversing twist maps fε, with λ slightly larger than λ∗ and

ε sufficiently small, which have a period-4 orbit of type II, have zero topological entropy (as

explained at the beginning of this section).

Proof. Lemma 6.3 proves that the non-wandering set Ωε of fε is finite. Standard results

on the topological entropy show that the entropy of fε on Sε is equal to the entropy on Ωε,

and the entropy of the map on a finite set is zero (e.g. see [24]). �

7. Twist diffeomorphisms of the plane

We now extend our results to situations where the parabolic recurrence relation is not

defined on the whole of R
3. Since this requires some careful analysis, this section is substan-

tially more technical than the previous ones. We first introduce the necessary frame work and

in Section 7.3 we apply it to period-4 orbits of orientation reversing twist diffeomorphisms

and we prove Theorem 1.2.

7.1. The domain of parabolic recurrence relations. We are interested in bijective

orientation reversing twist maps. In the introduction it has been explained that the fourth

iterate can be decomposed in four orientation preserving positive twist maps, to which we

can apply the theory of parabolic flows. We thus restrict our attention here to orientation
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preserving twist diffeomorphisms, and compositions thereof. We assume f is an orientation

preserving twist diffeomorphism, i.e. f is bijective to R
2, df 6= 0, and ∂2(πxf) > 0. By

definition the function f−1 is defined on R
2, it is differentiable by the inverse function

theorem, and ∂2(πxf
−1) < 0, i.e. f−1 has negative twist.

We recall and refine some notation from Section 2. Let (x′, y′) = f(x, y), then there are

differentiable functions Yf and Ỹf with ∂2Yf > 0 and ∂1Ỹf < 0, such that

y = Yf(x, x
′) and y′ = Ỹf(x, x

′). (11)

Since f−1 has negative twist, the same reasoning as in Section 2 gives differentiable functions

Yf−1 and Ỹf−1 with ∂2Yf−1 < 0 and ∂1Ỹf−1 > 0, such that y′ = Yf−1(x′, x) and y = Ỹf−1(x′, x).

Obviously

Yf(x, x
′) = Ỹf−1(x′, x) and Ỹf(x, x

′) = Yf−1(x′, x).

Let us consider the domain D of Yf and Ỹf , and define

g(x)
def
= lim

y→−∞
πxf(x, y) and h(x)

def
= lim

y→∞
πxf(x, y). (12)

These are functions from R to [−∞,∞]. Since they are limits of monotone sequences of

continuous functions, g is upper semi-continuous and h lower semi-continuous, and g(x) <

h(x) for all x ∈ R. The domain of Yf and Ỹf is the open set given by

D = {(x, x′) | x ∈ R, g(x) < x′ < h(x)}.

When f is invertible we can use the same arguments for f−1. We define G(x) =

limy→∞ πxf
−1(x, y) and H(x) = limy→−∞ πxf

−1(x, y). The domain of Yf−1 and Ỹf−1 is

given by D̃ = {(x′, x) | x′ ∈ R, G(x′) < x < H(x′)}. Obviously (x, x′) ∈ D if and only

if (x′, x) ∈ D̃, i.e. D̃ = D−1. This gives us a lot of information on g and h. In fact, the

boundary ∂D of D consists of at most four pieces, each of which is a monotone graph. This

is depicted in Figure 13.

It takes some notation to make this precise. The function h : R → (−∞,∞] is lower

semi-continuous; there is a point xh ∈ [−∞,∞] such that h(xh) = ∞ and h is non-decreasing

for x < xh, and non-increasing for x > xh. This means that h consists of at most two pieces

of real-valued functions on (semi-)infinite intervals, a non-decreasing function h+ and a non-

increasing one h−. Since h and/or xh can be infinite, h− and/or h+ may be nonexistent.
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x

x′

D

h+

h−

g+
g−

Figure 13. The domain D of the functions Yf and Ỹf for a twist diffeomor-

phism f .

The associated graphs are

h± = gr(h±) = ∂{(x, x′) ∈ R
2 | x ∈ dom(h±), x′ < h±(x)} ⊂ R

2.

In Figure 13 h+ is the northwest boundary and h− is the northeast boundary. A similar

description is valid for g, with g+ being non-decreasing (the southeast) and g− being non-

increasing (the southwest). The boundary of D ⊂ R
2 thus consists of the (at most four)

graphs g± and h±.

Since the parabolic recurrence relation, and hence the parabolic flow, is not defined on

the boundary ∂D, we need to define (preferably smooth) approximations to it. We construct

here the smooth approximations to the northwest boundary h+. The other boundaries are

dealt with similarly. Let h+ε be a cutoff/extension function of h+: h+ε(x) = min{ε−1, h+(x)}
for x ∈ dom(h+) and h+ε(x) = ε−1 for x /∈ dom(h+). We make it smooth by using a one-

sided mollification as follows. Let z(x) be a nonnegative function with support in [0, 1] and

integral
∫

R
z = 1; let zε(x) = ε−1z(x/ε). Define

h+
ε (x) = ε

arctanh(x) − 1

2
+

∫

R

zε(y)h
+ε(x− y) dy.

The ε-approximation h+
ε of h+ is smooth on R. Because of the one-sided mollification and

the addition of a small increasing term, h+
ε is increasing, hence h+

ε
′
> 0, and

h+(x− ε) − ε < h+
ε (x) < h+(x) (13)
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provided x − ε ∈ dom(h+). This means that gr(h+
ε ) is

√
2ε-close to h+ on the piece where

h+
ε < ε−1. The cut-off along the x′ coordinate will cause no problems since we will only be

interested in bounded braid classes, i.e. bounded subset of R
2. Furthermore, h+

ε is strictly

increasing in ε. It follows from (11), (12) and (13) that

lim
ε→0

Y (x, h+
ε (x)) = ∞ for all x ∈ dom(h+), (14a)

lim
ε→0

Ỹ ((h+
ε )−1(x′), x′) = ∞ for all x′ ∈ range(h+). (14b)

Since we are interested in compositions fd−1 ◦ fd−2 ◦ · · · ◦ f1 ◦ f0 of orientation preserving

twist maps, we index the corresponding g and h accordingly. The ε-approximation of the

domain Di of Yi is thus

Di,ε = {(xi, xi+1) | g±i,ε(xi) ≤ xi+1 ≤ h±i,ε(xi)}.

7.2. Restricted braid classes. The spaces of restricted braid diagrams are defined as

(cf. [15])

En
d

def
= Dn

d ∩ {u | (uα
i , u

α
i+1) ∈ Di for i = 0 . . . d− 1 and α = 1 . . . n},

En
d

def
= Dn

d ∩ {u | (uα
i , u

α
i+1) ∈ Di for i = 0 . . . d− 1 and α = 1 . . . n},

ΣE
def
= En

d \ En
d .

For u ∈ En
d the restricted braid class [u]E is defined as [u]∩E . For v ∈ Em

d and u∪v ∈ Dn+m
d

the restricted relative braid class [u rel v]E is [u rel v] ∩ {u ∈ En
d }.

The boundary of a restricted relative braid class [u rel v]E consists of two parts, namely

the singular braids in ∂[u rel v]E ∩ ΣE , and the braids that violate the restriction in

∂[u rel v]E \ ΣE . The parabolic flow is well-defined on ∂[u rel v]E ∩ ΣE but not on

∂[u rel v]E \ΣE . To overcome this difficulty we may of course use the ε-approximations of

Section 7.1:

[u rel v]εE = [u rel v]E ∩ {u | (uα
i , u

α
i+1) ∈ Di,ε for i = 0 . . . d− 1 and α = 1 . . . n}.

Now the flow is well-defined on the whole boundary ∂[u rel v]εE .

As an example, let us suppose (uk, uk+1) is close to the northwest boundary h+ of Dk,

say uk+1 = h+
ε (uk) and ε→ 0. If all other pairs of coordinates (ui, ui+1), i 6= k are not close
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x

x′
D

h+

h+
ε

(a)

D

(b)

Y = ∞
Ỹ = ∞

Y = ∞
Ỹ = −∞

Y = −∞
Ỹ = −∞

Y = −∞
Ỹ = ∞

Figure 14. (a) The northwest corner and its ε-approximation with the di-

rection of the flow. (b) Cartoon of the four pieces of boundary of the domain.

to the boundary, then, by (14), we have for sufficiently small ε that

duk

dt
= Yk(uk, uk+1) − Ỹk−1(uk−1, uk) > 0, (15)

duk+1

dt
= Yk+1(uk+1, uk+2) − Ỹk(uk, uk+1) < 0.

Since h′ε > 0 the flow is thus directed inwards at this point, see Figure 14a. On the other

boundaries similar arguments hold, which leads to the (mental) picture in Figure 14b.

However, we may have a problem when for example (uk−1, uk) also approaches a bound-

ary. If it approaches the southeast or northeast boundary then there is no problem, since

then Ỹk−1(uk−1, uk) < 0 and (15) still holds. On the other hand, if (uk−1, uk) approaches the

northwest or southwest boundary then the two terms in (15) do not cooperate and we can

draw no conclusion about the sign. In that case we are unable to conclude that [u rel v]εE

is isolating for the parabolic flow. We therefore need to introduce the notion of cooperation.

Definition 7.1. A restricted relative braid class [u rel v]E is cooperating, if for any

braid u in the boundary piece ∂[u rel v]E \ ΣE , the following holds:

(1) if (uα
i , u

α
i+1) ∈ h±i , then (uα

i−1, u
α
i ) /∈ h+

i−1 ∪ g−i−1;

(2) if (uα
i , u

α
i+1) ∈ g±i , then (uα

i−1, u
α
i ) /∈ h−i−1 ∪ g+

i−1.

We want to link the index of the restricted braid class to that of the unrestricted braid

class. For that purpose we need a stronger assumption, that also takes points in [u rel v] \
[u rel v]E into account.
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Definition 7.2. A restricted relative braid class [u rel v]E is strongly cooperating if

for any u ∈ cl([u rel v]) the following holds:

(1) if uα
i+1 ≥ h±i (uα

i ), then uα
i < h+

i−1(u
α
i−1) and uα

i > g−i−1(u
α
i−1);

(2) if uα
i+1 ≤ g±i (uα

i ), then uα
i < h−i−1(u

α
i−1) and uα

i > g+
i−1(u

α
i−1).

We are now ready to state the main result. The statement and proof are similar to Sec-

tion 8.3 in [15], where the restrictions on the domain were simpler and cooperation was

automatic.

Theorem 7.3. Let [u rel v]E be a cooperating restricted braid class and let the unre-

stricted braid class [u rel v] be bounded and proper.

(a) Then the ε-approximation Nε = cl([u rel v]εE) is an isolating neighborhood for the

parabolic flow for all sufficiently small ε, which yields a well-defined Conley index,

denoted by h(u rel v, E).

(b) Moreover, if [u rel v]E is strongly cooperating, then the index of the restricted

braid class is the same as that of the unrestricted braid class: h(u rel v, E) =

h(u rel v).

Proof. Denote by R̃i the parabolic recurrence relation under consideration, with par-

abolic flow ψ̃t defined on Nε for all small ε. We first need to show that Nε is isolating for

sufficiently small ε. For any point u ∈ ∂Nε∩ΣE the flow ψ̃t leaves Nε in forward or backward

time by Proposition 3.4. For any point u ∈ ∂Nε \ ΣE the flow ψ̃t leaves Nε in forward or

backward direction by the definition of a cooperating braid class and the arguments that

lead up to its Definition 7.2. We thus conclude that Nε is isolating, hence its Conley index

is well-defined and is independent of (sufficiently small) ε.

Next consider the unrestricted braid class [u rel v]. There exists a parabolic flow that

fixes v (see Appendix of [15]), given by a recurrence relation R0 defined on R
3. We are going

to change the recurrence relation so that it still fixes v, while the invariant set is guaranteed

to be in the smaller set [u rel v]E . Clearly v ∈ E and also v ∈ E2ε for sufficiently small ε.

Let η ∈ C∞(R) such that η(x) = 0 for x ≤ 0 and η(x) = Ke−1/x for x > 0, with large K to

be chosen later. We construct a nonnegative function ζi(x, x
′) that is 0 on Di,2ε and that is

large in some sense (see below) on the complement of the slightly larger Di,ε. Namely, we
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define

ζi(x, x
′) = η

(
x′ − h+

i,2ε(x)
)

+ η
(
x′ − h−i,2ε(x)

)
− η

(
g+

i,2ε(x) − x′
)
− η

(
g−i,2ε(x) − x′

)
;

ξi(x, x
′) = η

(
x′ − h+

i,2ε(x)
)
− η

(
x′ − h−i,2ε(x)

)
− η

(
g+

i,2ε(x) − x′
)

+ η
(
g−i,2ε(x) − x′

)
.

It is important that ∂2ζi ≥ 0 and ∂1ξi ≤ 0 (they mirror the behavior of Yi and Ỹi). For any

large square N in R
2 we can choose ε sufficiently small, so that the four terms have disjoint

support in N . Additionally, for any C > 0 there is (by a straightforward compactness

argument) a sufficiently large K so that

ζi(x, x
′) = η(x′ − h±i,2ε(x)) > C on N ∩ {x′ ≥ h±i,ε(x)}; (16a)

ζi(x, x
′) = −η(g±i,2ε(x) − x′) < −C on N ∩ {x′ ≤ g±i,ε(x)}; (16b)

ξi(x, x
′) = ±η(x′ − h±i,2ε(x)) ≷ ±C on N ∩ {x′ ≥ h±i,ε(x)}; (16c)

ξi(x, x
′) = ∓η(g±i,2ε(x) − x′) ≶ ∓C on N ∩ {x′ ≤ g±i,ε(x)}. (16d)

We define for s ∈ [0, 1]

Rs
i (xi−1, xi, xi+1) = R0

i (xi−1, xi, xi+1) + s
[
ζi(xi, xi+1) − ξi−1(xi−1, xi)

]
.

Let ψt
s be the flow generated by Rs. By computing ∂1Rs

i and ∂3Rs
i , it is not difficult to

check that Rs is a parabolic recurrence relation and ψt
s a parabolic flow for all s ∈ [0, 1].

Since Rs = R0 on E2ε the whole family fixes v. Since [u rel v] is bounded it is contained in

a large cube, say (uα
i , u

α
i+1) ∈ N for all i and α. Using the strongly cooperating property of

[u rel v] we can deduce from (16) that for sufficiently large K the recurrence relations R1
i

and R1
i+1 have fixed sign whenever (xi, xi+1) ∈ N \Di,ε, for example, R1

i > 0 and R1
i+1 < 0

when xi+1 ≥ h+
i,ε(xi). This implies that in forward or backward time the orbit through such

a point leaves N . Therefore the invariant set for ψt
1 in [u rel v] is completely contained in

[u rel v]εE .

We now use the fact that the Conley index is a property not only of an isolating neigh-

borhood, but also of an invariant set. Let S be the invariant set of [u rel v] under the flow

ψt
1. Since [u rel v]εE is also an isolating neighborhood of S for ψt

1, we see that the Conley

indexes of [u rel v] and [u rel v]εE are the same, namely the index of S.

Finally, consider the flows given by the interpolating parabolic recurrence relations (1−
λ)R̃ + λR1, λ ∈ [0, 1], with parabolic flow ψ̃t

λ. Note that ψ̃t
0 = ψ̃t and ψ̃t

1 = ψt
1, and the
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whole family fixes v. Furthermore, [u rel v]εE is an isolating neighborhood for ψ̃t
λ for any

λ ∈ [0, 1], since the signs of R1
i and R̃i on the restricting boundaries are the same. Hence

the Conley index does not change along the continuation from ψ̃t to ψt
1:

h(u rel v, E) = h([u rel v]εE , ψ̃
t) = h([u rel v]εE , ψ

t
1) = h([u rel v], ψt

1) = h(u rel v).

This finishes the proof. �

7.3. Positive entropy for bijective twist diffeomorphisms. Let us apply the theory

developed in the previous section to prove Theorem 1.2. We can try to emulate Section 5

up to the point where we need to calculate the Conley index, which is now replaced by the

restricted index h([u rel v], E). We need to be sure that the restricted index is well-defined.

The braid classes under consideration are bounded and proper, but they might not all be

cooperating.

Let us look at the shape of the domains Di. Since the skeleton v (cf. Figures 7 (right)

and 10) consists of stationary points, it must be that (vα
i , v

α
i+1) ∈ Di for α = 1, 2, 3, 4.

These points are shown in Figure 15 for even and odd i. For each i the projection of the

unrestricted braid class [u rel v] under consideration onto the (ui, ui+1)-plane is one of

the three blocks indicated in Figure 15. As a consequence of the fact that (vα
i , v

α
i+1) ∈ Di

and of our knowledge about the shape of the boundary ∂Di, we see that the northeast and

southwest boundary never come into play for any of the braid classes under consideration,

see Figure 15 again.

According to the definition of cooperating braid classes we need to prevent that (ui−1, ui)

and (ui, ui+1) can be both on the northeast or both on the southwest boundary. When one

retraces the steps, in particular the application of a flip in the proof of Lemma 5.1, one sees

that this can only happen if in the associated symbol sequence −1 is adjacent to −1 or +1

is adjacent to +1, and we thus need to exclude these possibilities. To ensure the braid class

is cooperating we therefore go back a step and replace the (full) shift on three symbols by a

subshift with adjacency matrix

A =




0 1 1

1 1 1

1 1 0


 .



44 J.B. VAN DEN BERG, R.C. VANDERVORST, AND W. WÓJCIK
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Figure 15. The dots represent the points (vα
i , v

α
i+1) ∈ Di, α = 1, 2, 3, 4 for

even i (left) and odd i (right). The domain Di is indicated in gray. The pro-

jections of the unrestricted braid classes onto the (ui, ui+1)-plane are hatched.

Of the four boundaries of Di only two can intersect the unrestricted braid

classes.

In words, only sequences in which −1 is followed by 0 or +1, and +1 is followed by −1 or

0, are allowed. The corresponding braid classes are now all cooperating, and even strongly

cooperating, so the remainder of the proof follows the path described in Section 5, using

Theorem 7.3 to compute the restricted Conley index.

There is one more issue to deal with, namely compactness. The set Λ1 as defined in (8) is

not necessarily bounded, since, as should be clear at this point, it is harder to control the y-

coordinates Y and Ỹ for diffeomorphisms than it is for maps with the infinite twist condition.

To resolve this problem, consider the set Λ2 of periodic orbits of f 2 that is “constructed”

in the same way as in Lemma 5.1 with the restriction on the symbol sequences due to the

cooperating braid classes described above. To be more precise, for every symbol sequence in

the subshift defined by A the proof of Lemma 5.1 gives a corresponding periodic point/orbit

of f 2, and the collection of these orbits we call Λ2.

Since Λ2 consists of orbits it is invariant under f 2 and we claim that it is also bounded.

Clearly the x-coordinates are uniformly bounded. The parameter ε, that is used to regularize

in Section 7.1, can be chosen in a uniform manner, since there are only four different maps

and four different domains Di,ε to consider. In the ε-approximations [u rel v]εE of the braid

classes considered in Lemma 5.1, the pairs (xi, xi+1) are in a bounded subset of Di,ε, and on
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these sets the continuous functions Y and Ỹ are bounded. Hence also the y-coordinates of

the points in Λ2 are uniformly bounded.

The set Λ1 in Section 5 is now replaced by the (smaller) compact set Λ̃1 = cl(Λ2), which

is invariant under f 2. Clearly this set Λ̃1 also suffices in Lemma 5.3, because that lemma

essentially consists of taking the closure of the periodic trajectories. Replacing Λ1 by Λ̃1

does not change any of the other arguments in Section 5. The resulting lower bound on

the entropy of the bijective twist map is half of the entropy of the subshift, which is log of

1 +
√

2, the largest eigenvalue of the matrix A (cf. [18]).
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