
RIGOROUS NUMERICS IN DYNAMICS

JAN BOUWE VAN DEN BERG AND JEAN-PHILIPPE LESSARD

1. Motivation

Nonlinear dynamics shape the world around us, from the harmonious movements of celestial
bodies, via the swirling motions in fluid flows, to the complicated biochemistry in the living cell.
Mathematically these beautiful phenomena are modelled by nonlinear dynamical systems, mainly
in the form of ordinary differential equations (ODEs), partial differential equations (PDEs) and
delay differential equations (DDEs). The presence of nonlinearities severely complicates the math-
ematical analysis of these dynamical systems, and the difficulties are even greater for PDEs and
DDEs, which are naturally defined on infinite dimensional function spaces. With the availability
of powerful computers and sophisticated software, numerical simulations have quickly become the
primary tool to study the models. However, while the pace of progress increases, one may ask:
just how reliable are our computations? Even for finite dimensional ODEs, this question naturally
arises if the system under study is chaotic, as small differences in initial conditions (such as those
due to rounding errors in numerical computations) yield wildly diverging outcomes. These issues
have motivated the development of the field of rigorous numerics in dynamics.

Rigorous numerics draws inspiration from the ideas in scientific computing, numerical analy-
sis and approximation theory. In a nutshell, rigorous computations are mathematical theorems
formulated in such a way that the assumptions can be rigorously verified on a computer. This
requires an a priori setup that allows analysis and numerics to go hand in hand: the choice of
function spaces, the choice of the basis functions and Galerkin projections, the analytic estimates,
and the computational parameters must all work together to bound the errors due to approxi-
mation, rounding and truncation sufficiently tightly for the verification proof to go through. The
goal is to provide a mathematically rigorous statement about the validity of a concrete numerical
simulation (i.e. not in some asymptotic sense where for example the grid size tends to zero) as
interpreted as an approximate solution of the original problem. This complements the field of
scientific computing, where the goal is to achieve highly reliable results for very complicated prob-
lems. In rigorous computing one is after absolutely reliable results for somewhat less complicated
(but still hard) problems.

Outside of dynamics, computer-assisted proofs have been used to settle famous open problems.
Two prominent examples are the four color theorem [1] and Kepler’s densest sphere packing
problem [2]. In dynamical systems, an early success is the demonstration of the universality of
the Feigenbaum constant [3]. More recently, rigorous numerics were used to prove the existence of
the strange attractor in the Lorenz system, which seemed, for decades, tentatively intuitive from
computer simulations [4]. This settled the 14th problem in Smale’s list of problems for the 21st
century (the only other problem from the list that has been solved is the Poincaré conjecture).

Computers have long played a pivotal role in the study of dynamical systems. Starting from
the very first glimpses of the Mandelbrot set, computer simulations have provided a way to delve
deeply into the complex behaviour of nonlinear dynamics. Nevertheless, the field of dynamical
system is not dominated by computers. Quite the opposite, the theory of dynamical systems is a
thriving area of mathematics, as exemplified by several recent Fields medals. While the strength
of analytic results in dynamical systems lies in characterizing generic behaviour, i.e., outlining
what one should typically expect “on average” in classes of systems, it is very difficult to check
that any specific system is sufficiently “unexceptional” to be described by these general results. It
is precisely this weakness of the general analytic theory that is the strength of computer-assisted
approaches. This is of importance, since in applications one is usually interested in the behaviour
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of a specific system. Moreover, while mathematical analysis is strong on general “existence”
theorems for families of problems, information about the shape of the solutions (e.g. the patterns
they describe) can usually be obtained only with the help of computer calculations (rigorous or
not). While in applications one needs to be sure that a solution exists, it is usually essential to
know what the solution looks like as well.

From a mathematical point of view, the advantage of rigorously validated computations over
simulations, is that the outcomes can be used as components in the “building” of mathematics.
This is often expressed in the form of forcing theorems: if one finds a certain type of solution, then
this implies, by analytic theory, many other properties of the dynamical system. The most famous
result of this type is “period-3 implies chaos” for interval maps [5]. Other such examples leading
to chaos are given by the existence of a Shilnikov bifurcation [6] or the existence of a single braided
periodic orbit [7]. Mathematics in general is riddled with such statements, where the assumptions
in the theorems are in practice impossible to check for any specific system, at least not by hand.
It is in overcoming this obstacle that computer-assisted proofs are at their best.

2. Strategy

Let us sketch the strategy for finding a solution in a nonlinear dynamical system via a computer-
assisted proof. We are looking for a “dynamically invariant object”, which we denote abstractly
by x, and which may be an equilibrium, a periodic or connecting orbit, or more generally an
invariant manifold. Having identified a formulation for such a problem of the form f(x) = 0
that is suitable for the analysis to follow, our starting point is a numerically obtained approxima-
tion xapprox of a zero of f , i.e., f(xapprox) ≈ 0. Next, we exploit a common strategy in mathematical
analysis, namely, we turn the problem f(x) = 0 into an equivalent fixed point problem. Instead
of trying to solve f(x) = 0, we consider a map T whose fixed points are the zeros of f . The
choice of the map T is not straightforward, but often an approximate Newton scheme of the form
T (x) = x−Af(x) is suitable, where the linear operator A is some cleverly chosen approximation of
the inverse of Df(x). The inverse of the Jacobian itself is usually too complicated to use directly.

We then set out to prove that T is a contraction on a neighborhood of xapprox. Although this
may seem a rather trivial reformulation, the essential advantage is that instead of trying to prove
equalities in the formulation f(x) = 0, contractivity involves inequalities only. This provides the
flexibility (“room to play with”) that is so typical of many arguments in analysis. In particular,
in the context of computer-assisted proofs, inequalities allow the control of errors from a variety
of sources: rounding of floating point numbers, finite dimensional truncation (discretization of a
continuous problem), “modeling” error (e.g. using a Taylor polynomial for modeling a nonlinearity
rather than the Taylor series), as well as uncertainties in parameter values.

In this approach to computer-assisted proofs it is not the computer which does all the work.
On the contrary: the hard work, by pencil and paper, is to reduce the problem to checking finitely
many inequalities. This involves the analytic study of the defect T (xapprox)−xapprox as well as the
derivative of T near xapprox. The proof then proceeds by a Newton-Kantorovich type argument
to find a small ball B around xapprox on which the map T is contracting.

The first central difficulty lies in analytically quantifying “how nonlinear” the map is. In that
sense, the hurdle is essentially the same as for purely analytic techniques, where one also needs
to control nonlinear and/or off-diagonal terms by (functional analytic) estimates. The second
fundamental issue mirrors the situation in numerical analysis and scientific computing, namely
estimating the “cut-off error” caused by projecting the infinite dimensional problem onto a finite
dimensional computational space (the error induced by truncating the continuous problem to a
discrete one). Roughly, one needs to choose a well-adapted basis and/or a good preconditioner to
obtain good estimates.

We note that all the obtained bounds need to be explicit and sufficiently sharp, to be able to
check, in the final step of the proof, that the inequalities guaranteeing contractivity of T hold. In
principle the inequalities could be checked by hand, but in practice they involve too many terms
to make that feasible. Moreover, the expressions for the inequalities involve the set of floating
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point numbers xapprox, since the ball B is centered at a numerically determined point. This is
a crucial difference with conventional analytic results where the ball is typically centered around
some relatively simple, asymptotic limit case, that is amenable to “regular” analysis.

Additionally, in the computer-assisted context, the definition of the linear operator A, which is
a constituent of the map T , involves the numerical Jacobian of the truncated problem at xapprox,
which is another source of floating point numbers in the inequalities to be checked. Having done
the hard work in the analysis of reducing the problem to finitely many explicit inequalities, one
therefore resorts to interval arithmetic computer calculations for this final step of the proof.

The above outline shows that the arguments are “quasi-analytic”: the majority of the analysis is
done by hand, followed by a final check of a finite list of inequalities through a computer calculation.
This means that we can easily deal with parameters in the problem. Indeed, parameters play an
important role in virtually all nonlinear dynamical systems that appear in applications. Therefore,
rigorous parameter continuation is a vital tool in most applications, and this is incorporated in
the computer-assisted approach in a relatively straightforward manner [8, 9]. Finally, we remark
that contractivity implies not just existence and uniqueness, but also robustness with respect to
small variations in parameters. In a dynamical systems context this can be made precise in terms
of hyperbolicity or transversality of the solution. Such a robustness (“no fluke”) property, which
is usually required to derive forcing results, is automatic from the contractivity of the operator T .

3. Applications

Techniques for computer-assisted proofs in dynamics are rapidly developing, and some of them,
at least when applied to systems of ODEs, are becoming “routine” and are implemented in software
packages such as CAPD [10]. Using such software or the ideas mentioned in Section 2, computer-
assisted proofs of existence of bounded solutions such as equilibria, periodic orbits and connecting
orbits can be obtained. Bifurcation points, stable and unstable manifolds of equilibria and periodic
orbits, and existence of chaos in the form of symbolic dynamics can also be studied rigorously
for finite dimensional nonlinear dynamical systems. More recently, infinite dimensional nonlinear
problems have been studied via computer-assisted proofs. Equilibria of PDEs [11, 12, 13], periodic
orbits of PDEs [14, 15], solutions of boundary value problems [16], and travelling waves [17] have
all been proved with the techniques of rigorous numerics. Rather than presenting an extensive list
of results in the field, we choose to briefly present three sample results, and we refer to [18, 19, 20]
for a more thorough discussion of applications to finite and infinite dimensional problems.

a) An old conjecture in delay equations. In 1955, E.M. Wright considered the equation

(1) y′(t) = −αy(t− 1)[1 + y(t)], α > 0,

because of its role in the distribution of prime numbers [21]. A conjecture (stated by Jones in 1962
[22]) asserts that (1) has a unique slowly oscillating periodic solution (SOPS) for all α > π/2, i.e.,
a periodic solution that oscillates around 0, spending more than one unit of time (per period) on
either side of 0. With the help of Fourier series, a rigorous parameter continuation of the SOPS
was performed in [23] using the ideas of Section 2, yielding substantial progress toward the proof
of the conjecture.

b) Co-existence of patterns in a PDE model. The ideas of rigorous numerics were
applied in [24] to prove existence of standing waves between rolls and hexagonal patterns of the
two-dimensional pattern formation PDE model

(2) ∂tu = −(1 + ∆)2u+ µu− β|∇u|2 − u3, u = u(x, t) ∈ R, x ∈ R2, t ≥ 0,

for small parameter values µ, β ∈ R (see Figure 1 on the left). Using the weakly nonlinear analysis
of [25] proving co-existence of the patterns reduces to prove existence of heteroclinic solutions
in a system of second order nonlinear ODEs. After reformulating the problem as a projected
boundary value problem (BVP) with boundaries in the stable/unstable manifolds, the techniques
of Section 2 were used to compute the local manifolds and to solve the BVP using Chebyshev
series.



4 JAN BOUWE VAN DEN BERG AND JEAN-PHILIPPE LESSARD

c) Steady states of the Ohta-Kawasaki problem. The Ohta-Kawasaki equation

(3) ∂tu = −∆(γ−2∆u+ u− u3)− (u− µ)

models the evolution of di-block co-polymers [26, 27]. Depending on the value of the parameters
µ and γ, which represent a measure of the ratio of the mixture of the polymers and the incom-
patibility of the polymer types, respectively, there is a multitude of stationary states with a truly
three-dimensional geometry. These have been studied using the rigorous numerical techniques de-
scribed above (see [28]) and we depict one rigorously verified equilibrium pattern, called a double
gyroid, in Figure 1 on the right.
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Figure 1: At the bottom are graphs of B1 (red) and B2 (blue) representing heteroclinic
solutions of (1.2) that connect the hexagon state to the positive rolls (on the left) and

negative rolls (and the right). The parameter values are c̃ = 0, µ̃ = 7+3
p

6
30 and �̃ =

1, corresponding to the assumptions in Theorem 1. At the top are the corresponding
stationary patterns of (1.1). We note that the two phase transitions from rolls to hexagons
have distinctive features. On the left, the stripes (“positive” rolls) undergo pearling,
which gradually leads to separation into spots (hexagons). On the right, the stripes
(“negative” rolls) develop transverse waves, which break up into a block structure that
then transforms into hexagonal spots.

The heteroclinic solutions are depicted in Figure 1, together with the corresponding
patterns of the PDE (1.1). These orbits thus represent two types of stationary domain
walls between hexagons and rolls (spots and stripes). While each heteroclinic connection
exists on a parabola in the (�̃, µ̃) parameter plane, a parameter scaling reduces this to a
single connecting orbit, see Section 2.1.

Our method, which builds on foundations laid in [7, 8, 9, 10], is summarized as
follows. At the center of the method is an approximate solution unum, obtained through
a numerical calculation. We then construct an operator which has as its fixed points the
heteroclinic solutions, and we set out to prove that this operator is a contraction mapping
on a small ball around unum in an appropriate Banach space. The ball should be small
enough for the estimates to be su�ciently strong to prove contraction, but large enough
to include both unum (the center of the ball) and the genuine solution (the fixed point).
Qualitatively, considering the numerical approximations of solutions depicted as graphs
in Figure 1, we can choose the radius of the ball so small that the genuine solution is
guaranteed to lie within the thickness of the lines. A mathematically precise, quantitative
statement can be found in Section 5.

We can distinguish several components in the computer-assisted proof of Theorem 1.
Since we are looking for solutions of (1.2) on an unbounded domain, we first reduce the
problem to a finite domain by parameterizing the local stable and unstable manifolds
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Figure 1. Left: Stationary coexistence of hexagons (spots) and rolls (stripes)
of (2). Right: A double gyroid solution of (3) for parameter values µ = 0.1 and
γ = 2.1.

4. Future goals

The past decade has seen enormous advances in the development of rigorously verified comput-
ing with the most significant results for finite dimensional systems. While encouraging first steps
for infinite dimensional systems are starting to appear, many interesting future directions remain
to be explored. For instance, developing rigorous computational tools to study global dynamics
of PDEs, finding bounded invariant sets for state dependent delay equations and demonstrating
chaos in infinite dimensional continuous dynamical systems are some of the main challenges in the
field. Aiming at understanding global properties of dynamical systems, combining rigorous nu-
merics with topological methods such as Morse theory is the subject of active research. Important
contributions in that direction are currently being developed based on Morse-Conley theory [29].

Finally, it is a nontrivial problem to make sure that all steps in the process (including the code)
are correct. As the codes for the computer-assisted proofs are getting more and more complicated,
the possibilities for human errors while developing the necessary analytic estimates and while
implementing the algorithms are increasing. From that point of view, mathematics in the era of
computers implores the development of automatic proof assistants, see e.g. [30].
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