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Abstract

We study a thermo-diffusive combustion model for premixed flames propagating in reactive gaseous

mixtures which contain inert dust. As observed by Joulin, radiative transfer of heat may significantly

enhance the flame temperature and its propagation speed. The Joulin effect is at its most pronounced in

the parameter regime where the medium is very transparent while radiative flux dominates convection. In

this asymptotic regime, where in the limit the flame temperature achieves its upper bound, we determine

the law that describes the relation between the propagation speed of the flame and the control parameters.

Finally we present strong numerical evidence for the validity of the asymptotic analysis.

1 Introduction

Combustion is one of the important phenomena in our world. It occurs in controlled applications such as

rocket engines, energy plants and cooking on natural gas, as well as in forest fires and mine and tunnel

accidents. Experiments in combustion research are both difficult and expensive, which underlines the need

for good mathematical models and their analysis.

Combustion models are based on the incorporation of different physical and chemical principles, expressed

in the language of mathematics. Simplifying, sometimes heuristic, assumptions are unavoidable to make

mathematical treatment possible, be it by numerical, formal asymptotic or analytical methods. In the

latter the modern theory of infinite-dimensional dynamical systems and its application to free boundary

problems plays an important role. Such free boundary problems (FBPs) occur as various flame front models.

Asymptotic arguments are strongly intertwined with the derivation of such FBPs from physical and chemical

principles.

In this paper we study a thermo-diffusive combustion model for premixed flames propagating in reac-

tive gaseous mixtures which contain inert dust that radiates thermal energy. Radiative transfer of heat

involves both emission and absorption of radiation, and may significantly influence the flame temperature,

its propagation speed, and the flammibility of the medium itself. This is the so-called Joulin effect [13, 5]:

the propagation speed increases compared to a similar flame without radiation and there is a temperature

overshoot at the flame front. A radiative flame can be ignited at a lower external temperature than a

non-radiative flame.

The Joulin effect is at its most pronounced in the parameter regime where the medium is very transparent

while radiative flux dominates convection. In this asymptotic regime our goal is to determine the law that

describes the relation between the propagation speed of the flame and the control parameters.

In Section 2 we will discuss the model in more detail. For now, we just highlight the most important

features. Following Buckmaster, we formulate the thermal-diffusive model with the thin reactive flame zone

replaced by a free boundary. At the free boundary the normal derivative of the (normalised) temperature T

is related to the reaction rate ω, which is given by an Arrhenius type law:

ω = A exp

(

−
N

T ∗

)

. (1)

Here N is the activation energy, T ∗ is the temperature at the free boundary, and A is a so-called pre-

exponential constant, which will be specified later.

As a model for the radiative field, we take the Eddington equation, which contains two important radiative

parameters: the (dimensionless) opacity α and the Boltzmann number β, a measure of the radiative energy

flux compared to the convective flux.

Flames will be modelled as travelling waves propagating into the fresh region where the fuel mass fraction

and the temperature are constant, Y− for the fuel mass fraction, T− for the temperature. A conservation

law implies that the temperature T+ far behind the flame front is given by

T+ = T− + Y−.

Depending on the opacity of the medium, radiation may significantly influence the flame profile, see

[12, 3, 5]. Radiative flames are characterised by an overshoot of the flame temperature T ∗ as well as an

enhancement in the burning rate and flame speed µ, which is given by

µ =
ω

Y−

. (2)
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In [4] it was proved that the flame temperature T ∗ is bounded by

T− + Y− < T ∗ < T− + 2Y−.

These bounds, which were already conjectured in [5], are achieved in certain limits. The lower bound is in

fact the flame temperature in absence of radiation (the “adiabatic” case), and it is approached as α → ∞

or β → 0 (see [4]). In the present paper, however, we focus on the combined asymptotic regime

α → 0, (3a)

β →∞, (3b)

αβ → 0, (3c)

because in this regime the flame temperature approaches the upper bound, i.e.

in the limit (3): T ∗ → T− + 2Y−, (4)

and the radiative effects are most pronounced.

We are going to combine this asymptotic regime of the radiative parameters with the high activation

limit, i.e., we take

ε =
1

N

as the main small parameter. This is very much in the same spirit as the Near-Equidiffusional Flame (NEF)

approximation that is frequently used in the absence of radiative effects, see [15]. There the reciprocal ε of

the activation energy is coupled to the Lewis number. Here we couple ε to the radiative parameters.

Of primary physical interest are flames that, in this asymptotic regime, propagate with a finite velocity

µ. In view of (2) µ is proportional to the reaction rate ω given in (1). Hence, in the high activation limit

N = ε−1 → ∞, finite speeds of propagation can be obtained provided A is of the order exp(N/Tc), where

Tc is a characteristic temperature, to be fixed shortly. Indeed, since in this notation

µ =
1

Y−

exp

(

1

ε

(

1

Tc
−

1

T ∗

))

, (5)

the characteristic temperature Tc should equal the asymptotic value of the flame temperature T ∗, hence in

view of (4) the only possibility is

Tc = T− + 2Y−.

This is the upper extreme of T∗ and it stands in sharp contrast with the NEF approach, where the suitable

choice for Tc is the lower extreme, namely T− + Y−.

Since we want to look at the asymptotic regime where simultaneously the reciprocal ε of the activation

energy tends to zero and the radiative parameters α and β behave as given in (3), we have to couple α and

β to ε. Limit condition (3c) suggests it is convenient to introduce the combined parameter

χ
def

= αβ.

Our results show that an asymptotically finite propagation speed requires

χ = O(ε) and β−1 = O(ε1/2). (6)

Since α has a more direct physical meaning than χ, let us give an alternative formulation of these conditions.

For simplicity we assume that both α and β are (asymptotically) powers of ε:

α ∼ α0ε
a and β ∼ β0ε

−b.

The connection with (6) is made through

χ = αβ = α0β0ε
a−b ∼ χ0ε

a−b.

To obtain a finite flame velocity one the of following four possibilities must hold (see also Figure 1):

I: a = 3
2 and b = 1

2 ;

II: a > 3
2 and b = 1

2 ;

III: a = b + 1 and b > 1
2 ;

IV: a > b + 1 and b > 1
2 .
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Figure 1: The asymptotic regime under consideration in terms of the exponents a and b. The area below

the dotted line corresponds to radiation dominated flames (3). Finite wave speeds are found in the shaded

region and, more significantly, on its boundary.
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Figure 2: In the combined asymptotic limit of high activation energy ε → 0 coupled to the radiative

parameters α = α0ε
a and β = β0ε

−b with b ≥ 1
2 and a ≥ b + 1 the solution profile separates into three

spatial scales. The numerical solution shown is for ε = 0.001, α = 0.3ε3/2, β = 0.3ε−1/2 and T− = Y− = 0.5.

Notice that the scales are very different in the three regions since on the left the variable is x̃ = αβ−1x, in

the middle it is x, while on the right it is x̂ = αβx.

We remark that the special scaling α ∼ α0ε
3/2 and β ∼ β0ε

1/2 in case I was first observed by Joulin and

Eudier [13].

In the limit (3) the flame profile naturally separates into three spatial scales (see also Figure 2):

x, x̂ = αβ x, x̃ =
α

β
x, (7)

where x is the spatial variable in a co-moving frame (with speed µ). In Section 3 we will perform a matching

analysis of these three scales. This enables us to derive a law for the asymptotic speed µ of the front. In the

four cases identified above the speed law reads (with T+ = T− + Y−)

I: ln(µ Y−) = −
α0β0T

2
+

µ2
E1

(

Y−

T+

)

−
µ2

β2
0T 7

+

E2

(

Y−

T+

)

; (8a)

II: ln(µ Y−) = −
µ2

β2
0T 7

+

E2

(

Y−

T+

)

; (8b)

III: ln(µ Y−) = −
α0β0T

2
+

µ2
E1

(

Y−

T+

)

; (8c)

IV: ln(µ Y−) = 0. (8d)
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Figure 3: The geometric setting of the propagating flame.

Here

E1(s) =
8s + 9s2 + 16

3 s3 + 5
4s4

(1 + s)2
,

E2(s) =
3s

16(1 + s)2
+

3

4(1 + s)2

∫ s

0

t dt

(1 + t)4 − 1
.

It is clear that case I is central to the whole analysis and the other cases are fairly straightforward reductions.

On the other hand, in the asymptotic analysis presented in Section 3 we will in some sense compute cases

II and III and then combine them to obtain case I. The last case IV is rather boring, since there is just one

finite velocity, namely µ = 1/Y−.

We remark that in the whole asymptotic regime (3) the profile of any travelling wave with finite speed

of propagation (in the asymptotic limit ε → 0) decomposes into the three different spatial scales (7). The

asymptotic analysis in Section 3 is thus valid for the whole parameter regime of radiation dominated flames.

In Figure 1 this corresponds to the area below the dotted line. The fact that in only part of this parameter

regime finite wave speeds occur is merely a consequence of the way the wave speed is related to T ∗ and ε

(i.e. via (5)).

The organisation of the paper is as follows. In Section 2 we introduce the mathematical model and we

make the reduction to a travelling wave problem. In Section 3.1 we explain how the matched asymptotic

analysis works, while in Sections 3.2–3.4 the calculations are performed, i.e., we analyse the profile in three

different spatial scales and match these to obtain the full asymptotic picture. This also leads us to the

formula for the speed law presented above. Finally, in Section 4 we look in more detail at the speed law, we

compare with numerical computations, and we draw conclusions about the bifurcation diagrams.

2 Models and equations

2.1 Premixed flame propagation with constant opacity

We introduce the thermo-diffusive combustion model with constant density, simple chemistry and large

activation energy, for a premixed flame propagating in a reactive gaseous mixture. We incorporate the flux

of the thermal radiative field generated by the radiation of dust particles. The geometric setting is the

following (see also Figure 3): the flame propagates into the fresh region, where, far ahead of the flame front

(z → −∞), the fuel mass fraction Y and the temperature T are constant:

lim
z→−∞

Y (z) = Yf and lim
z→−∞

T (z) = Tf

The region of the flame where the reaction occurs is infinitesimally thin and is located at z = s(y, t), the free

boundary of the problem, y being the lateral two-dimensional variable. To the right of the free boundary all

fuel has been burnt (Y (z) = 0 for z ≥ s(y, t)) and far behind the flame front the temperature approaches

the burnt temperature Tb = limz→∞ T (z). The time-dependent system of equations for mass fraction Y and

temperature T reads

∂

∂t
(ρY ) −∇(ρD∇Y ) = 0, z < s(y, t); Y = 0, z ≥ s(y, t); (9a)

∂

∂t
(ρCpT ) − λ∆T + ∇ · FR = 0, z 6= s(y, t). (9b)
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The physical parameters are the diffusion constant D, the heat conduction coefficient λ and the specific

heat Cp and the density ρ of the gas (part of which is fuel). The divergence of the radiative energy flux FR

appears as a loss term in the temperature equation (9b). At the flame front, the jump conditions for the

normal derivatives

ρD

[

∂Y

∂n

]

= ω(T ); λ

[

∂T

∂n

]

= −Qω(T ), at z = s(y, t), (9c)

are imposed to balance the heat flux coming out of the flame with the mass flux going into the flame, the

reaction heat Q being the proportionality constant between the two. These fluxes are also coupled to the

chemical reaction rate ω, for which we take a simple Arrhenius law. In the free boundary approximation it

reads

ω = A exp

(

−
E

2RT ∗

)

. (9d)

Here T ∗ denotes the temperature at the flame front, and the other constants are the gas constant R, the

activation energy E, and the “pre-exponential” factor A. Note that the factor 2 in the reaction rate is a

consequence of the derivation of the free boundary jump conditions from the reaction-diffusion formulation,

see [8].

As a law for the radiative flux FR we take the Eddington equation

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0, (9e)

where σsb is the Stefan-Boltzmann constant and L is the mean free path length of the photons. In astrophysics

the Eddington equation is a well-known approximation to the radiative field [11, 17, 16]. It is a good

approximation when scattering is nearly isotropic, particularly in a one-dimensional setting. The travelling

waves that we use as a model for the propagating flames have indeed a one-dimensional structure. Since

the radiative transfer plays a central role in our model, we give some some insight in the derivation of the

Eddington equation in the Appendix.

We emphasise that the Eddingtion equation models radiative transfer rather than radiative heat losses.

There is however an asymptotic limit, discussed in [4, 1], where the radiative flux is given by ∇ · FR =
4σsb

L (T 4 − T 4
b ). This asymptotic limit thus looks like heat loss to a reservoir held at T = Tb. It can be

compared to the usual radiative heat loss models (see [18, Sec. 8.2], [6, p. 43]) that are based on the law

∇ · FR = 4σsb

L (T 4 − T 4
f ), which differs only in the temperature of the reservoir (Tf instead of Tb).

2.2 Dimensionless variables

We now make the system of equations (9) dimensionless and scale out many of the parameters. We define

non-dimensional temperature T̂ , radiative flux F̂R, time t̂ and spatial coordinate r̂ by comparison with

suitable chosen reference quantities indexed by s:

t̂ =
t

ts
, r̂ =

r

rs
, T̂ =

T

Ts
, F̂R =

FR

Fs
.

We choose the reference quantities such that they satisfy the following set of equations:

λts
ρCpr2

s

= 1,
4σsbT 4

s

Fs
= 1,

ρD

Brs
= 1,

λTs

QBrs
= 1,

that is

Fs =
4σsbQ4D4ρ4

λ4
, Ts =

QDρ

λ
, ts =

ρ3CpD
2

λB2
, rs =

Dρ

B
.

Here B is defined by

A = B exp

(

E

2RTC

)

,

where TC is the characteristic temperature. The necessity of this splitting of the pre-exponential factor A

has already been discussed in the introduction. In the high activation energy asymptotics that we are going

to employ it is widely used, see for example [6, p. 17]. Note that the factor 2 in the reaction rate accounts

for B2 rather than B appearing in ts.

We have chosen not to rescale the mass fraction Y (which was already dimensionless) because the above

choices already simplify the equations as much as we want. Although the additional scaling of Y that we
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have at our disposal, is welcome from a mathematical point of view, using it obscures the physical role of

the control parameters Yf and/or Tf . Our motivation for the above choices is that we have at hand two

important radiative parameters, namely

α =
rs

L
=

Dρ

BL
,

which is a dimensionless opacity, and

β =
Fsts

ρCpTsrs
=

4σsbQ3D4ρ4

λ4B
,

which is a measure of the radiative flux compared to the convective flux. Furthermore, there is the Lewis

number

Le =
r2
2

Dts
=

λ

ρCpD
,

a diffusion parameter. In the new variables the system becomes (where we drop the hats from the notation)

Yt −
1

Le
∆Y = 0, z < s(y, t); Y ≡ 0, z ≥ s(y, t);

Tt − ∆T + β ∇ ·FR = 0, z 6= s(y, t);

−∇(∇ · FR) + 3α2
FR + α∇T 4 = 0.

The jump conditions at the free boundary z = s(y, t) are

[

∂Y

∂n

]

= Le ω(T ) and

[

∂T

∂n

]

= −ω(T ) at z = s(y, t),

with non-dimensional chemical reaction rate (still denoted by ω)

ω(T ) = exp

(

N

(

1

Tc
−

1

T

))

,

where

N =
E

2RTs

is the dimensionless activation energy, and Tc = TC/Ts is the dimensionless characteristic temperature, the

significance of which was already discussed in the introduction.

2.3 Planar travelling waves

We consider flames modelled by planar (one-dimensional) travelling wave solutions and we thus introduce

the travelling wave coordinate is x = z + µt, describing waves travelling at speed µ to the left (into the

fresh region). In such a travelling wave the radiative flux has only one component, which we rescale by β

for convenience:

FR = (q/β, 0, 0).

Also, we introduce the new combined parameter

χ = αβ.

Finally, we may reposition the free boundary at the origin. This leads to the system

µY ′ −
1

Le
Y ′′ = 0, x < 0; Y ≡ 0, x ≥ 0; (10a)

µT ′ − T ′′ + q′ = 0, x 6= 0; (10b)

−q′′ + 3α2q + χ(T 4)′ = 0, x ∈ R. (10c)

The jump conditions at x = 0 are

[Y ] = [T ] = [q] = [q′] = 0, (10d)

[T ′] = −ω(T ), [Y ′] = Le ω(T ), (10e)
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and ω(T ) is still given by

ω(T ) = exp

(

N

(

1

Tc
−

1

T

))

. (10f)

Note that the equation (10c) for q implies the continuity of q and q′. The conditions at infinity are

T (−∞) = T−, Y (−∞) = Y−, T (+∞) = T+, q(±∞) = 0, (10g)

in which Y− = Yf is the (dimensionless) “fresh” mass fraction, T− is the dimensionless fresh temperature

and T+ the dimensionless burnt temperature. In fact, direct integration of the equations (see Section 3)

shows that

T+ = T− + Y−. (11)

This conservation law (cf. [3, p.221]) reflects the fact that physically only the conditions in the fresh region can

be controlled, whereas the temperature in the burnt region is determined by the reaction. The conservation

law relating the asymptotic temperatures and fuel mass fraction is independent of the radiation parameters,

so that the temperature far behind the flame front is nothing but the adiabatic flame temperature (in absence

of radiation effects the temperature behind the flame is uniform T ≡ Tad = T−+Y−). The limiting behaviour

for q at infinity means that radiative equilibrium is achieved at infinity. This follows naturally from (10c);

in fact, q may be expressed in terms of T 4 by a convolution formula with a Green’s function.

From [4] we know the existence of a travelling wave solution

(Y (x), T (x), q(x), µ)

of the system (10) for all (positive) values of the parameters, provided the conservation law (11) is satisfied.

Every solution satisfies

T− ≤ T (x) ≤ T− + 2Y−.

It is remarkable that this bound is independent of the other parameters.

3 Matched asymptotic analysis

3.1 Setting the stage

In this section we evaluate the simultaneous asymptotic regime of high activation energy and highly radiative

flames. We thus introduce three small parameters:

ε = N−1

δ1 = χ = αβ

δ2 = 3β−2.

We will couple δ1 and δ2 to ε in a moment.

First, we remark that the equation for Y decouples and can be solved explicitly:

Y (x) = Y−(1 − eLeµx), x < 0; Y (x) = 0, x ≥ 0. (13)

The jump condition for Y ′ leads to an expression for the flame velocity:

µ =
1

Y−

exp

(

N

(

1

Tc
−

1

T ∗

))

. (14)

Since the remaining problem for T , q and µ is independent of the Lewis number Le, it does not appear in

the subsequent asymptotic analysis. However, it plays an important role in the stability analysis, which we

discuss in a forthcoming paper [2].

Since Y is given by (13), the system (10a)–(10c) reduces to a set of two equations

T ′′ = µT ′ + q′,

q′′ = 3α2q + χ(T 4)′.
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The first equation can be integrated once, but since T ′ is discontinuous at x = 0, the integration cannot be

across the origin. We therefore integrate starting from x = ∞ for positive x, while starting from x = −∞

for negative x. This leads to

T ′ = µ(T − T±) + q for x 6= 0.

Here and throughout the paper T± stands for T+ on the right (x > 0) and T− on the left (x < 0). We note

that we will frequently have to treat the equations separately on the right and on the left.

Using the notation (12) the system reads

T ′ = µ(T − T±) + q, (15a)

q′′ = δ2
1δ2q + δ1(T

4)′, (15b)

with “boundary conditions” at infinity

T (−∞) = T−, T (+∞) = T+, q(±∞) = 0,

and at the origin T , q and q′ are continuous, while T ′ satisfies the jump condition

µ(T− − T+) = [T ′] = −µY−. (16)

The first equality stems from (15a), while the second equality is a consequence of the jump conditions (10e)

and the explicit expression (13) for Y . The two equalities in (16) reflect the conservation law

T+ = T− + Y−. (17)

Here and in what follows we assume that µ is order 1, so that we are dealing with asymptotically finite

speeds of propagation. The system (15) now naturally leads to the expansion

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4,

q ∼ q0 + δ1q1 + δ2q2 + δ2
1q3 + δ1δ2q4.

In view of (14) our overriding interest is in the temperature at the free boundary. Therefore we introduce

the notation T ∗
i = Ti(0) for i = 0, 1, 2, hence

T (0) = T ∗ ∼ T ∗
0 + δ1T

∗
1 + δ2T

∗
2 .

In this new notation the relation (14) between the flame velocity µ and the flame temperature T ∗ reads

ln(µY−) ∼
1

ε

(

1

Tc
−

1

T ∗
0 + δ1T ∗

1 + δ2T ∗
2

)

. (18)

There are now several straightforward remarks to make. For the terms on the right and left to balance (i.e.

for a finite propagation speed) one needs

Tc = T ∗
0 .

This reduces (18) to

ln(µY−) ∼ −
δ1

ε

T ∗
1

(T ∗
0 )2

−
δ2

ε

T ∗
2

(T ∗
0 )2

. (19)

We anticipate (see below) that T ∗
1 < 0 and T ∗

2 < 0, so the right-hand side of (19) is always nonzero. It is

now immediate that we need

δ1 = O(ε) and δ2 = O(ε).

If both δ1 � ε and δ2 � ε then we just have µ = 1/Y−. If δ1 and/or δ2 are of order ε then the left- and

right-hand sides balance and the results announced in the introduction follow. Of course, they follow only

after we have found the expressions for T ∗
0 , T ∗

1 and T ∗
2 , which are (we will spend the rest of this section

establishing this, see (39), (44) and (45)):

T ∗
0 = T+ + Y−;

T ∗
1 = −µ−2

(

8T 3
+Y− + 9T 2

+Y 2
− +

16

3
T+Y 3

− +
5

4
Y 4
−

)

;

T ∗
2 = −

µ2

4T 5
+

∫ Y−/T+

0

t

(t + 1)4 − 1
dt −

µ2Y−

16T 6
+

.
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T
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T−

T+

O(x) O(δ−1

1 x)O(δ−1

1 δ
−1

2 x)

Figure 4: The three different scales of the asymptotic problem. The shape of the profiles shown of course uses

some a posteriori knowledge which will be collected in the matched asymptotic analysis in Sections 3.2–3.4.

To calculate T ∗
0 , T ∗

1 and T ∗
2 we have to match the profile that we obtain on the scale x = O(1) to

two larger scales. The scale at order x = O(1) we call the inner region, x = O(δ−1
1 ) is the intermediate

region, and x = O(δ−1
1 δ−1

2 ) is the outer region (see also Figure 4). One may wonder why we do not have a

scale x = O(δ−1
2 ). The reason is that the profile turns out to be flat at this scale and therefore no useful

information can be extracted. Throughout we calculate with δ1 and δ2 as independent quantities. That they

are possibly of the same order in ε does not matter whatsoever for the calculations.

In the intermediate and remote regions introduced above the variables are

intermediate: x̂ = δ1x, T̂ (x̂) = T (x) and q̂(x̂) = q(x);

outer: x̃ = δ1δ2x, T̃ (x̃) = T (x) and q̃(x̃) = q(x).

(This means x̃ is a factor 3 larger than announced in the introduction, alas.) Although we are eventually

interested at the value of T at the origin in the inner region, we start our analysis in the outer region, since

there we know the boundary conditions:

lim
x̂→±∞

T̂ (x̂) = T± and lim
x̂→±∞

q̂(x̂) = 0.

We are thus going to work from the outside inwards.

3.2 The outer region

The problem in the outer region is

δ1δ2T̃
′ = µ(T̃ − T±) + q̃,

δ2q̃
′′ = q̃ + (T̃ 4)′,

with boundary conditions

T̃ (±∞) = T± and q̃(±∞) = 0.

Of course these equations must be solved on the right and on the left separately, because there are an

intermediate as well as an inner region in between. At this outer scale the expansion for T̃ is

T̃ = T̃0 + δ1T̃1 + δ2T̃2,

with an analogous expansions for q̃.

The problem for T̃0 and q̃0 is










0 = µ(T̃0 − T±) + q̃0,

0 = q̃0 + (T̃ 4
0 )′,

T̃0(±∞) = T±, q̃0(±∞) = 0.

Combining the equations we get

T̃ ′
0 =

µ(T̃0 − T±)

4T̃ 3
0

, with T̃0(±∞) = T±. (20)
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On the right, the solution is constant:

T̃0(x̃) = T+ and q̃0(x̃) = 0 for x̃ > 0. (21)

This follows from the fact that no exponentially growing terms can be present, since it is impossible to match

those to the next scale. This argument is silently used several times in what follows.

On the left, we have a choice of the constant solution, an increasing solution and a decreasing solution.

As it turns out, the increasing solution will be the one we need. It starts from T− at x̃ = −∞ and since

equation (20) is autonomous, the solution can be translated and hence the value at the origin is a priori

unknown. It has to be determined by matching with the intermediate region. For now, we just introduce

the undetermined constant

T̃ ∗
0

def

= lim
x̃↑0

T̃0(x̃).

In order to match with the intermediate region we will need the asymptotic behaviour near the origin, which

in terms of T̃ ∗
0 is given by

T̃0(x̃) ∼ T̃ ∗
0 +

µ(T̃ ∗
0 − T−)

4T̃ ∗3
0

x̃ as x̃ ↑ 0, (22)

and q̃0(x̃) = µ(T̃0(x̃) − T−) for x̃ < 0.

Next, the problem for T̃1 and q̃1 (at order δ1) is










0 = µT̃1 + q̃1,

0 = q̃1 + (4T̃ 3
0 T̃1)

′,

T̃1(±∞) = 0, q̃1(±∞) = 0.

The limit behaviour as x̃ → ±∞ is trivial since T± are independent of δ1 (and δ2). As it turns out, we only

need the solution on the right. There T̃0 = T+, so the two equations can be reduced to

T̃ ′
1 =

µT̃1

4T 3
+

, with T̃1(+∞) = 0,

hence the solution is simply

T̃1 = q̃1 = 0 for x̃ > 0. (23)

Similarly, the problem for T̃2 and q̃2 is










0 = µT̃2 + q̃2,

q̃0 = q̃2 + (4T̃ 3
0 T̃2)

′,

T̃2(±∞) = 0, q̃2(±∞) = 0.

Again, we only need the solution on the right, which is simply

T̃2 = q̃2 = 0 for x̃ > 0. (24)

3.3 The intermediate problem

At the intermediate scale the problem reads

δ1T̂
′ = µ(T̂ − T±) + q̂,

q̂′′ = δ2q̂ + (T̂ 4)′,

with boundary conditions for x̂ → −∞

T̂ (x̂) = T̃ ∗
0 + δ1O(x̂0) + δ2[

µ(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)] + o(δ1, δ2); (25)

q̂(x̂) = −µ(T̃ ∗
0 − T−) + δ1O(x̂0) + δ2[−

µ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)] + o(δ1, δ2);

and for x̂ → ∞

T̂ (x̂) = T+ + o(δ1, δ2); (26)

q̂(x̂) = o(δ1, δ2).
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These boundary conditions are determined by the outer solution, namely (22) leads to (25), while (21), (23)

and (24) imply (26). At the intermediate scale the expansion for T̂ is

T̂ = T̂0 + δ1T̂1 + δ2T̂2,

with an analogous expansions for q̂.

The problem for T̂0 and q̂0 is



















0 = µ(T̂0 − T±) + q̂0,

q̂′′0 = (T̂ 4
0 )′,

T̂0(−∞) = T̃ ∗
0 , q̂0(−∞) = −µ(T̃ ∗

0 − T−),

T̂0(+∞) = T+, q̂0(+∞) = 0.

The two equations can be combined into

µT̂ ′′
0 + (T̂ 4

0 )′ = 0. (27)

On the left, we integrate from x̂ = −∞ and obtain µT̂ ′
0 + T̂ 4

0 − T̃ ∗4
0 = 0. Since T̂0(−∞) = T̃ ∗

0 the solution on

the left is

T̂0(x̂) = T̃ ∗
0 and q̂0(x̂) = −µ(T̃ ∗

0 − T−) for x̂ < 0. (28)

On the right, integration of (27) from x̂ = ∞ gives

µT̂ ′
0 = −T̂ 4

0 + T 4
+, with T̂0(+∞) = T+. (29)

This situation is very similar to that in the left outer region. We have a choice of the constant solution,

an increasing solutions and a decreasing solution, and it is this last one we need. Since the equation is

autonomous, the solution can be translated and hence the value at the origin is a priori unknown. It has to

be determined by matching with the inner region. Again, we introduce an undetermined constant

T̂ ∗
0

def

= lim
x̂↓0

T̂0(x̂).

For the asymptotic behaviour near x̂ = 0 we get, using (27) and (29),

T̂0(x̂) ∼ T̂ ∗
0 − µ−1(T̂ ∗4

0 − T 4
+) x̂ + 2µ−2T̂ ∗3

0 (T̂ ∗4
0 − T 4

+) x̂2 as x̂ ↓ 0, (30)

and of course q̂0(x̂) = −µ(T̂0(x̂) − T+) for x̂ > 0.

The problem for T̂1 and q̂1 is










T̂ ′
0 = µT̂1 + q̂1,

q̂′′1 = (4T̂ 3
0 T̂1)

′,

T̂1(±∞) = 0, q̂1(±∞) = 0.

On the left, the equation reduces to µT̂ ′′
1 + 4T̃ ∗3

0 T̂ ′
1 = 0, hence the solution is constant. The value of

the constant is unknown at this point. Since we shortly have to match with the inner region, we use the

undetermined limit value at the origin T̂−
1

def

= T̂1(0
−) to denote the constant:

T̂1(x̂) = T̂−
1 and q̂1(x̂) = −µT̂−

1 for x̂ < 0. (31)

On the right, one obtains µT̂ ′′
1 = −4(T̂ 3

0 T̂1)
′+ T̂ ′′′

0 . Integrating from 0 to ∞ we get, using (30) and setting

T̂ +
1

def

= T̂1(0
+),

T̂ ′
1(0

+) = −4µ−1T̂ ∗3
0 T̂ +

1 + 4µ−3T̂ ∗3
0 (T̂ ∗4

0 − T 4
+). (32)

This equation expresses T̂ ′
1(0

+) in the unknown constant T̂ +
1 . The behaviour of q̂1 near the origin is given

by

q̂1(x̂) ∼ T̂ ′
0(0

+) − µT̂ +
1 + (T̂ ′′

0 (0+) − µT̂ ′
1(0

+)) x̂

∼ −µ−1(T̂ ∗4
0 − T 4

+) − µT̂ +
1 + 4T̂ ∗3

0 T̂ +
1 x̂ as x̂ ↓ 0.
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The problem for T̂2 and q̂2 is






















0 = µT̂2 + q̂2,

q̂′′2 = q̂0 + (4T̂ 3
0 T̂2)

′,

T̂2(+∞) = 0, q̂2(+∞) = 0,

T̂ ′
2(−∞) =

µ(T̃∗

0 −T−)

4T̃∗3
0

, q̂′2(−∞) = −
µ2(T̃∗

0 −T−)

4T̃∗3
0

.

On the left, the equation reduces to µT̂ ′′
2 = −4T̃ ∗3

0 T̂ ′
2 + µ(T̃ ∗

0 − T−), with solution, setting as usual T̂−
2

def

=

T̂2(0
−),

T̂2(x̂) = T̂−
2 +

µ(T̃∗

0 −T−)

4T̃∗3
0

x̂ and q̂2(x̂) = −µT̂−
2 −

µ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ for x̂ < 0. (33)

On the right, the equation becomes µT̂ ′′
2 = −(4T̂ 3

0 T̂2)
′ + µ(T̂0 − T+). Integrating from 0 to ∞ we get,

setting T̂ +
2

def

= T̂2(0
+),

T̂ ′
2(0

+) = −4µ−1T̂ ∗3
0 T̂ +

2 −

∫ ∞

0

[

T̂0(x̂) − T+

]

dx̂ (34a)

The last integral involves the function T̂0(x̂), which we have not computed explicitly. The integral can be

simplified using equation (29) for T̂0:

I2
def

=

∫ ∞

0

[

T̂0(x̂) − T+

]

dx̂ = −

∫ T̂∗

0 −T+

0

T̂0 − T+

(T̂0 − T+)
′
d(T̂0 − T+)

=
µ

T 2
+

∫ T̂∗

0 /T+−1

0

t

(t + 1)4 − 1
dt. (34b)

We could compute the primitive, but that does not lead to more insight. Finally, the behaviour of q̂2 near

the origin is given by

q̂2(x̂) ∼ −µT̂ +
2 + [4T̂ ∗3

0 T̂ +
2 + µI2] x̂ as x̂ ↓ 0.

3.4 The inner problem

We are getting to the core of the problem. In the inner scale we want to solve

T ′ = µ(T − T±) + q,

q′′ = δ2
1δ2q + δ1(T

4)′.

The boundary conditions are for x → −∞:

T (x) = T̃ ∗
0 + δ1T̂

−
1 + δ2T̂

−
2 + δ2

1O(x0)

+ δ1δ2[
µ(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)] + o(δ2
1 , δ1δ2, δ2); (35)

q(x) = −µ(T̃ ∗
0 − T−) − δ1µT̂−

1 − δ2µT̂−
2 + δ2

1O(x0)

− δ1δ2[
µ2(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)] + o(δ2
1 , δ1δ2, δ2).

For x → ∞ the boundary conditions look complicated:

T (x) = T̂ ∗
0 + δ1[−µ−1(T̂ ∗4

0 − T 4
+)x + T̂ +

1 ] + δ2T̂
+
2

+ δ2
1 T̂ ∗3

0

[

2µ−2(T̂ ∗4
0 − T 4

+)x2 + 4{−µ−1T̂ +
1 + µ−3(T̂ ∗4

0 − T 4
+)}x + O(x0)

]

+ δ1δ2[(−4µ−1T̂ ∗3
0 T̂ +

2 − I2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2); (36)

q(x) = −µ(T̂ ∗
0 − T+) + δ1[(T̂

∗4
0 − T 4

+)x − µ−1(T̂ ∗4
0 − T 4

+) − µT̂ +
1 ] − δ2µT̂ +

2

+ δ2
1 [−2µ−1T̂ ∗3

0 (T̂ ∗4
0 − T 4

+)x2 + 4T̂ ∗3
0 T̂ +

1 x + O(x0)]

+ δ1δ2[(4T̂ ∗3
0 T̂ +

2 + µI2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2).

These conditions follow from the analysis of the intermediate region, e.g. (35) follows from (28), (31) and

(33), whereas (36) follows from (30), (32) and (34). Of course the boundary conditions for T (x) and q(x) as

x → ±∞ are related through the equation q = T ′ − µ(T − T±). Furthermore, at the origin q, q′ and T are

continuous.
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We expand T as

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4,

and analogously for q. We now solve subsequently the equations at zeroth, first and second order in the

small parameters δ1 and δ2.

3.4.1 Zeroth order

The equations for T0 and q0 are


















T ′
0 = µ(T0 − T±) + q0,

q′′0 = 0,

T0(−∞) = T̃ ∗
0 , q0(−∞) = −µ(T̃ ∗

0 − T−),

T0(+∞) = T̂ ∗
0 , q0(+∞) = −µ(T̂ ∗

0 − T+).

The functions T0, q0 and q′0 are continuous across the origin. This means that q0(x) is constant, and on the

right T0(x) is constant as well. This implies

T ∗
0

def

= T0(0) = T0(+∞) and q0(−∞) = q0(+∞),

hence, a comparison with the boundary conditions (and (17)) leads to

T ∗
0 = T̂ ∗

0 = T̃ ∗
0 + T+ − T− = T̃ ∗

0 + Y−,

that is,

T̂ ∗
0 = T ∗

0 , (37a)

T̃ ∗
0 = T ∗

0 − Y−. (37b)

On the left, the solution T (x) decays exponentially to T̃ ∗
0 = T ∗

0 − Y−, so

T0(x) =

{

Y−(eµx − 1) + T ∗
0 for x < 0,

T ∗
0 for x ≥ 0,

and q0(x) = −µ(T ∗
0 − T+).

3.4.2 First order

The equations for T1 and q1 are (using (37a))



























T ′
1 = µT1 + q1,

q′′1 = (T 4
0 )′,

T1(−∞) = T̂−
1 , q1(−∞) = −µT̂−

1 ,

T1(x) ∼ −µ−1(T ∗4
0 − T 4

+)x + T̂ +
1 as x → ∞,

q1(x) ∼ (T ∗4
0 − T 4

+)x − µ−1(T ∗4
0 − T 4

+) − µT̂ +
1 as x → ∞.

We start by integrating the second equation from x = −∞:

q′1(x) = T0(x)4 − T0(−∞)4 =

{

[Y−(eµx − 1) + T ∗
0 ]4 − [T ∗

0 − Y−]4, x < 0,

T ∗4
0 − [T ∗

0 − Y−]4, x ≥ 0.
(38)

We thus have, by comparing with the boundary conditions for q1 as x → ∞,

T ∗4
0 − T 4

+ = q′1(+∞) = T ∗4
0 − [T ∗

0 − Y−]4,

hence

T ∗
0 = T+ + Y−. (39)

Although we now have an expression for T ∗
0 , we keep using the notation T ∗

0 in the proceeding for notational

convenience.

Another integration of (38) from x = 0 in both directions gives

q1(x) → q1(0) − I1 as x → −∞,

q1(x) = q1(0) + (T ∗4
0 − T 4

+)x for x ≥ 0,
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where

I1
def

=

∫ 0

−∞

(Y−eµx + T+)4 − T 4
+ dx = µ−1

(

4T 3
+Y− + 3T 2

+Y 2
− + 4

3T+Y 3
− + 1

4Y 4
−

)

. (40)

To obtain T1(x) on the right we solve T ′
1 − µT1 = q1(0) + (T ∗4

0 − T 4
+)x, and we obtain

T1(x) = T ∗
1 − µ−1(T ∗4

0 − T 4
+)x for x ≥ 0, (41)

where

T ∗
1

def

= T1(0) = −µ−1q1(0) − µ−2(T ∗4
0 − T 4

+). (42)

On the left, the limit behaviour of T1 is (using (42))

lim
x→−∞

T1(x) = −µ−1q1(0) + µ−1I1 = T ∗
1 + µ−2(T ∗4

0 − T 4
+) + µ−1I1. (43)

Comparing (41) and (43) with the boundary conditions gives the values for T̂±
1 :

T̂−
1 = T ∗

1 + µ−2(T ∗4
0 − T 4

+) + µ−1I1,

T̂ +
1 = T ∗

1 .

Next, the equation at order δ2 is



















T ′
2 = µT2 + q2,

q′′2 = 0,

T2(−∞) = T̂−
2 , q2(−∞) = −µT̂−

2

T2(+∞) = T̂ +
2 , q2(+∞) = −µT̂ +

2 .

Since the equations are satisfied on R the solution is constant, so T̂−
2 = T̂ +

2 = T2(0) and

T2(x) = T ∗
2

def

= T2(0) for all x ∈ R.

3.4.3 Second order

The equation at order δ2
1 reads



























T ′
3 = µT3 + q3,

q′′3 = 4(T 3
0 T1)

′,

T ′
3(−∞) = 0, q′3(−∞) = 0

T ′
3(x) ∼ 4µ−2T ∗3

0 (T ∗4
0 − T 4

+)x + 4µ−3T ∗3
0 (−µ2T ∗

1 + T ∗4
0 − T 4

+) as x → ∞

q′3(x) ∼ −4µ−1T ∗3
0 (T ∗4

0 − T 4
+)x + 4T ∗3

0 T ∗
1 as x → ∞.

Integrating the second equation from x = −∞ gives

q′3(x) = 4T0(x)3T1(x) − 4T 3
+T1(−∞)

and by using (41) and (43) we obtain for x ≥ 0

q′3(x) = −4µ−1T ∗3
0 (T ∗4

0 − T 4
+)x + 4T ∗3

0 T ∗
1 − 4T 3

+[T ∗
1 + µ−2(T ∗4

0 − T 4
+) + µ−1I1].

Comparing this with the boundary conditions for q′3(x) as x → ∞ gives

T ∗
1 = −µ−1I1 − µ−2

(

(T+ + Y−)4 − T 4
+

)

., (44)

with I1 given in (40).

The equation at order δ1δ2 reads (using (37b))



















T ′
4 = µT4 + q4,

q′′4 = 4(T 3
0 T2)

′,

T ′
4(−∞) = µY−

4T 3
+

, q′4(−∞) = −µ2Y−

4T 3
+

T ′
4(+∞) = −4µ−1T ∗3

0 T ∗
2 − I2, q′4(+∞) = 4T ∗3

0 T ∗
2 + µI2.
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Figure 5: The functions E1

(Y−

T+

)

and E2

(Y−

T+

)

. Notice that T+ = T− + Y− and thus 0 < Y−

T+
< 1.

Integrating the second equation from x = −∞ to x = ∞ gives

q′4(+∞) − q′4(−∞) = 4[T ∗3
0 − T 3

+]T ∗
2 .

On the other hand, the boundary conditions say that

q′4(+∞) − q′4(−∞) = 4T ∗3
0 T ∗

2 + µI2 +
µ2Y−

4T 3
+

.

Comparing these expressions for q′4(+∞) − q′4(−∞) gives

T ∗
2 = −

µ

4T 3
+

I2 −
µ2Y−

16T 6
+

, (45)

with I2 given in (34b).

4 The asymptotic law for the velocity

In this section we take a look at what the speed law tells us. We compare the asymptotic formula with

numerical computations for small finite values of ε. In particular, we calculate bifurcation diagrams where

the radiative parameters α and β are the continuation parameters. For this, the most delicate case where

both terms in the right hand side of (8) are present, is the most interesting, i.e. equation (8a). In this limit

the activation energy ε−1 is coupled to the radiative parameters via

α = α0ε
3/2 and β = β0ε

−1/2.

The relation between the wave speed µ and α0 and β0 is thus

ln(µ Y−) +
α0β0T

2
+

µ2
E1

(

Y−

T+

)

+
µ2

β2
0T 7

+

E2

(

Y−

T+

)

= 0. (46)

We note that due to our choice not to scale Y− (see Section 2.2) this expression should be invariant under

the scaling

Y− → sY−, T+ → sT+, µ → s−1µ, α0 → s1/2α0, β0 → s−9/2β0,

and it is indeed. Furthermore, if one would replace the nonlinear term T 4 in equation (10c) by a linear

approximation, then the solution can be (almost) explicitly calculated for any α and β. In the limit under

consideration an expression for the speed law analogous to (46) is founds, see [2]. It is in that context that

the stability investigation is being pursued.

The functions E1 and E2 depend only on the quotient Y−/T+, and since T+ = Y−+T−, they thus depend

on the ratio of the fuel mass fraction and the dimensionless temperate far ahead of the front. These two

functions are plotted in Figure 5.

For the subsequent numerical calculations we need to pick some values for the parameters and we choose

Y− = T− = 0.5 and hence T+ = 1 throughout. The remaining variables in (46) are thus α0, β0 and µ. We

can plot the surface most easily by writing α0 as a function of µ and β0, and the result is shown in Figure 6.

When we fix β0, then for small α0 there are two solutions which merge in a saddle-node bifurcation as α0

increases. On the other hand, when we fix α0 and use β0 as the bifurcation parameter we see that the set of
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Figure 6: The surface in (µ, α0, β0)-space describing the speed law.
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Figure 7: The solution curves in the (α0, µ)-plane for fixed β0 = 0.3 and ε =

1, 0.5, 0.2, 0.11, 0.1, 0.09, 0.08, 0.07, 0.05, 0.02, 0.01, 0.005, 0.001. As ε decreases the solution curves

shift inwards, i.e. the curve at the top corresponds to ε = 1.

solutions forms an isola in the (β0, µ)-plane. This means that β0 has to be carefully selected, not too large

and not too small, for a flame with finite propagation speed to exist. If α0 is too large then there are no

travelling waves. The maximum value of α0 for which solutions exist can be calculated to be

αmax =

√

T 3
+

2e3Y 2
−E2

1E2
.

To compare the asymptotic analysis with numerical computations, we implemented the travelling wave

problem in the AUTO software package [7] for continuation of solution to ODEs. We treated the three

different spatial regions with some care to reflect their respective scaling with ε (or with δ1 and δ2 to be

more precise). We calculated the bifurcation diagram using both α0 and β0 as parameters for a set of small

values of ε. The resulting pictures are shown in Figures 7 and 8, and one can see how the asymptotic

regime is approached. For the (α0, µ)-diagram the solution curves become S-shaped as ε decreases, and then

approach a bell shaped curve as ε → 0. In the (β0, µ)-diagram the solution branch curves back more and

more and finally it closes on itself as ε approaches 0.

To be able to compare with the analytic expression in the limit ε → 0, we fixed ε = 0.001 and computed

the (β0, µ)-diagram for various values of α0. The resulting curves can thus be compared with the contour

lines of the surface in Figure 6. The numerical computations and the contour lines of the analytic expression

are depicted in Figure 9 side by side. The agreement is excellent.
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Figure 8: The solution curves in the (β0, µ)-plane for fixed α0 = 0.3 and the same values of ε as in Figure 7.

As ε decreases the solution curves shift inwards.
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Figure 9: On the left is the (β0, µ) bifurcation diagram for ε = 0.001 and α0 =

0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.375. As α0 increases the curves are moving inwards. On the

right are, for the same set of α0 values, the contour lines of the surface (see Figure 6) describing the asymp-

totic speed law as ε → 0.
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Appendix: the Eddington equation

We consider radiative transfer in a medium of opacity κ at temperature T . A photon travelling at the light

speed c covers a distance L = 1/κ (the mean free path length of the photon) before being absorbed. Loosely

speaking, L = ∞ (κ = 0) corresponds to a transparent medium (optically thin limit) and L = 0 (κ = ∞) to

an opaque medium (optically thick limit).

We start from the equation of radiative transfer for the radiative intensity I = I(r, ν,Ω, t),

1

c

∂I

∂t
+ Ω · ∇I = κ(B(T, ν)− I). (47)

Here r is the position, t the time, ν the frequency and Ω the unit vector in the direction of propagation.

The Planck distribution B governs the emission of light by the medium and is given by

B(T, ν) =
2h

c2

ν3

ehν/(kT ) − 1
,

where k and h are the Boltzmann and Planck constants.

Since we would like to consider the total amount of radiation, we denote by 〈φ〉 the integral of a function

φ over all frequencies and directions, rescaled with c:

〈φ〉 =
1

c

∫ ∞

0

∫

S2

φ(ν,Ω) dΩ dν.

Observing that

〈B(T )〉 = aT 4 with a =
8π5k4

15h3c3
,

one obtains from (47) the system [14, 9, 10]

∂ER

∂t
+ ∇ ·FR = cκ(aT 4 − ER); (48a)

1

c

∂FR

∂t
+ c∇PR = −κFR, (48b)

for the radiative energy density ER, the radiative flux FR and the radiative pressure PR, defined by

ER = 〈I〉,

FR = c 〈Ω I〉,

PR = 〈Ω ⊗ Ω I〉.

The factor c is, as is usual, included in the definition of FR so that it represent an energy flux. Notice that

equations (48) do not form a closed system. They are the first members of a hierarchy, and the system still

needs to be closed. If the emission and absorption would be isotropic, then we have

FR = 0,

and also

PR =
1

3
ERId. (49)

In the so-called “P1-model”, which leads to the Eddington equation, (49) is taken as a closure assumption,

so that (48) is replaced by

∂ER

∂t
+ ∇ ·FR = cκ(aT 4 − ER); (50a)

1

c

∂FR

∂t
+

1

3
c∇ER = −κFR. (50b)

Since photons travel at light speed we may assume that the radiation is approximately at steady state at

the typical time scale of a moving flame, i.e., the system (50) reduces to

∇ · FR = cκ(aT 4 − ER);
1

3
c∇ER = −κFR.
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It is not difficult to eliminate one of the unknowns, say ER, by differentiating the first equation, whence

cκ∇ER = cκa∇(T 4) −∇(∇ · FR),

so that

∇(∇ · FR) = 4κσsb∇T 4 + 3κ2
FR. (51)

Here σsb = 1
4ac is the Stefan-Boltzmann constant.

Equation (51) is the Eddington equation for the radiative flux FR, which is often written as

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0.
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