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Abstract

We investigate self-similar solutions of the thin film equation in the case of zero contact angle boundary
conditions on a finite domain. We prove existence and uniqueness of such a solution and determine the
asymptotic behaviour as the exponent in the equation approaches the critical value at which zero contact
angle boundary conditions become untenable. Numerical and power-series solutions are also presented.

1 Introduction

We consider the thin film equation on a bounded domain with zero contact angle boundary conditions

1)

he = —=(h"heaz)zs t>0,z€(—L,L)
h(£L) = hy(£L) =0, h>0on (—L,L).

Here n € R is a parameter; certain restrictions on the range of n are expected to apply, as explained below.
The thin film equation has the scaling invariance (u,z,t) — (uu, Az, u"A*) with g, A > 0. In this paper
we investigate scaling invariant solutions of (1), which in the present context of a fixed bounded domain are
separable (A = 1).

The thin film equation arises in a number of contexts, such as in the description of droplets of viscous fluid
spreading under surface tension. We refer to [1, 2, 6, 7, 8, 15] for overviews and extensive lists of references.
The boundary conditions in (1) have been chosen to reflect a situation where fluid is either draining over an
edge or is absorbed by a porous substrate outside of the domain (—L, L); see [9], for example. Problem (1)
may also describe aspects of draining through singularities or near-singularities which can arise due to film
rupture [5].

There may be mathematical difficulties in imposing a zero contact angle on the boundary. This is well-
known in the context of moving contact lines, where for n > 3 the solution cannot spread beyond its initial
support. The situation for fixed boundary conditions has been studied less widely than the moving boundary
case. Formal analysis of the asymptotic behaviour of solutions near the boundary (see [3, 9, 10]) suggests
that for n > 2 the flux A"™h,,, at the boundary is always inwards and has to be prescribed. This does not
make much sense in the context of draining and it clearly falls outside the scope of (1). For n < 2 it is found
that outward flux is a genuine possibility. Although (for n < £) the support may initially retract from the
fixed boundary, it eventually covers the whole interval and draining occurs.

The scaling invariance suggests that when a meaningful solution exists its large time (or extinction)
behaviour is governed by a separable solution (this has been supported by numerical calculations [10]). The
study of separable solutions not only contributes to the description of this asymptotic behaviour, but it
also gives further evidence for the criticality of n = 2 for zero contact angle conditions on fixed boundaries.



Moreover, rigorous analysis of separable solution provides another step towards understanding the set of
self-similar solutions of the thin film equation (cf. [4] for source type solutions and [3, 9] for dipole solutions).
We remark that the methods in this paper are genuinely different from those previously used for source type
and dipole solutions. The method developed here incorporates the determination of both lower and upper
bounds on the solution, allowing a rigorous check of formal results obtained from matched asymptotics. This
will be illustrated by examining the limit behaviour of the self-similar solutions as n 1 2.

Investigation of self-similar solutions for higher-order equations, such as the thin film equation, is a
challenging task because the analysis of the porous medium equation h; = (h™h;), (the corresponding
second order parabolic equation with scaling invariance) relies heavily on maximum principle arguments and
phase plane analysis, neither of which is available for higher-order equations. We note that the separable
case has a special status in the sense that the resulting ordinary differential equation has a translational
symmetry as well as a scaling one (so it can be reduced to a second order non-autonomous (or third order
autonomous) equation, but this is not the most practical way to proceed, as will become clear below).

Looking for separable solutions, we write h = t~'/?u(z) and obtain infinite time extinction for n > 0
with v satisfying

(’Un'l)l”)' — %’U. (2)

For n < 0 we use the Ansatz h = (T — t)'/I"v(z), which extinguishes in finite time, to arrive at

1
(1)"1)'")' = .
In|
Finally, for the borderline value n = 0 the equation is linear and an explicit solution can be constructed
(which has infinite time extinction). To capture all cases in one equation, we use the scaling v = |n|'/™v and
obtain

(u"u”')' - . (3)

Instead of working on a fixed domain (—L, L) we exploit the scaling invariance to convert to solutions of
fixed maximum height, while a priori the interval length 2L,, is unknown:

(unulll)l — u’
u > 0on (—Ly,, Ly,),
u(xL,) = u'(£Ly) =0,

MaXge(— Ly, L) u(z) =1.

(4)

We have thus used the scaling invariance to fix the height of the solution; the remaining, translational
symmetry will be used to reduce the order of the equation (see Section 2).

As observed in [3, 10], the boundary conditions require the constraint n < 2. In particular, it follows
rigorously from arguments analogous to [3, Section 6] that no solution of (4) exists for n > 2, implying that
draining via zero contact angle is not possible for n > 2. In that case physically meaningful solutions of (1)
conserve mass and have a non-zero contact angle at the edges of the support; defining

J=—um,_ (5)
to be the flux of material leaving the domain |z| < L through z = —L we must therefore replace the zero
contact angle boundary condition at x = —L with J = 0 (a similar zero flux condition must also be imposed

at ¢ = L) and the asymptotic behaviour is given by a steady-state solution (a parabola) rather than by a
separable one.

Turning our attention back to the separable solutions, with the nonexistence result for n > 2 in mind we
restrict our attention to the parameter regime n < 2.

Theorem 1 Problem (4) has a unique solution (un,L,) for any n < 2. The solution is symmetric, i.e.
Un(—2) = un(z), and depends continuously on n. Asn 12 the asymptotic behaviour is un(z) =1 — (2 —
n)~222 + O(2 = n) and L, = 21/2(2 — n)'/* + O((2 — n)%/*).
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Figure 1: A comparison of numerically calculated solutions (solid line) with the asymptotics (equations (7)
and (9); dashed lines) and the higher order approximation (8) (dotted line) for 0 < n < 2.

It is interesting, and quite helpful in the proof, to observe that the asymptotic behaviour near the
boundary z = £L,, is (this can also be proved via arguments similar to those provided in [3, Section 6])

C(z £ L,)? n<i
up ~ < C(x+ Ly)?|In(z + L,)|*/? n=1 with C > 0. (6)
C(:L' + Ln)s/(n—i-l) n> %

We note that for n > 2 this asymptotic behaviour is not compatible with the boundary conditions, which
provides a strong clue for the nonexistence result for n > 2.
The following is a direct consequence of the scaling invariance and Theorem 1:

Corollary 2 Let (un,Ly,) be the solutions defined in Theorem 1. All separable solution of (1) are given by

e (T =07 up(fpz) - n <0
h=q e (Fo/DHT) g (Lea) n=0 with T € R
e (4 T) 7" up (52 ) 0<n<?2

The asymptotic behaviour as n 1 2 can be compared with the formal results from [10]. Looking at
solutions of (2) on the domain (—1,1) one finds after appropriately rescaling the result in Theorem 1 that
asymptotically

v ~2732(2-n)"Y2(1-2%) as nt2, (7)

which indeed was predicted in [10]. In Figure 1 we compare the asymptotic formula from Theorem 1 with
numerical results. Higher-order correction terms to the result (7) can be fairly readily constructed formally,
yielding

1 1 €
||vn||m~E(1—Zalns—%(7+ 151n2)) as n12, )

where € = 2 — n, and this more accurate approximation is also shown in Figure 1.
In addition, it was predicted in [10], again by application of formal asymptotics, that

[[vn]loo ~ a(nAE) ™™ (cosh Ag — cos Ao) as nlo0 9)

where )¢ is the smallest positive root of tanh A+tan A = 0 and In(a) = filfg(l —In fo)dz / f_llfg dz, where
Jo(z) = cosh(Ag) cos(Agz) — cos(Ag) cosh(Agz) is the zeroth eigenmode for n = 0. Figure 1 also demonstrates
strong numerical support of this result. The leading order behaviour In(||v,||sc) ~ —(Inn)/n— (410 Xg)/n as
n | 0 follows from the continuity result in Theorem 1. The value of the multiplicative constant in (9) could



be obtained rigorously by constructing bounds suited to the limit n — 0. In this paper we only perform such
a detailed analysis for the limit n 1 2, which we find more interesting from the point of criticality (besides,
it may serve as an example for other limits such as n — 0 and n | —oo, cf. [10] for formal results).

In Section 2 we present a proof of Theorem 1 and we make some concluding comments in Section 3. The
numerical method is described in Appendix 1 and an alternative (semi-analytic) method for constructing
solutions in Appendix 2.

2 Proof of Theorem 1

We start with some preliminary observations. Equation (3) implies that u'" has at most one sign change
(from negative to positive). It easily follows from the boundary conditions that any solution of (4) has
precisely two monotone laps, and that at the maximum z¢ € (=L, L,) one has u(zg) = 1, u/(z0) = 0,
u(xzg) < 0.

Introducing t = u > 0 and z(t) = 271/2u"

we obtain for the two monotone laps of u:
\/_dttn\/_dtQ b (10)
z2(0)=2(1)=0and z >0 on (0,1).
Notice that 2’ = v/2u" and /zz" = u"". In the following we will write for convenience
L2(t) = t"\/2(t)2" (¢).
We now introduce the notion of super- and subsolutions.
Definition 3 We call y a supersolution if \/y(Ly)' >t and subsolution if \/y(Ly)' <t
Although our equation is not of second order, we can deduce a comparison lemma:

Lemma 4 Let y; be a supersolution and y2 a subsolution on (to,t1). Let y1(to) = ya2(to), y1(t1) = ya2(t1)
and Lyi(t1) < Lya(t1) and Ly1(t1) < 0. Suppose that y2 > y1 > 0 on (to,t1). Then y2 = y1.

Proof. First, Ly1 < Lys on (tg,t1):

S

y1(s)

Ly (t) = Lys (01) — / (L)' () ds < Lya () — / 1 ds (11)

t1

t1
< Lya(t1) — dS < Lya(t1) — /t (Lya)'(s) ds = Lya(t).-

A% ya(s

Second, from (11) and the assumptions we see that Ly; < 0 and hence y < 0 on (tg,t1). We conclude that

Vi2yi < iyt and from Ly, < Ly, that /g1y < (/y2y5 and hence yy' < yy on (to,t1). Together with

the assumptions y; (to) = y2(to), y1(t1) = y2(t1) and y2 > y1 on (to,t1), the maximum principle implies that

Y2 =Y1- O
Uniqueness follows fairly directly from the previous comparison lemma.

Lemma 5 There is at most one solution of (4). It must be symmetric and corresponds to a solution of (10)
with £Lz(1) = 0.

Proof. First, there is no asymmetric solution. Suppose by contradiction that there is one. Then the
monotone laps are two different solutions z; and z» of (10). Since u"'(zo) # 0 for an asymmetric solution we
will have (possibly after exchanging indices) £z1(1) < 0 < L22(1) and z; > 22 on (1 — §,1) for small § > 0.
Define typ = inf{0 < ¢t < 1|21 > 23 on (¢,1)}. Then 2;1(tg) = 22(t9) and Lemma 4 proves that z; = z2 on
[to, 1], a contradiction.

Second, there is at most one symmetric solution. Suppose there are two symmetric solutions with
corresponding monotone laps z1 and 2. Since uf’(0) = u5'(0) = 0 and u{(0) # u}(0), it follows (possibly
after exchanging indices) that £z1(1) = L2z2(1) and 21(1) < 25(1), hence 21 > 22 on (1 —4,1) for small § > 0.
The same reasoning as before leads to a contradiction. O

We now introduce the notion of supersub pairs.



Definition 6 We call (y1,y2) a supersub pair if \/y2(Ly1)" >t and \/y1(Ly2)' <t on (0,1), y1(0) = y2(0) =
y1(1) =92(1) =0, y1 > y2 on (0,1) and Ly1(1) < Ly2(1) = 0 and y1(1) < y5(1) <O0.
Notice that when (y;,y2) is a supersub pair then y; is a supersolution and ys is a subsolution. Furthermore,

if (y1,y2) is a supersub pair, then so is (Ay;, A\~1ys) for all A > 1. We have defined supersub pairs because
they have the following squeezing property:

Lemma 7 Let z be a solution of \/z(Lz)' =t on (to,1) with z(tg) = 2(1) = 0. Let (y1,y2) be a supersub
pair. Suppose Ly1(1) < Lz(1) < Ly2(1) =0 and y2 < z < y1 on (1 —4,1) for some § > 0. Then z < y; on
(to,1]. If to =0 then y» < z < y1 on [0,1].

Proof.  First notice that y; is a supersolution and y- is a subsolution. Let
ty = inf{t € (to,1) |y2 < 2z <y on (¢,1]}.

If t; = to we are done. If 1 > to then there are two possibilities: y1(t1) = 2(t1) or y2(t1) = z(¢1). We will
first exclude the former. Suppose that y(t1) = z(t1) so z > y; in a left neighbourhood of ¢; (this follows
from the (first) strict inequality in Definition 6). Let

to = inf{t <t |Z > Y1 on (t7t1)}.

Clearly z > y; on (ta,%1) and 2(t2) = y(t2), 2(t1) = y(t1). Also,

1 1

ds > Ly (1) — ds > Ly (1) — / (Ly1)'(s)ds = Ly(t1).

t1 \/ t1 yZ 5 t1

Lemma 4 gives a contradiction.
We are left with the case y2(t1) = 2(t1). Let

Lz(t1) = Lz(1) —

t3 = inf{t <t |Z < y2 On (t,tl)}.

If t3 = to > 0 then we are done. If t3 > to or if t3 = tg = 0 then z(t3) = y2(t3) and 2(t1) = y(t1), and z < y
on (t3,t1). Also,

1 1 1 / B
Lz(t1) = L2(1) — /t1 ) ds < Ly»(1) — /t1 mo ds < Ly»(1) — /n (Ly2)'(s) ds = Ly(t2).

Lemma 4 now again gives a contradiction, which completes the proof. O

In particular this gives bounds on the solutions of (10).
Lemma 8 Let (y1,y2) be a supersub pair. If z is solution of (10) with Lz(1) =0, then ya» < z < y;.

Proof. If y1(1) < 2'(1) < y4(1) < 0 then Lemma 7 gives the result. If 2'(1) < y{(1) or 2'(1) > y4(1) then
Lemma 4 leads to a contradiction since y; is supersolution and y» is subsolution. If none of the inequalities
hold, i.e. /(1) = 4} (1) or 2'(1) = y4(1), then A~ 'yi (1) < 2/(1) < Ayh(1) for any A > 1. Since (Ay1, A\ 'y2)
is a supersub pair one obtains from Lemma 7 that A~'y, < 2z < Ay; and the required result is obtained by
taking the limit A | 1. O

Supersub pairs actually do exist but only for n < 2. We remark that the shape of the supersub pair is
partly determined by the asymptotic behaviour near the boundary described in (6).

Lemma 9 For n < 2 there exists a supersub pair. In particular, for p sufficiently large

(=273 _y) n>
y1 =4 ptlnt! n=
p’(t _ t(4—2n)/3) n<

and Yo = pH(t —t37") (12)

[T

is a supersub pair.



Proof. For n # % one finds

def 1 p_ (2=n)@2n—1)% (53 t—t>"
g1 =t ya(Lyr) =gt [ = ta—2n73]

(3—n)(2 - |t — t(4=2m)/3)

92 E 7 yr(Lys) =p7! 5 " (34 (5 - ") t—3n

We want to show that, for p sufficiently large, g1 > 1 > go for all ¢ € (0,1). All other requirements are easily
checked. Since uga(t) is a bounded function on [0,1] and p~1g;(t) is positive and bounded away from 0, one
obtains g; > 1> g2 on (0,1) for u sufficiently large. For n = % the same line of arguments holds. O

Having already proved uniqueness we now address the issue of existence.
Lemma 10 For n < 2 there exists a solution of (10) with Lz(1) = 0.

Proof.  Let (y1,y2) be the supersub pair from Lemma 9. We are going to apply a shooting argument
with @ = 2/(1) as shooting parameter. Let z, be the solution with 2(1) = 0, 2'(1) = a and Lz(1) = 0,
corresponding to (u,u’,u”,u"")(0) = (1,0,a/v/2,0). For each a < 0 either z,(t,) = 0 for some t, € [0,1) or
24(0) > 0. It follows from Lemma, 4 that if a > y5(1) then z, hits 0 at some point ¢, > 0 and z, < y2 < y1
on [ta, 1), while if a < y{(1) then z, hits the z-axis and z, > 0 on [0, 1).
Define
ao E inf{a < 0| z4(ta) = 0 for some t, € [0,1)}.

Clearly ag > yi(1) is well-defined and we claim that z,, is the desired solution. First notice that ¢, < tg
and z4 > 23 on [tg,1) for all § > a > ap by Lemma 4. Furthermore, we deduce from the definition of ag
and the continuity of z, as a function of a that t, | 0 as a | ag. Therefore, z,(t) T 24, (t) as a | ag for
all t € (0,1). Finally, z, < y1 on [te,1) for all @ < ag by Lemma 4. Hence z,, < y1 on (0,1) and thus
Za,(0) = 0, which completes the proof. O

Having proved existence and uniqueness, we define z,(t) to be the unique solution of

Ven (" Znzn) =t,
zn > 0on (0,1), (13)
2n(0) = 2,(1) = L2,(1) = 0.

The corresponding solution u,(x) of (4) is implicitly defined by

L2
= E—— 8’
Un 'V Zn(S)

Lemma 11 The solutions z, of (13) and (un,Ly) of (4) depend continuously on n for n < 2.

x un € [0,1].

Proof. It is not difficult to see from the proof of Lemma 9 that the constant y can be chosen uniformly for
n in compact subsets of (—oo, 1) U (%,2). For n close to 3 it suffices to redefine y; = 3 £ |t — t(4=20)/3|,

n—3
n # % Then p can again be chosen uniformly in the neighbourhood of n = %, and
im 3£ |p—¢(4-2n)/3) — _
r}l—in%“"’%”t t | ptlnt,

so that the transition through n = 1 is smooth. This also explains the choice for n = £ in (12).
With the bounds produced by Lemma 8, which are uniform by the above arguments, it is not difficult to
verify that u, — un, as n = ng € (—0,2). O

To calculate the asymptotic profile of the solution as n 1 2 we need a better supersub pair.
Lemma 12 Let n =2 —e. Then for € > 0 sufficiently small the following is a supersub pair:
y1 = C. (t25/3 _ t1+5/3—2s2/3) and ys = D, (t25/3 _ t1+s/3)

with

_ 374 ]1/4

334(3 — 2¢)71/4
C. = [52(3+2e)4(1 B2 ]

and _DE = [m



Proof.  Straightforward but tedious calculations give

h =Vg2(Lyr)’

53/2D;/2 9 —2¢2/3 1—e/3—4e%/3 te/3 —t

from which we infer that

& & _9g2
by =t+1e(—tlnt—2t+2) + \/(3_25)82)23“5) (t725°/3 — 1) + 2H, (t,¢),

where Hy(t,¢) is a uniformly bounded function on [0,1] x [0,&0] for & sufficiently small, H;(1,e) = 0 and
Hy € C*((0,1] x [0,&0])- Since the second and third terms are positive and dominate the remaining term,
one obtains that hy >t on (0,1) for ¢ sufficiently small. Likewise,

. D20/ I e it
o 2 (L) = S (e 222 4 (9 - )ty [ EE DT

from which we infer that
hy =t — te (tlnt — 2t + 2) + 2 Ha(t,¢€)

where Hs(t,¢) is a uniformly bounded function on [0,1] x [0,&0] for g¢ sufficiently small, H5(1,e) = 0 and
H, € C* on (0,1] x [0,£0]. Since the second term is negative and dominates the final term it follows that
h2 < t on (0,1) for € sufficiently small. All other requirements for a supersub pair are also satisfied (e.g. one
finds that y1/y2 = 1+ 3¢ + O(e?)). O

This supersub pair is sharp enough to determine the behaviour as n 1 2.

Corollary 13 The limit profile of (un,Ly) asn 1 2 is uy(z) = 1 — 22— n)"Y222 + 02 — n) and
Ly, = 22(2 —n)'/* + O((2 — n)3/4).

Proof. Let n = 2 —e. Let (y1,y2) be the supersub pair from Lemma 12. One finds that y;(t) =
21/2¢=1/2(1 —t) + O(e/?), i = 1,2 for t € (0,1) and

—1/2 —1/4.1/4 1 5/4 . .
; =2 € + &7 Fi(t,¢), 1=1,2,
yz /1 —t l( )

where F;(t,€) is uniformly integrable on [0,1] for small € > 0. Since y» < z < y; it follows that

1 1
T = :|:2_1/4/ 1( ) ds = i2_1/251/4/ \/11_ ds + O(e%*) = £2'2 /4 /T —u + O(%/*).
u zZ\Ss m — S8

Hence L,, = 2'/2¢'/* 4 O(5/*) and u(z) = 1 — 26~ /222 + O(e) for © € (—Ly, Ly,). O

3 Discussion

An important open problem in the study of separable solutions is the role they play in the description of
the large time (or extinction) behaviour of solutions of (1). This is a more general problem faced in relation
to self-similar solutions of the thin film equation. Higher-order equations such as the thin film equation do
not exhibit a comparison principle so that many of the methods used for second-order degenerate equations
(e-.g. the porous medium equation) cannot be applied. This issue has so far only been resolved for the special
value n = 1 in the case of source type solutions [11]. For n = 1, one may hope to apply this method to the
separable solution.

The separable solutions studied in this paper are another step towards a global study of all self-similar
solutions to the thin film equation. The main challenge concerns the so-called self-similar solutions of the
second kind, which refers to situations in which the exponents cannot be determined a priori via dimensional
analysis and conservation laws. Such situations arise for example in the dipole problem when n # 1 (cf. [9])
and for the hole-filling (focussing) problem.



Finally, multidimensional (even radially symmetric) generalisations of (1) await investigation (cf. [12]
for source type solutions). Also, the method in this paper can be generalised to equations of the form
hy = —(hE(WH(h™hy)s)s)z With k,1,m € R (cf. [14]). For example, when k = [ = 0 then the resulting ODE
has a variational structure and it is expected that there exists a separable solution if and only if m > —1,
or in more dimensions (with hy = —A?(h™*1)/(m + 1)) when m > max{—1,—8/(N + 4)} where N is the
dimension, at least in a star-shaped domain (the local behaviour near the boundary requires m > —1, while
the other lower bound (for N > 4) follows from a (global) Pohozaev type identity). This is comparable
to the situation with the porous medium equation h; = V - (h™Vh), for which the critical exponent is
m = max{—1,—4/(N +2)}. In contrast, for the thin film equation hy = —V - (h"VAh), we expect separable
solutions to exist in any dimension when n < 2, it being noteworthy that in this case the local behaviour
near the boundary gives an upper bound rather than a lower one.
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Appendix 1 - Numerical methodology

Numerical solutions to the time-dependent problem (1) were obtained in [10]; here we describe the first
simulations of the ordinary differential equation (2). The numerical self-similar solutions on which Figure 1
is based are obtained by solving the problem (2) on a half-domain 0 < z < 1 (it is a simple matter to use the
scaling invariance of (1) to scale L to 1) with symmetry conditions v'(0) = v"(0) = 0. For n < } equation (2)
is then discretised using centred finite differences for the derivatives and an average for v™; for a discussion of
issues related to the type of average chosen see [10]. Choosing a uniform mesh {z¢g = 0,21, 22,...,2ny = 1},
equation (2) leads to a set of nonlinear equations for v; = v(x;), 0 < i < N; in practice we take N = 10000
(this large number of (uniformly spread) mesh points is chosen to ensure accurate results even in the singular
limits n | 0 and n 1 2). We fix the symmetry boundary conditions at z = 0 using ghost points, v_; = v; and
V_2 = va. At z =1 we take vy = 0 and vny1 = vn—_1, implying a zero contact angle; alternatively we could
impose the quadratic behaviour as given by (6) directly. The resulting system of N + 1 nonlinear equations
is then solved by Newton iteration. For the numerical results presented above (see Figure 1) we start from
n = 0.49 and then use continuation in n to decrease the value towards zero.

For n > % it is an important numerical consideration that the second derivative of the interface behaviour
blows up as z — 1, cf. (6). To overcome the singular behaviour in the second derivative we define v = f3/(n+1)
(a transformation which also enables the boundary layer behaviour for n close to 2 to be captured readily),
whereby f satisfies

3(2-n)

<f2flll+ n+1 fflfll+

(2 —n)(1 —2n)

) = e, (14)

and from (6) we infer that f(z) ~ C(1 —z) as x — 1~ for some C > 0. The symmetry conditions at z = 0
are retained and we impose this linear behaviour on f at z = 1; this is achieved via the ‘boundary condition’
f''~ —=f/(1 —z), which is discretised using a ghost point. Equation (14) is discretised in a similar manner
to equation (2) (again using centred differences) and the resulting set of nonlinear equations solved using
Newton iteration with continuation as outlined above. The results of this process are also shown in Figure 1,
with the two codes yielding consistent results as n approaches % from below and above.

We can also determine the quantity v"v"" at x = 1 (corresponding to the flux leaving the domain through

x = 1) numerically. Integrating (2) between z = —1 and £ = 1 and using the symmetry of the solution (as
provided by Theorem 1) yields
ndv L (15)
vt —— = — vdzx
de3|,_, 2nJ_;

where the quantity on the right hand side is easily approximated from the numerical solution. Formal
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Figure 2: A comparison of numerically calculated values of the flux (solid line) with the asymptotics (leading
order of (16) and (17); dashed lines) and the higher order approximation (16) (dotted line) for 0 < n < 2.

analysis implies

n,

1
"™ 1——51n5—§(1—1n2)) as nt2, (16)

1
|z-=1 ~ 3\/8_6< 4
with € = 2 — n, where we have included corrections to the leading order result from [10]. The leading order
term again follows rigorously from Theorem 1; we see from Figure 2 that the correction terms have a lesser
effect than those for ||v||o (cf. (8)). For the limit n | O one finds the asymptotic expression

o™ _y ~ a3 (nAg) T/ (cosh g sin Ao — cos g sinh Ng)  as n ] 0, (17)

(with Ao & 2.365 and a = 0.5523, as defined at the end of Section 1). We plot these approximations and the
numerical result for (15) in Figure 2.

Appendix 2 - Power series solutions

The purpose of this appendix is to note briefly some power-series solutions which provide an alternative
approach to the purely numerical one in solving the boundary-value problems outlined above; we record the
procedure for completeness and because it is also applicable to other types of (similarity) solution which
are in most other respects significantly more difficult to analyse. Encouragement for such an approach is
provided by the rapid convergence of such series for the second-order problem (the porous medium equation,
see [13]). Besides, extending the asymptotic analysis of the limits n 1 2 and n | 0 into the complex plane
suggests that in the former case the only singularities are at = £1 (with the leading order solution having
the power-series representation (7)), while in the latter case the singularities are located in the limit at values
of = such that
cosh Ag cos(Aox) = cos Ag cosh(Ngz),

which implies that the nearest complex singularities to x = +1 are located at & ~ +2.42 £1.574; those

nearest to z = —1 thus have |z + 1| & 2.11, so the singularity at £ = +1 will (just) determine the radius of
convergence of the power series about z = —1.
The approach is most readily implemented in the special case n = —1, it being shown in [10], Section

6.1, that a first integral of (3) can then be obtained, leading to the third order problem

d®g 1
P 5(92 - 9%) (18)



where g, = u and go is an unknown constant. Seeking a power series solution for equation (18) of the form

g(@) = >y am(z + 1)™ yields the recurrence relation

N | =

m
Bm+3)(3m +2)(3m + 1)amy1 = Zakam,k m=12,... (19)
k=0

with g2 = ad — 12a1, where ag and a; are the free parameters in the local expansion, but can be fixed by
imposing g = ¢g"” = 0 at x = 0 provided the radius of convergence is greater than unity (as seems to be the
case) and in this way we find ag ~ —41.35276182, a; =~ 57.00169701; we estimate numerically that the radius
of convergence is close (if not equal) to two and the power series expansion given by (19) therefore provides
a representation of the solution on the whole domain x = —1 to £ = +1 and converges extremely rapidly to
the left of the symmetry boundary = 0 (in practice only five terms are needed for 5%, and eight for 1%,
accuracy). Somewhat remarkably, the relevant complex plane singularity structure in this case can in effect
be determined a priori, as follows. Complex plane singularities to (18) have

g~ 120/(z. —2)? as T = T; (20)

we anticipate there will be such singularities on the real axis, having |z| > 1, and also on the imaginary axis
(on which g is purely imaginary), the latter being closer to the origin than the former. Moreover, we have
the symmetries

g(@) = —g(=z),  glz+1) =g @ +1)), glz—1) =g (z-1)). (21)

The most ‘economical’ way in which the three nearest singularities to £ = —1 can be arranged is therefore
to have one on the real axis and two on the imaginary axis, in which case the second of (21) implies that
the singularities are located at

ze=-3, @=+iV3. (22)

The radius of convergence is thus two (while the singularities do not have to be arranged in the simplest
fashion compatible with (21), the numerical evidence that they do so (obtained by solving (19)) is over-
whelming). Determining a,, for large m from the superposition of (20) over the three nearest singularities
Z., given by (22), implies

45 (Bm+2)(3m +1)

Ay ~ —?(—1)7” 93m as m — 0o; (23)

the correction terms to (22) due to go are a factor (3m)® smaller, while those due to the eigenmodes
determined by linearising (18) about (20), namely (z. — z)(7£V719/2 are smaller in size by a factor (3m)'3/2.
Moreover, by the first of (21), the next nearest singularities may have |z + 1| = 4; whether this is true or not,
we may expect (23) to provide an extremely accurate representation, and this is confirmed by comparison
with the numerical results giving ten significant figures correctly (commensurate with the accuracy of ag
and a1) by the tenth term in the series. By combining the solutions to (19) for smaller m with (23), we may
thus obtain a series solution which is exceptionally accurate (and is consistent with the numerical results in

[10]).
For other n, we formulate the problem in the integral equation form
d?u J 1 [
Tt [ ueas 24

where the constant J (the flux through z = —1, c¢f. (5)) must be determined as part of the solution. We
illustrate the procedure by considering the range n < %. Iterating in (24) starting from the first of (6) yields

J _ nJ? _ nJ? (2na + B(n + 1)) _
~ 2 3-2n 4—4n 1 5—6n
u Clz+1) Cra (z+1) C2n+lg, /3($ +1) 20258 C3n+2 (z+1) (25)
Jin (3naf(B + 20)(n + 1) + 2na] + Bd(n + 1)(n + 2)) 6—8n 6-2n
_ 6073560 m+3 (x+1) + 3701 (x+1)
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where a = (1 -2n)(2—-2n)(3—-2n), 8 = 2—-4n)3—4n)(4 —4n), vy = (4 —2n)(5 — 2n)(6 — 2n), § =
(3—6n)(4—6n)(5—6n) and § = (4—8n)(5 —8n)(6 — 8n); the last term in (25) is the first contribution from
the integral in (24) — where it appears in the expansion depends on the value of n. This expression furnishes
a very precise representation of the local singularity at = —1 (and in this sense is preferable to the Taylor
series expansion about x = 0, which would furnish an alternative series representation); approximate values
for C' and J can be determined by imposing u; = uzzr = 0 on z = 0. Obviously, higher order terms can
also be constructed, but we shall not pursue the approach further, it being clear from Figures 1-2 that the
asymptotics in n in any case provide adequate analytical approximations for a wide range of exponents. We
note, however, that in the special cases n = (k —4)/2(k — 1), k = 2, 3,4, ..., the contributions from the two
terms on the right-hand side of (24) involve the same sequence of powers of (z + 1), giving

o
w@) = (@ +1)* > bz + 1)/, (26)
m=0
generalising the n = —1 (k = 2) result above; the integral in (24) first contributes in the term by, so in

practice at least this number of terms is needed. The corresponding special cases for 1/2 < n < 2 have

k(4n —5+V/1+4+20n—8n?) =2(n+4), k=3,4,5,..., and

u(z) = (z + 1)%/(+1) Z b (z + 1)+ /k(n+1) (27)

m=0
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