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Abstract

We study travelling wave solutions for a class of fourth ongrabolic equations. Trav-
elling wave fronts of the formu(z,t) = U(z + ct), connecting homogeneous states, are
proven to exist in various cases: connections between @esstates, as well as connec-
tions between an unstable and a stable state are considered.

1 Introduction
Fourth order parabolic equations of the form
Up = —VUgggy + Ugy + f(u), v >0, (11)

wherez € R, t > 0, occur in many physical models such as the theory of phasesitrons
[11], nonlinear optics [1], shallow water waves [9], etecate Usually the potentiaF(u) =

[ f(s)ds has at least two local maxima (stable states), and one ldoahum (unstable state’s)
A prototypical example i, (v) = (u + a)(1 — v?) with -1 < a < 1.

For a thorough understanding of Equation (1.1), the statppproblem is of great impor-
tance. An extensive literature on this subject exists (sgd& 6, 9, 18, 19, 20, 24, 25, 26, 27]).
Typically, depending on the parameter the stationary problem displays a multitude of pe-
riodic, homoclinic, and heteroclinic solutions. The siatiry equation is Hamiltonian, which
restricts the possible connections between the equilibpoints. As an example we mention
that when the maximum of' is attained in two points, e.g?(v) = —;(u? — 1), a solution
connecting these maxima exists for-all> 0. One could regard this solution as a standing wave.
The heteroclinic solution is unique (modulo the obvious Byatries) for small values of, say

v < m(f) [5, 6, 21]. On the other hand, for large sayy > 7(f), there is a multitude of
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1Sometimes the potential is denoted-b¥" so that the stable states correspond to local minima.



(multi-bump/transition) solutions connecting the two nmax [19, 20, 27]. This is due to the
fact that asy crosses the critical valug = ~,(f), the eigenvalues of the linearised stationary
equation around the two maxima Bfbecome complex.

In the special cas¢(u) = u — u?, corresponding tdF(u) = —3(u? — 1)2, it holds that
71(f) = 12(f) = 5. Although in many simple cases equality holds, generabyatwill be a gap
betweeny; (f) andv.(f). The critical valuey; is not necessarily small, and a lower boundhen
can in general be explicitly determined (see [6] for moradieX

For the time-dependent problem travelling fronts of thefe(z, t) = U(x +ct), connecting
extrema of the potential’, play a prominent role in most models. Results on traveNuayes
for Equation (1.1) have previously been obtained in [8], keheonlinearities of the fornfi(u) =
fa(uw) = (u+a)(1—u?), a = 0, are considered using transversality arguments and pergnear
a standing wave. Moreover, in [2] singular perturbatiomhiteques were applied near= 0. In
both cases travelling waves between local maxima (stadlesstare studied. A recent work [29]
deals with singular perturbations techniques for tramglivaves connecting an unstable and a
stable state; the stability of these waves for very sma#l also established. Furthermore, in
the context of singular perturbation theory, travellingresfor higher order parabolic equations
have been studied in [17].

The objective of this paper is to obtain existence resuttafarge range of parameter values.
We therefore study travelling waves of (1.1) via topologa@uments rather than perturbation
methods. To illustrate the underlying ideas of the methetd)$ consider the related second order
parabolic equation, i.e. = 0. Such equations arise as models in for example populatioetgs
and combustion theory [4]. In the special case whire = f,(u), Equation (1.1) withy = 0
admits a travelling wave solutianz, t) = tanh(w\/‘i@). This travelling wave connects the two
stable homogeneous states- —1 andu = +1. The literature on this problem is extensive and
we will not attempt to give a complete list. However, a few keferences are of importance
for explaining the similarities of the second and fourthesrgroblems. In the case = 0 the
equation for travelling waves(z,t) = U(z + ct) is given bycU’' = U” + f(U). A phase
plane analysis for both < ¢ < 1 andec > 1 shows two topologically different phase portraits,
from which the conclusion may be drawn that a global bifuccahas to take place for some
intermediatec-value(s). In this way a wave speeglcan be found for which a travelling wave
exists which connects the two local maximarof In this context we mention the work by Fife
and McLeod [15] based on an analytic approach, and Conlegfe nopological approach [10].

From the second order problem we learn that for the presebtem it is sensible to look for
topologically different phase portraits (i) for small and large values of A big part of our
analysis will be to do just that.

In order to simplify the exposition of the main results weorefiulate (1.1) as

Ut = —Uggpge T OUgy + f(u)7 (12)



via the rescaling — yix, with a = \Lﬁ Notice that equation (1.2) also has meaningdct 0.

Let us start now with the hypotheses on the nonlinearity:
(o F'(u) = f(u) € C'(R);
e f(luy)=0&ue{-1,—a,1} forsomea € (—1,1), andf’(£1) # 0, f'(—a) # 0;
(Ho) § ® F(=1) <F(+1);
e I(u) = —o0 asu — +oo;
e for someM > 0 it holds thatf’(u) < M for all u € R.2

\

Of course, the prototypical exampfg(u) = (u + a)(1 — u?) satisfies (lj). We remark that the
third condition excludes the existence of a standing wavelwtonnects two different equilibria.
The last condition is a technical one, which we use to obtanam a priori bounds. Without
loss of generality we set

P = [ fs)as

so thatF'(1) = 0.
Denote the wave speed byand, searching for a travelling wave, we gét, t) = U(x + ct),
which, switching to lower case again, reduces (1.2) to thenary differential equation

cu' = —u"" + " + f(u). (1.3)

An important ingredient of our analysis is a conserved qguafdr (1.3) whenc = 0, which is a
Lyapunov function whei # 0. Define

2

. 1
E(u, v’ u" u") = —u'u" + §u"2 + %u' + F(u). (1.4)

Multiplying (1.3) by u' we find that
E(u, v, u" u™) = cu’”, (1.5)

so that&, which will be referred to as thenergy of the solution, is increasing along orbits if
¢ > 0, constant ifc = 0, and decreasing if < 0. When we are looking for a solution of (1.3)
connectingu = —1 tou = 1, we see that we can restrict our attentiom te 0.

The first theorem deals with the connection between the taldesstates. = —1 andu =
+1. This connection is non-generic with respect to the wavedpeNoting thatF'(u) < 0 for
allu € Rif f satisfies hypothesis () we define

a(f)d:e min —F(u)

~1<u<—a 2f (u)?’ (1.6)

Theorem 1.1 Let f satisfy hypothesigH,) and leta: > 1(f). Then, for some wave speed
¢ = co(f) > 0, there exists a travelling wave solution(df2) connectingy = —1 tou = +1.

2Note thatf’(u) may be unbounded from below.



The analogous condition onfor Equation (1.1) readd < v < o(f).

At the minimum in (1.6) the equalitgf(T()“Q = 4]:—(1u) holds. We easily derive that for our
model nonlinearityf, we haves(f,) > S(l—l—a) forall 0 < a < 1. Although this estimate is sharp

fora — 0, it is not sharp at all for larger values of
For general nonlinearitief(u) satisfying (H), a lower bound om is

41" (u)

This estimate is often easier to compute thaitself, but it is in general a rather blunt estimate.

o > min{ ‘ u€ (~1,-a) andf'(u) < 0}. (1.7)

Finally, we remark that the critical valueis also encountered in the study of homoclinic orbits
for ¢ = 0 (see [25, Theorem BJ). This originates from the similarifytlwat problem with the
proof of Lemma 5.1, which is in fact the only instance in oualgsis wherey is required to be
smaller thary.

We do not obtain much insight in the shape of the travellingeMaom Theorem 1.1. Be-
cause Theorem 1.1 does not give information about the wasedsit is not known whether the
connected equilibrium points are approached monotowicallin an oscillatory manner. The
linearised equation around the equilibrium points lead#ofollowing characteristic equation
for the eigenvalues:A = —A\* + a) + f'(£1). A few conclusions can be drawn from analysing
this equation. It follows that forr > /—4f'(1) the travelling wave tends t¢1 monotonically
asz — co. Besides, forr < \/—4f'(—1) the travelling wave tends te1 in an oscillatory way
asr — —oo. For other cases the behaviour in the limits depends on tlne @éc.

The travelling wave solution found in Theorem 1.1 conndutstivo maxima of’. Theorem
1.1 can be extended to potenti@lshaving many local extrema, i.¢(u) having many zeros. In
that case we find a travelling wave connecting the global mar and the second largest local
maximum of F'. The other conditions of" remain the same, but we also need tfi@t)u < 0
for large values ofu|. The definition ofo in this case is, settingax,cg F(u) = 0,

—F(u)
2 (u)?

o(f) & inf{

u € Randf(uw)f'(u) > o}.

The travelling wave solution found in Theorem 1.1 connelaéstivo stable states. The fol-
lowing theorems deal with travelling waves connecting thstableu = —a to one of the stable
statesu = +1. These theorems also apply to the parameter regime wherd), but for these
parameter values we need an additional conditiori:on

(H,) f satisfies(d) and lim fv) =

lul 20 U

Theorem 1.2 Leta € R and letf satisfy hypothesigH,) if o < 0 and(H,) if o > 0.3 Then for
everyc > (0 there exists a travelling wave solution df.2) connectingy = —a tou = —1.
3The result also holds whefi(—1) = F(+1).




The limiting behaviour of the travelling waves can be deiasd from the characteristic
equations. Fox > /—4f/(—1) the solution tends te-1 monotonically forz — oo regardless
of the speed:. On the other hand, far < /—4f/(—1) the limit behaviour is oscillatory for
small ¢ and monotonic for large. The limit behaviour neat = —a asx — —oco IS more
complicated. For small the behaviour is generically oscillatory, while for largéhe solutions
generically tends te-1 monotonically. We do not know whether the behaviour is irbgeneric.
However, fora > /12 f/(—a) there is an intermediate range®¥alues for which the travelling
wave certainly tends te-a monotonically.

For general potential’ this result applies to any pair of consecutive non-degeeesdrema
u_ (a minimum) and:,. (a maximum), for which the intervilF(u_), F(u+)) contains no criti-
cal values and either_ or u.. is the only critical point at leveF'(u,.). The other conditions on
F remain the same. The method of proof of Theorem 1.2 requirtlgsame of the two extrema
—1 or —a to be non-degenerate.

The next theorem deals with the case of travelling waves franto +1.

Theorem 1.3 Leta € R and letf satisfy hypothesigH,) if « < 0 and(H;) if « > 0. Then
there exists a constaeit( f) > 0, such that for every > c* there exists a travelling wave solution
of (1.2) connecting, = —a tou = +1.

Theorem 1.3 extends to general potentials, giving trawglvaves between any pair of con-
secutive non-degenerate extrema(a minimum) and:, (a maximum), provided the the local
minimuma_ on the other side af,, if it exists, satisfied’(a_) > F(u—_). Of course, if the op-
posite inequality holds then one can exchaangendi._. If equality holds, i.eF(u_) = F(u_),
then one obtains for every> ¢* a travelling wave connecting either or#_ to u,. Again, the
other conditions orF’ remain the same.

In certain cases one obtains information about the constantTheorem 1.3. In that case
the situation is very much analogous to the second ordettiequa

Corollary 1.4 Let f satisfy hypothesi¢H,) and leta, > i(f). Then there exists &(f) >

0, such that* is the largest speed for which there exists a travelling wsolation of (1.2)
connectingu = —1 tou = +1. Moreover, for alle > c* there exists travelling wave solution
of (1.2) connectingy = —a tou = +1.

Finally, we discuss nonlinearities with different behawidor v — +o0c. Assume thaj has
two zeros and satisfies
(o F'(u) = f(u) € CL(R);
e f(u) =04 ue{0,1},andf'(0) #0, f'(1) #0;
(Hy) { e for someD < 0 it holds thatF'(u) > F(1) for all u < D;

o F(u) = —oo asu — oo;

& if a > 0, thenlimy, o, % = —00.



A typical example isf (u) = u(1 — u). The following theorem is analogous to Theorem 1.2.

Theorem 1.5 Leta € R and letf satisfy hypothesigHs). Then for every: > 0 there exists a
travelling wave solution o1.2) connecting: = 0 tou = 1.

This last theorem is just an example of how the methods inghpeer can also be applied
whenF'(u) does not tend te-oo asu — +oo. The theorem holds under weaker conditions, but
we leave this to the interested reader.

Of the results in this paper, the proof of Theorem 1.1 is byttiar most involved. This is
caused by the fact that connections between local maximaargeneric with respect to the
wave speed. Hence, part of the problem is to determine the wave spe€lhe idea behind
the proof is that one can detect a change in the phase pdgitr#&it) of Equation (1.3) as goes
from small values to large values. In particular, looking éotravelling wave which connects
—1 to +1, we investigate the global behaviour of the orbits in thélstananifold1¥(1) of the
equilibrium pointu = +1.

The analysis for: > 0 large is based on a continuation argument deforming thamearity
f(u) into a function which is linear on some interval containing 1.

For ¢ > 0 small the analysis is much more involved. A crucial step & forc = 0 all
orbits inW*(1) are unbounded. A first result in this direction was alreadyed in [6]. There
it was shown that, fory not too large, the bounded stationary solutions of (1.1yespond
exactly to the bounded stationary solutions of the secoddragquation+ = 0). This excludes
the existence of bounded orbits i#i*(1). However, since the analysis compristsbounded
solutions, this result is limited to a restricted parameégime. In particular, the equilibrium
pointsu = 41 need to be real saddles. In the present situation we wantdadebounded
solutions in the stable manifold of = 1, i.e., we can restrict the analysis to the energy level
£ = 0. This allows us to cover a larger range @¥alues, to be precisex > —~—. This
parameter regime includes cases where both equilibriumt$oi= +1 are saddle-fgci. To give
an example, for our model nonlinearify = (u + a)(1 — »?) with 0 < a < 1 the result from [6]
holds foraw > /8(1+a). The equilibrium pointes = 1 andu = —1 become saddle-foci
fora < /8(1+a) anda < +/8(1 — a) respectively. One may compare this to the estimate
o(fa) > 8(1—1_0) Notice that this estimate, although sharpdo¥ 0, is very blunt fora close tol.

For the description of unbounded orbits we use a modifiedd@o@transformation which we
believe is of independent interest. We investigate the untled orbits, and we will show that,
in an appropriate compactification of the phase space, thses must converge to a unique
periodic orbit lying at infinity in the phase space. The asmlat infinity largely relies on a
global analysis of bounded and unbounded solutions of théyaf equations

u" +u® =0 with the convention that v® = |ul* 'u, s > 1.

This equation is invariant under the scalin@) — ~u(x"7 t) for all & > 0. The analysis of this
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equation is in particular used in the proof of finite time biagy of unbounded solutions, and,
more importantly, to determine the behaviour of unboundbéd®for( < ¢ < 1.

From this analysis we conclude that the phase portrait foositive but small is different
from the phase portrait far large, which in turn is used to prove the existence of a caimrec
between-1 and+1 for some intermediate wave spegd

The organisation of the paper is as follows. We start withesarpriori bounds in Section 2.
In Section 3 we give the proof of Theorem 1.1, and in the Sestibto 6 the details of this proof
are filled in. In particular, in Section 4 we perform an analyd the flow ‘at infinity’. Sections 5
and 6 deal with the analysis of the the orbitdiff(1) for smallc and large: respectively. Sec-
tion 7 discusses the existence of travelling waves conmgeti= —a tou = +1; Theorems 1.2
to 1.5 are proved here. We conclude with some remarks on apéteps in Section 8.

2 A priori estimates

We establish a priori bounds on the wave speeghd the profilex for any travelling wave
connecting-1 and+1. The bound on the wave speetiolds for alla. € R.

Lemma 2.1 Let f satisfy hypothesi$H,) and leta € R. There exists a constasyf, depending
only ona, F(—1), F(—a), and the upper boundl for f'(u), such that whem > 0 is a speed
for which there exists a travelling wave solution(@f3) connecting-1 to+1, thenc < c.

Proof. Suppose: is a solution of (1.3) connectingl to +1. Integrating (1.5), we have
_F(=1) = F(1) — F(~1) = c/ . 2.1)

Multiplying (1.3) by «” and integrating (by parts) we obtain
00 00 o0 o0 e8] —F(=1
[ [Tur= [Cgaye = [T et <v [Tt ==L @)

-0 — 00

Letu; € (—a,1) be defined by

F(- F(-1
Fluy) = FE0) + F(-1),
2
There must be pointg, ¢, € R, ¢, < t1, such thatu(ty) = —a, u(t;) = u; andu(t) € [—a, uq]

fort € [t,?1]. The length of this interval is estimated from below by

(ur + )’ = (/t o)) < (- m?/tl W (12t < (8 — 1) =D

to to ¢



On the one hand, because the enefggcreases along orbits, we have
b 1 o'
/ (—u" (®)u' () + s (1)” + =/ (¢)?)dt
o 2 2
t1
> [P - Fu)a

° F(-1) ~ F(—a)
2

2 (F(=1) = F(w))(th — to) =
F(-=1) = F(—a)
- 2

(t1 — to)

(u1 + a) (2.3)

_°
—F(-1)
We now first restrict to the case that> 0, and come back to the other case later on. Using (2.1)
and (2.2), we obtain the estimate

/t (" (O (1) + S (1) + S (1)) de

2 2
1 l+a
< - " 2 " 2 ! 2
< /to (2(u (1) + (1)) + (1) )dt
1 —F(-1)
< (M — 1} +1 . 2.4
< (Mmax{=, 1} +1+a)— (2.4)
By combining (2.3) and (2.4) we obtain
F(-1) — F(—a) c 1 —F(-1)
— < (M —1 1 .
5 (u1 + a) Y < ( max{a, J+1+a) 5
Since also Pl_1)_ F Iy
(_ ) ; (—(1:) = F(ul) — F(—a) < 7(“1 + a)Z’
it follows that ) FD)
< M:(M S 4l4a)i 2T .
c< ( max{a, }4+1+a) Fo1) - F(—a)
This completes the proof of the lemma for the case ¢hat0.
We now deal with the case < 0. The first part of estimate 2.4 is replaced by
h " ! ]‘ " 2 a ! 2
(—u" ()u'(t) + ¢ (t)” + JU (t)%)dt
to
/1 1 1
< M1\ 2 Z ()2 Za(+)2
< /00(214 (0 + Su (1) + ol (1)?) dr
> "(g\2 n 2 1 n 2 1 m 2 1 ! 2
= (u (t)? + au” (1) + (5 —a)u"(t)* — U () +Su () )dt
00 2
< / (u"'(t)Q +au (1) + 2 datd ;a+5u'(t)2)dt,

where we have used tht® «"* < X [* u"?+ L [* uforall A > 0. The remainder of the
proof is the same as above. a

The L>°-bound on the profile holds fora. > 0, or equivalently, for ally > 0.
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Lemma 2.2 Let f satisfy hypothesigH,) and leta. > 0. There exists a constafit, depending
only ona, F(-1), F(—a), and the upper bountll for f'(u), such that whem is, for some
¢ > 0, a travelling wave solution of1.3) connecting-1 to+1, thenF'(u) > C,.

Proof. We may suppose that there is a connectiomith range not contained in the bounded
interval {u € R|F(u) > F(—a)}, otherwise we already have our desired uniform bound.
Therefore, without loss of generality we may assume that

F(u(0)) = min F(u(t)) < F(—a). (2.5)

teER

We consider the case wheréd) < —1 (the case:(0) > 1 is completely analogous). Since
E(u, ', u" u")(t) € (F(-1),F(1)) = (F(-1),0) forallt€R, (2.6)
we clearly have that
u(0) < —1, W/(0)=0, 0<4/2(F(=1) - F(u(0))) < u"(0) < /=2F(u(0)).

We now consider two cases:”(0) > 0 andu"(0) < 0. We start with the latter case. Since
u(t) tends to an equilibrium point as— —oo, there exists &, < 0 such that''(¢t) < 0 for
t; < t < 0andu(t;) = 0. Equation (1.5) implies that

t

—u'(t)u" () + F(u(t)) — F(u(0)) = —%(u"(t)2 —u"(0)%) — %u'(t)2 + c/ u'(s)%ds. (2.7)

0

By (2.5) we know that’(u(t;)) > F(u(0)), so that

1(u"(tl)2 —u"(0)%) + gu'(tl)2 < —c/o u'(s)%ds.
2 2 "
Sinceu”(t) increases off0, t) anda is positive, this implies that < 0, a contradiction.

We now deal with the case that’(0) > 0. Sinceu”’(0) > 0 by the differential equation,
and sinceu(t) tends to an equilibrium point as— oo, there exists & > 0 such thau" () > 0
for 0 < ¢t < t, andu”(t5) = 0. By (2.5) we know that'(u(t2)) > F(u(0)). Sincea > 0, it
follows from (2.7) that

gu'(tg)z < c/ot2 u'(s)%ds < c/oo u'(s)?ds < —F(-1). (2.8)

Furthermore, from the fact that'(¢) increases of0, ;) we infer that
u"(0)t < u'(t) <ul(ty)  fort € [0,1s]. (2.9)

On the one hand it follows from (2.8) and (2.9) tHa¥'(t,)? < c [ u'(s)%ds < cu'(t2)%ts,

hence

il

1o > )
2_20

(2.10)



On the other hand it follows from (2.8) and (2.9) thak'(—1) > cft2 '(5)%ds > % sctau”(0)2.
Combining with (2.10) we thus obtain that

—24c¢*F(—1)
a3 ’

u//(O)Z <

This gives a bound om”(0)?, because it follows from Lemma 2.1 that the wave speésl
bounded above by a constag{a, M, F(—a), F(—1)).
Finally, by (2.5) and (2.6) we have

Flu) > F(u(0)) > F(=1) — %u"(O)Z forallt € R.

This completes the proof of Lemma 2.2. O

3 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. Some of thpnseps, which require a quite
involved analysis, are only stated as a proposition in tagdien and are proved in subsequent
sections.

We first use the a priori bounds of Section 2 to reduce our aigatp nonlinearities (u)
of the form f(u) = —u® + g(u), whereg(u) has compact support. The advantage of such
nonlinearities is that they behave nicelywas+ +o0o, and it will thus be possible to analyse the
flow near/at infinity.

Let f(u) satisfy hypothesis (5. Lemma 2.2 implies that there exists a consi@ptsuch
that any travelling wave solutiomconnecting-1 to +1 satisfieq|u||« < Cy. Define the cut-off
functiong € Cg° with0 < ¢ <1, ¢(y) = 1for |y| < Co, andg(y) = 0for |y| > Co+1. We now
consider the modified nonlinearitf(u) = ¢(u)f(u) — u*(1 — ¢(u)). Lemma 2.2 ensures that
u is a travelling wave solution for nonlineariff(«) if and only if » is a travelling wave solution
for nonlinearity f(u). Besidesg(f) = o(f). This shows that we may restrict our analysis to
nonlinearitiesf (u) such that

f(u) = —u® + g(u) with g compactly supported, angsatisfies hypothesigly).  (3.1)

The purpose of the reduction to nonlinearitfeshich satisfy (3.1) is that it makes it possible to
analyse the orbits which are unbounded. An important ptgmérunbounded solutions, which
we will need in the following, is formulated in the next lemma

Lemma 3.1 Let f satisfy hypothesif3.1) and leta,c € R. Then any unbounded solution
of (1.3) blows up in finite time.

This lemma is proved in Section 4.5, Theorem 4.8(b), and seth@n the analysis of the flow
near/at infinity.
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Figure 1: The potentialF'(u) and the energy levely separating. = —a fromu = £1.

As already discussed in the introduction, denote the wagedspyc. For finding a travelling
wave we seti(z, t) = U(z + ct), which reduces (1.1) to the ordinary differential equatibs3).
Written as a four-dimensional system, (1.3) becomes

u=v; vV=w;, w=z Z=aw-—cv+ f(u). (3.2)

The equilibria of this system af@, v, w, z) = (—1,0,0,0), (u,v,w, z) = (—a,0,0,0) and

(u,v,w,z) = (1,0,0,0) (for short: v = -1, u = —a andu = 1). To prove Theorem 1.1
we look for ac # 0 and a corresponding heteroclinic orbit of (3.2) connecting= —1 to
u = 1. Linearising around: = +1 we find that, irrespective af, bothu = —1 andu = 1

have two-dimensional stable and unstable manifolds, @éenoy1V*(+1) andW™*(+1). Gener-
ically W#(1) and W*(—1) will not intersect but varying: we expect to pick up a non-empty
intersection.

We recall that thenergy is defined as

. 1
E(u,v,w, z) £ _vz+ §w2 + %vz + F(u),

where the potentia’(u) = [ f(s)ds is depicted in Figure 1. Since we are looking for a solution
of (1.3) which connecta = —1 tou = 1, we see from (1.5) that we can restrict our attention to
¢ > 0. The energ¥ thus increases along orbits.
To separate the equilibrium poiat= a from v = +1, we choose an energy leve}, such
that (see also Figure 1)
F(—a) < Ey < F(—1) <0,

and we define the set
K = {(u,v,w,2) € R* | (u,v,w,2) > Eo}. (3.3)
This allows us to formulate the following lemma:
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Lemma 3.2 Let f satisfy hypothesig3.1) and leta € R. If ¢ > 0 is such thatV*(1) N

W(—1) = @, then every orbit ifiV*(1) entersK through its boundaryK andl’ = W*(1)N6K

is a simple closed curve. The set of positivier which this property holds is open abidvaries
continuously witkr.

Proof.  In view of (1.5) the intersection di"*(1) andd K must be transversal. Assume that
Ws(1) n W*(—1) = @. We need to show that every orbitW#i*(1) can be traced back 0¥,

for then there is bijection betwedi*(1) N K and a smooth simple closed curveli: (1)
winding aroundw = 1 (in W (1)). Arguing by contradiction we assume that there is an orbit i
W#(1) which is completely contained i’. Letu(t) be a solution representing this orbit. Then
u(t) exists on some maximal time intervl,,, o). Sinceu(t) has energy larger thahy, it
follows from (1.5) and (3.3) that

/OO < FU =B _ —F (3.4)

)
C Cc

tmin

so thatu(¢) remains bounded Oftyin, 00) If iy is finite. Thust,, = —oo and, by Lemma 3.1,
u(t) is bounded. It follows from standard arguments that thet@dmiverges to a limit as —
—oo. Because: = —1 is the only equilibrium inK with energy less than the energywt= 1,
we infer thatu(t) € W*(—1). This contradicts the assumption th&t (1) N W*(—1) = @. The

second statement is an immediate consequence of the (¢gigaildransversality ofV* (1) NI K.
O

It now suffices to show that there isca> 0 for which the assumption of Lemma 3.2 fails.
Again arguing by contradiction, we assume that Lemma 3.83ep allc > 0 and search for a
topological obstruction. This requires a descriptioi &t that allows us to form a global picture
of this set. To this end we writ®K as (witha > 0)

1 1 1
0K = {(u,v,w,z)ER‘l \ %(U—az)2+§w2:Eo—F(u)+£z2}. (3.5)

In Figure 2 we have plotted the projection@X onto the(u, z)-plane. For(u, z) lying inside
one of the two closed curves (see Figure 2) defined by

1
Eo = F(u) + 52" =0, (3.6)

every(u, v, w, z) belongs tak, hence there are no pointsdi with (u, z) lying inside these two
closed curves. Fa, z) lying outside the two closed curves we have thatw, w, z) is in K if
(v, w) is outside the ellipse defined By(v — éz)2 + 2w? = 0. We conclude that the projection
of 0K onto the(u, z)-plane is the region outside the two closed curves defined38),(see
Figure 2.

The projection of§K onto the (u, z)-plane maps® = W*(1) N 6K, which by assump-
tion exists for allc > 0, to a closed but not necessarily simple cufven the (u, z)-plane for
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Figure 2: The projection (in grey) o§ K onto the(u, z)-plane. The closed curves which form
the boundary of the grey area are given by Equation (3.6).ottner two curves depidt (i.e.,
the projection o ¢(1) N 6K onto the(u, z)-plane) for smalk and largec.

which the winding numbefsy (', —1) andn(I', 1) around(u, z) = (—1,0) and(u, z) = (1,0)
respectively, are well-defined and independent ¢by continuity). However, the following
proposition establishes the configuration depicted in féidy contradicting the assumption that
Ws(1)nW*(-1) = & for all ¢ > 0, and thereby completing the proof of Theorem 1.1.

Proposition 3.3 Let f satisfy hypothesi§3.1).
(@) Leta > —~. Then there existsa > 0 such that(I',—1) = 1 andn(T, 1) = 1 for all

Volf)
0<c<e,.
(b) Leta € R. Then there exists&@ > 0 such that(I',—1) = 0 andn(T',1) = 1 for all

c > c.

Part (a) of Proposition 3.3 will be proved in Theorem 5.3 ict® 5, while part (b) is proved in
Section 6, Theorem 6.1.

4 Classification of unbounded solutions

In this section we investigate the behaviour of unboundédatisos, or in other words, we anal-
yse the flow at infinity. This analysis is relevant both for @reof of finite time blow-up of
unbounded solutions, and to determine the behaviour of wmbed orbits forl) < ¢ <« 1.

“We may choose the orientation of the simple closed curd®jn (1) winding around: = 1 in such a way that
its projection onto théu, z) plane has winding number equal+d.
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We have argued in Section 3 that we may restrict our atteribamonlinearities of the form
f(u) = —u®+g(u), whereg(u) has compact support. It turns out that the flow for large gov-
erned by theeduced equatioru” +u? = 0, i.e., only the highest order derivative and the highest
order term in the nonlinearity play a role at infinity. In tr@léwing sections we investigate the
reduced equation, and in Section 4.5 we come back to thequdteon.

4.1 A modified Poincage transformation

We analyse the reduced equation
u" +u® =0 with the convention that u® = |u|*~'u, s > 1, (4.1)
and we use this notational convention throughout. Writtea aystem, (4.1) reads
TV = Ty =13 Ty =Ty Ty = —T], (4.2)

wherezxy, xo, 3 andz, correspond ta:, v/, u” andu”. Note that for this system the energy (or
Hamiltonian)

H(xy, 20,25, 4) = —2o +x_§_|x1|3+1 (4.3)
1,42,43,44) — 244 2 s + 1 .
is a conserved quantity.
Introduce five new dependent variabl€s, X,, X3, X, andX;5 > 0 by setting
X.
i = ~a ' =1,2,3,4), 4.4
w=m G ) (4.4)

where the exponents are to be chosen shortly. Unbounded orbits of (4.2) will espond to
orbits in the new variables witl 5 approaching zero. By substituting (4.4) in (4.2) we obthm t
equations

X5 X —a X1 X, = XpXgto—o; (4.5a)
X5 Xh — a; X XE = XzXjte o, (4.5b)
Xo X — a3 X3 Xt = X, X 1o, (4.5¢)
X5 X) —ay Xy X, = —XiX Toamso (4.5d)

with a fifth equation pending. We choose the exponents in aughy that all the exponents in
the right hand sides of (4.5) are the same, i.e,
bEl4+a—ay=14+ay—a3=14a3—a, =1+ as— sa.

Solving foray, as, as, a4 andb we find

ar=4X\; ae=(s+3)A; a3=25+2)\; ar=Bs+1)\ b=1—-(s—1)A, (4.6)

14



where) is still free and, for the moment, positive. We close systéri)(by imposing as a fifth
equation

If we multiply (4.5a-4.5d) byX{, X5, X5 and X, respectively, and add up the resulting equations,
we obtain

PX! = —%QXL,’:. (4.8)
Here we have set
PEAIX [T 4 (34 8) X2+ (2+28) X7 + (1 + 3s5) X2, (4.9)
which is non-negative, and
Q= X3(Xy — Xy) + X3(Xa + Xy).
Introducing a new independent variable, we write
Xs = PXEM X! = —%QX& (4.10)

where the dot denotes derivation with respect to this newpeddent variable from which the
old one may be recovered by integration. Thus, combiningOand (4.5), we arrive at the
system

X, =  XoP—4X,Q; (4.11a)
X, = X3P —-(3+9)XQ; (4.11b)
X; =  X,P—(2+425)X5Q; (4.11c)
Xy = —X;P—(1+35)X4Q. (4.11d)

Note thatX; has been decoupled from the equations. By constructionysters (4.11)
leaves the surfaces

X s+1 X2 X2 X2
X1 T B I e (4.12)

2“:‘”{){ X, Xa X
(17 23 3 4) +1 2 2 2

invariant for allCy > 0. The free parametey only appears in (4.10) and may be discarded.
The Poincaré transformation (4.4) is used here to blow adltdw near “infinity”. As will

be explained in Section 4.4 this is equivalent to blowing lup ftow near the equilibrium point

u = 0. This blowing-up technique is frequently used in the stufiffaws in the neighbourhood

of non-hyperbolic equilibrium points (see e.g. [12, 13,)23he transformation defined by (4.4)

and (4.12) is a variant of the standard Poincaré transfitomavhichhas;;, = a; = a3 = a4 =1

and imposes as fifth equation thaf + X7 + X2 + X7 + X? be constant, so that the transformed
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problem is situated on the Poincaré sphere. The modifitaiiesented above, in particular the
choice of exponents, is heeded to obtain a non-trivial vdatta at infinity from which we may
derive the qualitative properties of the flow of the system2)sear infinity. The values of the
exponents are derived from the invariance of (4.1) undestaéingu(t) — ru(k"T t).

In Equation (4.7) we have chosen not to include a t&iyX. and to modify the exponent of
X,. This simplifies the new vector field and allows the decoupbifithe X;-equation. Note that
instead of a Poincaré sphere we now have a Poincaré cylihdeamely the topological product
of the deformed spher@ and the positiveX;-axis:

I = {(Xy, X, X3, Xy, X5) | (X1, Xo, X3, X4) €8, X5 >0} = 5% xR,

The flow of (4.2) is completely determined by the flow of (4.bh)Y. Therefore we have a
reduction from dimensio# for (4.2) to dimensiors for (4.11). The role ofX5 = 0 and X5 = oo
can be reversed by changing from positive to negatigéthe expense of a minus sign in (4.10).

Remark 4.1 The choice ofC, > 0 in (4.12) is arbitrary, because the flows on all sphétese
C'-conjugated (modulo the introduction of the new independeniable in Equation (4.10)).
This is in fact the very idea of Poincaré transformatiorenely that we divide out the invariance
of (4.1) and focus on the resulting flow. From a more abstracttpf view one can construct a
flow on the quotient manifoldR* \ {0}) /Rt = 3 via the scaling invariance(t) s ru (k"7 )
(R*-action), see [22] for more details. Our construction imresl explicit choices of coordinates,
for which the flows, by general theory, are all related by agafion.

To be explicit, letX; andY; be two sets of Poincaré coordinates, i.e.,

Xi Y;
= Xgi = Y5ai

fori=1,2,3,4,

Zg

with constraints
X, |51 X2 X2 X2
TRy = G .
Y, |51 Y2 Y2 Y2
|81_1_1 +72+73+74 = 0O, (4.13b)

When we defing: = i‘,—; then the two sets of coordinates are related by
X5 = uYs and X; = ptY; fori=1,23,4. (4.14)
Substituting this into (4.13a) we obtain

‘}/1‘5+1 +u2a2Y_22 +M2a3Y_32 +u2a4Y_42

G(Y,, Yy, Vs, Yy, ) = plstham
(15 2, L3, 4,/"’) %3 8+1 9 2 9

= C().

Sinceg—ﬁ > 0 for all Y; that obey (4.13b), it follows from the implicit function theem that
w(Y1,Ys, Vs, Yy) is a differentiable function. It is now easily seen from @).thatX; andY; are
related by aC*-conjugacy. Therefore, we may choose the congfgretccording to our liking to
obtain a description of the flow that is most suitable to owdse °
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4.2 The flow at infinity
For the analysis of (4.11) we first observe
Lemma 4.2 System(4.11) has no stationary points airfor anyCy > 0.

Proof. SinceX; = X, = X3 = X, = 0is excluded we have that, defined by (4.9), is
positive. Equating the right hand sides of (4.11) to zero @nsidering the resulting equations
as linear equations iR and@), it follows that we can only have solutions if every deteramhof
every pair of two equations vanishes. This would give fotanse that

0 < (2425)X7 = (3+8)XoXy;

0 < 4[X]" = —(1+3s) XXy
We conclude thak, X, = 0 and with any of theX; = 0 the others follow immediately. O

We next use the conserved quantity to obtain a further resluétom dimensior8 to di-
mension2 for the limit sets of orbits of (4.5) which approach infinitX{ — 0) or the origin
(X5 — 00). In the new variables the Hamiltonian is

X2 X s+1 B s
= (-xx ¢ 5 - K +| ) X5 e, (4.15)
Denote the first factor off by Hy:
. X2 X s+1
Hy = —XpXs+ )~ % (4.16)
SinceH is a conserved quantity, we conclude thatXas 0
Xs—0 & Hy—0. (4.17)

For the classification of unbounded orbits we have to anadhesé@ow restricted to the invariant
set given by

T £ {(X1,X2,X3,X4) €| Hy=0}

[Xa X3 XS X? X3 | X5 [
= (X Xy, X5, X ‘ 22 A3 Mo 2y }
{(1234) s+1 T2 T T Tl 2t T
This set is a topological torus as can be seen by setting
+ —
Y=o =828 xmg x-S0 (4.18)

so that, in terms of thg-variables,

T={(6,66.6) | olal T +E=grE=0) 25 x5 (@19)

Clearly we have thal” is the product of two topological circles, one in tf@g, &;)-plane, the
other in the(&s, &, )-plane.
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Lemma 4.3 Lets > 1 and fix the constant, > 0. Then there exist precisely two periodic
orbitsA_ andA , of (4.11)on the torug".

Proof.  The proof is based on the observation that the coeffidgigm (4.10), which after
transforming by (4.18) reads

Q= \/i(gf§4 +£¢3), (4.20)

plays a double role. Obviously it determines which partsndihity attract solutions towards
X5 = 0, in forward and in backward time. We begin by showing tgatan also be seen as
minus the divergence of the vector field restricted to theuiant torus?. From (4.11) and
(4.18) we derive

b = 52;;413 45,0 (4.21a)
b = S P (@2 +(1- 980 (4.21b)
b = E28P-@+260; (4.210)
b = fﬁ”j;lp (- )6+ 24 29)6)Q. (4.21d)

We parametris& by ‘polar coordinates’
&1 = f1(¢)§ § = 91(¢’); §3 = f2( ) §4 = 92(9), (4.22)

satisfying

f{ = —91; 91 = I fé = —92; gé = fo. (4.23)

Note that wherC, = 1 ands = 1 we just have
& =cosg; & =sing; & =cosf; & =sinf.
From (4.21a), (4.21c), (4.22) and (4.23) we derive thaf'dhe flow is given by: .
b =

(1—%)+2(s+1) 12 — 0y(8,0),

0 =

%\wﬁ\w

where in terms off1, g1, fo, g2,
P =4(s+1)Co + 2(1 - 5)g192, and Q= V2(fg:+ fogn)-

The functionsw; andw,, defined in (4.24), appear to have singularities, but using9) they
can be written as

wi(¢,0) = V2[=2(s+1)Co — (s +3)g192 + (s — 1)g5 + 4f1.f5],
wa(g,0) = \/5[2(3 +1)Co— (3s+ 1)g192 + (s — 1)gf +2(s + 1)fff2}.
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Figure 3: A fundamental domain of the torus, in whih , 7. andTj are indicated (schemat-
ically).

Taking the divergence of the vector fieldwe obtain (using (4.23),

Vow = S S = VE(-5 - 35)(fi + fags) = ~(35 4 5)Q

Next, we splitl” into
T, = {(X1, X0, X5, X4)|Q >0} and T_ = {(X1, X, X3, X,)|Q < 0}.
These two sets share the boundary
To = {(X1, Xo, X3, X4) | Q = 0},

which, in view of (4.19) and (4.20), consists of two topolmagicircles, which both wind once
around the two homotopically distinct simple loops on theisa(see Figure 3). We will show
in Lemma 4.4 that, whefy is chosen properly, an orbit can only pass throlglirom 7" to
T. . It then follows from the negativity o¥ - w in T, and the winding properties @f onT that
T, contains precisely one periodic orbit. The same statem@&dsHor 7 with respect to the
backward flow ori".

To be precise, we deduce from (4.22), (4.23) and (4.19) tleanay choosé; = f»(0) =
VCy cos 0. Define the sef = {(0, ¢) € T |6 = =}, and it follows that

0 ¢ = V2[2(s + 1)Co = (35 + 1)y/Cogr + (s = 1)gi].

Since|g:| < v/Cy, it is easy to check thzﬁt\s > 0, and equality only holds whep = +/Cy. By
continuity arguments the orbit through this point also sess$' in the direction of increasing.
ThusS is a global section for the flow dfi. Moreover, the return map is well-defined, since there
is no point inT" for which the forward orbit is contained ifi \ S. Indeed, such a forward orbit
would either be contained ifi_ or eventually be i, , becausd’, is positively invariant and
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orbits can only pass through from7_ to 7', . In the absence of equilibrium points (Lemma 4.2)
its w-limit set would be a periodic orbit. However, there would/@éao be an equilibrium point
inside this periodic orbit, contradicting Lemma 4.2. Hetioe return map is well-defined. The
intersectionS N (7, U Ty) consists of the line segmefitd, ¢) € T'|0 = 7, fi(¢) > 0}. The
return map maps this line segment into itself, which imptles existence of a periodic orbit
in T.. Similarly there exists a periodic orbit ifi_. The return map is contracting ifi, and
expanding in7"_, since the divergence of the vector field is negativ& inand positive inl"_.
This proves the uniqueness of the two period orbits and stizatsll other orbits on the tords
haveA_ asa-limit set andA ;. asw-limit set.

We remark that the same conclusion can be reached by corglilenPoincaré-Bendixson
theorem for flows on the torus and the Morse theory for Monsel8 flows.

Finally, note that, although the preceding proof neégsto have a particular value (see
Lemma 4.4 and Equation (4.27)), the statement in Lemma 4r8esfor any choice o€’y > 0
(see Remark 4.1).

Another observation is that the linear case- 1 may be treated by direct computation, i.e.
by transforming the general solution of the then linear #gug4.1) to theX -variables. a

We still have to show that an orbit can only pass throlighrom 7 to 7', .

Lemma 4.4 Lets > 1. There exists &, > 0 such that orbits ofi’ can only pass through, in
the direction fromil_ to T, .

Proof. We deduce from (4.20) and (4.21) that

Q\Q_O =P(l6 + &+ & +&+ (Il - D&+ &)&). (4.25)

Notice that fors = 1, P is positive onT’ (see (4.9)), thur§}|Q:0 > 0onT. Fors > 1 we define
R as the second part of the right hand side of (4.25) and siyniplifsing the expression (4.19)
for T

R Z |6 +8+8+8+ (a1 - )& +a)&

2
= 200+ 6" = el = (1= slal ) (& + &6 (4.26)
From (4.19) we infer that
2 1 1 1 2 1
< — =& 52 02 = % e sth3)
(& +8)6 < (o = 7161 + CEG = Goll+ (1= s l6))
Fix
2 1\
a2 ()™ @27
and set

1

1\s=2
&1 == (g) ., where0 < z < 1.

20



It follows that

N .
S (E) 1 (2 * %x% —t - (-2 (1 + (1= x”l)%))
s+1
= () (e e et e - e e
2 /1\:H 1
T s+l (E) =i (-2 - (-2 et %ﬁ)

Sincel < z < 1 we see thak > 0 unlesst = 0. Looking at (4.26) we infer thal can only be
zero ifé, = & = 0 and&, = & = £/, or, in terms of theX;, if X; = X3 = X; = 0. By
continuity arguments it follows that also in these two psitite orbits go fron?" to 7;. Thus,
with the particular choice of’y given by (4.27) we have indeed tHA} is positively invariant
and7_ is negatively invariant. O

Having proven the existence of precisely two periodic st andA ., on the torug’, we
analyse some of their properties.

Lemma 4.5 The three non-trivial Floquet multipliers of, are contained in the intervé, 1),
and the three non-trivial Floquet multipliers &f are contained in the intervél, cc).

Proof. Restricted tdl’ the nontrivial Floquet multiplier oA, equals (see e.qg. [28, p. 198])

exp( A+V-w) :exp(%\ —(33+5)Q).

+

Since( is uniformly positive onA ;, this Floquet multiplier is in0, 1). Close to the periodic
orbit A, we choose, 0, X5 andH, as coordinates on the Poincaré cylinflemwhereH, given
by (4.16). SinceH = HyX; “**™) is a conserved quantity di, it follows from (4.10) that

H() == —4(8 + 1)Q H().

Together with (4.10) this implies that the other Floquettipliers are

exp(]{X —4(5+1)Q) and exp(?{ —§Q>>

which are in(0, 1) as before. Thud , is exponentially stable. The statement for is obtained
by time reversal. O

Lemma 4.6 Every orbit (other than ..) on the spher&, hasA _ asa-limit set and\ . asw-limit
set.

Proof. We have already dealt with the flow on the toffisn Lemma 4.3. Orbits of the flow

on the complemerit \ 7" of the torusT” on the spher&, correspond to solutions with non-zero
HamiltonianH. SinceX5 does not appear in (4.10), the motionBns independent ok 5. Let

X5 # 0, then the dynamics oK are governed by (4.11), and the motion takes place in the part
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of the Poincaré cylindell that corresponds to the finite part of phase space in-thariables.
In other words, orbits of the flow on the sét\ 7" correspond to solutions of (4.2) with non-zero
Hamiltonian.

SinceH = H0X5_4A(5+1) and Hy is bounded ort: (because is compact), it follows that
for such orbitsX; remains bounded, i.e., irtvariables the solution stays away from the origin.
Thus orbits i \ 7" are bounded in th& -variables and hence have nonempty invarianand
w-limit sets. We have to show that these limit sets can onljhbawo periodic orbits\ ~ andA
provided by Lemma 4.3. To this end it suffices to show that@iltsons of (4.1) withH # 0 are
unbounded in forward and backward time, i.&; — 0 along a sequence of points in forward
and backward time.

Postponing the proof of the unboundedness of solutions Mith 0, we first show how that
unboundedness in backward and forward time impliesthandA , are thex- andw-limit sets.

By (4.17) X5 — 0 implies that alsadH, — 0. An unbounded orbit thus comes arbitrary close to
the torus’. We choose an open tubular neighbourhdédof A_ in T', such that) < 0in A=.
Clearly all orbits starting i \ A® tend toA. in forward time. Note thafy, U T, C T\ A=.

By compactness dl’ and sinceA ;. is asymptotically stable (see Lemma 4.5), there exists an
open neighbourhoo@® of 7'\ A¢ in II such that all orbits starting i tend toA . in forward
time. Since an orbit which comes closeXg = 0 (and thus close t@’), can only do so with
non-negativey, it enters7© and hence tends ta,. The statement foA_ follows by time
reversal.

We still have to prove that any solution of (4.1) with noneétamiltonian is unbounded in
forward and backward time. We recall that solutions wikth# 0 stay away from the origin.
If an orbit would be bounded in backward or forward time, thsn(nonempty)a- or w-limit
set would consisted of bounded orbits, i.e., orbits whidah lzsunded for all time. However,
this is not possible, because it has been proved in [21] th&a) @dmits no bounded solutions
exceptu = 0. Here we present a different proof of the fact that (4.1) aslmo bounded solutions
exceptu = 0, because we need to extend this result to more generalisiiadsee Remark 4.7).

Assume, by contradiction, that #Z 0 is a bounded solution of (4.1). First observe that if
u tends to a limit ag — +oo, then this limit can only bé. It follows thatu attains at least
one positive maximum or one negative minimum. Switchingfroto —u if necessary, we may
suppose that attains a positive maximum &f:

U(to) > 0, Ul(to) =0, Ull(t()) <0.

Changing from¢ to —t if necessary, we may assume thdt(¢,) < 0 and apply an oscillation
argument from [6] which we repeat here for the sake of corepkets. There existsta > t,
such that (t) < 0 for ¢y < ¢t < t* andu”'(t*) = 0. Using the fact that,

1 1
H = _u/u///+_u// __|u|s+1

2 s+1
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is constant, it follows that(t*) < —u(ty) and that the next minimum must occurtat> ¢*
with u(t;) < u(t*) < —u(ty) and bothu”(¢1) andwu’(¢1) positive. Repeating this argument we
obtain a sequenag < ¢, < t3 < ..., in whichu(t) has non-degenerate extrema witki,)| <
lu(ta)| < |u(ts)| < .... By assumption these extrema remain boundedlisay, o, |u(t;)| =

a € RT, and the derivatives are bounded as well. A compactness@mfunow shows that there
must be a solutiol of (4.2) in thew-limit set of u with

a(to) =a, @(tg) =0, u"(tg) <0, and @"(tx) <0 at some € R,

and such thati(t)| < a for all t € R. However, when we apply the above argument toe
obtain thati < —a at the first minimum to the right of;, a contradiction. This completes the
proof of Lemma 4.6. O

Remark 4.7 The oscillation argument above will be applied several sinmethis paper to dif-
ferential equations that differ from the present one. Itdsdhat any solution of (1.3) with= 0
which does not have its range contained in

{ueR|F(u) = F(-a)}

oscillates towards infinity either in forward or in backwanshe in exactly the way described
above (the additional second order term does not cause Hioplkies). For more details we
refer to [6]. °

4.3 The reduced system in the linear limit

We have shown in the previous section that for any 1 the flow of (4.1) is basically governed

by two periodic orbits at infinity. For the linear equation= 1) this was already observed (in a

broader setting) by Palis [23]. The analysis thus showstheabehaviour for alk > 1 is largely

analogous to the linear equation. In this section we makesiygervations about the linsit| 1.
Let us rewrite this system as

X = V(X’ 8)7 X = (XlaX27X37X4)- (428)

Then the vector field/(-, s) is continuously differentiable for every > 1 and the first order
partial derivatives are bounded on compact sets, unifoimly > 1. We do not have that
V(-,5) = V(-,1) in CL. because of the tert¥; appearing ir¥/, but we do have thdt (-, s) —
V (-, 1) uniformly on compact sets. Therefore the orbits of (4.28hwi> 1, which are bounded
uniformly in s in view of (4.12), converge to orbits of (4.28) with= 1 ass — 1. More
precisely, the solution map

(1,6, 8) = X(135€, 5),
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Figure 4: A schematic view of the flow on the Poincaré cylindiefor the equation” +u* =
0. The role ofX5 = 0 and X5 = oo is reversed when is negative.

whereX (7; &, s) is the solutionX (1) of (4.28) withX (0) = &, is continuous ofR x R* x [1, c0).
In particular, this implies that the two periodic orbits andA, depend continuously onfor
s € [1,00).

In the limit cases = 1 the two periodic orbits on

T ={(&,6,8, )6+ =& +& = Co}

are given by

§183 — 84 =0, (4.29)

orinterms of (4.22), by —6 = £7. This can be seen from a second conservation law that exists
in the linear case: multiplying”” + u = 0 by u" we have thatu"” + uu" — Lu? is constant.
In particular, after transforming to th€-variables,

1 1
§Xf + X1 X5 — 5X§ =0

is invariant, whence (4.29), which defines two circles onttinas?'.

4.4 Small solutions

We observed in Section 4.1 that the roleXof = 0 and X5 = oo may be reversed. This is a
direct consequence of the scaling invariance of (4.1). Tveimay also use (4.4) for the analysis
of small solutions to (4.1). The situation is depicted scagcally in Figure 4. We simply apply
(4.4) with a negative so thatX; — 0 corresponds ta — 0. This only changes the sign in the
equation (4.10) forXs and means that the orbit, now lies in the part ofX5; = 0 which repels
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solutions withX5 > 0. Hence the stable manifold df, is contained i1 N {X; = 0}. The
unstable manifold of\, is given by the direct product, x {X5| X5 > 0} and has dimension
2. In the original variables it is the unstable manifoldwof= 0 if s = 1 and the center-unstable
manifold if s > 1. Likewise, the stable manifold of isA_ x {X5| X5 > 0}, i.e., the direct
product ofA_ and the positiveXs-axis. As we have seen in Section 4.3, the ligit> 1 is well
behaved in theX -variables.

We will use this analysis of the behaviour near the equilitoripointu = 0 in Section 5 to
perform a continuous deformation of the stable manifoldsfer 1 to the center-stable manifold
for s > 1. We remark that, based on the similarity of the linear andiinear problem, the
equilibrium pointu. = 0 of (4.1) fors > 1 can be considered as the nonlinear equivalent of a
saddle-focus.

4.5 The full system

Applying the Poincaré transformation (4.4) with exporsg@t 6) to the differential equation (1.3),
or, more generally, to

! . P . P . [
T = Ta; Ty = T3; x?, = T4; Ty = ¢($1,$2,$3,$4),

we arrive at
X, = X,P—4X,Q; (4.30a)
Xy = X3P — (3+9)XQ; (4.30b)
X; = X,P—(2+425)X50Q; (4.30c)
X, = UP—(1+35)X4Q; (4.30d)
: 1
X; = _ XX5Q’ (4309)
where
Q = X7 Xo 4+ Xy U + X3(Xo + Xy). (4.31)
and
X X X X
U= X 2L 2 3 : 4.32
5 (ng Xé3+s)w X5(2+25)/\’ Xé1+3s)x)’ ( )

In the case of (1.3) we have
&(x1, 29, 23) = axz — cxo + f(21),

wheref(z;) = —z} + g(z1) with g(z;) compactly supported. With = 3 and\ = 1 we thus
obtain

X
= X} +aXyXE - o X2+ g 5) XD (4.33)
5
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The last term in (4.33) i€? and has its derivatives up to second order vanishingin= 0.
The extra terms are thus at least quadrati¥ infor small X5. Therefore the local analysis near
X5 = 0 and in particular the Floquet multipliers éf. in the previous section are completely
unaffected. The flow on the spheYe(at infinity) is identical to the flow for the reduced equa-
tion (4.2). Only the flow oI \ ¥ is different. Note that in this analysis it is essential ttie
exponent is larger thari. We have the following theorem (compare Lemmas 4.3, 4.5 a6)d 4

Theorem 4.8 Let f satisfy hypothesi§3.1) and let, c € R.

(a) The stable periodic orbit . of (4.11)is an asymptotically stable periodic orbit @.30)
with non-trivial Floquet multipliers iff0, 1). Every solution of(1.3) which is unbounded
in forward time corresponds to a solution @.30) havingA . asw-limit set. A similar
statement holds for solutions unbounded in backward tinade\an

(b) Unbounded solutions dfiL.3) blow up oscillatorily in finite time.

(c) If ¢ # 0 the energy also blows up.

Proof. By Lemma 4.6 all solutions of (4.30) which lie in the invarigetlIN{X; = 0}\A_ C
IT tend to A, in forward time. Reminiscent of the proof of Lemma 4.6 we c®a@a small
negatively invariant open tubular neighbourhagdof A_ in II. By compactness dil N { X5 =
0} there exists an open neighbourhagdof IT N {X; = 0} \ A% in IT such that all orbits with
starting point in:¢ tend toA , in forward time. Clearly every unbounded solution of (1.8)ezs
3¢ and thus tends ta , .

For part (b) we observe that the exponéim (4.8) is smaller than so that in the old time
variableX; can only go to zero in finite time. Finally we have that the ggef can only remain
bounded if its derivative is integrable. Fo# 0 this implies that/’ is square integrable (see (1.5))
and thusu itself is (locally) bounded, which prohibits finite time bleup, a contradiction. O

Remark 4.9 Theorem 4.8 establishes that large solutions of (1.3) aléyréescribed by oscil-
lating solutions ofu"” + u® = 0. Thus large solutions do not “see” the other terms in (1.3) as
they oscillate away to infinity. This is not only true for petbations of the form-u? + g(u)

with g compactly supported and smooth, but also for global lowdeoperturbations. For such
lower order perturbations Theorem 4.8 applies as well. .

5 The winding number for small speeds

In this section we proof part (a) of Proposition 3.3. Before @an prove this theorem we first
need a description of the global behaviourl@? (1) for ¢ = 0. In the following lemma we
show that fora. > —=
transforming to th -(\r/ariables in Section 4, they all have asa-limit set. Because all the
non-trivial Floquet multipliers of\_ lie in (1, 00) (see Theorem 4.8(a)), this remains true for

¢ > 0 sufficiently small.

all orbits in the stable manifold/*(1) are unbounded, and, after
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Lemma 5.1 Let f satisfy hypothesi$3.1), let o > \/ﬁ andc = 0. ThenW?*(1) consists of

unbounded orbits only, all of which connéektt tou = 1.

Proof. The proof is a combination of arguments also used in [24]. Boynded solution must
have its range in the set
V={ueR|F(u) > F(-a)},

because a solution reaching outside this interval osedllatvay towards infinity, as mentioned
in Remark 4.7. Besides, any bounded solution must have sttde& minimum below the line
u = —a, again basically by the same oscillation argument as in tbeff Lemma (4.5). We
now assume, arguing by contradiction, thas a bounded orbit i¥*(1). We will show that the
range ofu is not contained iV, so thatu is in fact unbounded. It then follows from Theorem 4.8
thatu tends toA_ ast — —oc.

Thus, suppose thatis a bounded solution i#(1). Changing fromt to —t if necessary we
have that in such a minimum (using the fact théat, v', v”, u") = 0)

ulto) < —a, U'(to) =0, u'(t) =+v—2F(ulto)) >0, u"(tc)>0. (5.1)
We will show thatu(t) increases to a value outsidlefor ¢ > ¢, which immediately leads to a

contradiction.
Define an auxiliary function

G(t) E u"(t) — \/—2F (u(t)).
The following line of reasoning is depicted in Figure 5. BysG(ty) = 0 and we show that

G(t) > 0in aright neighbourhood df,. It is seen from the condition am and the observation
that f(u) > 0 on (—oo, —1) U (—a, 1), that

flu) > — —%QF(u) foru < 1. (5.2)

If u"(ty) > 0, then clearlyG’(ty) > 0, whereas when'"(t,) = 0 thenG'(¢,) = 0, and (since
u'(to) = 0)
6 (1) = (1) + — LD yp4y) — /I (ulty)) + 2 (k) > 0
—2F (u(to))

by the differential equation, and (5.1) and (5.2). Tli($) > 0 in a right neighbourhood af,.

Secondly, we show th&t(t) > 0 aslong asi(t) < 1. We defing; > t, as the first maximum
of u(t) andty > t, as the first point wheré&'(t,) = 0 (a priori, botht; andt, may beco). Then
ty < t; sinceu(t) > 0 as long ag7(t) > 0. It now follows from the expression (1.4) for the
energy and by (5.2) that

’ _ " f(u(t)) !
G'(t) = u"(t)+ ] (t)
WP+ Fu) (o flu(?)) :
= u’(t) t (2 + —2F(u(t))) (t)

27



-1

Figure 5: The (u, u")-plane with the curve/ = \/—2F(u). We have sketched the orbit of
for ¢t > ¢, which is discussed in the proof of Lemma 5.1. We have alsc#ated the sev, in
which every bounded solution has its range.

as long as7(t) > 0 andu(t) < 1. SinceG(t) > 0 in a right neighbourhood o, this implies
thatG'(t) > 0 andG’(t) > 0 as long as:(t) < 1, and thusu(t,) > 1.

Finally, we definefs > t, as the first point where(t) = —a. Itis easily seen tha < t,.
By the energy expression we have théft) > 0 as long as7(t) > 0, thusu”(t5) > u"(t3) >
v/—2F(—a). Combining the inequalities(t,) > 1 andF (u(ty)) = —iu"(t,) < F(—a), we
infer thatu(t2) lies outsideV, so thatu is unbounded. By Theorem 4.8 all these unbounded
orbits converge ta\_. O

Remark 5.2 Because all the non-trivial Floquet multipliers af lie in (1,00) (see Theo-
rem 4.8(a)), Lemma 5.1 remains true for 0 sufficiently small. o

The following Theorem is equivalent to Proposition 3.3(a)e recall thatK is defined
in (3.3), and that its boundapys is a level set of the energy.

Theorem 5.3 Let f satisfy hypothesi$¢3.1) and leta: > ;(f). ForF(—a) < Ey < F(-1)
let K be defined by3.3) and letiV*(1) be the stable manifold of the equilibriuun= 1. Then,
providede > 0 is sufficiently small/W*(1) N §K is a topological circle. Its projectiofi on
the (u, u"")-plane winds exactly once around a disk containing bothedlasurves defined by
Ey — F(u) + £u" = 0 (see also Figure 2), i.ey(I', —1) = n(T',1) = 1.

2a

Proof.  Our strategy is to defornfi(u) in several steps to the pure cubia? and leta go to
zero. We have to do this in such a way that for each intermedidhe conclusion of Lemma
5.1 remains valid. All orbits in the stable manifdiid®(1) thus tend to\_ in backward time, and
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this remains true during the entire deformation processthétend of the deformation process
we arrive at the reduced equatioff + u3 = 0. We then use the analysis performed in Section 4
to find a precise description of the orbitslin®(1). Finally, we obtain the results of Theorem 5.3
for the original equation (1.3) via continuation arguments

Recall thatf (u) = —u?®+ g(u) with g having compact support, sgyu) = 0 for all [u| > C,.
Taking Cy sufficiently large, define the cut-off functiah € C§° with 0 < ¢ < 1, ¢(y) = 1 for
ly| < Co, andg(y) = 0 for [y[ > Co + 1.

Step 1.First deformf(u) to a function which changes signat= 1 only. Let

fa(u) = f(u) = Alu = 1) (w).

For A large enough, sa¥ > )\, the functionf,(u) changes sign at = 1 only.

Lemmab5.4 Let o > 1(f) and replacef (u) by fi(u). Then for all\ € [0, )] the stable
manifoldWW*(1) consists of unbounded orbits only, all of which conngcttou = 1.

Proof. Let\; =inf{\| fy(u) > 0 forallu < 1}. For any\ < \; the argument is exactly the
same as in the proof of Lemma 5.1, where we use the followinggdised definition of:

_{—F(u)
o) = min e

Note thato(f)) < o(fp) for 0 < A < Ay, since fy(u) and —F)(u) are increasing im for

all u < 1. For\ > )\, the result also holds, but by a different and less resteatiscillation

argument, which applies to arfyu) with a single zero at which it goes from positive to negative,

and alla > 0. We already used this in the proof of Lemma 4.6; the argunmenwasng that every

u<landf(u) < 0}.

solutionu # 1 oscillates towards infinity is almost identical (far> 0 the second order term
does not cause any difficulties). This completes the proti@femma. O

Continuing with the proof of Theorem 5.3, we chanfjeo f! £ r, by letting A go from0
to )\y. This leaves the local structure nedg = 0, and in particular nea , unaffected (see
Section 4.5).

Step 2.We changef! (u) = —u? + g*(u) with g' (u) = g(u) — Xo(u — 1)¢ 1o f2(u) = —ud(1 —
¢) — (u— 1)¢. Using the deformation functions
falu) = =’ (1 = ¢(u) + (1 = A)(—u’(u) + g' () — Mu — 1)g(u),

we let X go from0 to 1, thus continuously deforming' into f2. All orbits in W#(1) are still
unbounded and tend tb_ ast — —oc during this deformation, sincg (u) has a single zero at
which it goes from positive to negative (see the proof of Learbmt).

Step 3.1t is now easy to shift the zero to the origin. Define
u) = =’ (1= ¢(u) = (u— (1= A))o(u).
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Letting A change fron® to 1 deformsf? into f3 = —u3(1 — ¢) — u¢. Since we have shifted the
origin we now havé?#(0) in stead ofi¥¢(1). All orbits in 1W#(0) are still unbounded and tend
toA_ ast — —oo.

Step 4Next we leta go to zero. The stable manifold*(0) changes smoothly and the local
structure neal _ again remains unaffected becausenly appears in terms quadraticXy. For
a = 0 we have arrived at the equation

u" — f2u) =0, with f2(u) = —u®(1 — ¢) — ug.

Step 5.We changef? using a family of functions

fs(u) = —u?(1 — @) — u'o.

def

Letting s increase froms = 1to s = 3 we obtain a functionf*(u) = u®. We note (see
Section 4.4) that fos > 1 the manifoldWW is the center-stable manifold 6f Here we use
Section 4.3 to conclude that in this procéBschanges continuously, with the orbits in manifold
W = We(0) still tending toA _ in backward time.

By Sections 4.1 and 4.4 we have that, after going throughsStep,IV is the product of\ _
and theXj5-axis. In view of the non-trivial Floquet multipliers df_ being in(1, co), it holds
that for any smalk > 0 there exists a negatively invariant tubular neighbourh&oef A_ in IT
with

A C{X = (X1, Xo, X3, Xy, X5) €e T d(X,A) < e}

We can choose this neighbourhood such that
AN {Xs=¢} = {(X1, X, X3, X4) €A_, X5 =¢}. (5.3)

Besides, we can choode such that the flow for our final equatiafi” +u3 is transversal té A< .
Moreover, fore > 0 sufficiently small, we can choose such the flow is transversal éa\° for
every intermediatg (u) and« in the deformation process of Steps 1-5 above, hence alslogfor
original equation (1.3) witla = 0.

For any givenr > 0 we can choose > 0 so small that the projection, of W N jA® on
the (x1, z4)-plane (or, equivalently, on the:, u")-plane) is a curve with minimal distance to the
origin at leastr. To see this, we observe that the solution of (4.1) represeby A_ cannot
have a point where = " = 0, for in such a point alse” = 0 in view of the energy being
zero. This would contradict the fact th@t< 0 on A_. Thus in theX-variablesA_ is uniformly
bounded away froniX;, X4) = (0,0), so that for any- > 0 we can find arz > 0 such that the
projection of A° on the(u,u")-plane has a distance larger thafrom the origin. Therefore,
the winding numbers around= +1 of the projectionl’. of W N §A% on the(u, v")-plane are
well-defined fore sufficiently small.
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It follows from (5.3) that for our final equation”’ + u? = 0 we have
wn 5Ai = {(X17X27X37X47X5) | (X1;X25X37X4) S A—7 X5 = 8}7

so that, choosing large,n(T'., —1) = n(I';,1) = 1. By continuity the winding numbers df.
do not change if we reverse Steps 1-5, and again by contiargtynents and Remark 5.2 this
remains true for > 0 sufficiently small.

Finally, for our original equation (1.3) we know that, tragiback orbits id7*(1) until they
hit A® , their energy€ remains close td, provided we keeg > 0 sufficiently small. Thus
W#(1) N éK is contained inA® for smallc¢ > 0. Following W*(1) N A% backwards along
the flow toW#(1) N § K (which is a transversal intersection for- 0), we see that the winding
numbersn(T", £1) of the projection ofi¥*(1) N §K are alsol. This completes the proof of
Theorem 5.3. a

6 The winding number for large speeds

In this section we proof part (b) of Proposition 3.3:

Theorem 6.1 Let f satisfy hypothesis (3.1) and lat € R. Forc > 0 sufficiently large the
intersection of the stable manifoldf*(1) of u = 1 and the boundaryK of K is a smooth
simple closed curve which projects on a closed cuhia the (u, z)-plane withn(I', —1) = 0
andn(T',1) = 1.

Proof. We first prove the theorem for a deformationfdi:). We choose the nonlinearif(x)
to satisfy
f(u) = f(1)(u—1) inaneighbourhoo,(1) of u = 1.

For this deformed nonlinearitf we compute the energ§ on a closed curve ifiy = (1)
winding once around = 1 with u-values contained iB.(1). The equation is now linear near
u = 1, and the characteristic equation

—pt +ap’ + f'(1) = cp

has two eigenvalues; and—u, with negative real part (recall th#t(1) < 0). Forc > 0 large
enoughu; andyus, are real, and asymptotically

—f'(1)

e~ cs and o ~ asc — oo. (6.1)

Since the equation is linedl/ is given by (forc large enough)

W = {(u,v,w,2) |u=u(t) =1+ Are™™" + Age™", v =u/(t), w = u"(t), z = u"(t)}
(6.2)
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We may choose a curvg; C W aroundu = 1 parametrised by € [0, 27), by takingt = 0
and A; = rcos¢, Ay = rsin¢ in (6.2) for some fixed- > 0. The projection ofS; on the
(u,u")-plane is given by

{(u,2)|u=1+r(cosd+sing), z = —r(u cos ¢ + pysing), 0 < ¢ < 27}.
The energy orb] is given by

£ = / cu' (t)?dt = c/ (Ajpe ™t + Ayppe™#2t)2dt
0 0

A? 24, A A2
= cup(GIE 4+ 252 20 (6.3)

A? 241 A A2
C( 1M1+ 1 2M1M2+ 2/«62)

2 p1 + pho 2 2p0 p1 + pho 2
Using (6.1) and estimating (6.3) from below we have,dsufficiently large,
!
1
&< %72 < 0 on S5;.

Thus, choosing an energy level E, > @TZ, we have thab; lies in the complement ok'.
LetS = WN4K. ThenS lies insideS; and is obtained by tracing solutions in (6.2) of the linear
equation forwards in time until they ent&. It follows thatS winds around: = 1 in W exactly
once and therefore its projectiéhon the(u, z)-plane winds once arourd, z) = (1, 0).

The calculations above only involvevalues between — rv/2 and1 + rv/2 so we may
change the definition of (u) outside this range. In particular, takingsmall, we may choose
f(u) such thatF(u) has a minimun¥ (—a) < E, and a maximun¥'(—1) € (E,, F(1)), with
—1 < —a < 1 — /2. ClearlyI" does not wind around the poifit, z) = (-1, 0).

We continuef to f andE, to E,, takingc large enough as to stay within a class of nonlinear-
ities for which there does not exist a connection between —1 andu = 1 (see Lemma 2.1).
By continuity we still have that(I', —1) = 0 andn([',1) = 1. O

7 Travelling waves connecting an unstable to a stable state

In this section we focus on travelling waves that connecutistable state = —a to one of the
two stable stateg = +1. As in the proof of Theorem 1.1 in Section 3 we begin by redyt¢m
nonlinearitiesf which satisfy (3.1).

To obtain the necessary bound ter> 0 we fix ¢ > 0 and simply follow the argument in
the proof of Lemma 2.2 witlF'(—1) replaced byF'(—a) (for connections from-a to +1), or
F(—=1) — F(—a) (for connections from-a to —1).

By different methods it is also possible to prove a prioriasiin the case that < 0. Apply-
ing a result by T. Gallay [16] to the present context we obtaefollowing. Letf satisfy (H),
I.e.1imjy 00 @ = —oo. Then for anyx € R there exists a consta@t, such that any travelling
wave solutionu(t, z) = U(x + ct) of (1.1) satisfied|u||. < Cy . The constan€’, only depends
ona andm = sup{|u| | @ > —D,}, whereD, > 0 is a constant which depends aronly.
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The idea is to consideb,(t) = [ h,(z)u?(t, z)dz, wherehy(z) = m Using the
differential equation (1.1) one obtalns an estlmate of mImfd < Ay — @, for some constant
Ay independent ofy and¢, henced, (t) < Ay + @,(0)e". Deflnlng U(t) = sup,cg Py(t) ONe
derives that for travelling waves is independent of, hencel < A,. Combining with the fact
that [*°_(2)2dz = “C1 | one then obtains ab™-bound onu.

Thus, for every: > 0 there exists a consta@t, > 0 such that any solution of (1.3) connecting
—a to +1 satisfies|u|| < Cy. This a priori estimate implies that we may replgcby f(u) =
é(u) f(u) — u*(1 — ¢(u)), where the cut-off functiow € C§° is such thad < ¢ < 1, ¢(y) =
for |y| < Co, ande(y) = 0 for |y| > Cy + 1. Asin Section 3 it holds that is a travelling wave
solution with speed for nonlinearity f (u) if and only if « is a travelling wave solution with
speed: for nonlinearity f (u).

The above argument shows that, looking for travelling wawesmay as well assume thAt
satisfies (3.1). The next theorem thus proves Theorem 1.2.

Theorem 7.1 Let f satisfy hypothesig3.1) and leta: € R. For everyc > 0 there exists a
solution of (1.3) connecting, = —a tou = —1.

Proof. Forallc > 0 we have that the three equilibria are hyperbolic and
dimW?*(£1) = dimW*(£1) =2, dimW*%(—a) =3, dimW?*(—a)=1.

Travelling wave solutions connecting= —a andu = —1 correspond to a nonempty intersection
of W*(—a) andW*(—1). Recall that

1
E(u, ' u" u") = —u'u™ + 2u 242 5l u” + F(u), where F(u / f(s

satisfies (1.5). We takE(—1) < E; < F(1) and consider the set

- 1
K = {(u,v,w,2) | E(u,v,w, 2) = —vz + §w2 + %UQ + F(u) < E1}.

Now suppose that for some> 0 the theorem is false. Then all orbits Wi*(—a) have to
leaveK throughdé K, because an orbit with bounded energy has no other choinedtmnverge
to an equilibrium, see the proof Lemma 3.2, ang —1, the only equilibrium ink with energy
larger thanE'(—a), is excluded by assumption. Thus we have that the inteseofilV*(—a)
andd K is homeomorphic to a-sphereS?.

For the moment we consider the case that 0. SincedK is given by

2

a(v — 2)? +w? =2, — 2F(u) + —, (7.1)
(6] (67

we may deform it smoothly into

{(u,0,w,2) |[u” + 22 = 1 +0* + 0’}
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which defines &-manifold homeomorphic t&? x S*. As deformations we use
A
Ma+1—\)(v— )\2)2 +u? =GN + (1= A+ 2)2?,

with A running from1 to 0, andG(u, 1) = 2E; — 2F (u) andG(u,0) = —1 + u?. Singularities
can only appear in points on these manifolds whgfe= v = w = z = 0 and can thus be
avoided by the choice df; .

It follows thatd K is homeomorphic t&®? x S, or, equivalently, to the open solid torus. The
intersection¥V*(—a) N 6K, being homeomorphic t62, dividess K into two components, one
bounded and homeomorphic to an open balkinthe other unbounded. This division is in fact
not completely straightforward. One needs to lift (a nemlmhood of)IW*(—a) N §K to the
universal covering spadg® of K and show that the unbounded part of the complement of the
countable union of lifts is path-connected. Using the fhat the intersectiofl*(—a) N 6K is
induced by a flow, one can invoke the generalised SchoentfigEsem (see [7, Theorem 19.11])
to conclude that a lift of¥%(—a) N 6K dividesR? into an unbounded and a bounded compo-
nent, which is homeomorphic to an open ballfih Besides, the bounded components of the
countable infinity of lifts can be contracted to points. Tmdounded component (the comple-
ment of the countable union of bounded components) is thosebmorphic tdR? \ Z, hence
path-connecteél.

Now consider the piecewise smogtmanifold formed by the disjoint union é¥*(—a) NK
and this bounded componentdX \ (W*(—a) N K). This3-manifold is homeomorphic to two
closed balls irR?® sharing ar2, namelyiV*(—a) N K, as boundary and is therefore homeomor-
phic to anS3. By the Jordan-Brouwer theorem tiismanifold dividesR?* to two components,
one bounded, the other unbounded. We notice that the bowasepgonent is negatively invari-
ant. Clearly both components contain exactly one of the tlsd®which together formiv*(—a).
Now consider the orbit if*(—a) contained in the bounded component (which is negatively in-
variant). Since its energy is bounded we may, again by thenaegt in the proof of Lemma 3.2,
conclude that, tracing it backwards, it must go to an equilib with energy less than the energy
of u = —a. Since such an equilibrium does not exist, we have arrivadcantradiction.

The cases < 0 anda = 0 are similar, the only changes being that we deféiih given by
(7.1), tou? + v = 1 + 2% + w? if & < 0, and that fora = 0 we rewrited K as—2vz + w? =
2F; — 2F (u), which deforms inte-2vz + w? = —1+u? or 3 (v+2)° +u? = 3(v—2)* +w?+1.
This completes the proof of the theorem. O

Remark 7.2 In the proof of Theorem 7.1 above we have used the non-deg®@nef the equi-
librium pointu = —a, whilew = —1 may degenerate (i.¢/(—1) = 0). The theorem also holds
whenu = —a is degenerate but = —1 is non-degenerate; in this case the argument in the proof

SWe gratefully acknowledge several discussions with H. €gigHe showed us that, via the Jordan-Brouwer
separation theorem and an inductive Mayer-Vietoris arquntiee division o K into two components can also be
derived without using the extra information provided by tiogv.

34



of Theorem 7.3 below can be usedFlf—1) = F'(1) one also applies the proof of Theorem 7.3,
see Remark 7.4. .

Next we prove Theorem 1.3. Let

¢* = inf{¢ > 0| there is no connection from1 to +1 for ¢ > &}.

From Lemma 2.1 we see that is well-defined, and* > 0 for oo > ;(f) by Theorem 1.1.
The argument at the beginning of this section shows thatdardo prove Theorem 1.3, we may
restrict to nonlinearitieg’ which satisfy (3.1). Ifc, > 0, then it follows from Lemma 3.2 that
for ¢ = ¢* there exists a solution of (1.3) which conneetsto +1. The following theorem thus
proves both Theorem 1.3 and Corollary 1.4.

Theorem 7.3 Let f satisfy hypothesi¢3.1) and leta. € R. For everyc > c¢* there exists a
solution of (1.3) connectingy = —a tou = 1.

Proof. ~We consider the stable manifdid = W*(1) of u = 1. We have shown in Theorem 6.1
that forc > 0 large enough the intersection of the stable manif@lof « = —1 and the boundary
0K of K (defined in (3.3)) is a smooth simple closed curve which mtsjen a closed curvié
in the (u, z)-plane withn(I', —1) = 0 andn(l, 1) = 1. It follows from the definition of* and
Lemma 3.2 that, by continuity, this remains true foral c,. Now fix ¢ > c¢*.

Let us assume by contradiction that there is no connectiomd®®u = —a andu = 1. The
intersection betweer andoé K depends continuously on the energy leeds long as we do not
encounter an equilibrium point. Assuming there is no cotinedetween betweem = —a and
u =1, we letE decrease fron#'(—1) > Ey > F(—a) to E; < F(—a). The projectiorl in the
(u, z)-plane then depends continuously Bnas do the winding numbers, so thdl", —1) = 0
andn(T',1) = 1 for all E, < E < FE,. However, for the energy levél, we have that—1, 0)
and(1,0) lie in the same component of the complement of the projeafoik’ onto the(u, z)
plane. Therefore(I',—1) = n(I, 1), a contradiction. O

Remark 7.4 When F(—1) = F(+1) then the same method shows that there exist travelling
waves connecting = —a tou = +1 for all ¢ > 0 and alla € R. Besides, as already noted in
Remark 7.2, the method in the proof of Theorem 7.3 can be wseltain an alternative proof
of Theorem 7.1. °

Finally, we prove Theorem 1.5 which deals with nonlineastiith two zeros (and a different
behaviour foru — +00).

Theorem 7.5 Leta € R and letf satisfy hypothesifH,). For every: > 0 there exists a solution
of (1.3) connecting, = 0 tou = 1.
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Proof. Since the shape of the nonlinearity differs significantnirthe one considered so far,
we cannot invoke Lemma 3.2 directly. Besides, we find a pbotinds via a slightly different
method.

Let D = sup{@ < 1| F(u) > 0 on(—oo,)}. Travelling wave solutions connectirigto 1
satisfyu > D, since it follows from (1.4) and (1.5) thatcan have no extremum in the range
u < D (at an extremum one would hage> F'(1), which is impossible). Therefore, we may
without loss of generality replacgéby any functionf; for which f;(u) = f(u) for v > D, and
fi(u) < 0foru < D. We choosef; such thatf;(u) = u foru < D — 1.

Now that we have a bound from below, we can also obtain a baonaddbove. A connecting
solution of (1.3) is also a solution of (1.3) witfy replaced by any, for which f(u) = fi(u)
forallu > D — 1. We choosefy(u) = —u? for u < D — 2, and argue as at the beginning
of this section to conclude that there exists a uniform bdur|d, < C, on all travelling wave
solutions. We may thus replage by a functionf; for which f3(u) = fi(u) for u < Cy and
f3(u) = —u? foru > Cy + 1. We conclude that is a travelling wave solution with speed
for nonlinearity f (u) if and only if u is a travelling wave solution with speedor nonlinearity
fa(u).

In the following we therefore assume, without loss of gelitgrahat f (u) = uforu < D—1,
andf(u) = —u? foru > Cy + 1.

We now follow the argument in the proof of Lemma 3.2. Howewear,cannot use Lemma 3.1
to show that orbits iff¥*(1) which are completely contained i, are bounded. Instead, we
argue as follows. Suppose, by contradiction, that an aifjtin 177(1) is completely contained
in K and is unbounded. As in the proof of Lemma 3.2 it follows frogquBtion (3.4) that(¢)
exists for allt € R. There are now two possibilities: eitheft) > D — 1 for all t € R, or there
exists some, € R such that(t,) < D — 1. First we deal with the latter case.

Since (see above))(t) cannot attain an extremum in the rangec D, it follows thatu(t) is
decreasing fot < t,. Henceu(t) obeys, fort < ¢, the linear equationu’ = —u"" + au” + u.
Sinceu is unbounded as — —oc, it follows thatu = —age ** + o(1) for someagy, a; > 0 as
t — —oc. By substituting this into Equation (3.4) a contradictismeached.

Next we deal with the case whewét) > D — 1 for all ¢ € R. Clearlyu(t) is a solution
of (1.3) with f replaced by any functiofi for which f(u) = f(u) for allw > D — 1. We choose
f(u) = —u? for u < D — 2, and it follows from Lemma 3.1 that blows up in finite time, a
contradiction.

Having circumvented the problem in the proof of Lemma 3.2 weatude that forF'(0) <
Ey < F(-1) the intersection of the stable manifold of « = —1 and the boundaryK of
K (defined in (3.3)) is a smooth simple closed curve which ptsjen a closed curve in the
(u, 2)-plane withn(T', 1) = 1.

The rest of the argument is analogous to the proof of Theor@nAssuming that there is
no connection between = 0 andu = 1, the final contradiction is now obtained by the fact that
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n(T',1) = 0 for E, < F(0). O

8 Concluding remarks

The most apparent open problem concerns the rangevaflues for which a travelling wave
connecting—1 to +1 exists. For some examples it can be shown that a travellivg waes not
exist for alla € R. The more general question whether for any nonlinearitigfyatg (H;) an
upper boundy, exists such that there are no travelling wavesifar o, remains open.

Regarding the uniqueness of the various travelling wawvetispls not much is known. For
large « (i.e v =~ 0) the travelling wave connecting1 to +1 may be expected to be unique
(analogous to the limiting second order case). The resuli®]ishow that uniqueness does not
hold for f,(u) = (u+a)(1 —u?) with  small wheno < /8. Equation (1.1) withf (u) = u —u?
admits an abundance of standing wave solution$ fera: < /8. It has been proved in [8] that
these solutions can be perturbed to travelling waveg ftr) with smalle and smalke = ¢(a).
Since this can be done for any standing wave, an infinite faofilcurves in the(a, ¢)-plane
passing through the origin is thus obtained.

The method used in this paper does not give any informationtahe shape of the solution.
For example, we would like to know for which values @fthe solution is monotone. Since
we do not know the value af for which a traveling wave occurs, we in general do not even
know whether the connected equilibrium points are appre@chonotonically or in an oscilla-
tory manner.

Finally, the question arises to what extent the travelliraye@vsolution is of importance to
the dynamics of the PDE. It might be a limit profile for a broddss of initial conditions as
is the case for the second order equation [15]. Since tiagelVaves connecting = —a to
u = =1 exist for large ranges af, it would be interesting to know which of these waves is
generally encountered. In [11, 14] the wave selection m@shahas been investigated for a
propagating front which is formed from localised initialtddi.e.,u + a is localised). Using
the physically motivated assumption that the lineariseadaign (aroundu = —a) drives the
system, it is argued that far > \/m one of the travelling waves is selected (and the
wave speed is calculated), while for< /12f'(—a) the propagating front is argued not to have
a fixed profile. However, the only rigorous stability reshiat we know of, is of a perturbative
nature [29] (i.e« very large) and moreover it does not answer the questioneo$éfection of
the wave speed.
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