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ABSTRACT. On the energy manifolds of fourth order conservative systems closed
characteristics can be found in many cases via analogues of Twist-maps. The ‘Twist
property’ implies the existence of a generating function which leads to second or-
der recurrence relations. We study these recurrence relations to find simple closed
characteristics and we give conditions when fourth order systems satisfy the ‘Twist
property’.
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1. INTRODUCTION

Various mathematical models for problems in nonlinear elasticity, nonlinear op-
tics, solid mechanics, etc. are derived from second order Lagrangian principles,
i.e. the differential equations are obtained as the Euler-Lagrange equations of a
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Lagrangian � that depends on a state variable �, and its first and second or-
der derivatives. The Euler-Lagrange differential equations are fourth order and
are of conservative nature. In scalar models the Lagrangian action is defined by� ��� � � � �� � � 	 � � 		 
��. A second order Lagrangian systems is, under suitable as-
sumptions on the �		-dependence of � , equivalent to a Hamiltonian system on � .
Trajectories of the Lagrangian system and thus Hamiltonian system lie on three
dimensional sets � � def� �� � � �, where � is the Hamiltonian (conserved quan-
tity). The sets � � are smooth manifolds for all regular � values (�� ��� �� �)
and the energy manifolds � � are non-compact for all � � . It turns out that
for Hamiltonian systems that come from second order Lagrangians, one can find
a natural two dimensional section �� 	 � �� � � � which bounded trajectories have
to intersect finitely or infinitely many times (possibly only in the limit). This sec-
tion will be denoted by �� and �� � �� �  , where �� is a one dimensional set
defined by:

�� � ��� � � 		 
 �
� ��� 		 � 		  � �� � � � � 		 
 � � � (1)

(see Section 1.1 for more details). The Hamiltonian flow induces a return map to
the section �� , and closed trajectories — closed characteristics — correspond to
fixed points of iterates of this map. In many situations the return map is an ana-
logue of a monotone area-preserving Twist map (see e.g. [6, 19, 22]). The theory
developed in this paper will be centered around this property. Lagrangian sys-
tems that allow such Twist maps will be referred to as Twist systems. More precise
definitions and analysis will be given in the forthcoming sections. This paper will
be concerned with the basic properties of Twist systems and the study of simple
closed characteristics. These are periodic trajectories that, when represented in
the �� � � 	
-plane (configuration plane of a Lagrangian system), are simple closed
curves. In [31] we will investigate more elaborate types of characteristics via a
Morse type theory. One of the main results of this paper is the following.

Theorem 1. Let � be a regular value. If �� has a compact connected component � !� ,
then the Lagrangian Twist system has at least one simple closed characteristic at energy
level � with � ��
 � " #� !� for all � �  , where " #� !� is the projection of � !� onto the
�-coordinate.

A precise statement of this result will be presented in Section 3.1 together with
information about the location and the Morse index of the trajectory (Theorem 11).
The results in this paper are proved for Twist systems. We conjecture that Theorem
1 is still true even without such a requirement (some growth conditions on � may
be needed).

For singular energy levels a similar theorem can be proved (Theorem 13). The
bottom line is that under the same compactness assumptions there exists a simple
closed characteristic in the broader sense of the word, i.e. depending on possible
singularities a closed characteristics is either a regular simple closed trajectory, a
simple homoclinic loop, or a simple heteroclinic loop. We also explain how sin-
gularities can lead to multiplicity of closed characteristics. This issue is addressed
in full in [31]. In Chapter 4 we give some more background information on Twist
maps and the relation to Aubry-LeDaeron-Mather theory [6, 19]. We also briefly
discuss the analogues of KAM-tori/circles for second order Lagrangian systems,
and the issue of integrability versus non-integrability. Throughout the Chapters
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1-4 we will also give specific examples of physical systems such as the eFK and
Swift-Hohenberg equations (�				  �� 		 � � 	 �� 
 � � with � � ). The theory de-
veloped in this paper also applies to systems on � � � � by simply assuming � to
be periodic in � (see Section 4.3 for more details).

1.1. Second-order Lagrangians. Let � �  � �  be a
� �

-function of the variables
� � 	 �
 . For any smooth function � � � �  , � � , define the functional

� ��� �
� � �� � � 	 � � 		 
��, which is called is the (Lagrangian) action of � . The function � may
be regarded as a function on the 2-jet of  , and is generally referred to as the
Lagrangian function�. The pair �� � ��
 is called a second-order Lagrangian system
on  . The action

�
of the Lagrangian system is said to be stationary at a function

� if � � ��� � � with respect to variations �� � ��
! �� �  
� , i.e.� � ��� � � � � �� � � 	 � � 		 
�� � � ����� �� � ��� 	 �� 	 � ���
 �� 		� ��

�
� �����  �

��
� �� 	 � ��

��� ���
 � ���� � � �
A stationary function � thus satisfies the differential equation����  �

��
� ��� 	 � ��

��� ���� 		 � � �
which is called the Euler-Lagrange equation of the Lagrangian system �� � ��
. The
Lagrangian action

�
is invariant under the -action � �� � � �, which by Noether’s

Theorem yields the conservation law� ���� 	  �
��

���� 		 �� 	 � ���� 		 � 		  � �� � � 	 � � 		 
 � constant (2)

(see for instance [18]). This conservation law is called the Hamiltonian, and if the
Lagrangian is strictly convex in the 
 -variable then the Lagrangian system �� � ��

is equivalent to a Hamiltonian system on � with the standard symplectic struc-
ture. Therefore we assume:

(H)
� ��� �� � 	 �
 
 � � � � for all �� � 	 �
 
.

The correspondence between a Lagrangian system �� � ��
 on  and a Hamilton-
ian system �� �� 
 on � can be explained as follows. Let � � �� # �� � � � � 	 
 be
symplectic coordinates for � with the symplectic form given by � � �� # � �� �
�� � � �	 . Define the Hamiltonian � �� 
 � � #	 � �  �� � 	 �� � 
, where �  �� � 	 �� � 
 �!"#� $% &� �
  � �� � 	 �
 
' is the Legendre transform of � . Since � is strictly convex

in 
 we have that �  is strictly convex in � � . Moreover
�( ) �  � *��� +,� �� � 
 � 
 ,

hence � �� 
 � � #	 � � � *��� +,� �� � 
  � �� � 	 � *��� +,� �� � 

. For any function� � � �  the Hamiltonian action is defined by - �� � � � .� #� 	 � � � 	 	  � �� 
/��.
A function � is stationary for - if and only if the �-coordinate is stationary for

�
.

In particular, the Euler-Lagrange equations for - are of the form � 	 � 01 �� 
,
where 01 � 2 �� and 2 is defined by � �� � 2 3 
 � 4� � 3 5 ( 4� � 3 5 is the stan-
dard inner product in � ). 01 is called the Hamiltonian vector field associated6

In the case of a general smooth 1-dimensional manifold 7 we define 8 as a smooth function on

the 2-jet of 7 . The action is then defined by considering functions 9: ; : < ; : << = > ? @ A B7 .BIf 7 is a arbitrary 1-dimensional manifold a different notion of variation is used.
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to � . The correspondence between � and its derivatives and � is given by: 	 � �	,� # � �
# ��  � 	� , and � � � �

# ��� (see e.g. [4] for more details on this correspon-
dence). The state space � of the Hamiltonian system �� �� 
 is often referred to as
the phase space and

� � �  �
is called the configuration space� .

If the Hamiltonian is sufficiently smooth then the Hamiltonian system � 	 �01 �� 
 generates a local flow on � . If we assume strict convexity of � in the 
 -
variable then � is of class

� � . Under Hypothesis (H)� the Hamiltonian � �� 
 is a� �
-function, which in return generates a local

� �-flow
��1 on � via the equation� 	 � 01 �� 
.

Stationary functions of
�

satisfy relation (2), which is equivalent to � �� 
 �
� �  . For the associated Hamiltonian system �� �� 
 this means that the sta-
tionary motions lie on the 3-dimensional sets � � � �� � � � � �� 
 � � �. If
�� �� � on � � then � is called a regular value and � � is smooth manifold (non-
compact) without boundary. The vector field 01 restricted to � � is non-singular
when � is a regular value. Indeed, the singular points of the vector field 01 ,
i.e. points �  such that 01 �� 
 � �, are exactly the critical points of the Hamil-
tonian, and thus only occur at singular energy levels. Singular points are of the
form �  � �� # �� � � � � �
 and are given by:

�
#� �� � � � �
 � �, � # � ��� �� � � � �
 and� � � ��� �� � � � �
. Equivalently, for a Lagrangian system an energy level � is said

to be regular if and only if ��
�# �� � � � �
 �� � for all points � �  that satisfy the

relation  � �� � � � �
 � � .
A bounded characteristic of the Lagrangian system �� � ��
 is a function � �� �� � �  
 for which � � � �� � � 	 � � 		 
�� � � with respect to variations �� � � �

! �� �  

for any compact interval � �  . Since the Lagrangian is a

� �
-function of the

variables �� � 	 �
 
 it follows from the Euler-Lagrange equations that � � � �� � �  
,
��
�
� ��
 � � �� � �  
, and * �

�
� ��
�
�  ��

�
� + ��
 � � �� � �  
 (regularity of extremals of �).

This is equivalent to having a function � � � �� � �  � 
 which is stationary for - �� �;
a bounded characteristic for the associated Hamiltonian system �� �� 
.

The question now arises, given an ‘energy-value’ � , do there exist closed
and/or bounded characteristics (see Sections 1.2 and 1.3 for a definition) on � � ,
and how many, and how are these questions related to geometric and topological
properties of � � .

1.2. Cross-sections and area-preserving maps. From (H) it follows that bounded
solutions of the Euler-Lagrange equations only have isolated extrema (well-
posedness of the initial value problem for � 	 � 01 �� 
). Consequently, a bounded
characteristic has either finitely, or infinitely many isolated local extrema. For
the associated Hamiltonian system this means that a bounded trajectory always
intersects the section �� � �	 � �� � � � � ��� # �� � � � � �
 � � # �  � � � ���� �� � � �
 
 � �� �
 
 � �� �, where �� is defined by (1)	 . In the case that there
are only finitely many intersections � must be asymptotic, as � � 
� , to singular
points of 01 , and thus critical points of � . If � is a regular value this possibility
is excluded. A bounded solution � is therefore a concatenation of monotone laps
between extrema — an increasing lap followed by a decreasing lap and vice versa

�
In the general case the phase space is  A 67 and the configuration space is A 67 .�
In order to study stationary points of � additional regularity for � is not required. One does

usually need proper growth conditions on � .�
It is sometimes convenient to define �� in terms of coordinates 9: ;� � = by simply using the for-

mula � � � �� 8 .
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FIGURE 1. The map 
� , which is induced by the flow, and its pro-
jection �� .

— at least if we assume that � does not have critical inflection points, i.e. �� is not
intersected in a point where 
 � �. In this context it is important to note that if �
is a regular value then critical inflection points can only occur at the boundary of

" #�� def� �� ��� �
 
 � �� for some 
 �  � � �� �� �� � � � �
 � � � �� �
The last equality follows from the definition of �� and the fact that

�� ����
  
�
 � � ���
 in combination with hypothesis (H). We will be interested in bounded
characteristics that avoid critical inflection points.

Recalling that 
 � �( ) �  we define � �
� � ��� �� � 
 � �� � �( ) �  �� � � �� � 
 �

� �, � ,� � ��� �� � 
 � �� � �( ) �  �� � � �� � 
  ��, and �
�
� � ��� �� � 
 �

�� � �() �  �� � � �� � 
 � ��. It follows from Hypothesis (H) that � �
� and � ,� are

smooth graphs over the �-axis and " #� �
� � "#� ,� . The sets ��� � � �� �  are

smooth surfaces over the �� # � � 
-plane. Therefore the projections "� � ��� � � ��
are invertible. For a given bounded trajectory � ��
 we therefore only need to know
the �� # � � 
-coordinates of the intersections of � ��
 with �� . Thus bounded charac-
teristics can be identified with sequences of points �� # � � � � 
 in the �� # � � 
-plane.

In the following we fix the energy level � and drop the subscript in the notation.
The vector field 01 is tranverse to the section �� � �, (non-transverse at ��). It
therefore makes sense to consider the Poincare return maps, i.e. maps from �� to
�, and from �, to �� . Follow the flow � �1 starting at �� until it intersects �, . It
may happen that � �1 does not intersect �, at all. For the points in �� for which
the flow does intersect �, we have defined a map 
� from �� to �, � . The same
can be done for the map 
, mapping from �, to �� . Since �� are graphs over

the �� # � � 
-plane the above defined maps induce maps �� � "�
�" ,�� between
open regions �� � "��� , i.e. �� � �� � ��

(see also Figure 1). For any point

�
In ODE theory the study of this map is often called a shooting method.
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�� # � � 
 � �� , �� is a local
� �-diffeomorphism (since there are no critical inflection

points in � � ).
Since bounded characteristics consist of increasing laps followed by decreasing

laps we seeks fixed points of iterates of the composition map � � �, � �� (or
� � �� � �, . Fixed points are contained in the set

�  � �
�$�*�, � �� +� ��� 
 �  � �

The maps �� are area-preserving maps with respect to the area � � �� # � �� .
This means that for any region � � �� it holds that �� � � ��� � �  �� (locally area-

preserving). This was proved in [16] for the eFK-equation. We will give a different
proof of this fact here. Let �� # � � 
 � � � �� , and recall that � � �� # � �� � �� � � �	 .

Now 
� maps " ,�� � � �� to 
�" ,�� � � �, . Since 
� preserves � , and because
�� � �	 � �� it follows that the �-form � � �� # � �� is preserved, and thus �� , as
a map from ��

to �, , is area-preserving. This implies that� #	 �� �  � # 
 �� � � �� �� # 
 � � � 
 � (3)

where �� # 
 � � � 
 � � and �� #	 � � � 
 � �� �� # 
 � � � 
 � ��� , and � is a
� �-function of

�� # 
 � � � 
.
The map �� is a (local) Twist map if � � � � � �� # 
 � � � 
 is strictly increasing

in  � # 
 . It then follows from (3) that there exists a
� �-function �� �� � � � � 
 �� �� # 
 �� � � � � 
 � � � 
 such that

� ��� �  � # 
 and
�� �� � � #	 . This function is called

the generating function of the Twist map. A similar construction can be carried out
for �, .

The function �� can be used to formulate a variational principle for the � �-
variables. In the next chapter we will make a connection with the variational prin-
ciple for the Lagrangian action

�
�
��� �

� �
� *� �� � � 	 � � 		 
 � � +�� �

where the integration over
�� � � � is between two consecutive extrema of � ��
. In

relation to this connection we note the following (which does not depend on ��
being a Twist map or not).

Lemma 2. Let � �� # 
 � � � 
 � �� �� �, where � ��
 is the trajectory starting at
" ,�� �� # 
 � � � 
 � �� , and � � � �� # 
 � � � 
 is the first intersection time at �, . Then � 
satisfies Equation (3).

Proof. Define the Hamiltonian action -� �� � � � �� �� #� 	�� �	 	  � �� 
�� ���, and

let �� # 
 � � � 
 � ��
. Consider the trajectory �� �1 �" ,�� �� # 
 � � � 

��� �(	 
 �# 
 �� � , where

� �� # 
 � � � 
 is the first intersection time at �, . These trajectories vary smoothly with
�� # 
 � � � 
 � �� . We now consider variations with respect to �� # 
 � � � 
 � �� . Using
the fact that �� # �� � � � � 	 
 obeys the Hamilton equations and 	 �� �� # 
 � � � 

 � �, we
obtain �-� �� � � � # �� ��� � � � �	 ��� � .� #� 	 � � �	 	  � �� 
 � � /� ��

� � # �� �� 
  � # �� ��
 � � � .�	 �� 
 � 	 	 �� 
�� /
� � #	 �� �  � # 
 �� � �

where �� #	 � � � 
 � �� �� # 
 � � �
. It may be clear that -�
�� � � �

�
�� �, which proves

the lemma.
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If �� is a Twist map then for
�
� this implies that there exists a local continuous

family � �� � � � � � � 
 of extremals (and � �� � � � � 
 varies continuously). Conversely,
we will show in the next chapter that the continuity conditions on the family of
extremals � �� � � � � � � 
 imply the Twist property.

We remark that instead of studying the maps �� one can study a related area-
preserving map which is well defined when �� are Twist maps. From �� we

construct the map
�
�� ��� ��� � � �

�
� ��
��,� � � ��,� � �� � ��� � � " #�� �

For this map we can use the generating function �� �� � � � � 
 to retrieve the the maps
�� . We refer to [3, 6] for more details.

1.3. Closed characteristics. A special class of bounded characteristics are closed
characteristics. These are functions � that are stationary for

� ��� and are � -periodic
for some period � . If we seek closed characteristics at a given energy level � we
can invoke the following variational principle:�#���! �	� &�� �� � � � � �
�� ' � (4)

where
�
�
��� � � �� �� �� � � 	 � � 		 
 � � 
�� and �
�� � � � � � � �� � � � 
. It may be clear

that � is also a parameter in this problem. Indeed, Problem (4) is equivalent to�#���! �	�&�� �	 � � � � �	 � � 
 � � � �� � � �
 � � ' � (5)

where
�� �	 � � � � � �� �� �	 � � �� � � ��� 	 
� � 
� ��. This equivalent variational characteriza-

tion is convenient for technical purposes. Notice that the variations in � guarantee
that any extremal of (4) has energy � �� 
 � � . The variational problem of finding
closed characteristics for a given energy value � can also be formulated in terms
of unparametrized closed curves in the configuration plane.

The Morse index of a closed characteristic � is defined as the number of negative
eigenvalues of the linearized operator �� �� �� � � � ��#�
�� 
. The nullity is the
dimension of the kernel of �� �� �� �. The large Morse index is defined as the sum
of the Morse index and the nullity.

2. TWIST SYSTEMS AND MONOTONE RECURRENCES

2.1. Generating functions. In this section we will introduce a class of Lagrangian
systems which satisfy a variant of the Twist property. Such systems can be studied
via generating functions. We start with systems for which the generating function
is of class

� �
. In Section 2.2 we will give a number of examples of such systems.

In Section 2.3 we explain how the theory also works with
� �-generating functions

which allows a weaker variant of the Twist property (see Condition (T’) in Section
2.3).

For a regular energy value � the set " #�� is a union of closed intervals. Con-
nected components of " #�� are denoted by �� and will be referred to as interval
components. Since � is regular it holds that � �� � � � �
 � � � � for � � ��� ��� 
, and
� �� � � � �
 � � � � for � � � �� � . In terms of �� this means that connected compo-
nents of �� are copies of  and/or � �. Let � � ��� � � � � 
 � �� � �� � � � � � � �,�

The relation 8 9: ; � ;� = � � � � automatically implies that � � � due to Hypothesis (H).
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then for any pair �� � � � � 
 � �� � �� �� we define�� �� � � � � 
 � �� �
#$��
� $% �

� �
�

�
� �� � � 	 � � 		 
 � � ��� � (6)

where 0 � � 0 � �� � � � � 
 � �� � � � ��� � � �
 � � ��
 � � � � � �� 
 � � � � � 	 ��
 � � 	 �� 
 �
� "�� �	 ��� �� � � � �� � �  � � � "�� � 	 ��� �� �  � �� � � � � � �. We remark that the
notation �� is slightly suggestive since it is not a priori clear that this definition of�� is equivalent to the one in Section 1.2 (however, compare Lemma 2). If there is
no ambiguity about the choice of � we simply write � �� � � � � 
. At this point it is
not clear whether � is defined on all of �� � �� �� .

The �-laps from � � to � � that minimize � �� � � 
 are the analogues of broken
geodesics. Our goal now is to formulate a variational problem in terms of the � �-
coordinates of bounded characteristics replacing the ‘full’ variational problem for�
�
�� �. This will be a direct analogue of the method of broken geodesics.
As in (5) there is an equivalent formulation of the variational problem above. In

view of this we consider the pair �	 � � 
, with 	 ��
 � � ��
 and � � ��� . For �� � � � � 
 �� we define 	 ��
 � � � for � � �� � �� and � � � (and � �� � � � � 
 � �) A Lagrangian
system �� � ��
 is said to satisfy the Twist property on an interval component �� if
(with � a regular energy value):

(T) �� � ��� �� � � � � 0 � �� � � � � 
 � � � � � has a minimizer � �� � � � � � � 
 for all �� � � � � 
 ��� � �� � � , and 	 ��
 and � are
� �-smooth function of �� � � � � 
.

To be precise, by
� �-smoothness we mean that �� � � � � 
 � �	 � � 
 is a

� �-function
from ��� ��� � �� � � 
 to

� � ��� � ��
 � � and a
� �

-function on �� � �� . The results
presented in this paper will apply whenever the Twist property is satisfied on an
interval component �� � .

If � is a singular energy level with non-degenerate critical points then we have
the same formulation of the Twist property with the following exceptions. Firstly,� �-smoothness is only required for all �� � � � � 
 � ��� ��� ��� �� 
 such that � � nor � �
is a critical point� . Secondly, when an equilibrium point �  � �� is a saddle-focus
or a center then � �� � � � � 
 is not continuous at ��  � �  
�� . In the case that � � and/or
� � is an equilibrium point of real saddle type then � can be � ��. See Section 3.2
and Appendix A for more information on singular energy levels and equilibrium
points.

Definition 3. A Lagrangian system �� � ��
 is called a Twist system on an interval com-
ponent �� if both Hypotheses (H) and (T) are satisfied.

Using Hypothesis (T) we can derive the following regularity properties for � .

Lemma 4. Let � be a regular value. If �� � ��
 is a Twist system on an interval component�� , then the function �� �� � � � � 
 is of class
� � ���� ��� � �� � � 

 � � � ��� � �� � � 
 �� � ��� � �� 
.

	
We note that most of the results in this paper also hold for slightly weaker conditions. For example,

when we do not require the family of solutions/extrema to be minimizers of A� 9: 6 ; : B = then we obtain
the same results, the information on the index excluded. For the case where the family is continuous

but not 
 6
we refer to Section 2.3.�

Singular energy levels connected components of ���� can have internal critical points. This will

be discussed in Section 3.3.6
It still follows that A� �: 9� �: 6 ; : B =� @ � as 9: 6 ; : B = @ 9: � ; : � =.66
We then consider : on either �� ;� =, 9�� ; �� or � (whichever is appropriate) and require that: 9� � : 6 ; : B = converges on compact sets as : 6 and/or :B tends to the critical point.
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Proof. Due to the smoothness assumption in (T) and the regularity of solu-
tions of the Euler-Lagrange equations (see Section 1.1), we have that � �� � � � � � � 

varies smoothly with �� � � � � 
 with values in

� �
. It is easily seen that�� �� � � � � 
 � �

�
�� �� � � � � � � 
� is a

� �-function. Lemma 2 and Equation (3) show
that

� �� �� � � � � 
 �  � # 
 and
��� �� � � � � 
 � � #	 . It follows from the smoothness

assumption in (T) and the fact that all solutions obey (2) that � # 
 and � #	 are
� �-

functions of �� � � � � 
, hence �� is a
� �

-function.

If � is considered on � �� � � �
� , where � �� , � � � � � are different connected com-

ponents of " #�� one does not expect �� to be defined on all of � �� � � �
� . The next

lemma reveals some other important properties of the generating function � . For
the remainder of this section we assume that � is a regular value and we consider
interval components �� on which �� � ��
 is a Twist system.

Lemma 5. Let � be a regular value. We have:
(1)

� �� �� � � � � 
 �  � # 
 and
�� � �� � � � � 
 � � #	 for any �� � � � � 
 � �� � �� �� ,

(2)
� ���� �� � � � � 
 � � for all �� � � � � 
 � ��� ��� � �� �� 
, and

(3)
��� � ���� �� � � �� , where �� � �� � �
 �
��.

Proof. Part (1) has been dealt with in the proof of Lemma 3. For part (2) of

this lemma we argue as follows:
� ���� �� � � � � 
 � �

(		
�# 
 �  �

(	 

�#	 . Because of

the uniqueness of the initial value problem for � 	 � 01 �� 
 it easily follows that
 � # 
 is a strictly increasing function of � � (� � fixed). In exactly the same way� #	 is a strictly increasing function of � � (� � fixed). Therefore

� ��� � �� � � � � 
 � �.
On the other hand using the smooth dependence on initial data for � 	 � 01 �� 

and the smoothness of � �� � � � � 
, it follows that both � � � � � �� � �� # 
 
 and � � �� � �� � �� #	 
 are smooth functions. This implies that �

(	 

�#	 �� � and �

(		
�# 
 �� �, and

thus
� ��� � �� � � � � 
 � �.

As for for part (3) we only consider the derivative in the direction �� (the other
case is similar). We have that �			 ��
 � � 			 �� 
 �  � as � � � � �. For � # it holds that� # � ��� �� � � �
 
  � ���� �� � � �
 
� 		  � ��� �� � � �
 
� 			 and thus � # � � � , � � � � �.

The question of finding bounded characteristics for �� � ��
 can now best be
formulated in terms of � . Extremizing the action

�
� over a space of ‘bro-

ken geodesics’ now corresponds to finding critical points of the formal sum� �$�� ��� � ��� � 
. Formally we seek ‘critical points’ (bounded sequences) of the
infinite sum �

�� � � � �,� � � � � � � � � � � 
 � 	
�$� � �� � � � �� � 
 �

Since this sum is usually not well-defined for bounded sequences �� � 
�$� � 
� �� 
,
we say that a sequence is a critical sequence, or critical point of

�
, if:��� �� �,� � � � 
 � � �� �� � � � �� � 
 � � � �� � � � (7)

Such equations are called second order recurrences and are closely related to Aubry-
LeDaeron-Mather theory for Twist diffeomorphisms (see e.g. [6, 19] and Section
4.3). If (7) is satisfied for all � �  then �-laps can be glued to a

� �-function for
which all derivatives up to order three match. Indeed, Equation (7) means that the6BThis should be read as follows: when we approach a point 9 �: ; �:= � ��� 9� = from within the region�:B � : 6� then ��� � @ � as 9: 6 ; : B = @ 9 �: ; �:=.



10 J.B. VAN DEN BERG AND R.C.A.M. VANDERVORST

third derivatives match. Since every �-lap satisfies the Euler-Lagrange equations
we thus get a

� �� -function � that is stationary for
� ���. Of course if we seek periodic

sequences, i.e. sequences �� � 
�$� with � �� �� � � �, where � � � is called the period,

we may look for critical points of the restricted action
� �� � � ��

� � � �� � � � �� � 
 de-
fined on � ��

� .�� This corresponds to finding closed characteristics for �� � ��
. The
period can be linked to various topological properties of � and � (in the Hamilton-
ian system �� �� 
) such as knotting and linking of closed characteristics. More-
over, periodic sequences as critical points of

� �� have a certain Morse index,
which is exactly the Morse index of a closed characteristic � as critical point of� ����� .
Lemma 6. Let � be a regular value. Let � � �� � 
�$� � 
� �� 
, � � � ��� ��� 
 be a periodic
sequence with period � , which is a stationary point of

� �� with index � �� 
 � �� . Then
the associated closed characteristic � for �� � ��
 is stationary for

� ��� and the Morse index
of � is also � �� 
 and vice versa.

Proof. Let � be stationary for
� �� , i.e. �

� �� �� 
 � �. Concatenating the �-
laps between the consecutive extrema � � yields a � -periodic

� � -function � that
satisfies the Euler-Lagrange equations of �� � ��
. It may be clear that the function
� is an extremal of (4). The statement concerning the Morse index � �� 
 � � �� 

can be proved as follows. The assumption that � � � ��� ��� 
 implies that �		 �� � at
extrema of � ��
. The linear operator �� �� �� � induces the orthogonal decomposition
�#�
�� � � � � �# �
��, where � �! �� 
 � �� and the functions � in � �# �
�� have
the property that � and � 	 are zero at the ‘breakpoints’ � �. It follows now that
�� �� �� � �� and ��� �� �� � are conjugated which proves the lemma (for more details
see e.g. [20]: case of broken geodesics).

For points � � � � �� additional information about � can be obtained. Denote
the left boundary points by �, and right boundary points by �� . If �� is compact
then

� �� � ��, � �� �.
Lemma 7. Let � be a regular value. Let �, � � �� (assuming that there exists a left
boundary point) then

� �� ��, � ��
 �  ��� ��, � � � �
 and
�� � ��� � �, 
 �  ��� ��, � � � �


for
�� � �,. Similarly, if �� � � �� then

� �� ��� � ��
   ��� ��� � � � �
 and��� ��� � �� 
   ��� ��� � � � �
 for all
��  �� .

Proof. Let us prove the above inequalities for
� �� as the case for

��� leads to
an analogous argument. We start with the left boundary point �,. We seek an
increasing lap from �, to

��. At � � � �, it holds that  � ��, � � � �
 � � , � 		� � �
and

�
#� ��, � � � �
 � �, which implies that � 			� ��
 � �. By contradiction, suppose

that � 	 ��
 � �		 ��
 � �			 ��
 � �. On the one hand we have � 	� � ���  � # and
on the other hand � 	� � � �

#��� 	 � � ��� �		 � � ���� 			. From the former we see that� 		� ��
 �  �#� ��
  �, so that

	�!
� �
�� �
#� �� 	 � � ��� � 		 � � ���
� 			 �� 
� � 	�!
� �

� ���� 			 �� 
� �  �#� ��
  � �
We conclude (using condition (H)) that �			 ��
  � in a right neighborhood of �,
which contradicts the fact that we are dealing with an increasing lap.6�

The function  B� is continuous on ? B�� and is of class 
 B on the set
� 9: 6 ; ���; : B� = ���� 9? B�� = � : � �� : �� 6 ; � � � � ; ��; �� � with :B�� 6 � : 6.
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It now follows that � # 
 � ��� ��, � � � �
  � ��� ��, � � � �
� 			� ��
  ��� ��, � � � �
.
Therefore

� �� ��, � ��
 �  � #� �  ��� ��, � � � �
. For the right boundary point ��
we obtain

� �� ��� � ��
 �  � #�   ��� ��� � � � �
, since � is a decreasing lap.

2.2. Examples of Twist systems. An example of a class of Lagrangians for which

we can verify the Twist property in various cases is given by � �� � � 	 � � 		 
 � �� �		� �� �� � � 	
. Most of the fourth order equations coming from physical models are
derived from Lagrangians of this form. We could tag such systems as fourth order
mechanical systems based on the analogy with second order mechanical systems

given by Lagrangians of the form � �� � � 	
 � �� � 	� � � �� 
 (integrable system).
The Lagrangian � clearly satisfies Hypothesis (H) and �� � ��
 is thus equivalent
to the Hamiltonian system �� �� 
 with � the standard symplectic form on � (see
previous chapter) and � �� 
 � � #	 � �� � ��  � �� � 	 
. For a regular energy value �
the set " #�� is given by " #�� � �� � � �� � �
 � � � ��. If � is regular it holds
that

� �� � �
 � � � � for � � ��� ��� 
, and
� �� � �
 � � � � for � � � �� .

Lemma 8. Let �� a connected component of " #�� (� not necessarily regular�� ). As-
sume that

(a) �
�
�
� 	  � �� � 	 
  � � � for all � � �� and 	 �  ,

(b) � 	
�

�
� 	 �	 ��  	� & �

�
�
� 	  � �� � 	 
  � ' � � for all � � �� and 	 �  .

Then for any pair �� � � � � 
 � �� � �� �� Problem (6) has a unique minimizer �� � � 
 �0 � � � (in fact the only critical point), and the minimizer � �� � � � � � � 
 depends
� �-

smooth on �� � � � � 
 for �� � � � � 
 � ��� ��� � �� �� 
 �	 .

For the proof of this lemma we refer to Appendix B.
At this point we are not able to prove that the Twist property holds for more

general systems under some mild growth conditions on
�

without assuming (a)
and (b). However numerical experiments (see also Section 4.1) for various La-
grangians suggest that Lemma 8 is still valid, although we do not have a proof of
this fact. Milder conditions on

�
sometimes only allow the existence of a contin-

uous family � �� � � � � � � 
. We come to this case in Section 2.3. The conditions given
in Lemma 8 already allow for a large variety of Lagrangians that occur in various
physical models. We will give a few examples of such systems now.

2.2.1. The eFK/Swift-Hohenberg system. The eFK/Swift-Hohenberg Lagrangian is

given by � �� � � 	 � � 		 
 � �� �		 � � �� � 	� � � �� 
, where � �  and � is a smooth

potential function. The Hamiltonian in this case is � �� 
 � � #	 � �� � ��  �� 	 �  � �� 
.
Connected components of " #�� are sets of the from �� � � �� 
 � � � � �.

In the case that � � � this � is referred to as the eFK-Lagrangian (see e.g. [13,
14, 15]), and in the case � � � it is usually referred to as the Swift-Hohenberg
Lagrangian [21, 28, 29]. For example � �� 
 � �� �� �  �
� is the classical eFK/Swift-

Hohenberg potential [25, 26], � �� 
 � �� � �  �� � � gives the water-wave model [9],� �� 
 �  �� �� �  �
� is the potential of the nonlinear optics model [1].
If � � � then the conditions (a) and (b) are satisfied for any interval compo-

nent �� . The Swift-Hohenberg systems is therefore a Twist system for all interval
component. For � � � this is not immediately clear (conditions (a) and (b) are not6�

If � is a singular energy level then we require the critical points to be non-degenerate.6�
If � is a singular energy level then 
 6

-regularity holds for all 9: 6 ; : B = � ��� 9?� � ?� �� = such

that : 6 nor : B is a critical point.
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satisfied)��. More details on eFK/Swift-Hohenberg systems are given in Section
3.4.

2.2.2. The suspension-bridge model. The suspension bridge model is a special case

of the Swift-Hohenberg equation, i.e. � �� � � 	 � � 		 
 � �� � 		�  !	� �	� � � �� 
, with� �� 
 � �#  �  � (see [27]). Clearly, the suspension bridge model is a Twist
system for all � � . For more details see Section 3.4. This model is particularly
intriguing due to the specific form of the potential function � . The growth of � for
� � � is basically different from the growth for � �  � which has far reaching
consequences for the set of closed characteristics.

2.2.3. The fifth order KdV equation. Consider � �� � � 	 � � 		 
 � �� � 		� � � �� � � 	
,� �� � � 	
 � �� �� � ���
� 	� � � �� 
, with � �� 
 � �� � � � �� � � , which describes a
fifth order Korteweg-deVries equation (see e.g. [23]). In order for the theory to be
applicable the above conditions on

�
imply that � � ��� � � for � � �� . The

case � � � is the Swift-Hohenberg equation again. Let us assume for example that
� � � � �, then one can find compact intervals �� for values � � � � � ���	 . These in-

tervals are contained in
� ���� � ��. For � � � the condition becomes �   ��� , which

is satisfied for all � � �� if �  � for instance. For �  � the condition becomes
� �  ��� , which is satisfied for all � � �� if �  � ��

� . Many more combination can

be found by also varying the signs of � and � .

2.3. The
� �

-Twist property. As we already pointed out before, the theory devel-
oped in this paper can be adjusted to work for

� �-generating functions. We will
point out the difficulties and how the theory has to be adjusted at the end of this
section. First we start with a weaker version of the Twist property that ensures the
existence of

� �-generating functions.

(T’) �� � ��� �� � � � � 0 � �� � � � � 
 � � � � � has a minimizer � �� � � � � � � 
 for all � � � � � ��� , and � �� � � � � � � 
 is a continuous function of �� � � � � 
.
Condition (T’) is often easier to verify than the stronger Condition (T). Let �� be an
interval component and �� � ��
 is a twist system on �� with respect to Condition
(T’). Then � #	 �� � � � � 
 is strictly increasing in � � and  � #	 �� � � � � 
 is strictly increas-
ing in � � , and both continuous in �� � � � � 
. The maps �� as described in Section 1.2
are therefore monotone (

� �-) Twist maps, which have a
� �-generating function�� �� � � � � 
 � �

�
�� �� � � � � � � 
�.

Lemma 9. Let �� be an interval component. If �� � ��
 is a Twist system with respect to
Condition (T’), then �� is a

� �-generating function on �� � �� �� .

Property (2) of Lemma 5 is now replaced by the property that
� �� and

�� � are
increasing functions of � � and � � respectively. The difficulties in working with

� �-
generating functions are the definition of the Morse index and the gradient flow
of

�
� �

� � �� � � � �� � 
. In Section 3 we use the gradient flow of
�

to find other
critical points besides minima and maxima. A way to deal with this problem is to
approximate � by

� �
-functions. A

� �-Morse/Conley index can then be defined
(see for instance [7, 8]). An analogue of Lemma 6 can also be proved now. Other6�

J. Kwapisz proves that the (
 
) Twist property (T’) (see Section 2.3) is satisfied for the eFK-

Lagrangian (� � �) on interval components ?� for which � 9: = � � has at most one internal critical

point (a maximum), see [17].
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properties of � that we use in this paper, such as construction of isolating neigh-
borhoods, do not need the

� �
-regularity. For that reason we will continue with� �

-function keeping in mind that all result immediately carry over to the
� �-case.

3. EXISTENCE

3.1. Simple closed characteristics for compact sections �� . The properties of �
listed in the Section 2.1 can be used to derive an existence result for simple closed
characteristics. Before stating the theorem we need to introduce some additional
notation: �� � �� �� � � �

� � � ,� , where
� �
� � ��� � � � � 
 � �� � �� �� � � � � � � �,

and
� ,� is defined analogously. The function

� � �� � � � � 
 � � �� � � � � 
 � � �� � � � � 

is a

� �
-function on ��� ��� � �� �� 
. Since

� � �� � � � � 
 � � � �� � � � � 
 we can restrict
our analysis to

� �
� .

Throughout this section we again assume that � is regular and �� � ��
 is a Twist
system on �� .

Lemma 10. Assume that " #�� contains a compact interval component �� . Then
� �

has at least one maximum on
� �
� �� .

Proof. We have that
� � �� � � and

� � is strictly positive near ��� �� 
 by Lemma 5

part (3). Since the set
� �
� is compact,

� � must attain a maximum on set
� �
� . It

follows that !"# �# 
 �#	 �$� ��
� � �� � � � � 
 � �.

Writing �� � ��, � �� � we denote by � � � �� � � 
� the inward pointing normal on
the left boundary � � � ���, � � � 
 � � � � �� � and by � � � �� �  �
� the inward point-
ing normal on � � � ��� � � �� 
 � � � � �� �. Using Lemma 7 we can now compute
�
�
	

�
�
 and �

�
	

�
�	 . For example let � � � �,, then �

�
	

�
�
 � � �� ��, � � � 
 � �� � �� � � �, 
 �

 ��� ��, � � � �
 � ��� ��, � � � �
 � �. Similarly, using Lemma 7, we derive that
�
�
	

�
�	 �� 	 � �. Since both �

�
	

�
�
 �� 
 � �, �

�
	

�
�	 �� 	 � �, and

� � �� � �, the maximum is

attained in ��� �� �
� 
 (see also Figure 2).

If we study
� �� , � � � we do not necessarily find new closed characteristics

for �� � ��
. i.e. critical points of
� �� of higher index may be the same closed char-

acteristic traversed more than once. In the next sections we will describe some
mechanisms that yield more geometrically distinct closed characteristics.

The above lemma can be slightly rephrased for Lagrangian systems (see
Lemma 6). We do not have information about the nullity of �� �� �� � � � � 
, so that
the large Morse index�� of the solutions may be greater than �, but the Morse index
is certainly smaller than or equal to �.

Theorem 11. Assume that " #�� contains a compact interval component �� . Then
�� � ��
 contains at least one simple closed characteristic � ��
 � ��� ��� 
 with large Morse
index greater than or equal to � and Morse index less than or equal to �.

Theorem 11 states that the associated Hamiltonian system �� �� 
 has at least
one closed characteristic on � � . The above Theorem is reminiscent of first order
Lagrangian systems: � �� � � 	
 with Euler-Lagrange equation ��

�#  �
�
� ��
�# � � �. Such6�

From straightforward Morse theory for  B on ��
� we obtain in addition that � � �, � 6 � � � �

and �B � � 6 � � � �, where �� is the number of critical points of index �.6	
The large Morse index is defined as the sum of the Morse index and the nullity.
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� �
�

� � � ��

��
�
��

��
���

FIGURE 2. A picture of
� �
� . The arrows denote the direction of

the gradient �
� � schematically (of course the gradient is not per-

pendicular to the boundary everywhere). Clearly the maximum
of

� � is attained in the interior of
� �
� .

systems may be labeled as mechanical systems if
�
# �� � �. On the compact com-

ponents of ��� � � 	
 � ��
�# � � 	  � �� � � 	
 � � � closed characteristics exist (integrable

system).
If � is invariant with respect to the symmetry � ��  � it holds that � �� � 	 �
 
 �

� �� �  	 �
 
 for all �� � 	 �
 
 �  � . A consequence of this symmetry is that� �� � � � � 
 � � �� � � � �
 which implies that we can study just � (instead of
� �) to

find simple closed characteristics in this case. Besides, this symmetry of � carries
over to the simple closed characteristic: � ��
 is symmetric with respect to its ex-
trema. Some Lagrangian systems are also invariant under the symmetry � ��  �
which yields the relation � �� � 	 �
 
 � � � � �  	 �  
 
. If � � " #�� then there is at
least one closed characteristic on the anti-diagonal � � �  � �. If the global max-
imum of

� � is not on the anti-diagonal � � �  � � then there are at least 2 more
closed characteristics (by symmetry).

If we consider non-compact interval components �� there is no topological re-
striction that forces the existence of closed characteristics, and there need not exist
any. In order to deal with this case (in forthcoming sections) more information
about � needed: asymptotic behavior (see Section 3.4).

3.2. Singular energy levels. If � is a singular energy level then there exist points
� � " #�� for which

�
#� �� � � � �
 � � and � �� � � � �
 � � � �. For a singular

value � the connected components of �� are either smooth manifolds ( or � �),
or they are characterized as: � !� � � � 
� � � � � � � � � �� 
. The points in  �

on
which �� fails to be a manifold lie on the �-axis, and are exactly the points � for
which

�
#� �� � � � �
 � � and � �� � � � �
 � � � �. The set of such points — critical

points — is denoted by 	 ��� 
. As before " #�� is a union of closed intervals. An
interval component �� is defined as a subset of " #�� such that � �� � � � �
 � � �
� for all � � ��� ��� 
 and � �� � � � �
 � � � � for � � � �� . Since � is singular
two interval components � �� and � �

� may have non-empty intersection, i.e. � �� �� �
� � �one point� � 	 ��� 
. Concatenations of interval components are discussed

in Section 3.3. If we consider interval components with critical points geometric



FOURTH ORDER CONSERVATIVE TWIST SYSTEMS: SIMPLE CLOSED CHARACTERISTICS 15

properties come into play. We assume that �� � ��
 is a Twist system for the interval
components that we consider.

Let �� be an interval component for which �, � � �� is a critical point. In
order to prove the analogue of Lemma 7 we need to know whether � 			 �� 
 is zero
or not. This is determined by � ��, � � � 
, i.e. if � ��, � � � 
  � then � 			 ��
 � �
(assuming � � � �,), and if � ��, � � � 
 � � then � 			 � � 
 � � (in the case that
� � � we consider � on

� � � �� using translation invariance). These two cases can
be distinguished by studying the singularity at �, . We can compute the spectrum
of �, which we will denote by � ��, 
. We assume that we are dealing with non-
degenerate singular points, i.e. � �� � ��, 
. It is shown in Appendix A that there are
three possible behaviors for � ��, 
: � ��, 
 �  , � ��, 
 � � , or � ��, 
 � � �� �
� �. In the latter case there is one eigenvalue in each quadrant. For all three cases
it holds that

� �
#� �� � � � �
 � � and the three possible behaviors are categorized as

real saddle, center and saddle-focus respectively. If � ��, 
 � � � (center or saddle-
focus), then � ��, � � � 
  � for all � � � �� . It is immediately clear that Theorem 11
is still valid in that case. Also, if both �� and �, are critical points and have their
spectrum in � � , Theorem 11 remains true.

Theorem 12. Let � be a singular value and assume that � �	 ��� 

 � � �� �. Then
�� � ��
 contains at least one simple closed characteristic � ��
 � ��� ��� 
 with large Morse
index greater than or equal to � and Morse index less than or equal to �.

The way to attack the problem of finding closed characteristics at singular en-
ergy levels in general is to again consider the function

� � �� � � � � 
 � � �� � � � � 
 �� �� � � � � 
. Since
� � �� � � and strictly positive near � ,

� � attains its global maxi-
mum in �� � �� �� . As was already pointed out before, the maximum is attained
in the interior of �� � �� �� if there are no critical points of � �� � � � �
 in

� �� , or
if critical points of � �� � � � �
 have complex spectrum (Theorem 12). Thus in order
for

� � to attain its global maximum on the boundary, the interval component
� ��

needs to contain at least one critical point of � �� � � � �
 with real spectrum.
The next question is: suppose

� � attains its maximum at
� ��� � �� �� 
, does

this maximum correspond to a simple closed trajectory for �� � ��
? Again from the
previous we know that at a point �� � � � � 
 � � ��� � �� �� 
 it holds that

� �� � � �
if � � � �, and

��� � � � if � � � �� . A boundary maximum for which � � � �,
and � � � �� is called a co-dimension 2 point, and the remaining boundary points
are called co-dimension 1 points. It is clear that at a co-dimension 1 point, for
example at � � � �, , it holds that

��� � � �. Since this point is a maximum, and
because

� �� � � � it follows that the maximum is in fact a critical point. The same
holds for a co-dimension 1 point at � � � �� . Such points correspond to solutions
� ��
 for which �			 � � 
 � �			 �� 
 � �, and � � � 
 � � �� 
 � �, , and � ��
 is
thus a homoclinic orbit. By the same reasoning co-dimension 2 points are also
critical points. Such a point corresponds to a heteroclinic loop (two heteroclinic
connections that form a loop).

Summarizing, we can introduce the notion of closed characteristic in the broad
sense of the word: a simple closed periodic orbit, a simple homoclinic loop, or a
simple heteroclinic loop (they all form a simple closed loop in the configuration
plane). If we use this definition we obtain the following theorem.

Theorem 13. Assume that " #�� has a compact interval component �� then �� � ��
 has
at least one simple closed characteristic in the broad sense.



16 J.B. VAN DEN BERG AND R.C.A.M. VANDERVORST

It is clear from the previous that a necessary condition for �� � ��
 to have a sim-
ple homoclinic loop to �, is that �, is a critical point of � �� � � � �
 that has real
spectrum (real saddle). The same holds for �� . A necessary condition to find a
simple heteroclinic loop between �, and �� is that both �, and �� are real sad-
dles. Unfortunately, these conditions need not be sufficient�� .

One way to guarantee the existence of a simple homoclinic loop to �, is that
� ��, � � � 
 � � �� � � �, 
 � � for all � � � �� ��

, and �� �� 	 ��� 
, or �� has complex
spectrum. In that case

� �� ��, � � � 
 �  ��� ��, � � � �
 � � for all � � � �� . In terms
of

� � this yields that
� �� � ��, � � � 
 � � for all � � � �� . We can now restrict

� � to
the line-segment �� � � �, � � �� . Define

� � �� 
 � � � ��# 
#� � �� � � ��, � � 
 �� �� � �, 
. It easily follows that (compare Lemma 7)
� � ��, 
 � �,

� � ��, � � 
 � �
for � � � sufficiently small

�� and
�
	� ��� 
  �, and thus

� � has at least one global
maximum �  on ��, � �� 
. The point �  corresponds to a homoclinic orbit to � �
�,.

Regarding the Morse index of this point/orbit we note the following. If �  is
a (local) maximum of

� � on
� �
� then the large Morse index is again equal to �.

The corresponding homoclinic orbit has large Morse index greater than or equal
to � and Morse index less than or equal to �. However, restricted to the class of
functions that are homoclinic to �, it has large Morse greater than or equal to �
and Morse index less than or equal to � (mountain-pass critical point)

��
.

3.3. Concatenation of interval components. Up to this point we have only con-
sidered single interval components �� . When � is a singular value then two inter-
val components � �� and � �

� may have a common boundary point. This boundary
point is then necessarily a critical point. The concatenation of the interval com-

ponents � �� , � � � � �, will be denoted by ��� , and the critical point in � �� � � �
� is

denoted by �  . If �� � ��
 is a Twist system on both interval components � �� and � �
�

it does does not necessarily mean that �� � ��
 is a Twist system on the concatenated

interval � �� . One can easily give examples where �� � ��
 fails to satisfy the Twist

property on ��� .
�� However if �� � ��
 is Twist system on � �� more solutions can be

found. In order to study this case we will use the gradient flow of
� � :

�	� � �� � �� � � � �
 � � �� �� � � � � 
 � (8a)

�	� � �� � �� � � � � 
 � � �� �� � � � � 
 � � � � ��� ��� 
 � �� � � � � � (8b)6�
For the eFK Lagrangian with � 9: = �

6� 9: B � �=B it has been shown that the simple closed
characteristic found in Theorem 13 corresponds to a heteroclinic loop if and only if the equilibrium

points are real saddles [25, 30, 16].B It follows from Lemma 5 part (2) that it in fact suffices that � 9:� ; : B = � � 9: B ; :� = � � .B6It follows from the linearization around :� that � �	
� � for :� � :B � :� � � when � is small

enough.BBFor the eFK Lagrangian with �� 9: = � 	 �6 9
B � �= 9
 � � =�
, �  � � � and � � ��� 9� � �=
the Twist property is satisfied on the interval component ? � �:� ; �� (� 9:� ; �= � � ). Therefore there
exists a homoclinic loop is this case. The existence of such solutions for this problem was first proved
in [24] by means of a different method. If the case � � � is considered one obtains a heteroclinic loop

(see e.g. [14]).B�For example consider the eFK Lagrangian with � 9: = � ��� 9: B � �=B . Take � � �, then � ��  �
� is the concatenation of three intervals. If � � �� � then 98 ; ��= is not a Twist system on ?� � � .
However for �  � the Twist property is satisfied on � , and numerical experiments indicate the same

for �� � � � � �. This is related to the behavior of the singularities : � � � (see Section 4.1).
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� �
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� �
� �
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� �
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� � � ��
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���

���
�� �
��

FIGURE 3. The triangle
� �
� when a connected component of

" #�� consists of two compact interval components. The arrows
denote (schematically) the direction of the gradient �

� � . Clearly� � has maximum in
� �
� �� and

� �
� �

� and a saddle point in
� �
� �� .

As before we can restrict our analysis to
� �
� . Define

� �
� �� � ��� � � � � 
 � � �� �� �� � � � � � � �, � �

� �
� � ��� � � � � 
 � � �

� � � �
� � � � � � � �, and

� �
� �� � � �� � � �

� � ��  � �  
.
On the domains

� �
� �� and

� �
� �

� one can again apply Theorem 13 which yields the

existence of maxima on each of these components. Note that this is independent
of the type of �  (spectrum � ��  
). The following theorem will crucially use the
fact that �  is a critical point for which � ��  
 � � �� � � �, i.e. a saddle-focus.

Lemma 14. Let � �� be a concatenation of two compact interval components � �� and � �
�

and assume that the critical point �  � � �� � � �
� is a saddle-focus. Then

� � has at least
one maximum on each of the components

� �
� ��, � � � � � and

� � has a saddle point (critical

points with large Morse index equal to �) on the component
� �
� �� .

Proof. The existence of at least one maximum on each of the components� �
� ��, � � � � � follows directly from Theorem 14. As for the existence of sad-

dle points we argue as follows (see also Figure 3). Applying Lemma 7 we ob-
tain that

� �� � ��  
� � 	� � � and
��� � � 
� ��  	� � �. In order to successfully apply

Conley’s Morse theory we need to choose an appropriate subset of
�
� �� which

will serve as an isolating neighborhood. Near �� � � � � 
 � ��  � �  
 we can find a
small solution of the Euler-Lagrangian equation by perturbing from a linear so-
lution. Consider the unique solution � ��
 for which � ��
 � � � � �   � and
� �� 
 � �  � � . Since �  is critical point of saddle-focus type follows that � 			 ��
  �
and � 			 �� 
  � for � sufficiently small

�� . Straightforward calculation shows that� ���� � � � ��� � �� � � � � 
 � � ��� � �� � � � � 
 � �. These two facts combined show
that

� �� � ��   � � � � 
  � for all � � � �  � � , and
��� � �� � � �  � � 
 � � for all

� � � �   � . Define � � � � �
� �� ���� � � � � 
 � �   �  � � � �  � �  � � � � � � �  �.

B�This follows for example from an explicit calculation of the solution for the linearized problem.
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The set � � is a closed subset of
� �
� �� and is isolating with respect to the gradi-

ent flow of
� � �	 . The next step is to compute the Conley index of the maxi-

mal invariant set ��� �� � 
 � � � . It suffices here to compute the homological in-
dex (see [10]) of ��� �� � 
. In order to do so we need to find an index pair for
��� �� � 
. Let

� � �� � ��,� � ��� �, � � �
� � ��,� � ��� �. Let � ,� � �� � � �  � �  � � �

� � � ��� � � ��,� � � � � �   � � � � � �  �, then �� � �� ,� 
 is an index pair for

��� �� � 
, and
��  ���� �� � 

 � �  �� � �� ,� 
. Consequently

�� � ���� �� � 

 � � and�� � ���� �� � 

 � � for � �� �. The fact that the homological Conley index is non
trivial for � � � and because (8) is a gradient flow we conclude that there exists at
least one critical point of

� � in � � with large Morse index equal to �.

With regard to the relative position of the extrema of
� � we note the following.

Let ��� � � � 
 be the minimum in
� �
� �� for � � � � �. Since �

� � ��� � � � 
 � � it follows

from Lemma 5 part (2) that
� �� � ��� � � � 
 � � for all � � � �� and

��� � �� � � �� 
  �
for all � �  �� . Therefore, we may as well take use

�� �
� �� � ��� � � � � �  � �  �

� � � �� � � ��  � �  
 instead of
� �
� ��. We then obtain a saddle point ��� � �� 
 � �� �

� ��with ��  ��  �� and ��  ��  �� .
In terms of closed characteristics for a Lagrangian systems the above lemma

yields

Theorem 15. Let " #�� contain a concatenation ��� of two compact intervals � �� and � �
� ,

and assume that �� � ��
 is a Twist system on � �� . If �  � � �� � � �
� is of saddle-focus type,

then there exist at least 3 geometrically distinct closed characteristics.

An analogue of the above theorem can also be proved for concatenations of
more than two interval components. We leave this to the interested reader.

3.4. Non-compact interval components. As already indicated in the previous sec-
tions the theory developed in this paper is applicable to various model equa-
tions that we know from physics such as the eFK/Swift-Hohenberg type equa-
tions, 5th order KdV equations, suspension bridge model, etc. (see Section 2.2).
In this section we will take a closer look at the class of eFK/Swift-Hohenberg
type equations. This family of equations is given by a Lagrangian of the form:

� �� � � 	 � � 		 
 � �� � 		� � �� � 	� � � �� 
, where � is the potential which is an arbitrary� �
-function of � . We have already proved that such Lagrangian systems are al-

ways Twist systems if � � � (and we believe the same to be true also for � � �
(Twist property on interval components)). The results obtained in this paper prove
that for any energy level � for which the set �� � � �� 
� � � �� contains a compact
interval component �� , there exist a simple closed characteristic � ��
 � ��� ��� 
. Let
us by means of example consider a double equal-well potential � (like �� �� �  �
�)
with ! ��# � �� 
 � �. In this case the set �� � � �� 
 � � � �� always contains
non-compact interval components. Without further geometric knowledge of the
energy manifold � � a general topological result proving existence of closed char-
acteristics does not seem likely. Therefore we will consider a specific example here.
Consider the energy level � � �, then �� �  , and �� is a concatenation of three
interval components. The Lagrangian system with � � � is a Twist system on ��B�The flow is not well-defined on the boundary of ��� , but we can choose a slightly smaller isolat-
ing neighborhood inside �� �� with the same Conley index (alternatively we can use the Morse index

for 
 6
-functions (see also Section 2.3)).



FOURTH ORDER CONSERVATIVE TWIST SYSTEMS: SIMPLE CLOSED CHARACTERISTICS 19

and therefore � is well-defined on  �
. One way to deal with this non-compact case

is to compactify the system (see [12]). This however requires detailed information
about the asymptotic behavior of � . There is a weaker assumption that one can
use in order to be able to restrict the analysis of

� � to a compact subset of
� �
� .

This boils down to a geometric property for � :

(D) There exists a pair ��  � � �  � 
 � � �
� (with ��  � � and ��  � � large) such that � 			� �� ��
  �

and �			� �� �� 
  � for the unique minimizers � � � � �� � �  � � �  � 
 and � � � � �� � �  � � �  � 

of (6)

��
.

If �� � ��
 satisfies Hypothesis (D) on a (non-compact) interval component �� , then
the system is said to be dissipative on �  � � ��  � � �  � �.
Lemma 16. If a Lagrangian system is dissipative on �  � . Then it holds that� �� � ��  � � � � 
  � for all � � � ��  � � �  � � and

��� � �� � � �  � 
 � � for all � � � ��  � � �  � 
.
Proof. It follows from (D) that

� �� � ��  � � �  � 
  �. Lemma 5 part (2) implies that� �� � ��  � � � � 
 is increasing as a function of � � . It easily follows that
� �� � ��  � � � � 
 

� for all � � � �  � . The other case is proved in exactly the same way.

For many nonlinearities � �� 
 it can be proved that eFK/Swift-Hohenberg sys-
tem is dissipative on some interval �  � � ��  � � �  � � with �  �   � and �  � � � � �� .
Notice that � need not have any critical points, for example for � � � (see [12]).
For � � � there are two equilibrium points which will force � to have critical
points.

Lemma 17. If the Swift-Hohenberg Lagrangian satisfies (D) on �  � (with 
 � � �  � ) then
it has at least two geometrically distinct simple closed characteristics (large and small am-
plitude). Moreover, if � � 
 � are both saddle-foci then there exist two more geometrically
distinct simple closed characteristics.

Proof. We consider the function
� � on �  � � �  � and as before we define

� �
� ��  � � �  � � �� � � � � � (see also Figure 4). Define � � � �� � �  � � � �  � �  ��

and � � � � �
� � �� �   � � � � � ��. As in the proof of Lemma 10 we have that� �� � �
 � � � � 
 � � and

��� � �� � �
 �
  �. We now see from Lemma 16 that the
gradient of

� � points outwards on
�� � and inwards on

�� �. Hence, on � � the
function

� � attains a maximum and on � � the function
� � attains a minimum

(index 2 and index 0 points), which proves the first part of the lemma.
As for the second part we argue as in the proof of Lemma 12. Since � � 
 � are

saddle-foci one finds index 1 saddle points in both � � � � �
� � � �  � �  � � � � ��� and � � �

� �
� � �� �   � �  �  � �  � � �.

Concerning the relative position of the extrema of
� � we argue in the same

way as at the end of Section 3.3. Denoting by �� � � � � 
 the extremum in � � (for� � � � � � � � �) we find that ��  ��  ��  �� and ��  ��  ��  �� .
The result proved above have already been found in [21, 28] for the special

case � �� 
 � �� �� �  �
� without information about the index of the solutions.B�Notice that :� 9�= � : �B � : � 9� � �= if 8 9: ; � ;� = is symmetric in � .B�For example, when � 9: = � �: �� as �: � @ � for some � � � then this follows from a scaling
argument. After scaling the Euler-Lagrange equation tends to :<<<< � � �: �:��B. For this equation it is

easy to see that : 9�= � : 6 � � ; : <<< 9�= � � implies that : 9� = � : B � � and :<<< 9� = � �. A perturbation
argument then shows that � is satisfied for the original equation for some 9: �6 ; : �B = with �: �6 and : �B
large.
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� �
� � � �
� �

� � � �  �

��
�
�� �

��
���

�

���
� ��

���
� ���

FIGURE 4. The triangle
� �
� � �  � � �  � � �� � � � � � for the case

of a double-well potential. The arrows denote (schematically) the
direction of the gradient �

� � . Clearly
� � has at least one max-

imum and one minimum. Additionally, when the equilibrium
points are saddle-foci then

� � has two saddle points.

Many more examples can be considered with non-compact interval components.
A rather tricky system is the suspension bridge model (see Section 2.2.2). The La-

grangian is given by � �� � � 	 � � 		 
 � �� �		�  !	� � 	� � � �� 
, where � �� 
 � �#  �  �.

This nonlinearity is especially hard to deal with when trying to compactify
� �
� . In

this context it is interesting to note that there is no a priori ��
bound on the set

of bounded solutions (see [27]) as opposed to nonlinearities with super-quadratic
growth. From the analysis in [27] it follows that there exists a point ��  � � � � �
 � � �

�
such that

� �� ��  � � �  � 
 � �, ��� ��  � � �  � 
 � �, and
� �� ��  � � � � 
 � � for all � � � �. This

is a different dissipativity condition. Upon examining � (for � � �) on �  � � �  �
we find at least one index 1 simple closed characteristic for the suspension bridge
problem (this was already proved in [27], without information on the Morse in-
dex). In order for the argument the work the equilibrium point � has to be a
saddle-focus. Moreover, for the dissipativity condition to be satisfied the coeffi-
cient in front of the second term in the Lagrangian has to be strictly positive. In
[27] more complicated closed characteristics are also found. This will be subjected
to a future study.

4. CONCLUDING REMARKS

4.1. Numerical evidence for the Twist property. In Lemma 8 we prove the Twist
property for a class of Lagrangians including the well known Swift-Hohenberg La-
grangian. Numerical evidence suggests that the Twist property holds for a large
class of other Lagrangians as well. As an example we depict in Figure 5 solutions
of the eFK equation (i.e., the eFK Lagrangian with � �� 
 � �� �� �  �
�) in the en-
ergy level � � � for the two different cases where the equilibrium points are real
saddles and saddle-foci. While the Twist property certainly is not satisfied on the
whole of �� �  (it is satisfied on

� � � ��) for the real saddle case, we conjecture
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FIGURE 5. For fixed � � �  � �� characteristics in the energy
level � � � of the eFK Lagrangian are shown (in the �� � � 	
-
plane). On the left the equilibrium points � � 
 � are real saddles
(� �  �). Notice the different scales needed to obtain an overall
picture of the situation. The Twist property is only satisfied for
� � � �� � �  �
. On the right the equilibrium points are saddle-foci
(� �  �). In this case the Twist property seemingly holds for all
� � � � �.

that the Twist property holds as long as the equilibrium points are saddle-foci. We
also performed numerical calculations on the 5th order KdV equation (see Sec-
tion 2.2.3) and it seems that the same is true for this system. It is of course im-
possible to make statements about the rich class of second order Lagrangians as a
whole, but the Twist property seems to hold for a large subclass.

4.2. Local behavior at equilibrium points. In Section 3.2 we indicated that the
critical points �  with

� �
#� ��  � � � �
 � � can be categorized into three classes:

� ��  
 � �
� � �
�� � (real saddle), � ��  
 � �
� 
 ��� (saddle-focus), and � ��  
 ��
�� �
 ��� (center). A fourth possibility does not occur for critical points on the
boundary of interval components, namely � ��  
 � �
� �
��� (saddle-center).
Such points do however occur as critical points. For these saddle-centers it holds
that

� �
#� ��  � � � �
  �. Since these points never occur on interval components one

may ask how such point fit in.
Consider a compact interval component �� , then � �� � � � �
 � � � � for all � ���� ��� 
 and

�
#� �� � � � (if

�
#� � � at a boundary point then necessarily

� �
#� � �).

There exists a point �  � ��� ��� 
 such that
�
#� ��  � � � �
 � � and

� �
#� ��  � � � �
  �.

As a matter of fact there may be many minima and maxima. Now let � increase
until the next extremum is reached. If the extremum is a minimum then �� splits
into two components, and if this extremum is a maximum then �� simply shrinks
to the point �  Conversely, if �  is a saddle-center equilibrium point at energy
level �  , then there exists an � � � such that " #�� �,�

contain a compact interval
component �� �,�

which shrinks to �  as � � �.
The local theory for saddle-centers reveals the existence of a family of closed

characteristics on �� �,�
parametrized by � (Lyapunov Center Theorem). Our the-

ory not only provides the existence of closed characteristics for �   �  �  �  
but also guarantees the existence of closed characteristics for all �  �  as long as
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the interval component �� remains compact. We should emphasize again the resem-

blance with the classical mechanical system ��
�#  �

�
� ��
�# � � �.

4.3. Aubry-LeDaeron-Mather theory. The theory of Aubry-LeDaeron-Mather [6,
19] is concerned with finding periodic and quasi-periodic points of area-preserving
Twist maps of the annulus � � � (this can also be translated in terms of the gener-
alized Frenkel-Kantorovich model). The variational approach via generating func-
tions has a lot of similarity with the techniques used in this paper, i.e. we also use
a variational argument based on generating functions. There are however a lot of
differences as well. For instance in ALM theory the generating function is defined
on � � �. In our case the generating function � is defined on �� ��� which is topo-
logically much simpler. Therefore the topology by itself does not yield existence
results, but the information on the boundary allows us to find critical points. We
prove specific properties for � that are related to Lagrangian systems in order to
prove general statements about periodic points of the associated Twist maps. We
will explain that if � � � � our theory has more similarities with ALM theory. The
analogues of the multiplicity results obtained by ALM theory will be addressed in
[31].

Consider the case that � � � �. It is now appropriate to consider � on the
universal covering of

� � � � which means that � �� � � 	 � � 		 
 � � �� � � � � 	 � � 		 
 for all
� �  . If � �  ! ��#$ �� ��� � �� � � � �
 and �� � ��
 is a Twist system on �� � � �, then

�� are area-preserving Twist maps of the annulus � � �  . The maps �� have the
additional property that ��� � � �� for �� and ��� �  �� for �, . It also holds
that � �� � � � � � � � �
 � � �� � � � � 
. The function � is continuous on  �

and smooth
on  � ��� � � � � � (� is zero on the diagonal). Notice that this case is very close to
ALM theory.

Multiplicity results that have been proved for Lagrangian systems on � � 
(and � � � �) can be found in [14, 15]. There the existence of homoclinic and
heteroclinic ground states is proved without using generating functions

�� . The
study of homoclinic and heteroclinic solutions, especially higher index patterns,
will be subject of future study.

4.4. KAM theory. For the Lagrangian systems that we study in this paper we
may wonder whether such systems can be completely integrable. A Lagrangian
system �� � ��
 is said to completely integrable if the associated Hamiltonian system
�� �� 
 is completely integrable. Many of the interesting examples that we consider
such as the eFK/Swift-Hohenberg system with � � � are far from integrable. An

example of an integrable system is given by the Lagrangian � �� � � 	 � � 		 
 � �� �		 � ��� �� (see [12] for a proof). Integrability can also be addressed at the level of the
Twist maps in the Lagrangian systems. Without going into too much detail let
us look at a specific example. Consider again the eFK/Swift-Hohenberg family

defined by the � �� � � 	 � � 		 
 � �� � 		� � �� � 	� � �� �� �  �
� , � � �. Now let � � �B	 In [14] action integrals of the form A �: � � 	� 6B :<< B � �B :< B � � 9: =�� are considered, where � � �
and with (i) � � 
 B 9� =, (ii) � � � for : �� � �, and � 9� �= � �, and (iii) � 9: = � �
 � 
 6: B for
some 
 ;
 6 � �.

Theorem 18. Assume the above hypotheses on 8 and let : � � � be saddle-focus equilibria. Then there exists

an infinity of local minimizers for A consisting of homoclinic and heteroclinic connections between : � � �.
This has profound consequences for the set of periodic minimizers (not necessarily simple) [15]. A

similar result can be proved with more equilibrium points, or for : � � 6
.
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and consider the area-preserving map � on �  � �  �
as defined in Section 4.3.

It follows from the compactification results in [12] that  � �� � ��
 contains only
invariant curves for the map � for � � � sufficiently large. Inside the ball � � ��

the map � can be chaotic (depending on the character of the equilibrium points).
The invariant curves in  � �� � ��
 can be interpreted as the analogues of KAM
tori/circles. To get a feel for integrability of the map � on �  � for which �� is

compact we can look at the quadratic Lagrangian � �� � � 	 � � 		 
 � �� �		�  �� � �
. We

will leave this to the interested reader.
The question of integrability versus non-integrability for second-order La-

grangian systems may be fairly complex. The results in [14, 15] and those proved
in Section 3.3 seem to suggest that equilibrium points of saddle-focus and cen-
ter type in combination with geometric and topological conditions on the system
create regions of non-integrability. With the techniques presented in this paper
and the methods in [31] we are trying to understand some of the dynamics of the
system in this case. These questions will be subject of further study.
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APPENDIX A. CLASSIFICATION OF EQUILIBRIUM POINTS

The equilibrium solutions of the Euler-Lagrange equation����  �
��
� ��� 	 � ��

��� ���� 		 � � � (9)

are given by the relation ��
�# ��  � � � �
 � �. The sign of � 	�

�#	 ��  � � � �
 divides the be-
haviors of the equilibrium points onto two groups. We will not consider the case

� 	�
�#	 ��  � � � �
 � � which requires information on higher order derivatives. Equilib-

rium points for which � 	�
�#	 ��  � � � �
 �� � are usually called non-degenerate. In order

to study the local structure of singular points we need to consider the second vari-
ation of

� ��� around a equilibrium solution � ��
 � �  . This yields the following
linear differential equation for the variations � :� ���� � � � �

�
� ������ 		  

� ����	� �� 		 � � ����		 � � 				 � � � (10)

where all partial derivatives of � are evaluated at �� � � 	 � � 		 
 � ��  � � � �
. The char-
acteristic equation is given by

� �
#� � *�� �

## ���  � �
# �� +�� � *� �# ��� +�� � �. For

non-degenerate equilibrium solutions the following classification holds:

Lemma 19. Let � ��
 � �  be an equilibrium solution.

(i) If
� �
#�  �, then � ��  
 � �
� �
��� (saddle-center).

(ii) If
� �
#� � �, then � ��  
 � �
� � �
�� �, � ��  
 � �
�� �
 ���, or � ��  
 � �
�
 ���

(real saddle, center, and saddle-focus respectively) depending on
� �
## ��� and

� �
# �� .

Proof. From the characteristic equation we derive

�
�
� �  *�� �

## ���  
� �
# �� + 


��
�� �
# ���

�
where

� � *�� �
## ���  � �

# �� +�  � *� �# ��� + *� �
#� +. Clearly if

� �
#�  �, then

�� �
��� �
## ���  � �

# �� � and thus ��,  � and ��� � �. This forces the spectrum to be
�
� �
���.

If
� �
#� � �, then � �� �  ��� �

## ���  
� �
# �� � and there are 3 possibilities:
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1.
� � �, then

��  ��� �## ���  � �
# �� � and ��

� are both positive or negative. This
depends on

� �
## ��� and

� �
# �� . If both eigenvalues are negative the spectrum

is given by �
�� �
 ���, and if both eigenvalues are positive the spectrum is
�
� � �
�� �.

2.
� � �, then the same possibilities as for (1.) hold with the additional prop-
erty that the eigenvalues all have multiplicity two.

3.
�  �, then ��

� � � � and there for the spectrum is �
� 
 ���.
As indicated before we do not study the case

� �
#� � �. In order to analyze

degenerate equilibrium solutions a normal form analysis is required. An example
of such type of analysis for a non-linear saddle-focus (�

�
� � �) can be found in

[12]. The results proved in [12] for non-linear saddle-foci would suffice for the
purposes of this paper.

APPENDIX B. THE PROOF OF LEMMA 8

Stationary functions of the action functional
�
�
�� �, with � �� � � 	 � � 		 
 � �� � 		� �� �� � � 	
, satisfy the equation

� 				  �
��
��
� � 	 � ��

� � � � � (11)

Solutions of (11) satisfy the Hamiltonian relation  �	� 			� �� �		 � � �
�

�# � �	  
� �� � � 	
  

� � �. For an increasing lap from � � to � � the derivative �	 can be represented as a

function of � . Set � �� 
 � �	��	 (see for example [5, 25] were similar substitutions
are used). Using the Hamiltonian relation we find that � satisfies the equation

� 		 � � �� � � 
, � � �, � �� �
 � � �� � 
 � �, where � �� � � 
 � �� ���	
� # �,� �# �# � �,����� . The

same holds for decreasing laps (�  �). If �
�

�# � � 	  
� �� � � 	
  � � �, and � 	

�
�
� 	 	 �  

	� *��
�
� 	  � �� � 	 
  � + � �, for all � � �� , and � � � (condition (a) and (b) in

Lemma 8), then � �� � � 
 � �, and � �
�
� �� � � 
 � � respectively.

It then follows from results in [11] that the boundary value problem for the�-equation has a unique strictly concave positive solution. Consequently the �-
laps from � � to � � are unique, and we thus obtain a family � �� � � � � � � 
. These

functions are global minimizers of
�� �� (follows from ��

�
� � �). It follows from

the smoothness of the initial value problem of (11) that these functions depend
continuously on � � �� � � � � 
 � � def� �� � �� �� , and that the time � �� � � � � 
 it takes
for � to (monotonically) go from � � to � � depends continuously on � � and � � as
well�� and � �� � � � � 
  � for all �� � � � � 
 � � ��.

The remainder of this proof will be concerned with showing that � �� � � 
 varies
smoothly with respect to � for all � � ��� �� 
 that are away from possible equilib-
rium points. Rescale the �-variable as � � #,# 
#	 ,# 
 and set 3 ��
 � � �� 
. From the�-equation we obtain the following equation for 3 :3 		 � �� �� � 3 � � 
 � 3 ��
 � 3 ��
 � � � 3 � � on �� � �
 �B� In 	-variables we have A� � 	 �	� 



B� 	 < B � � �� �	�� ��� 	�� � �: .�
It follows from �  � and the analysis in Appendix A that equilibrium points (that are non-

degenerate by assumption) can only be of saddle-focus or center type.� 6
Away from equilibrium points this is obvious. At equilibrium points this follows either by taking

limits and using the uniqueness or from the local analysis performed in [26, Lemma 5.8].
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Moreover
�� � � and � ��

�
� � �, and we can write

�� �� � � � � 
 � � �� �� ���� ��� with
� �� � 3 � � 
 a

continuous function.
In order to obtain smooth dependence on the parameter � we first consider the

following equation: 3 		
�
� �� �� � 3

�
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Our goal now is to derive a similar expression for �
�
� 3� ��� � 
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Implicit Function Theorem to 3� directly because of the singularity of
�� at 3 � �.
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-convergence of 3

�
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� � �. In order to obtain the above inequality we again used Hardy’s inequality
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As before, due to the ��
-convergence of 3
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It remains to be proved that �
�
� 3 ��� � 
 depends continuously on �.

It follows from an estimate similar to the ones above that �
�
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the Implicit Function Theorem then shows that � �� 
 is continuously differentiable
for all � � ��� �� 
 that are away from equilibrium points.


