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Abstract

We study the bounded solutions of a class of fourth-ordeatojs
—yu™ +u" + f(u) =0, v > 0.

We show that whery is not too large then the paths in tfe, »')-plane of two bounded
solutions do not cross. Moreover, the conserved quantggaated with the equation puts
an ordering on the bounded solutions in the phase-plane aodtamuation theorem shows
that they fill up part of the phase-plane. We apply these tesalthe Extended Fisher-
Kolmogorov (EFK) equation, a fourth-order model equation lbi-stable systems. The
unigueness and ordering results imply that as long as théestguilibrium points are real
saddles the bounded solutions of the stationary EFK equatiocespond exactly to those of
the classical second-order Fisher-Kolmogorov equatioesides, we establish the asymp-
totic stability of the heteroclinic solution of the EFK edjioa.

1 Introduction

In this paper we study the bounded solutions of fourth-order differential equations of the form
—yw" +u"+ f(u) =0, >0, 1)

wheref (u) = %ﬁ“) andF'(u) is called thepotential. By a bounded solution we mean a function
u(z) € CHR) N L®(R) which satisfies (1) for alt € R. For small positivey Equation (1) is a
singular perturbation of the (mechanical) equation

u" + f(u) =0. (2)

We investigate the correspondence between bounded soluti¢hsafd (2).

Note that (1) is both translation invariant and reversible (invariant utigetransformation
x — —x). Besides, there is a constant of integration. When we multiply () laynd integrate,
we obtain thesnergy or Hamiltonian
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whereF is constant along solutions.
In recent years fourth order equations of the form (1) have attracted a widesttand two
special cases have been thoroughly studied. Firstly, when the potential is
Flu) =~ 17, @
Equation (1) is the stationary version of the Extended Fisher-Kolmogorov (Efti&tien, which
has been studied by shooting methods [PT1-4] and through variational approaches [PTV, KV,
KKV]. Generalisations of the EFK potential have been studied in [PRT]udinol potentials
with maxima of unequal height. Secondly, in the study of a strut on a nonlinear etastiddtion
and in the study of shallow water waves, Equation (1) arises with the pdtentia
F(u) = —%uQ + %u3. (5)
The homoclinic orbits of this equation have been studied both analytically [AT,BST,Bu]
and numerically [BCT, CS]. In these studies a striking feature is thabétmaviour of solu-
tions changes dramatically when the parametezaches the lowest value for which one of the
equilibrium point becomes a saddle-focus. Below this critical value the soluhahfave been
found, are as tame as for the second order equation. When one of the equilibrium points becomes
a saddle-focus, an outburst of new solutions appears.
The situation fory < 0 seems to be much less understood. We refer to [Ch] for an overview

of equations of the form
u" — Au" + Bu = f(u,u’,u",u") A,BeR.

As remarked, the character of the equilibrium point plays a dominating role. uhlium
point is a center for the second order equation, then it is a saddle-center for-all. On the
other hand, if an equilibrium point is a saddle for the second order equation, then itat a re
saddle for small (positive) values of The character of such a point changes to saddle-focus as
v increases beyond some critical value.

Since (1) is a singular perturbation of the equation+o# 0, it is natural to ask when it
inherits solutions from the second order equation. $aall v this question can be answered
using singular perturbation theory [AH, F, J]. Here we follow an approach ¢laals|to unique-
ness results for a wider range pfvalues. The method is based on repeated application of the
maximum principle. In [BCT] this idea has been used to prove the uniqueness of thelimixnoc
orbit for the potential in (5).

We shall first state two general theorems and subsequently draw detailedsionslfor the
case of the EFK equation. In fact, the general theorems presented here, arsabaxdension
of the result for the EFK equation, of which a short summary has been published in [Be]

We consider functiong(u) € C*(R) and define, for-oo < a < b < oo,

w(a,b) = max{0, max —f'(u)}.

u€[a,b]



We are only interested in cases whef@, b)) < oo. We will often drop the dependence wfon
a andb, when it clear which constantsandb are meant. Also, we introduce sets of bounded
functions

B(a,b) = {u € C*[R) | u(z) € [a,b] forall z € R}.

In the following we often have an a priori bound on the set of all bounded solutions, i.eorfe
—o00 < a < b < oo all bounded solutions afl) are inB(a, b). It is important to keep in mind
that these a priori bounds are usually valid for a range of values of

As will be clear from the statement of the theorems below, a better bound lradswer
value ofw, which in turn leads to a stronger result.

The bounded solutions of the second order equatios-(0) are found directly from the
phase-plane. Our first theorem states tha{the’)-plane preserves the uniqueness property for
the fourth-order equation as long-ass not too large.

Theorem 1. Letu; andus be bounded solutions §f), i.e.,u; andu, are in3(a, b) for some
—00 < a < b < co. Suppose that € (0, —~|. Then the paths of, andus in the (u,v')-

4w(a,b)
plane do not cross.

Remark 1. It turns out that we need to give a meaning to the easecco. A scaling inz, which
is discussed later on, shows that the natural extensi¢h dbr v = oo is

—u""+f(u) = 0. °

The following theorem shows that the enegly| (see (3)) is a parameter that orders the
bounded solutions in the phase-plane.

Theorem 2. Letu,, uy € B(a, b) be bounded solutions ¢f) for somey € (0, m] Suppose
that (after translation),(0) = u»(0) and either, (0) > u}(0) > 0 oru}(0) < u5(0) < 0. Then

5[’&1] > g[UQ]

We now give some examples. For the double well poteiftial) = ;(u* — 1)? (note that
this is not the EFK potential in (4)) we have that—oco, c0) = 1 and thus any two bounded
solutions do not cross in thie:, u')-plane fory € (0, 1]. Besides, in this parameter range the
energy ordering of Theorem 2 holds for all bounded solution of

In the case of the periodic potenti&lu) = cosu, we again haves(—oo, c0) = 1. In this
case Theorem 1 combined with the periodicity of the potential, shows that ¢o(0, i] every
bounded solution has its range in an interval of length at r2@stWe note that in both cases
v = 1 is exactly the value where the character of some of the equilibrium points changes fr
real-saddle to saddle-focus.

In the previous two examples we did not need an a priori bound. However, for the EFK

potential (4), the existence of a uniform bound on the bounded solutions is needed to obtain
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a finite w. The results for the EFK equation are discussed in detail in Section 1.1. For the
potential (5) only a lower bound is needed.

Let us now assume that for some> 0 we have an a priori bound on the set of bounded

solutions, i.e., all bounded solutions @f) are inB(a, b) for some—oco < a < b < oo, and let

us assume that = w(a, b) < co. Thenify € [0, ;-], bounded solutions dfi) do not cross by
Theorem 1, and Theorem 2 gives an ordering of the bounded solutions(in thg-plane in term

of the energy. An immediate consequence of Theorem 1 and the reversibility oftfigt when

v € [0, ﬁ], any bounded solution of (1) is symmetric with respect to its extrema (threrdie
analysis in Theorem 2 is restricted to the upper half-plane). This implaghe only possible
bounded solutions are

e equilibrium points,
e homoclinic solutions with one extremum,
e monotone heteroclinic solutions,
e periodic solutions with a unique maximum and minimum value.
Another implication is that there are at most two bounded solutions in the stablenatable

manifolds of the equilibrium points.

We will use the following formulation. Ifi(z) is a solution of (1), then by the transformation

1
u(x) = (/v z) and ¢=-—,
al 7
it is transformed to a solution of
u" + qu” — f(u) =0, q <O0. (6)

We examine the case wheje< —2./w, corresponding tey € (0, ﬁ . It should be clear that
solutions of (6) withy < —2./w correspond to solutions of (1) with< v < .= and vice versa.
The energy in the new setting is

Efu] &~y + %(u")Z Ly + Fw) (7)

Forq < —2,/w we define\ andy such that
A= w and A+ p=—gq,

or explicitly,
A=—d_ (%)Q—w and uz—%—!— (%)2—w.

It is easily seen thak andy are positive real number if and only¢f< —2,/w. In that case we
have
0< A< Vw <.
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Equation (6) can be factorised as

{ u':l— Au=w ®)
w" — pw = f(u) + wu,

and the definition ofv ensures thaf (u) + wu is a non-decreasing function offor u € [a, b].

The central tool in this paper is a comparison lemma which shows that if thed ohétta of
two solutions obey certain inequalities, then at most one of the solutions can be bounded.

Lemma 1 (Comparison Lemma). Letwu andv be solutions of6) such that, for some-co <
a<b< oo,
a<u(z),v(z)<b forall z € [0, c0).

Suppose that < —2+/w(a,b) and

(0), u'(0)

u(0) >
"(0) — Av(0),  u"(0) — M/ (0) >

u"(0) — Au(0)

AVARLYS

v
v
Thenu(z) — v(z) = C on|0, co) for some constar®' € R, andC = 0 if w(a,b) # 0.

Note that when the boundsandb are sharper, then and\ are smaller, hence the conditions in
the statement of the lemma are weaker. The proof of this lemma relies aactbegation (8) of
Equation (6).

We remark that both the splitting (8) of the differential operator and the Cosgratiemma
can be extended to sixth and higher order equations. However, the increasingidmadribe
phase-space and the lack of additional conserved quantities (like the energy)tmalifficult
task to extend the uniqueness results to such higher order equations.

This paper mainly deals with uniqueness of solutions, but the information we obtain about
the shape of solutions dfil) for v not too large also allows us to conclude that any periodic
solution belongs to a continuous family of solutions.

Theorem 3. Let u be a periodic solution ofl) and leta = minu(z) andb = maxu(x).
Suppose that € (0, m] Thenu belongs to a continuous one-parameter family of periodic
solutions, parametrised by the eneigy

1.1 Anexample: the EFK equation

The stationary version of the Extended Fisher-Kolmogorov (EFK) equation is give
—yu"" +u" +u—u? =0, v > 0. 9)

The EFK equation is a generalisation (see [CER, DS]) of the classla¢FKolmogorov (FK)

equation ¢ = 0). Clearly (9) is a special case of (1) with the potenfigl) = —%( 2-1)% (we
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note that in some literature about the EFK equation the fundfi@r) = %(u2 —1)?is called the
potential). In the form of (6) the EFK equation becomes

o + qu// —u4+ u3 =0. (10)

Linearisation around. = —1 andu = +1 shows that the character of these equilibrium
points depends crucially on the valueyfFor0 < v < é they are real saddles (real eigenvalues),
whereas fory > % they are saddle-foci (complex eigenvalues). The behaviour of solutiq9$ of
is dramatically different in these two parameter regions.

Fory € (0, %] the solutions are calm. It was proved in [PT1] that there exists a monotlynical
increasing heteroclinic solution (&nk) connecting—1 with +1 (by symmetry there is also a
monotonically decreasing kink connectirg with —1). This solution is antisymmetric with
respect to its (unique) zero. Moreover, it is unique in the class of monotone antetyin
functions. In [PT4] it was shown that in every energy lekekE (—i, 0) there exists a periodic
solution, which is symmetric with respect to its extrema and antisynienetth respect to its
zeros. Remark that these solutions correspond exactly to the solutions of the Rbe¢ua-

0).

In contrast, fory > % families of complicated heteroclinic solutions [KKV, KV, PT2] and
chaotic solutions [PT3] have been found. The outburst of solutions for % is due to the
saddle-focus character of the equilibrium poitis

We will prove that as long as the equilibrium points are real-saddles; Ee% or,qg < —/8,
bounded solutions are uniformly bounded abovd and below by—1. To prove this, we first
recall a bound already proved in [PT3, PRT], stating that any bounded soluti®hfof ¢ > 0
(g < 0) obeys

lu(z)] <v2  forallz € R (11)

This bound is deduced from the shape of the potential and the energy identity. It alneady s
that Theorems 1 and 2 hold far = 5, i.e., for any pair of bounded solutions (sf) with v €
(0, 55)- The method used to obtain this a priori estimate on all bounded solutions is applizabl
a class of potentials which strictly decrease-tso as|u| — oo.

The a priori bound can be sharpened in the case of the EFK equation.

Theorem 4. For anyy < 3, letu be a bounded solution ¢9) onR. Then|u(z)| < 1 for all
x eR

Using the a priori bound (11), the sharper bound is obtained by applying the maximum principle
twice to the factorisation of (10). Remark that a sharper bound is not possibéausinct1 are
equilibrium points of (9).

This theorem implies that we can sharpen the results of Theorems 1 ande (o, 5|, i.e.,
for all valuesy for which the equilibrium points-1 are real saddles. It follows that fore (0, 5
bounded solutions do not cross in the v')-plane and they are ordered by their energies.
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Remark 2. For the potential in Equation (5) an upper bound is not needed gifieg= —1 +
2u > 0 for u > £. An a priori lower bound of. = 0 and~y, = ; can be found in the same way
as in the proof of Theorem 4. Therefore Theorems 1 and 2 hold for(0, i] org < —2 (see
also [BCT]). °

We want to emphasise that the methods used in this paper to obtain a priori bounds on
bounded solutions are by no means exhaustive. They are sufficient for the EFK equafam but
other potentials different methods may be more suitable. For example, the techintoueisis
paper can be combined with geometric reasoning irfdéhe”)-plane to obtain a priori bounds on
the bounded solutions in fixed energy levels, as is done in [Pe] for potentialseh@dlgnomials
of degree four. This allows an extension of the results on uniqueness to valyderoivhich
some of the equilibrium points are real saddles whereas other equilibrium poinéldie-foci.

The existence of bounded solutions corresponding to the solutions of the FK equation has
been proved in [PT1, PT4, PTV]. From Theorems 1 and 2 it can be deduced thaidreer
complete correspondence between the bounded stationary solutions of the EFK equation and
those of the FK equationy(= 0).

Theorem 5. The only bounded solutions ¢§) for v € (0, 3] are the three equilibrium points,
the two monotone antisymmetric kinks and a one-parameter family of periodic so|yterage-
trised by the energ € (—1,0).

The multitude of solutions which exist for > % shows that this bound is sharp. Among
other things, Theorem 5 proves the conjecture in [PT1] that the kink (0, %] is unique. We
mention that the uniqueness of the kink fore (0, %] can also be proved using so-called twist
maps [Kw].

In the proof of Theorem 5 we do not use the symmetry of the potehtia an essential
manner (it merely reduces the length of the proofs). Using the symnietme obtain some
additional results. Firstly, foy < % any bounded solution of (9) is antisymmetric with respect
to its zeros. Secondly, the periodic solutions can also be parametrised byitite pe

2y
Le |2m/———— .
(7‘(’ T 7_1,oo>

Thirdly, we prove that the heteroclinic orbit is a transversal intergedf the stable and unstable
manifold.

Theorem 6. Fory € (0, ;] the unique monotonically increasing heteroclinic solutiorf®fis
the transverse intersection of the unstable manifold band the stable manifold efl in the
zero energy set.



Finally, the monotonically increasing kirnix) with %(0) = 0 and its translates are asymp-
totically stable for the full time-dependent EFK equation
ot~ oxt ' 0 '
Theorem 7. Letu(z,t) be a solution of (12). For any € (0, 3] there exists an > 0 such that
if |u(z,0) — a(x + xo) | z: < € for somer, € R, then there existsac R, depending om(x,0)
(and small when is small), such that

(12)

tli)m |u(z,t) — @(z + xo + 0)|| g2 = 0.

We remark that the kink is also asymptotically stable in the space of boundedmiyifoontin-
uous functions.

The outline of the paper is the following. In Section 2 we prove the Comparison lagam
it then follows that bounded solutions do not cross each other ifuth€)-plane, as formulated
in Theorem 1. Section 3 is devoted to the proof of Theorem 2. In Section 4 we pree t
priori bound from Theorem 4, and in Section 5 the proof of Theorem 5 is completed. Besides
we prove the antisymmetry of bounded solutions, and we show that the periodic solutidres ca
parametrised by their period. In Section 6, we prove that the unstable maiifeltlintersects
the stable manifold of-1 transversally as stated in Theorem 6. Theorem 7 on the asymptotic
stability of the kink for the EFK equation is proved in Section 7. Finally, act®n 8 we deal
with the continuation and existence of solutiongbfand in particular we prove Theorem 3.

Itis a pleasure to thank R. C. A. M. van der Vorst for numerous discussions. Thaeais
of L. A. Peletier have greatly improved the presentation of the results.

2 Uniqueness property

In this section we prove the Comparison Lemma and Theorem 1, which statls tha —2/w
bounded solutions of (6) are unique in the v')-plane.

Remark 3. For the results in this section, the condition tliét) is continuously differentiable
can be weakened. Whef{u) is in C°(R), thenw(a, b) is defined as the lowest non-negative
number such thaf(u) + w(a, b)u is non-decreasing as a functionwbn [a, b]. .

We start with the proof of the Comparison Lemma, which is at the heart of mdst oésults
in this paper. The proof proceeds along the same lines as in [BCT].
Proof. Letu(z) andwv(z) satisfy the assumptions in Lemma lulfx) — v(z) = C, then by
the assumption§ > 0 and\C < 0, thusC =0if A # 0, i.e., ifw # 0.

Suppose now that(z) —v(z) # C. Letk be the smallest integer for whiel®) (0) # v*)(0).
Then, by uniqueness of solutions,e {0,1,2,3} andu®(0) > +*)(0) by the hypotheses.
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Hence there exists@a > 0 such that
u(z) > v(x) on (0, 0).

Now let

d(z) = u"(z) — Mu(x), and ¥(z) = 0" (x) — M(x).

Then, by the hypotheses,

Besides, writingh(u) = f(u) + w(a, b)u,

(6 — )" (z) — p(¢ — 9)(x) = h(u(z)) — h(v(z))  on(0,0).

(13)

(14)

Sincea < u(z) < v(z) < bon(0,0) and sinceh(u) is a non-decreasing function ¢ b] by

the definition ofw(a, b), we have that

This is to say
(u—0)"(z) = Au—v)(z) >0  on(0,0).

Besides, by the hypotheses of the lemma we have that
(u —v)(0) >0, and (u —v)"(0) > 0.

Therefore
u(z) > v(x) on (0, o],

and sincer < u(z),v(x) < b,

Thus we obtain that

sup{o ‘ u(z) > v(z) forallz € (0,0)} = oo,

and
(¢ —¥)"(z) — (¢ —¥)(x) >0  on(0,00),
(u—v)"(z) — Mu—v)(z) >0 on (0, 0o).

9
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It follows from (16) and the assumption thafx) — v(x) # C, that
(u—v)(r) = o0 aszr — oo.

Clearly, if u(z) andwv(z) are bounded this is not possible. This concludes the proof of the
Comparison Lemma. O

Theorem 1 is a consequence of the Comparison Lemmau,Laatdu, be bounded solutions
of (6) for ¢ < —2,/w (corresponding to bounded solutions of (1) fox v < i). Suppose
by contradiction that the paths af andu, cross in the(u, v')-plane. Then, after translation,
we have that; (0) = u2(0) and)(0) = uy(0). Without loss of generality we may assume
thatu/(0) > u5(0). Now if w}"(0) > u4'(0), then by the Comparison Lemma we conclude that
u1(z) — ug(z) = C for someC € R. Sinceu;(0) = uz(0) this implies that, (z) = uq(x).

On the other hand, i{"(0) < »4'(0), then we defing;(z) = u;(—z) andiy(z) = us(—1).
Clearlyu; and, are also bounded solutions @f0). We now apply the Comparison Lemma to
% andus, and find as before that () = 4»(x), which concludes the proof of Theorem 1.

We now touch upon a lemma that gives a lot of information about the shape of bounded
solutions. It states that every bounded solution is symmetric with respistextrema.

1

Lemma2. Letu € B(a,b) be a bounded solution ¢f) for somey € (0, )

u'(x9) = 0 for somexy € R. Thenu(xzy + x) = u(xy — z) for allxz € R.

|. Suppose that

Proof.  After translation we may take, = 0. Now we defines(z) = u(—=x). By reversibility
v(z) is also a bounded solution of (1). Cleatly0) = »(0) andu’(0) = »'(0). From Theorem 1
we conclude that(z) = v(z). O

Remark 4. It should be clear that when a solution is boundedsfas 0, then it either has an
infinite number of extrema or it tends to a limit monotonically. We will show immnea 3 that
such a limit can only be an equilibrium point. It therefore follows from Lemntha if all
bounded solutions dft) are inB(a, ), then fory € (0, 5] the only possible bounded solutions
are equilibrium points, homoclinic solutions with one extremum, monotone kinks and periodic
orbits with a unique maximum and minimum. °

3 Energy ordering

To fill in the remaining details of the phase-plane picture we use Theorem 2, esiiahlishes
an ordering in terms of the energyof the paths in théu, u')-plane. In this section we will
use the notation of Equation (6). Before we start with the proof of Theorem 2, we otiaie
preliminary results.

The following lemma shows that when a solution tends to a limit monotonicaky) this
limit has to be an equilibrium point. We denote the set of zero& oj by A.
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Lemma3. Letu(z) be a solution of6) for ¢ < 0, which is bounded oft:y, c0) for some
xo € R. Suppose that'(z) > 0 for all z > xy oru'(z) < 0 for all x > z,. Then

lim u(z) € A and lim v (z) =0 fori=1,2,3.

—00 T—00
Proof. We may assume that(z) > 0 for z > z, (the other case is completely analogous). It
is then clear that
def

lim u(x) = Ly
T—>00

exists and:(z) increases towards, asz — co. Sinceu(z) is bounded for > xy, Ly is finite.
We now consider the functiom = u"” + qu'. Thenw(z) satisfies

W' = u'f’(u).

We first show that” (x) tends to zero as — oo. If f'(Lg) # 0 (the other case will be dealt with
later), thenf’(u) has a sign for: large enough, by which we mean that eitlfigw) > 0 for large
z, or f'(u) < 0 for largex. Sinceu'(z) > 0, it follows thatw”(x) has a sign for: large enough,
hence so does(z) . The fact thatw(z) = v"(z) + qu'(z) has a sign for: large enough implies
that

lim v"(z) + qu(z) = Ly
T—r00

exists andi” (x) — Ly — qLo asz — co. Moreover, since:(x) is bounded, we must have

lim v"(z) = 0.
T—>r00

If f'(Lo) = 0, then we considew = v + Zu’. We now have

2
w" + gw = <f’(u) + %) :

Sincef'(Ly) + % is positive forz large enough, we conclude from the maximum principle that
w(z) = u"(x) — qu'(x) has a sign for: large enough. As before we see that

lim «"(z) = 0.
T—>00

The fact thatu(z) — Lo andu”(z) — 0, implies thatu/(z) — 0 asz — oco. Because
u™ = —qu" + f(u), we see that

lim 6 (z) £ Ly, = f(Ly),

T—00

and, sinceu(z) is bounded,L, = 0 and thusL, € A. Finally, the fact that.”"(z) — 0 and
u®™)(z) — 0, implies thaw"' (z) — 0 asz — oo. O

Remark 5. Forq = 0 the situation is slightly more subtle, but wh¢f{u) has a sign as tends
to Ly monotonically, then the proof still holds. Since we consider bounded solutioftg @dr
g < —24/w, this difficulty only arises whew = 0, which (by the definition ofv) implies that
f'(u) > 0 for all values ofu involved, hence the lemma holds for this case. .
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We prove that” — Au/(z) is negative if and only iti/(x) is positive.

Lemmad4. Letu € B(a,b) be a bounded solution ¢6) for someg < —24/w(a,b). Then (with
sign(0) £ 0)

sign(u"(z) — A/ (z)) = —sign(u'(z)) forall z € R. (17)

Proof. Letz, € R be arbitrary. We may assume théfz,) > 0 (for v'(x¢) < 0 the proof is
analogous). We see from Lemma 2 that (17) hold$(if,) = 0. We thus assume that(z,) > 0.
Sinceu(z) is bounded there existoo < z, < zp < x, < 00, such thaw'(z,) = v'(zp) =
andu/(z) > 0 on (z,,z,). By Lemmas 2 and 3 we have theft'(z,) = v"(z;) = 0. Let
w = u" — M. Thenw(z) satisfies the system

W — i = (' (u) + ),
w(z,) = u"(x,) — M/ (z,) =0,
w(zy) = u"(xp) — M/ (zp) = 0.

Sincev/(z) > 0 on(z,,xp), we have by the definition af thatu'(f'(u) +w) > 0. By the strong
maximum principle we obtain that(z) < 0 for all z € (z,,zs), and especiallyw(zo) < 0.
This completes the proof. O

Remark 6. It follows from the boundary point lemma and the preceding proof that if a bounded
solutions of(1) for ¢ < —2,/w attains a maximum at some poity, then

u"(z9) <0 and u™ (z0) — A" (x0) > 0.
Moreover, it is seen from the differential equation that
f(u(zo)) = ul® () + qu (0) > —pu"(zo) > 0,

i.e., maxima only occur at positive values fffu:). .

We immediately obtain the following consequence.

Lemmab. Letu € B(a,b) be a bounded solution ¢8) for someg < —2+/w(a,b). Then
H(z) € —€[u] + F(u(z)) + 3(u"(2))2 <0  forallz € R.
Proof. By the energy identity we have
1 m q " n2
H_u{u +2u} o' (u" = ') — C(u')?,
whereC = (%)2 —w > 0. Itis easily seen from Lemma 4 that the assertion holds. O
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We will now start the proof of Theorem 2. Let andu, satisfy the assumptions in Theo-
rem 2. We only consider the case whefg0) > u5(0) > 0. The other case follows by sym-
metry. For contradiction we assume tl§at,;] < E[us]. It will be proved in Lemma 7 that we
can then find points; andz, such thatu;(z1) = us(z2) anduf(z1) = uf(x,). Subsequently,
in Lemma 8, we show that the energy identity (7) ensures that we can apply the @&omnpa
Lemma tou; andu, resulting in a contradiction.

It should be clear that; andu, are not translates of one another, because this would contra-
dict the result on symmetry with respect to extrema, obtained in Lemma 2.

We make the following change of variables on interjals x;] where the function(z) is
strictly monotone on the interior (see [PT1]). Denoting the inversgof by z(u), we set

t=u and  z(t) =[u'(z(t))].
We now get fort € [t,, tp] = [u(zy), u(zp)]
2'(t) = 2u" (z(t)).

If z, = —o0, then we write/(t,) = tlgﬁ Z'(t) (the limit exists by Lemma 3).

Before we proceed with the general case, we first consider the specialttasetwo differ-
ent solutions tend to the same equilibrium pointas —oc. The next lemma in fact shows that
there are at most two bounded solution in the unstable manifold of each equilibrium point

Lemma6. Letu,, us € B(a,b) be two different non-constant bounded solutiong&ofor some
q < —24/w(a,b). Suppose there exists &re A such that

wgl;noo u1(m) - wgl;noo UQ(.I) =t

Thenu, (z) decreases to andus(zx) increases ta ast — —oo, Or vice versa.

Proof. By Remark 4,u; andus, can only tend ta: monotonically. Suppose; andu, both
decrease towardsasz — —oo (the case where they both increase towards analogous). It
follows from Remark 4 that;; andu, can only tend ta: monotonically asc — oco. We may
thus assume that, (z) > 0 andu)(z) > 0 for z € (—oo, xy).

Fort € (a,u + ¢p), wheree > 0 is sufficiently small, letz; and z, corresponds tai;
andu, respectively, by the change of variables described above. Notetftat# 2,(t) for
t € (a,% + €9), since otherwise; = u, by Theorem 1. Without loss of generality we may
assume that; (t) > z»(t) on (4, @ + £¢). Sincez;(t) is differentiable on(a, @ + &), there exist
a pointty, € (@, @ + £¢), such that:{(to) > 25(ty). Thus, there are; andz, in R such that
uy(z1) = ug(za) = to.

After translation we obtain that

u1(0) = u2(0), u7(0) > u5(0) >0 and uy(0) > u5(0) > 0.
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We will now show that/’(0) — Au/(0) > u5'(0) — Au)(0). A contradiction then follows from
the Comparison Lemma.

1 _ ¢, whereC = (g)2 — w > 0. From the energy

To simplify notation we writeA = —3

identity we obtain
—Elu]+ F(u) + %(u”)2

W\ = :

+Cu. (18)

Uu
Sinceu; andu, tend toz monotonically as — —oco, we infer from Lemma 3 that

(ui, g, uy,uy')(x) = (%,0,0,0) asz — —oo fori=1,2.

Therefore€[u,] = E[us]. At z = 0 we haveF (u;) = F(up) and(uf)? > (uj)%. By Lemma5
we see that at = 0

—Eua] + F(ug) + %(ug)2 < =&lug| + F(ur) + %(u'l')2 <0.

Combining this with (18) and the fact that(0) > u,(0) > 0, we obtain that
u' (0) — Auj (0) = u5'(0) — Auy(0).
An application of the Comparison Lemma ends the proof. O

Of course a similar result hold for solutions that tend to an equilibrium point-as+oc: there
are at most two bounded solution in the stable manifold of each equilibrium point.

The next lemma shows thatéf{u;] would we smaller tha&[u,], whereu; andu, are so-
lutions obeying the assumptions in Theorem 2, then we could find a point wheteu, and
ul = uj.

Lemma?7. Letus,us € B(a,b) be bounded solutions @) for somey < —2+/w(a,b). Suppose
thatu,(0) = u9(0) andu’ (0) > uh(0) > 0, and€[u,| < E[ug]. Then there exists, andzs in R
such that; (z1) = us(zo) andu! (z1) = uf(xs).

Proof. We change variables again. Lstcorrespond ta:;; on the largest interval, containing
r = 0, whereu/ is positive, sayt,, t;]. Let z, correspond ta, on the largest interval, containing
r = 0, whereu! is positive, sayit,, t,]. If t, ¢ A, then it follows from Theorem 1 that < t,,
whereas ift, € A this follows from Lemma 6. Similarly, > t,. Clearlyz; (t) > z(t) for all

t € [tq, ts], Since bounded solution do not cross in {heu')-plane.

We have that,(t,) = 0 andz(t,) > 0. We will now prove that| (t,) < z5(t,) by showing
that (25)2(t.) — (2])*(t,) > 0. Letz¢ andz¢ be the points in the intervals under consideration
such thati, (z§) = us(z3) = t,. By the energy identity we have that

1\2 1\2

) Z ) Ltagy? — Lt a)?
= Elw) - F(ta) = {€lw) = F(ta) + i (a9) (w'(a0) + 2ot (a9)) }

2
= ) - Efu] — o (@) (' (2) + S (a))

From Lemma 4 and the observation théfz$) = \/z1(t.) > 1/22(t,) = 0, we conclude that
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a a q a
i (af) (' (e9) + Sui(a)) <.
Having assumed th&{u,| < £[uy], we now see that| (t,) < z5(ta).

In the same way we can show thétt,) > 25(t,). By continuity there exists & € (t,, 1)
such that/(t.) = z4(t.), which proves the lemma. O

We now complete the proof of Theorem 2. Let andu, satisfy the assumptions in the
theorem. The previous lemma shows that if by contradicfipn] < &[u,], then there exists
pointsz; andz, such that

uy(z1) = ug(z), ul (1) > uy(zy) >0 and uy(z1) = uf(z2).

By translation invariance we may take = z, = 0. The following lemma now shows that
u1 = ug, Which contradicts the assumption. Thereféfe;] > £[u,], which proves the theorem.

Lemmas8. Letu,,u, € B(a,b) be bounded solutions () for somey < —2+/w(a, b). Suppose
that€[u,] < E[uq] and
u1(0) = ug(0), u7(0) > up(0) >0 and  u{(0) = us(0).
Thenu; = us.
Proof. We will show that
uy’(0) — Auy (0) > uy'(0) — Auy(0) (19)

and then an application of the Comparison Lemma completes the proof. From theideetgy
we obtain att =0

1
’U,;” . )\Ui _ _g[ul] + F(U’l) - 5(“’;’)2

- + Cu; fori=1,2,
Uu;

where( is a positive constant. By the assumptions and from Lemma 5, it follows that

—Efu] + F(u1(0)) = 5(u7(0))* < —Efua] + F(u2(0)) — 5(u3(0))* < 0.

DO | —
D[ —

Inequality (19) is now easily verified. O

4 A priori bounds

In this section we derive a priori estimates for bounded solutions of the EFK eqgy8jior (10).
Where possible, we will indicate how the methods can be generalised to srlitrg. We will
prove Theorem 4 which states that every bounded solutiop for—/8 (y € (0, 1]) satisfies
lu(z)| < 1forall z € R. We first derive a weaker bound for all< 0, which follows from the
shape of the potential and the energy identity (7). Subsequently, we sharpen this bouhd for a
g < —+/8 with the help of the maximum principle.

The first question we address, is whether solutions can go to infinity monotonically.
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Remark 7. It was proved in [PT4, PT3] that if(x) is a solution of(10) on its maximal interval

of existencez,, x;), then for anyzy € (z,, z;), there either exists an infinite number of extrema

of u(z) for x > =y, or u(z) eventually tends to a finite limit monotonically as— oo. For
bounded solutions this is obvious. Notice that the energy of the solution must be equal to the
energy of the equilibrium point towards which it converges. Besides, if an bguii point is a
saddle-focus (complex eigenvalues) then no solution can tend to it monotonically .

We now prove a slight variation of an important lemma from [PT3], which shtsaswhen
a solution of(10) becomes larger thag'2, then it will oscillate towards infinity, and thus is
unbounded. The proof can be easily extended to more general poténtaddgs done in [PRT].
The valuey/2 is directly related to the fact that

max{zy >0 | F(z) < F(z) forall z € [~z¢,20]} = V2.

Lemma9. For anyq < 0, letu(z) be a solution 0f10). Suppose that there exists a point
o € R, such that

u(o) > V2, u'(z) = 0, u”(z0) <0, and  u"(z) <0. (20)
Then, there exists a first critical pointefon (zy, o), sayy,, and we have
u(yo) < —u(zo) < —V2, v'(yo) = 0, u” (o) > 0, and  u"(yo) > 0.
BesidesF'(u(yo)) < F(u(xo)), and the following estimate holds:

V2 [E[u] — F(u(=0))]

3 u(yo) —uy)
Proof. We write f(u) = u — u?. Sincef(u(zo)) < 0 andu”(z) < 0, we see that(™) (zy) =
—qu"(zo) + f(u(x)) < 0 and thusu” < 0 in a right neighbourhood aof,. We now conclude
that

F(u(yo)) — F(u(zo)) < (21)

21 = sup{z > 2 | u"” < 00n(z,2)}

is well-defined. By Remark 7 we know that eithefr) attains a critical point ofzg, co), or
u(z) tends to a limit monotonically. In both cases we conclude thas finite. Sinceu” < 0

on (zg,x1), we have that”(z;) < u"(zy) < 0. Using the energy identity and the fact that
u"'(z1) = 0 andu’(x) = 0, we obtain

Flu() = €]~ 50 (x0))

> Eu] — (" (1))
> £l — (@) + LW @) = Flu(en).

It follows from the definition ofr; and the initial data at, thatu” < 0, v” < 0 andu’ < 0 on
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(wo, 1), and thusu(z1) < u(x). Itis seen from the shape of the potential that
F(u(zg)) < F(s) forall s € [—u(xg), u(zo)].
Therefore F'(u(zo)) > F(u(z)) andu(z;) < u(z) imply thatu(z;) < —u(zo) < —v/2. From
Lemma 3 we now conclude thafz,) does not decrease monotonically to some finite limit and
therefore there exists a first critical point@bn (z;, o), sayy,. We now define
T dzefsup{x > T | u” < 0on (xl,:v)},

which is well-defined since”(x;) < 0, andz. is finite because, < y, < co. Clearly

u(zy) < u(ry) < —u(mg), u'(ry) =0, u"(z5) >0, and ul™(zy) = f(u(zs)) > 0.
It is not too difficult to see that, sincBu(z)) < f(u(zz)) on(x2, yol,

uW'>0, u">0 and u®™ =—qu"+ f(u)>0  on(zs, .

To summarise, we have that

u(yo) < —u(wo), u'(yo) =0, u"(yo) >0, u"(yo) >0 and F(u(y)) < F(u(z)).

We still have to prove the estimate (21). By the energy identity (7) we Heatd{(u (o)) <
E[u]. For F(u(zo)) = E[u] the estimate has already been proved. Therefore we may assume that
F(u(x)) < E[u), s0 that" (zg) = —+/2[E[u] — F(u(z0))] = —B < 0.

From the definition ofr; andz, we see that” (z,) < —f, v"'(z1) = 0, and

u™ = —qu" + f(u) < f(u(yo)) ON (21, z2).

Therefore
u"(z) < =B+ %f(u(yo)(a: —11)? forz € (1, z9). (22)
By definition,z, is the first zero ot (x), thuszy — z; > ﬁgo)) = &,. Integrating (22) twice

and using the fact that (z,) < 0, we obtain

u(ry + &) —u(z) < —ﬂ% + f(u(yo))g—fl
5P
6 f(u(yo))

Because)’ < 0 on[z; + &, 22, we see that
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2
u(ze) —u(zy) < u(zy + &) —u(zr) < 5_0 £ o

6 f(u(yo))
SinceF'(u) = f(u) > 0foru < —1 anduy < u; — a < u; < —V2 (u; = u(z;)), we have
that

F(u(y)) < F(ug) < F(u; — ).
Moreover,F" (u) = f'(u) > 0 for u < —/2, and we finally obtain that

Puyo)) < Pl —0) < () — T < pu) — (3o
Sincef(—v2) = /2, it is seen from the definitions af and 3, and the fact thaf'(u(z;)) >
F(u(zy)), that (21) holds. O

Remark 8. Notice that the estimate (21) is by no means sharp. We will use the estimate t
show that once a solution gets larger th#® it will start oscillating, and the amplitude of the
oscillations tends to infinity. For the EFK potential we have given the explatitmate (21),

but in general it suffices that(u) strictly decreases te.cc as|u| — oo. In this paper we do

not need any information on the speed at which the solution tends to infinity, ardaditeewe

are satisfied with this rather weak estimate. It can in fact be shbat if a solution of (10)
obeys (20) at some, € R, then the solution blows up in finite time (i.e., the maximal interval
of existence forr > z is finite) [HV]. °

Remark 9. The following symmetric counterpart of Lemma 9 holds. If there exists a point
7o € R, such that

u(zy) < —V2, u'(z9) = 0, u"(z9) > 0, and u"(x9) > 0,
then, there exists a first critical point ofon (xg, o), sayy,, and we have
u(yo) > —u(xo) > V2, u'(yo) = 0, u” (o) <0, and u""(yo) < 0.
BesidesF'(u(yo)) < F(u(xo)), and an estimate similar of (21) holds. .

The next lemma implies that if a solutiarfz) obeys (20) then it becomes wildly oscillatory
for x > xy. The functionu(x) then has an infinite number of oscillations on the right-hand side
of zy and the amplitude of these oscillations grows unlimited. The function sweeps from one
side of the potential to the other.

Lemma 10. For anyq < 0, letu(x) be a solution 0of10). Suppose that there exist§ac R
such that

w)>v2, (&) =0, u"(&) <0, and  u"(&) <0. (23)

Thenu(z) has forx > &, an infinite, increasing sequence of local max:l{ﬂ,a}l;“;o and minima
{nk}z';l, where§, < mri1 < &1 for everyk > 0. The extrema are ordered:(&y, 1) >
—u(nes1) > (&) > V2, andu(&y,) — oo ask — oo.
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Proof.  Combining Lemma 9 and Remark 9 we obtain the infinite sequences of local max-
ima and minima and the ordering&, 1) > —u(m.1) > u(&) > V2 is immediate. Clearly
{u(&)},., is an increasing sequence.

It also follows that{ F'(u(&)) } is a decreasing sequence, and we asserfthai;)) — —oo
and thusu(§;) — oo ask — co. Suppose by contradiction th&# (u(&))} is bounded, then
{F(u(ng))} is bounded as well. Henagz) is bounded for: > &. However, estimate (21) then
ensures thak'(u(&x)) tends to—oo ask — oo, contradicting the assumption thik' (u(&;)) } is
bounded. O

Note that ifu(z) attains a maximum at = 0 above the line; = /2 then (23) holds with
& = 0 for eitheru(z) or u(—=x). The next lemma states our first a priori bound.

Lemmall. For anyq < 0, letu(z) be a bounded solution ¢10). Then|u(zx)| < /2 for
allz € R.

Proof. We argue by contradiction and thus suppose tffa} > /2 for somez € R. Since
u(z) is bounded, we infer from Lemma 3 thafz) attains a local maximum larger ther®2,
say atz, € R. By translation invariance we may assume that= 0. Clearlyu(0) > /2,
u'(0) = 0 andu”(0) < 0. Without loss of generality we may assume tdt{0) < 0 (otherwise
we switch tov(z) = u(—=z), which also is a bounded solution ¢f0)). We are now in the
setting of Lemma 10. Thus(z) is unbounded ifi(xy) > /2 for somer, € R. The case where
u(zy) < —/2 for somez, € R is excluded in a similar manner. O

Remark 10. This method of obtaining an a priori estimate on all bounded solutions is applicable
to a class of non-symmetric potentials which strictly decreasestoas|u| — oo. In that case
we can find—co < a < b < oo such that
F(a) = F(b),
F(u) > F(a) = F(b) forallu € (a,b),
F'(u)>0forallu <a and F'(u)<O0forallu>b.
Then every bounded solution$z) of (1) for v > 0 satisfies: < u(z) < b.

For the potential in (5) a lower bound can be found in an analogous manner. In general, if f
someb € R

F(u) > F(b) forallu <b and F'(u) < 0forallu > b,
thenb is an upper bound on the set of bounded solutions. °
We are now going to use the maximum principle to get sharper a priori bounds for the EFK
equation. The following lemma shows that if a bounded solution has two local minima thee

line u = 1, then the solution stays below this line between these minima. To shorteronptat
we will write u(oo) instead oflim u(z).
T—r00
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Lemma 12. Foranyy < —/8, letu(x) andv(z) be solutions 0f10), and let-co < z, < 3 <
oo. Suppose that(z,), u(xy) < 1 andu(z,), u"(zp) > 0. If u(z) > =2 forz € (x,, ), then
eitheru = 1 oru(z) < 1 0n(z,,xs).

Proof.  The proof is based on repeated application of the maximum principlev (kgt=
u(z) — 1. The functionv(z) obeys, forx € (z,, x),

v "+ w=u—uP+2u—-1)=—-(u+2)(u—1)2<0,

where the inequality is ensured by the hypothesis ttia) > —2. Now we definew(z) =
v"(x) — Av(x) . From the definition of\ andu we see that

w" — pw = v — (A + p)v" 4+ Apw = v + qv” + 2.
By the hypotheses omin z, andzx;, we find thatw(z) obeys the system

u—1)2<0 oNn (x4, Tp),

By the strong maximum principle we obtain that eithe= 0, orv(z) < 0 on (z,,z;). This
proves Lemma 12. |

Remark 11. The symmetric counterpart of the previous lemma shows that if a solution
of (10) has two local maxima abovel andu(z) < 2 between the maxima, then we have
u(z) > —1 between the maxima. o

Note that for bounded solutions the condition th& < u(z) < 2 is automatically satisfied
(Lemma 11). For heteroclinic solutions the previous lemma and remark gwith —oc and
xp = 4o00) imply that every heteroclinic solution is uniformly bounded from abovel and
from below by—1.

For the case of a general bounded solution, let us look at the consecutive extrama tor
(and similarly forz < 0) of a bounded solution(z). Suppose that is a bounded solution which
does not tend to a limit. In that case we will prove that arbitrarily laregativer, and arbitrarily
large positiver, can be found, such tha{z,) andu(z;) are local minima below the line = 1,
and thus the conditions in Lemma 12 are satisfied. We will need the following#&nvhich has
two related consequences. Firstly, it shows that(if) has a maximum above the line= 1,
then the first minimum on at least one of the sides of this maximum lies belownte K 1.
Secondly, we infer that a solution does not have two consecutive minima aboveghedil.
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Lemma13. For anyq < 0 letu(z) be a solution 0f10). Suppose that there exists a point
o € R, such that

u(zg) > 1, u'(z9) =0, u"(z9) <0, and  u"(zy) <0.
Then there existsg@ € (o, 00) such that.(y,) = 1 andu'(xz) < 0 on(x, yo).

Proof.  The proof is along the same lines as the proof of Lemma 9. Sfifeér,)) < 0 and
u"(z9) < 0, we see that!™)(zy) = —qu"(z9) + f(u(mp)) < 0 and thusu” < 0 in a right
neighbourhood of,. We now conclude that

71 Zsup{z > 7o | u” < 00n(z,z0)}

is well-defined. By Remark 7 we conclude thatis finite. Sinceu” < 0 on (zg, 1), we
have thaw"(z;) < u"(zy) < 0. Using the energy identity and the facts thét(z,) = 0 and
u'(xo) = 0, we obtain

1 " 1 "
F(u(xo)) = Elu] = 5(u"(20))” > Elu] = 5 (u"(@1))* > F(u(z1)).
It follows from the definition ofz; and the initial data at,, thatu” < 0, v” < 0 andv’ < 0
on (zo, z1), and sou(z1) < u(z). Itis easily seen from the shape of the potential, #igt) >
F(u(zo)) forall s € [1,u(zy)), so thatu(z;) < 1. This proves the lemma. O

We can now apply Lemma 12 to prove Theorem 4. We will only prove dfa} < 1 for
all z € R (the proof of the assertion thatz) > —1, is analogous). We argue by contradiction.
Suppose there exists ag € R such that(z,) > 1. We will show that there exists a constant
T, € [—00, x9) such that

u(z,) <1, u'(z4) =0 and u"(z4) > 0. (24)

Similarly we obtain a constant, € (z,, co] such that

u(zp) <1, u'(zp) =0 and u"(zp) > 0

From Lemmas 11 and 12 we then conclude th@t) < 1 on (z,, z), which contradicts the
fact thatu(zy) > 1. We will only prove the existence af,. The proof of the existence af,

is similar. By Remark 7 we see that eithgr) has an infinite number of local minima on the
left-hand side ofr, or u(x) tends to a limit monotonically a8 — —oo. In the second case
Lemma 3 guarantees tha; = —oco satisfies (24). In the first case we prove that at least one
of the minima on the left-hand side of lies below the linew = 1. By contradiction, suppose
there exist two consecutive local minimpgaandy; above the line: = 1 (yo < y1 < xp). Then
there clearly exists a local maximum € (yo,4:). By translation invariance we may assume
thatz, = 0. We now have that(0) > 1, «'(0) = 0 andu”(0) < 0. We now first assume that
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u(0) < 0. Then we are in the setting of Lemma 13 and we concludeutfa) < 1, thus we
have reached a contradiction. On the other hand’ {D) > 0, we switch tov(z) = u(—z) and,
by the same argument, we conclude th@f,) < 1. This completes the proof of Theorem 4.

Remark 12. The method employed in this section to obtain a better a priori bound from a weaker
one has a nice geometrical interpretation, which makes it easy to apply thedrte (1) with
generalf(u) (a similar idea is used in [PRT]). Let us assume that we have an a priori bound,
i.e., for somey > 0 all bounded solutions dfl) are inB(a,b). Suppose now that we can find

constantsA > a and0 < 2 < % (i.e.,y € (0, ;5)), such that

—Qu—A) < f(u) for all u € [a, b],

which means that the lineQ2(u — A) stays belowf () on the interval under consideration. Then
Ais a new (improved) lower bound on the set of bounded solutions.

Similarly, when we can find constanis < b and0 < 2 < % such that

—Q(u — B) > f(u) for all u € [a, b],

then B is a new (improved) upper bound on the set of bounded solutions. Remark that a new
upper bound might allow us to find an improved lower bound, and vice versa. °

5 Conclusionsfor the EFK equation

We first make the observation that every bounded solution (except-1) has a zero.

Lemma 14. For anyg < —/8, letu(z) # 1 be a bounded solution ¢f0). Thenu(z) has at
least one zero.

Proof. Suppose:(x) does not have a zero. We may assumefa} > 0 for all z € R. Either
u(z) has a local minimum in the rand@, 1), or u(x) is homoclinic to0. The latter would imply
that€[u] = —%, and besides(z) must attain a local maximum in the range 1). It is easily
seen from the energy identity that these two observations lead to a contiadMe complete
the proof by showing that(z) cannot have a local minimum in the ran@e1).

Suppose that after translation we have
u(0) € (0,1), u'(0) =0 and u"(0) > 0.

We may suppose that in additiaf’(0) > 0 (otherwise we switch te(z) = u(—z)). Ina
manner that is completely analogous to the proof of Lemma 13, it can be shown thaixistse
ayo € (0,00) such that.(y,) = 1. This contradicts Theorem 4. O

Lemma 2 shows that the only possible bounded solutions are equilibrium points, monotone
heteroclinic solutions, homoclinic solutions with a unique extremum and periodic solutittins
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a unigue maximum and minimum. Lemma 14 shows that any non-constant bounded solution
has a zero, which means that except for the equilibrium points and the decreasingvkiyk, e
bounded solution has a zero at which it has a positive slope. Excluding the equilibriura point
and the decreasing kink from these considerations, we conclude from Theorem 1 thet no t
solutions can have the same positive slope at their zeros, and from Theorentl2tealution

with the larger slope has the higher energy. From these considerations we drawawenfpl
conclusions, to finish the proof of Theorem 5.

e Starting at low energies, it follows from the energy identity that solutiohigkvlie in the
levelsE < —i have no extrema in the ran@e\/i, \/5], and thus are unbounded.

e Similarly, for E = —i the equilibrium solution: = 0 is the only bounded solution, since
any other would have a zero and this would contradict Theorem 2.

e There are no equilibrium points (and thus no connecting orbits) in the energy levels
(—1,0). Hence, it follows immediately from Lemma 14 and Theorem 2 that in each of
these energy levels the periodic solution which have been proved to exist4h B the

only bounded solution.

e For the energy leveE = 0 we derive that beside the equilibrium points= +1, the
only bounded solutions are a unique monotonically increasing and a unique monotonically
decreasing heteroclinic solution, of which the existence has been proved 1h [RT
particular there exist no homoclinic connectionstb.

¢ Finally, there are no equilibrium points and thus no connecting orbits in the enerly lev
E > 0. Periodic solutions in these energy levels cannot have maxima smaller than 1 by
Theorem 2 (comparing them to the increasing kink). Therefore, Theorem 4 exdhales t
existence of periodic solutions for energigs> 0.

We recall how crucially these arguments depend on the real-saddle chafatierequilib-
rium points. Both Theorem 4 and the Comparison Lemma do not hold wh:eré. The variety
of solutions which exist foty > % shows that this bound is sharp.

Up to now, we did not use in an essential manner the invariang@pfinder the transforma-
tionu — —u. This invariance can be used to obtain further information on the shape of bounded
solutions of (9). The next lemma states that every bounded solution is antisyswigtniespect
to its zeros.

Lemma 15. For anyy € (0, 5], letu(z) be a bounded solution ¢8). Suppose that(z,) = 0
for somex, € R. Thenu(zy + x) = u(zy — z) forallz € R.

Proof. The proof is analogous to the proof of Lemma 2. Without loss of generality we may

assume that, = 0. Definev(z) = —u(—z). By the symmetry of (9)v(x) is also a bounded
solution of (9). Clearlyu(0) = v(0) andw'(0) = v'(0). From Theorem 1 we conclude that
u(z) = v(z). O
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We already saw that the periodic solutions of (9) can be parametrised by the.efeegext
lemma shows that they can also be parametrised by their period.

Lemma 16. Lety € (0, ;]. Then the periodic solutions ¢f) can be parametrised by the period

L € (Ly,0), where
2y
Lo E2my ) e
0 4 V14+4y —

Proof. By Lemma 15 any periodic solution, of peridd is antisymmetric with respect to its
zeros, and thus has exactly two zeros on the intétvdl). Using a variational method, it has
been proved in [PTV] that for every peridde (L, co) there exists at least one periodic solution
u(z) of (9) with exactly two zeros on the intervi, L). Therefore, we only need to show the
uniqueness of these solutions.

We argue by contradiction. Suppose there are two periodic soluiipss u, of (9) with
period L. By Lemmas 2 and 15 we have that (after translation); ferl1, 2

u;(0) =0, u;i(+£%) =0, and ui(z) > 0 forz € (—£,

Ll

).

Clearly, both solutions are increasing Ga%, 0).
We see from Theorem 1 thaf(—%) # u4(—%), and without loss of generality we may
assume that}(—%) > uj(—%). Let

zo = sup{z > —% | us <wyon(=%,2)}.

We assert that, = % Suppose that, < % Thenz, < 0 since the solutions are symmetric

with respect tor = 0. However,u; andu, are increasing o—%, z,), andu (—£) = u,(—£)

andus (xg) = ua(zo). Thisimplies that there exist andxs in (0, zo) such that, (x1) = ug(z2)
andu’ (z1) = ub(z2), contradicting Theorem 1.
Hence, we have established that

u(z) > ug(z) >0 forz e (—%,%). (25)

When we multiply the differential equation ef, by u, and integrate ovef—Z, ), then we
obtain

L
1 .
0 = / {uz(—vugw) +ul +up — u:{’)} dx

-/

Here we have used partial integration and the factﬁﬁ&t%) = 0 (by Lemma 15). Since, is
a solution of (9), this implies that

L
0:/4 {urus(uj — u})} d,

which contradicts (25). O

LIS

{ul(—vugv) + uy + ug) — uzu?} dz.

NS

s}
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6 Transversality

The unique monotonically increasing heteroclinic solutién) of (10) forq < —+/8 is antisym-
metric by Lemma 15. Removing the translational invariance by taking the unigoefze(x) at
the origin, we have

v(0) =0, v'(0) >0 and v"(0) = 0.

In this section we will apply a technique similar to the one in [BCT] to prthet v(z) is a
transverse intersection & “(—1) andW*(+1) in the zero energy set (here we writé**(+1)
instead ofi/**(+1, 0, 0, 0)). If the intersection would not be transversal, then it follows from the
symmetry of the potential that there are only two possibilities. We will@kelthese possibilities
with the help of the Comparison Lemma and some delicate and rather techaticedtes. When
the potential is not symmetric we still expect the intersection to be traselybut a proof along
the same lines seems more involved.

The following lemma provides a bound the orhitg) in the stable manifold of-1 that lie
close to the kink(z). This bound will be useful later on, since it enables the application of the
Comparison Lemma to these solutions.

Lemmal7. For anyqg < —/8, letwv(z) be the unique monotonically increasing heteroclinic
solutions of(10) with its zero at the origin. Suppose thdtr) is a solution of(10) such that
u € W4(+1), and

uD(z) —v@(z)| < 6 fori =0,1,2,3 andz € [0, c0). (26)
Then foré > 0 sufficiently small we haveu(z)| < 1 for all z > 0.

Proof. Recall that(x) increases monotonically from1 to +1. The fact that(z) > —1 on
[0, 00) is immediate from (26). It is easily seen that the monotone k{ak obeys the system
v+ " =v -2 <0<0 on (—oo, 0),
v"(0) = 0,
v"(—00) = 0.
Sinceg < 0, it follows from the strong maximum principle that(z) > 0 on (—o0,0), and in
particularv”(—1) > 0. Letu(z) obey (26), then this implies that

u”’(—1) > 0, u(—1) <1 and u(z) > —20n[—1,00),

for ¢ sufficiently small. Besides;(co) = 1 andu”(co) = 0. It now follows from Lemma 12 that
u(r) < 1on[—1,00). O

We now start the proof of Theorem 6. We emphasise that we assume that the pétestial
symmetric, which greatly reduces the number of possibilities that we haveetik ¢én order to
conclude that the intersection Bf“(—1) andW?*(+1) is transversal.
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For anyqg < —+/8, letv(x) be the unique monotonically increasing heteroclinic solution
of (10). Sincev(x) is antisymmetric by Lemma 15, we have that

v(0) =0, v'(0) > 0 and v"(0) =0,
and by Lemma 4 we hawd’(0) — \v'(0) < 0. Besidesy lies in the zero-energy manifold

1
oo™ — 5(,UI/)2 4 g(vl)Q _ F(U) — 0’

whereF (v) = i(v — 1)2. Therefore
0"(0) +qv'(0) = 1/(0) — = (A OW(0) ~ 1 (27)
2 4v'(0) 4v'(0)’
whereC = (g) — 2 > 0. The tangent space to the zero energy manifold at the goiat

(0,2(0),0, v™(0)) is
(0, u" (0) + qu'(0), 0,/ (0)) " € R

Now the tangent spaces to the two-dimensional manifdlid§—1) andW*(+1) at this point
both contain the vector

X = (v'(0),0,v"(0),0), (28)

because of the differential equation.

Let us suppose, seeking a contradiction, that these stable and unstable manifoldsity-not i
sect transversally in the zero energy set. Then their tangent spaceh,avitwo-dimensional,
coincide. We denote this two-dimensional tangent spacghyBecause of the symmetry éf
and reversibility(c, 3,7, 0) liesinW*(—1) ifand only if (—a, 8, —7, 0) liesinW?*(+1). It then
follows that

(O!,/B,’}/,é)GTP g ( o /Ba )ETP (29)

This symmetry relation implies that there are only two possibilitieslier Namely, letTr be
spanned by = (a, 3,7, 60) and (28). We may assume that= 0 (replacingY” by Y — LX).
If 3 # 0, then we see from (29) that = 0 (otherwise(v'(0),0,v"(0),0), (0, 3,~,6) and
(0, B, —~, d) would be three linearly mdependent vectord ). Besidesy is directly related to
g smceTp € (0,u"(0) + qu'(0),0,u (0)) . On the other hand, i = 0, then als@ = 0. Thus,
we are left with two possibilities:

case A Tp = {(£,0,n,0) | (&n) € R*}, or
caseB: Tp = {(&/(0),—m'(0),&"(0),n(v" (0) + qv'(0))) | (£,m) € R?}.

Note that the symmetry of the potential has reduced the number of possibilities entyrmous
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In case Ale = 1, n =1+ X and consider the point oiv*(+1) given by
(u, ', u",u")(0) = (g + 0(£2),v'(0) + O(?), (1 + Ne + O(e%),v"(0) + 0(52)).

Moreover, it should be clear that fersmall enough the conditions of Lemma 17 are satisfied, so
that|u(x)| < 1 on[0,00). We will deal with this case in Lemma 19, where we show that under
the present conditions,z) ¢ W*(+1), which contradicts the assumption.

Now suppose that case B holds andflet 0, » = —1. Then there is a poirtt:, ', u”, u"")(0)
onW#(+1) of the form

(O(e),0'(0) +ev'(0) + O(?), O(?),v" (0) — (v"(0) + gv'(0)) + O(e?)).
Now
(u' —v")(0) = ev'(0) + O(£?),
and, using (27),
(W" =v")(0) = —e(v"(0) +qv'(0)) + O(c?)
= eA+C)W'(0)+ +O(e?)

4v'(0)

= Au' —2")(0) +eCv'(0) + .

4v'(0)

+0(&%).
Becaus&” > 0 we infer that

(u/// . )\U’)(O) . (’U”I _ )\UI)(O) > (C’UI(O) + 41)'1(0)) + 0(52)'

Besides, it should be clear that fosmall enough the conditions of Lemma 17 are satisfied, so
that|u(z)| < 1 on[0,c0). We will deal with this case in Lemma 18, where we show that under
the present conditionsx) ¢ W*(+1), which contradicts the assumption.

We now prove two technical lemmas (adopted from [BCT] to the case of asyamtet-
ric heteroclinic orbit) to exclude the two possibilities which could occur ifititersection of
W (—1) andW#(+1) is not transversal. We show that in both case A and case B the initial data
of u andv are such that for some small positivewe arrive in the situation of the Comparison
Lemma. We then conclude thatcannot be in the stable manifold bf

The next lemma deals with case B.

Lemma 18. Foranyg < —+/8, letv(x) be the unique monotonically increasing heteroclinic so-
lutions of(10) with its zero at the origin. Suppose thdt:) is a solution of10) with |u(x)| < 1
on|0, c0), satisfying (for some > 0)

ke > (u" — Mu')(0) — (v — M')(0) > ae and ke > (u'(0) —2'(0)) > ¢,

and
u(0)] + u"(0)| < Be?,

wherek, «, f > 0 are constant. Then, fersufficiently smallu(0) ¢ W*(+1).
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Proof. ~ The solution ofv exists on[0, o) and the initial data of, arec-close to those ob.
Therefore there existg > 0 suchthatit € (0, ,) the functionu and its derivatives of all orders
exist and are uniformly bounded ¢ 1], independent of € (0, ¢,) and for allu satisfying the
assumptions. Consequently, by Taylor’'s theorem we infer that for sdme 0 and for all
z € [0,1]

u(z) —v(z) > u(0) —v(0) + {u'(0) — v'(0)}z
+ H{u"(0) — v"(0)}2® — Ma®
—Be® +ex — %[352:52 — Mz3.

u'(0) — v'(0) + {u"(0) —v"(0)}x — Mx?

AV

ﬁ\
&
|
<
—~
8
~
v

> & — e’z — Ma?.
(u" = Au)(z) — (v" — M)(z) > (u" = du)(0) — (v" — \v)(0)
+ {(u" = M)(0) = (v"" = \)(0)}z
+ 3L = 2" (0) — (0" — M")(0)}2? — Ma®
> —(14\)Be® + aer — %KﬁanQ — Maz?.

(" = X)) — (6~ W)@) > (= ) (O) — (" M)(0)
+ {(um/ . )\U”)(O) . (1)”” - )\U”)(O)}Jf — M2
ae — KBe’x — M2

v

Here we have used the fact that for some conskant 0,
[u""(0) — A" (0)| = |(—g — \)u"(0) + u(0) — u3(0) < KB

Letd = min{1,a} andK = max{1, K}, and we define

a Kped?
o5

u'(z) —v'(x) >0 and (" — M) (z) — (V" — M) (z) > 0.

Then, on0,T'(¢)], we have

We now introducer (¢) = £%3. Thent(¢) € [0,I'(¢)] N [0,1] for ¢ > 0 sufficiently small. We
obtain that
(u—v)(7(e)) > —fe + %% — 35193 — Me? > 0,

for e > 0 sufficiently small, and
(u" — M) ((e)) — (V" — M)(7(€)) > —(1 + \)Be? + ae®® — %Kﬂslo/3 — Me* >0,
for e > 0 sufficiently small.

28



We can now apply the Comparison Lemma to concludeifat does not tend ta asz —
oo, which proves the lemma. O

The following lemma excludes case A, and thus completes the proof of Theorem 6.

Lemma19. Foranyg < —+/8, letv(x) be the unique monotonically increasing heteroclinic so-
lutions of(10) with its zero at the origin. Suppose thdt) is a solution of10) with |u(x)| < 1
on|0, oo), satisfying (for some > 0)

ke > u"(0) — Au(0) > e and ke >u(0) > e,

and

[w'(0) = v'(0)] + [u"(0) — v"(0)| < <,
wherek, o, 5 > 0 are constant. Then, fersufficiently smallu(0) ¢ W*(+1).
Proof. We proceed as in the proof of Lemma 18. We find, by Taylor’s theorem, that for some
M > 0,K > 0andz € [0,1],

u(z) — v(x) £ — Be’r — Mx?
u'(z) — o' (x) —Be® + (a+ Nex — %6523;2 — Maz?
(u" — Mu)(z) — (0" = ) (z) > ae— (1+N)Be’r — Ma?

Y4

v

and

(u"” = M) (z) = (V" = M) (2) = (u" = Au')(0) = (v" = W)(0)
+ { (iv) )\U”)(O) . ( (v) _ )\U” }CC
+3 { —2")(0) = (v™ — X")(0)} 2? —
> —20e?+ (2 + pa)ex — %KstmQ — M3,
Here we have used the following facts. Firstl§?)(0) = 0 by (10) and
(™ — ") (0) = p(u" — A u)(0) + 3u(0) — u3(0)
> poe + 3¢ — k3P
(2 4+ pa)e

v

for ¢ sufficiently small. Secondly, differentiatir{@0), we obtain
u® + qu" +u'(3u? — 1) = 0,
from which we deduce that
(u® = xu")(0) = () = X")(0) = p(u" — Au')(0) = u(v" — A\')(0)

+3(u'(0) = v'(0)) — 3u'(0)u’(0)
> —p(l+\)Be® - 30e® — 60'(0)k%* = —Ke?,

sinceu’(0) < v'(0) + Be? < 20'(0), for ¢ sufficiently small.
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Leta = min{1, o} and we define

Then, on0,I'(¢)], we have
w(@) —v(@) >0  and (0 = u)(x) — (" — Av)(z) > 0.
If 7(e) = £2/3, thent(¢) € [0,T(¢)] N [0, 1] for e > 0 sufficiently small and
(u' —v')(7(e)) > =B + (a4 N)e*/® — %ﬁelo/?’ — Me* >0,
for ¢ sufficiently small, and
(u" — M) (7(€)) — (V" — M) (7(e)) > =26 + (2 + pa)e®® — %sz/g — Me* >0,

for ¢ sufficiently small.
We can now apply the Comparison Lemma to conclude tia} does not tend td as
x — oo, which proves the lemma. O

Remark 13. The special symmetry aof — «® has enabled us to prove that the heteroclinic so-
lution is transversal. For generf{u) transversality of heteroclinic solutions is much harder to
check. However, for homoclinic solutions this difficulty does not arise, since éx@moclinic
solution (fory € (0, ;5]) is symmetric with respect to its extremum. We will give an outline of
the proof that every homoclinic solution is a transversal intersection.

Without loss of generality we may assume that) is a positive homoclinic solution df)
to 0 with a unique maximum at = 0. As usual, we suppose that € (0, m]. The
method in [BCT] for homoclinic solutions can be extended to gengra), as was done above
for heteroclinic solutions. To be able to apply the Comparison Lemmgdtp a solution in
W#(0) close tov(z), we need a very mild assumption ¢(u), but only in a special case (when
v = m then we need that (u) # —w(0, v(0)) in some left neighbourhood af= 0). The
only fairly specific condition in the rest of the proof is th&¢t > X, which follows directly
from Remark 6. .

7 Stability of the kink

In this section we look at the stability of the kink for the EFK equation (12) andgftveorem 7.

To fix ideas, fory < % let v(z) be the unique monotonically increasing heteroclinic solution
of (9), such thaw(0) = 0 (removing the translational invariance). The existence of this solution
can be proved by a shooting method [PT1], but it can also be found as the minimiger of
functional

Jlu] = /R {%(u")2 + %(u')Q + i(qﬁ _ 1)2} .
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The minimum is taken over all functiongz) with v — x € H?(R), wherex € C*(R) is an
antisymmetric function such that such thdt:) = —1 for z < —1. (see [KKV, PTV]).

The minimising property of the kink(z) and its transversality in the zero energy set allow us
to conclude that foty < % the kink is asymptotically stable if'! (R). Another possible choice
is to work in the space of bounded uniformly continuous functions. The analysis below applies
to both function spaces.

To study the stability of the kink, we writg(z, t) = v(z) + ¢(z, t). The differential equation
for the perturbatio(z, t) is then

4 2
% = —7% + % + (1 = 3v%)¢ — 3vg?® — ¢°.

Note that the nonlinear term3uv(z)¢? — ¢* is C* from H' to H'.

We have to investigate the spectrum of the linearised operator

Lo = =7 +¢" — 26+ g()9,

where
g(r) =3 - 3v*(z) = 0 asz — +oo.

We considerC as an unbounded operator frof(£) = H®°(R) ¢ H'(R) to H'(R). Itis
well-known that the essential spectrumfs

0e(L) = (—o0, —2],

and that the remaining part of the spectra(f) \ o.(£) consists entirely of isolated real eigen-
values of finite multiplicity [He].
The minimising property of the kink,

Jl] = inf{Ju] | u— x € H*},
implies that
(Lo, d)2 <0  forallg € H. (30)

Any eigenfunction off in H' is in H* since it obeys a regularising differential equation. By sub-
stituting eigenfunctions in (30) we see that all eigenvalues afe in(—oc, 0], and we conclude
that the linear operataf generates &',-semigroup ond.

The EFK equation is autonomous, thtitr) is an eigenfunction with eigenvalue In fact,
the zero eigenvalue is simple, which follows from the transversality &f+1) andiW*(—1). To
see this, we note that the flow of the tangent plahE*(x) of the stable manifold of-1 at points
(v, ', 0", 0" () on the heteroclinic orbit, is given by the linearised equation around the kink.
SinceW?*(+1) is two-dimensional this implies that there are exactly two linearly indepgnde
solutions of£¢ = 0 which tend to0 ast — oo, corresponding to two independent directions
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in the tangent plane¥W#*(x). A similar statement holds for the tangent pldfi#&’*(z) of
the unstable manifold of 1. Because an eigenfunction with eigenvaluebeys this linearised
equationf¢ = 0 and tends t@ asz — +oo, it corresponds to a common direction in the tangent
planesTW*(x) andTW*"(x). Therefore, a second independent eigenfunction with eigenvalue
0 would imply that the stable and unstable manifolds do not intersect transverdély zero
energy set, which contradicts Theorem 6.

We note that this reasoning also applies to the space of bounded uniformly continuous func-
tions since there is an exponential dichotomy wher +oc.

Following [He, BJ] we exploit the translation invariance to conclude thatidbal stable
manifolds (having co-dimension 1) of the translates of the kifK fill a tubular neighbourhood
of {v(z + z0) | zo € R} in function space. The family of kinkév(z + o) | zo € R} forms
the one-dimensional center manifolcko@ind its translates. This implies asymptotic stability and
thus proves Theorem 7.

8 Continuation and existence of solutions

This section is devoted to the continuation of bounded solutiori§)dfor values ofg that are
sufficiently negative. The results in this section show that not only do boundedosalutot
intersect each other in the, u’)-plane, but they also completely fill up part of the v')-plane.
The fact that solutions can be continued also implies the existence of solutionge aviti make
some general remarks about that.

The main result of this section is Theorem 3. In the proof of this theorem we use #t@not
of Equation(6). Let uy(z) be a periodic solution of6) for ¢ = g. We defines = min uy(z)
andb = maxug(x). Suppose thagy < —2+/w(a,b). Then this periodic solution is part of a
continuous one-parameter family of periodic solutions. We will use the implicitimmtheorem
to prove this assertion. In Theorem 3 the energy is taken as parameterwedirst take the
maximum value of solutions as parameter and then we show that the energy can lzes used
parameter equally well.

Without loss of generality we may assume thgtattains a maximum at = 0. Then
uy(0) = 0 andug'(0), and from Remark 6 we see that

ug(0) <0 and ug”(0) — Aug(0) > 0.

Let&, > 0 be the first point where, attains a minimum.
We now look at a family of solutions(z; «, 3) of (6) with initial data

(U, ula U'”a U”’) (07 «, 6) = (O!, Oa /83 0)1
def

where(q, ) is in a small neighbourhood @&, 5y) = (ue(0), ug(0)). Note thatu(z; ag, 5o) is
the periodic solutiom(x).
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To show thatu, is part of a continuous family it suffices to prove that there exists a one-
parameter family of point&, a, 3) in a neighbourhood dfty; «vg, ) such that

(& a,8)=0 and u"(&a,6)=0.

Let a be the parameter, then to be able to apply the implicit function theorem we davew
that the determinant

8_11‘/ aulll
D= det( & ﬁ ) (&o; 0, Po)
o5 o
iS non-zero.
It follows from Remark 6 that
u" (€o; v, Bo) > 0 and u™ (€03 v, Bo) — A" (&o; v, Bo) < 0. (31)
Takingv(z) = 3% (x; o, fo), We see that

v(0)=0, ¢'(0)=0, 2"(0)—X(0)=1 and +"(0)— A\'(0)=0,
and
UIIII+(ZU,I — f,(u)v.
Following the proof of the Comparison Lemma we conclude that far all 0
v>0, >0, "= >0, and 2" =X >0. (32)

We now see from (31) and (32) that

o’ a(u’”f)\u’)

e T >0 <0

det( gqf’ 6(u”(?f)\u’) ) (€05 o, Bo) = th( 0 0 ) >0,
98 88 > >

which immediately implies thab # 0.

Above we have used the amplitude of the periodic solution as a parameter. Wecasa&
the energyE as a parameter, takingand« as variables. In that case we look at a family of
solutionsu(z; «, E') of (6) with initial data

(u, v, u",u")(0; 0, E) = (e, 0, —/2E — 2F (), 0),

where(a, E) is in a small neighbourhood ¢, £[u,)). We definev(z) = 2%(z; a, €[uo)), and
we notice thav(0) = 1, v'(0) = 0, v""(0) — Av'(0) = 0 and

d(—+/2€ug] — 2F () — \v)

v"(0) — Mw(0) = 5
Pl
—/2E[ug] — 2F (cvo)
— [ (uo(0)) _ —ug"(0) + Aug(0)
S O A

by (6) and Remark 6. The previous analysis now applies once more and we conclude that Theo-
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rem 3 holds.

Another possibility for continuation of solutions is to fix the energy lekgltakeq as a
parameter and useanda as variables. Finally, instead of changings a parameter we can also
deform the potential’(u). This offers the possibility to obtain periodic solutions via continuation
starting from a linear equation and then deforming the potential.

A different possible starting point for the continuation of bounded solutions is the second
order equationr( = 0), because for small positivethe bounded solutions ¢f) can be obtained
from the second order equation by means of singular perturbation theory [F, J, AH].

The continuation of periodic solutions can come to an end in a limited number of ways:

e the value ofq becomes too large compared the critical valu@ninu, maxu), i.e.,
¢ > —2y/w(minu, maxu). This may either happen when we increaser when we
deform the potential, or when the rangeudf) expands.

e the amplitude of the periodic solutions goes to infinity.

e the amplitude of the periodic solutions goes to zero, i.e., the periodic orbits convenge to
equilibrium point.

e the periodic solutions converge to a chain of connecting orbits (homoclinic and/or hetero-
clinic).

Considering homoclinic solutions we note that it follows from Remark 13 that undgr ver
weak assumptions on the potential homoclinic solutions are transversal ititerseand thus
can be continued (for example startinghyat= 0 using singular perturbation theory). Another
possibility is to obtain the homoclinic solutions as a limit of periodic solutions.

Finally, with regard to heteroclinic solutions there is an important régutt [KKV], which
states that if there are two equilibrium poimisandu; (uo < u1) such that

F(u) = F(uy),
F'(ug) <0 and F"(u;) <0,
F(u) < F(uyp) forall u € (ug,uy),

then for ally > 0 there exists a heteroclinic solution @f) connecting these equilibrium points.
On the other hand, the heteroclinic connections can also be obtained as a limiboigsalu-
tions, and when the potential is symmetric then the heteroclinic solutionassmersal intersec-
tion and thus can be continued.
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