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Abstract

We study the bounded solutions of a class of fourth-order equations

�� ����� � ��� � � �� � � 	 
 � � 	 �

We show that when� is not too large then the paths in the�� 
 � � �-plane of two bounded

solutions do not cross. Moreover, the conserved quantity associated with the equation puts

an ordering on the bounded solutions in the phase-plane and acontinuation theorem shows

that they fill up part of the phase-plane. We apply these results to the Extended Fisher-

Kolmogorov (EFK) equation, a fourth-order model equation for bi-stable systems. The

uniqueness and ordering results imply that as long as the stable equilibrium points are real

saddles the bounded solutions of the stationary EFK equation correspond exactly to those of

the classical second-order Fisher-Kolmogorov equation. Besides, we establish the asymp-

totic stability of the heteroclinic solution of the EFK equation.

1 Introduction

In this paper we study the bounded solutions of fourth-order differential equations of the form


������ � ��� � � ��� � � � � � � � (1)

where� ��� � �� �� ��� , and� ��� is called thepotential. By a bounded solution we mean a function
� �� � �  ! �" � # $% �" � which satisfies (1) for all� � "

. For small positive� Equation (1) is a

singular perturbation of the (mechanical) equation

��� � � ��� � � & (2)

We investigate the correspondence between bounded solutions of�'� and (2).

Note that (1) is both translation invariant and reversible (invariant underthe transformation
� ( 
�). Besides, there is a constant of integration. When we multiply (1) by�� and integrate,

we obtain theenergy or Hamiltonian

) *�+ def� 
� ����� � � �
, ���� �- �

'
, ��� �- � � �� � � . � (3)
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where. is constant along solutions.

In recent years fourth order equations of the form (1) have attracted a wide interest, and two

special cases have been thoroughly studied. Firstly, when the potential is

� ��� � 
 '� ��- 
 '�- � (4)

Equation (1) is the stationary version of the Extended Fisher-Kolmogorov (EFK) equation, which

has been studied by shooting methods [PT1–4] and through variational approaches [PTV, KV,

KKV]. Generalisations of the EFK potential have been studied in [PRT], including potentials

with maxima of unequal height. Secondly, in the study of a strut on a nonlinear elastic foundation

and in the study of shallow water waves, Equation (1) arises with the potential

� ��� � 
 ', �- �
'
� � � & (5)

The homoclinic orbits of this equation have been studied both analytically [AT, CT,BS, Bu]

and numerically [BCT, CS]. In these studies a striking feature is that thebehaviour of solu-

tions changes dramatically when the parameter� reaches the lowest value for which one of the

equilibrium point becomes a saddle-focus. Below this critical value the solutionsthat have been

found, are as tame as for the second order equation. When one of the equilibrium points becomes

a saddle-focus, an outburst of new solutions appears.

The situation for� � � seems to be much less understood. We refer to [Ch] for an overview

of equations of the form

����� 
 ���� � � � � � �� � �� � � �� � � ��� � � �� � " &

As remarked, the character of the equilibrium point plays a dominating role. If an equilibrium

point is a center for the second order equation, then it is a saddle-center for all� � �. On the

other hand, if an equilibrium point is a saddle for the second order equation, then it is a real

saddle for small (positive) values of� . The character of such a point changes to saddle-focus as
� increases beyond some critical value.

Since (1) is a singular perturbation of the equation for� � �, it is natural to ask when it

inherits solutions from the second order equation. Forsmall � this question can be answered

using singular perturbation theory [AH, F, J]. Here we follow an approach that leads to unique-

ness results for a wider range of� -values. The method is based on repeated application of the

maximum principle. In [BCT] this idea has been used to prove the uniqueness of the homoclinic

orbit for the potential in (5).

We shall first state two general theorems and subsequently draw detailed conclusions for the

case of the EFK equation. In fact, the general theorems presented here, are a natural extension

of the result for the EFK equation, of which a short summary has been published in [Be].

We consider functions� ��� �  � �" � and define, for
� � 	 � 
 � � ,

� �	 � 
� def� �
� �� � �
�
���� ���


� � �� ��&
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We are only interested in cases where� �	 � 
� � � . We will often drop the dependence of� on
	 and 
, when it clear which constants	 and 
 are meant. Also, we introduce sets of bounded

functions �
�	 � 
� def� �� �  ! �" � �� � �� � � *	 � 
+ for all � � " �&

In the following we often have an a priori bound on the set of all bounded solutions, i.e., forsome

� � 	 � 
 � � all bounded solutions of�'� are in

�
�	 � 
�. It is important to keep in mind

that these a priori bounds are usually valid for a range of values of� .

As will be clear from the statement of the theorems below, a better bound leads to a lower

value of� , which in turn leads to a stronger result.

The bounded solutions of the second order equation (� � �) are found directly from the

phase-plane. Our first theorem states that the�� � � � �-plane preserves the uniqueness property for

the fourth-order equation as long as� is not too large.

Theorem 1. Let � � and�- be bounded solutions of�'�, i.e., � � and�- are in

�
�	 � 
� for some


� � 	 � 
 � � . Suppose that� � �� � �!� �� ��� �. Then the paths of� � and�- in the �� � � � �-
plane do not cross.

Remark 1. It turns out that we need to give a meaning to the case� � � . A scaling in�, which

is discussed later on, shows that the natural extension of�'� for � � � is


����� � � �� � � � & �
The following theorem shows that the energy

) *�+ (see (3)) is a parameter that orders the

bounded solutions in the phase-plane.

Theorem 2. Let � � � �- �
�
�	 � 
� be bounded solutions of�'� for some� � �� � �!� �� ��� �. Suppose

that (after translation)� � ��� � �- ��� and either��� ��� � ��- ��� � � or ��� ��� � ��- ��� � �. Then) *� �+ � ) *�- +.

We now give some examples. For the double well potential� ��� � �! ��- 
 '�- (note that

this is not the EFK potential in (4)) we have that� �
� �� � � ' and thus any two bounded

solutions do not cross in the�� � � ��-plane for� � �� � �! +. Besides, in this parameter range the

energy ordering of Theorem 2 holds for all bounded solutions of�'�.
In the case of the periodic potential� �� � � ��	 �, we again have� �
� �� � � '. In this

case Theorem 1 combined with the periodicity of the potential, shows that for� � �� � �! + every

bounded solution has its range in an interval of length at most
,


. We note that in both cases
� � �! is exactly the value where the character of some of the equilibrium points changes from

real-saddle to saddle-focus.

In the previous two examples we did not need an a priori bound. However, for the EFK

potential (4), the existence of a uniform bound on the bounded solutions is needed to obtain
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a finite � . The results for the EFK equation are discussed in detail in Section 1.1. For the

potential (5) only a lower bound is needed.

Let us now assume that for some� � � we have an a priori bound on the set of bounded

solutions, i.e., all bounded solutions of�'� are in

�
�	 � 
� for some
� � 	 � 
 � � , and let

us assume that� � � �	 � 
� � � . Then if � � *� � �!� +, bounded solutions of�'� do not cross by

Theorem 1, and Theorem 2 gives an ordering of the bounded solutions in the�� � � ��-plane in term

of the energy. An immediate consequence of Theorem 1 and the reversibility of (1),is that when
� � *� � �!� +, any bounded solution of (1) is symmetric with respect to its extrema (therefore the

analysis in Theorem 2 is restricted to the upper half-plane). This implies that the only possible

bounded solutions are� equilibrium points,� homoclinic solutions with one extremum,� monotone heteroclinic solutions,� periodic solutions with a unique maximum and minimum value.

Another implication is that there are at most two bounded solutions in the stable andunstable

manifolds of the equilibrium points.

We will use the following formulation. If�� �� � is a solution of (1), then by the transformation

� �� � � �� � ��� � � and � � 
 '�� �
it is transformed to a solution of

����� � ���� 
 � �� � � � � � � � & (6)

We examine the case where� � 
,�� , corresponding to� � �� � �!� +. It should be clear that

solutions of (6) with� � 
,�� correspond to solutions of (1) with� � � � �!� and vice versa.

The energy in the new setting is

) *�+ def� 
����� � � '
, ���� �- 
 �, ��� �- � � ��� & (7)

For � � 
,�� we define� and� such that

�� � � and � � � � 
� �
or explicitly,

� � 
 �, 
 � ��, � - 
 � and � � 
 �, � � ��, � - 
 � &

It is easily seen that� and� are positive real number if and only if� � 
,�� . In that case we

have
� � � � �� � � &
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Equation (6) can be factorised as�
��� 
 �� � �
� �� 
 �� � � ��� � � � � (8)

and the definition of� ensures that� ��� � � � is a non-decreasing function of� for � � *	 � 
+.
The central tool in this paper is a comparison lemma which shows that if the initial data of

two solutions obey certain inequalities, then at most one of the solutions can be bounded.

Lemma 1 (Comparison Lemma). Let � and� be solutions of��� such that, for some
� �
	 � 
 � � ,

	 � � �� � � � �� � � 
 for all � � *� �� � &

Suppose that� � 
,�� �	 � 
� and

� ��� � � ��� � � � ��� � � � ��� �
� �� ��� 
 �� ��� � � �� ��� 
 �� ��� � � ��� ��� 
 ��� ��� � � ��� ��� 
 �� � ��� &

Then� �� � 
 � �� � �  on
*� �� � for some constant � " , and � � if � �	 � 
� �� �.

Note that when the bounds	 and
 are sharper, then� and� are smaller, hence the conditions in

the statement of the lemma are weaker. The proof of this lemma relies on the factorisation (8) of

Equation (6).

We remark that both the splitting (8) of the differential operator and the Comparison Lemma

can be extended to sixth and higher order equations. However, the increasing dimension of the

phase-space and the lack of additional conserved quantities (like the energy) make it a difficult

task to extend the uniqueness results to such higher order equations.

This paper mainly deals with uniqueness of solutions, but the information we obtain about

the shape of solutions of�'� for � not too large also allows us to conclude that any periodic

solution belongs to a continuous family of solutions.

Theorem 3. Let � be a periodic solution of�'� and let 	 � � �� � �� � and 
 � �
� � �� �.
Suppose that� � �� � �!� �� ��� �. Then� belongs to a continuous one-parameter family of periodic

solutions, parametrised by the energy. .

1.1 An example: the EFK equation

The stationary version of the Extended Fisher-Kolmogorov (EFK) equation is given by


������ � ��� � � 
 � � � � � � � � & (9)

The EFK equation is a generalisation (see [CER, DS]) of the classical Fisher-Kolmogorov (FK)

equation (� � �). Clearly (9) is a special case of (1) with the potential� ��� � 
 	
 ��- 
 '�- (we
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note that in some literature about the EFK equation the function� ��� � 	
 ��- 
 '�- is called the

potential). In the form of (6) the EFK equation becomes

����� � ���� 
 � � � � � � & (10)

Linearisation around� � 
' and � � � ' shows that the character of these equilibrium

points depends crucially on the value of� . For� � � � �� they are real saddles (real eigenvalues),

whereas for� � �� they are saddle-foci (complex eigenvalues). The behaviour of solutions of���
is dramatically different in these two parameter regions.

For� � �� � �� + the solutions are calm. It was proved in [PT1] that there exists a monotonically

increasing heteroclinic solution (orkink) connecting
' with � ' (by symmetry there is also a

monotonically decreasing kink connecting� ' with 
'). This solution is antisymmetric with

respect to its (unique) zero. Moreover, it is unique in the class of monotone antisymmetric

functions. In [PT4] it was shown that in every energy level. � �
 �! � �� there exists a periodic

solution, which is symmetric with respect to its extrema and antisymmetric with respect to its

zeros. Remark that these solutions correspond exactly to the solutions of the FK equation (� �
�).

In contrast, for� � �� families of complicated heteroclinic solutions [KKV, KV, PT2] and

chaotic solutions [PT3] have been found. The outburst of solutions for� � �� is due to the

saddle-focus character of the equilibrium points� '.
We will prove that as long as the equilibrium points are real-saddles, i.e.� � �� , or, � � 
��

,

bounded solutions are uniformly bounded above by' and below by
'. To prove this, we first

recall a bound already proved in [PT3, PRT], stating that any bounded solution of (9) for � � �
(� � �) obeys

�� �� � � � � ,
for all � � " & (11)

This bound is deduced from the shape of the potential and the energy identity. It already shows

that Theorems 1 and 2 hold for� � �, i.e., for any pair of bounded solutions of��� with � �
�� � �-� +. The method used to obtain this a priori estimate on all bounded solutions is applicable to

a class of potentials which strictly decrease to
� as
�� � ( � .

The a priori bound can be sharpened in the case of the EFK equation.

Theorem 4. For any� � �� , let � be a bounded solution of��� on
"

. Then
�� �� � � � ' for all

� � "
.

Using the a priori bound (11), the sharper bound is obtained by applying the maximum principle

twice to the factorisation of (10). Remark that a sharper bound is not possible since � � � ' are

equilibrium points of (9).

This theorem implies that we can sharpen the results of Theorems 1 and 2 to� � �� � �� +, i.e.,

for all values� for which the equilibrium points� ' are real saddles. It follows that for� � �� � �� +
bounded solutions do not cross in the�� � � ��-plane and they are ordered by their energies.
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Remark 2. For the potential in Equation (5) an upper bound is not needed since� � �� � � 
' �
,� � � for � � �- . An a priori lower bound of	 � � and� � � �! can be found in the same way

as in the proof of Theorem 4. Therefore Theorems 1 and 2 hold for� � �� � �! + or � � 
, (see

also [BCT]). �
We want to emphasise that the methods used in this paper to obtain a priori bounds on

bounded solutions are by no means exhaustive. They are sufficient for the EFK equation butfor

other potentials different methods may be more suitable. For example, the techniquesfrom this

paper can be combined with geometric reasoning in the�� � � �� �-plane to obtain a priori bounds on

the bounded solutions in fixed energy levels, as is done in [Pe] for potentials that are polynomials

of degree four. This allows an extension of the results on uniqueness to values of� for which

some of the equilibrium points are real saddles whereas other equilibrium points are saddle-foci.

The existence of bounded solutions corresponding to the solutions of the FK equation has

been proved in [PT1, PT4, PTV]. From Theorems 1 and 2 it can be deduced that there is a

complete correspondence between the bounded stationary solutions of the EFK equation and

those of the FK equation (� � �).

Theorem 5. The only bounded solutions of��� for � � �� � �� + are the three equilibrium points,

the two monotone antisymmetric kinks and a one-parameter family of periodic solutions, parame-

trised by the energy. � �
 �! � ��.

The multitude of solutions which exist for� � �� , shows that this bound is sharp. Among

other things, Theorem 5 proves the conjecture in [PT1] that the kink for� � �� � �� + is unique. We

mention that the uniqueness of the kink for� � �� � �� + can also be proved using so-called twist

maps [Kw].

In the proof of Theorem 5 we do not use the symmetry of the potential� in an essential

manner (it merely reduces the length of the proofs). Using the symmetry� we obtain some

additional results. Firstly, for� � �� any bounded solution of (9) is antisymmetric with respect

to its zeros. Secondly, the periodic solutions can also be parametrised by the period

$ �
�
,
� ,�� ' � �� 
 ' ��� &

Thirdly, we prove that the heteroclinic orbit is a transversal intersection of the stable and unstable

manifold.

Theorem 6. For � � �� � �� + the unique monotonically increasing heteroclinic solution of��� is

the transverse intersection of the unstable manifold of
' and the stable manifold of� ' in the

zero energy set.
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Finally, the monotonically increasing kink�� �� � with �� ��� � � and its translates are asymp-

totically stable for the full time-dependent EFK equation
��
� � � 
�

� ! �
��!

�
� - �
��-

� � 
 � � & (12)

Theorem 7. Let � �� � �� be a solution of (12). For any� � �� � �� + there exists an� � � such that

if
��� �� � �� 
 �� �� � � � �

��� � � � for some� � �
"

, then there exists a� � " , depending on� �� � ��
(and small when� is small), such that

�����%
��� �� � �� 
 �� �� � � � � � � ��� � � � &

We remark that the kink is also asymptotically stable in the space of bounded uniformly contin-

uous functions.

The outline of the paper is the following. In Section 2 we prove the Comparison Lemma, and

it then follows that bounded solutions do not cross each other in the�� � � ��-plane, as formulated

in Theorem 1. Section 3 is devoted to the proof of Theorem 2. In Section 4 we prove the a

priori bound from Theorem 4, and in Section 5 the proof of Theorem 5 is completed. Besides,

we prove the antisymmetry of bounded solutions, and we show that the periodic solutions can be

parametrised by their period. In Section 6, we prove that the unstable manifoldof 
' intersects

the stable manifold of� ' transversally as stated in Theorem 6. Theorem 7 on the asymptotic

stability of the kink for the EFK equation is proved in Section 7. Finally, in Section 8 we deal

with the continuation and existence of solutions of�'� and in particular we prove Theorem 3.

It is a pleasure to thank R. C. A. M. van der Vorst for numerous discussions. The comments

of L. A. Peletier have greatly improved the presentation of the results.

2 Uniqueness property

In this section we prove the Comparison Lemma and Theorem 1, which states that for � � 
,��
bounded solutions of (6) are unique in the�� � � � �-plane.

Remark 3. For the results in this section, the condition that� ��� is continuously differentiable

can be weakened. When� ��� is in  � �" �, then� �	 � 
� is defined as the lowest non-negative

number such that� ��� � � �	 � 
�� is non-decreasing as a function of� on
*	 � 
+. �

We start with the proof of the Comparison Lemma, which is at the heart of most of the results

in this paper. The proof proceeds along the same lines as in [BCT].

Proof. Let � �� � and� �� � satisfy the assumptions in Lemma 1. If� �� � 
 � �� � �  , then by

the assumptions � � and� � �, thus � � if � �� �, i.e., if � �� �.
Suppose now that� �� � 
 � �� � ��  . Let 	 be the smallest integer for which� �
 � ��� �� � �
 � ���.

Then, by uniqueness of solutions,	 � �� � '� , � � � and � �
 � ��� � � �
 � ��� by the hypotheses.
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Hence there exists a� � � such that

� �� � � � �� � on �� � � � &

Now let
� �� � � ��� �� � 
 �� �� � � and � �� � � � �� �� � 
 �� �� � &

Then, by the hypotheses,

� ��� 
 � ��� � � � and
� � ��� 
 � � ��� � � & (13)

Besides, writing� �� � � � �� � � � �	 � 
��,

�� 
 � ��� �� � 
 � �� 
 � � �� � � � �� �� �� 
 � �� �� �� on �� � � � & (14)

Since	 � � �� � � � �� � � 
 on �� � � � and since� �� � is a non-decreasing function on
*	 � 
+ by

the definition of� �	 � 
�, we have that

� �� �� �� 
 � �� �� �� � � on �� � � � & (15)

It is immediate from (13), (14) and (15) that

� �� � 
 � �� � � � on �� � � � &

This is to say
�� 
 � ��� �� � 
 � �� 
 � � �� � � � on �� � � � &

Besides, by the hypotheses of the lemma we have that

�� 
 � � ��� � � � and �� 
 � �� ��� � � & (16)

Therefore
� �� � � � �� � on �� � � + �

and since	 � � �� � � � �� � � 
,

� �� �� �� � � �� �� �� on �� � � + &

Thus we obtain that

	�� �� �� � �� � � � �� � for all � � �� � � �� � � �

and
�� 
 � ��� �� � 
 � �� 
 � � �� � � � on �� �� � �
�� 
 � ��� �� � 
 � �� 
 � � �� � � � on �� �� � &
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It follows from (16) and the assumption that� �� � 
 � �� � ��  , that

�� 
 � � �� � ( � as� ( � &

Clearly, if � �� � and � �� � are bounded this is not possible. This concludes the proof of the

Comparison Lemma. �

Theorem 1 is a consequence of the Comparison Lemma. Let� � and�- be bounded solutions

of (6) for � � 
,�� (corresponding to bounded solutions of (1) for� � � � �!� ). Suppose

by contradiction that the paths of� � and�- cross in the�� � � � �-plane. Then, after translation,

we have that� � ��� � �- ��� and ��� ��� � ��- ���. Without loss of generality we may assume

that���� ��� � ���- ���. Now if ����� ��� � ����- ���, then by the Comparison Lemma we conclude that
� � �� � 
 �- �� � �  for some � "

. Since� � ��� � �- ��� this implies that� � �� � � �- �� �.
On the other hand, if����� ��� � ����- ���, then we define�� � �� � � � � �
�� and ��- �� � � �- �
��.

Clearly �� � and ��- are also bounded solutions of�'��. We now apply the Comparison Lemma to�� � and ��-, and find as before that�� � �� � � ��- �� �, which concludes the proof of Theorem 1.

We now touch upon a lemma that gives a lot of information about the shape of bounded

solutions. It states that every bounded solution is symmetric with respect toits extrema.

Lemma 2. Let � �
�
�	 � 
� be a bounded solution of�'� for some� � �� � �!� �� ��� �. Suppose that

�� �� � � � � for some� � �
"

. Then� �� � � �� � � �� � 
 �� for all � � " .

Proof. After translation we may take� � � �. Now we define� �� � � � �
��. By reversibility

� �� � is also a bounded solution of (1). Clearly� ��� � � ��� and�� ��� � � � ���. From Theorem 1

we conclude that� �� � � � �� �. �

Remark 4. It should be clear that when a solution is bounded for� � �, then it either has an

infinite number of extrema or it tends to a limit monotonically. We will show in Lemma 3 that

such a limit can only be an equilibrium point. It therefore follows from Lemma 2that if all

bounded solutions of�'� are in

�
�	 � 
�, then for� � �� � �!� + the only possible bounded solutions

are equilibrium points, homoclinic solutions with one extremum, monotone kinks and periodic

orbits with a unique maximum and minimum. �
3 Energy ordering

To fill in the remaining details of the phase-plane picture we use Theorem 2, whichestablishes

an ordering in terms of the energy
)

of the paths in the�� � � � �-plane. In this section we will

use the notation of Equation (6). Before we start with the proof of Theorem 2, we obtainsome

preliminary results.

The following lemma shows that when a solution tends to a limit monotonically, then this

limit has to be an equilibrium point. We denote the set of zeros of� ��� by
�

.
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Lemma 3. Let � �� � be a solution of��� for � � �, which is bounded on
*� � �� � for some

� � �
"

. Suppose that�� �� � � � for all � � � � or �� �� � � � for all � � � �. Then

�����% � �� � � � and
�����% � ��� �� � � � for

� � '� , � � &

Proof. We may assume that�� �� � � � for � � � � (the other case is completely analogous). It

is then clear that
�����% � �� � def� $ �

exists and� �� � increases towards$ � as� ( � . Since� �� � is bounded for� � � � , $ � is finite.

We now consider the function� � ���� � ���. Then� �� � satisfies

� �� � ��� � �� � &

We first show that��� �� � tends to zero as� ( � . If � � �$ � � �� � (the other case will be dealt with

later), then� � �� � has a sign for� large enough, by which we mean that either� � �� � � � for large
�, or � � �� � � � for large�. Since�� �� � � �, it follows that� �� �� � has a sign for� large enough,

hence so does� �� � . The fact that� �� � � ���� �� � � ��� �� � has a sign for� large enough implies

that
�����% ��� �� � � �� �� � def� $ �

exists and��� �� � ( $ � 
 �$ � as� ( � . Moreover, since� �� � is bounded, we must have

�����% ��� �� � � � &

If � � �$ � � � �, then we consider� � ���� � �
- � �. We now have

� �� � �,� � ��
�
� � �� � � � -� � &

Since� � �$ � � � � �! is positive for� large enough, we conclude from the maximum principle that� �� � � ���� �� � 
 ��� �� � has a sign for� large enough. As before we see that

�����% ��� �� � � � &

The fact that� �� � ( $ � and ��� �� � ( �, implies that�� �� � ( � as � ( � . Because
� ��� � � 
���� � � ���, we see that

�����% � ��� � �� � def� $- � � �$ � � �

and, since� �� � is bounded,$- � � and thus$ � � �
. Finally, the fact that��� �� � ( � and

� ��� � �� � ( �, implies that���� �� � ( � as� ( � . �

Remark 5. For � � � the situation is slightly more subtle, but when� � �� � has a sign as� tends

to $ � monotonically, then the proof still holds. Since we consider bounded solutions of��� for� � 
,�� , this difficulty only arises when� � �, which (by the definition of� ) implies that
� � �� � � � for all values of� involved, hence the lemma holds for this case. �
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We prove that���� 
 ��� �� � is negative if and only if�� �� � is positive.

Lemma 4. Let � �
�
�	 � 
� be a bounded solution of��� for some� � 
,�� �	 � 
�. Then (with	��� ��� def� �)

	��� ����� �� � 
 ��� �� �� � 
	��� ��� �� �� for all � � " & (17)

Proof. Let � � �
"

be arbitrary. We may assume that�� �� � � � � (for �� �� � � � � the proof is

analogous). We see from Lemma 2 that (17) holds if�� �� � � � �. We thus assume that�� �� � � � �.
Since� �� � is bounded there exist
� � � � � � � � � � � � , such that�� �� � � � �� �� � � � �
and �� �� � � � on �� � � � � �. By Lemmas 2 and 3 we have that���� �� � � � ���� �� � � � �. Let� � ���� 
 ���. Then� �� � satisfies the system

���
��
� �� 
 �� � �� �� � �� � � � � �
� �� � � � ���� �� � � 
 ��� �� � � � � �
� �� � � � ���� �� � � 
 ��� �� � � � � &

Since�� �� � � � on �� � � � � �, we have by the definition of� that�� �� � �� � � � � � �. By the strong

maximum principle we obtain that� �� � � � for all � � �� � � � � �, and especially,� �� � � � �.
This completes the proof. �

Remark 6. It follows from the boundary point lemma and the preceding proof that if a bounded

solutions of�'� for � � 
,�� attains a maximum at some point� �, then

��� �� � � � � and � ��� � �� � � 
 ���� �� � � � � &

Moreover, it is seen from the differential equation that

� �� �� � �� � � ��� � �� � � � ���� �� � � � 
���� �� � � � � �

i.e., maxima only occur at positive values of� ���. �
We immediately obtain the following consequence.

Lemma 5. Let � �
�
�	 � 
� be a bounded solution of��� for some� � 
,�� �	 � 
�. Then

� �� � def� 
) *�+ � � �� �� �� � 	� �� �� �� ��- � � for all � � " &

Proof. By the energy identity we have

� � �� ����� � �, ��	 � �� ����� 
 ���� 
  ��� �- �

where � 
 ��- �- 
 � � �. It is easily seen from Lemma 4 that the assertion holds. �
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We will now start the proof of Theorem 2. Let� � and�- satisfy the assumptions in Theo-

rem 2. We only consider the case where��� ��� � ��- ��� � �. The other case follows by sym-

metry. For contradiction we assume that
) *� �+ � ) *�- +. It will be proved in Lemma 7 that we

can then find points� � and�- such that� � �� �� � �- ��- � and���� �� �� � ���- �� - �. Subsequently,

in Lemma 8, we show that the energy identity (7) ensures that we can apply the Comparison

Lemma to� � and�- resulting in a contradiction.

It should be clear that� � and�- are not translates of one another, because this would contra-

dict the result on symmetry with respect to extrema, obtained in Lemma 2.

We make the following change of variables on intervals
*� � � � � + where the function� �� � is

strictly monotone on the interior (see [PT1]). Denoting the inverse of� �� � by � ���, we set

� � � and � ��� � *�� �� ����+- &

We now get for
� � *�� � �� + � *� �� � � � � �� � �+

� � ��� � ,��� �� ���� &

If � � � 
� , then we write� � ��� � � ����� �� � � ��� (the limit exists by Lemma 3).

Before we proceed with the general case, we first consider the special casewhere two differ-

ent solutions tend to the same equilibrium point as� ( 
� . The next lemma in fact shows that

there are at most two bounded solution in the unstable manifold of each equilibrium point.

Lemma 6. Let � � � � - �
�
�	 � 
� be two different non-constant bounded solutions of��� for some� � 
,�� �	 � 
�. Suppose there exists an�� � � such that

����� �%
� � �� � � ����� �%

�- �� � � �� &
Then� � �� � decreases to�� and�- �� � increases to�� as� ( 
� , or vice versa.

Proof. By Remark 4,� � and�- can only tend to�� monotonically. Suppose� � and�- both

decrease towards�� as� ( 
� (the case where they both increase towards�� is analogous). It

follows from Remark 4 that� � and�- can only tend to�� monotonically as� ( � . We may

thus assume that��� �� � � � and��- �� � � � for � � �
� � � � �.
For

� � ��� � �� � �� �, where� � � is sufficiently small, let� � and �- corresponds to� �
and �- respectively, by the change of variables described above. Note that� � ��� �� �- �

�� for
� � ��� � �� � �� �, since otherwise� � � �- by Theorem 1. Without loss of generality we may

assume that� � ��� � �- �
�� on ��� � �� � �� �. Since�� ��� is differentiable on��� � �� � � � �, there exist

a point
�
� � ��� � �� � � � �, such that� �� �

�
� � � � �- �

�
� �. Thus, there are� � and�- in

"
such that

� � �� �� � �- ��- � �
�
� .

After translation we obtain that

� � ��� � �- ��� � � �� ��� � ��- ��� � � and ���� ��� � ���- ��� � � &
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We will now show that����� ��� 
 ���� ��� � ����- ��� 
 ���- ���. A contradiction then follows from

the Comparison Lemma.

To simplify notation we write� � 
 �� 
  , where � 
 ��- �- 
 � � �. From the energy

identity we obtain

���� 
 ��� � 
) *�+ � � ��� � 	� �� �� �-
� � �  �� & (18)

Since� � and�- tend to�� monotonically as� ( 
� , we infer from Lemma 3 that

�� � � � �� � � ��� � � ���� � �� � ( ��� � � � � � �� as� ( 
� for
� � '� , &

Therefore
) *� �+ � ) *�- +. At � � � we have� �� �� � � ��- � and �� ��� �- � �� ��- �- . By Lemma 5

we see that at� � �

) *�- + � � ��- � � 	� �� ��- �- � 
) *� �+ � � �� �� � 	� �� ��� �- � � &

Combining this with (18) and the fact that��� ��� � ��- ��� � �, we obtain that

����� ��� 
 ���� ��� � ����- ��� 
 ���- ��� &
An application of the Comparison Lemma ends the proof. �

Of course a similar result hold for solutions that tend to an equilibrium point as� ( �� : there

are at most two bounded solution in the stable manifold of each equilibrium point.

The next lemma shows that if
) *� �+ would we smaller than

) *�- +, where� � and�- are so-

lutions obeying the assumptions in Theorem 2, then we could find a point where� � � �- and
���� � ���- .
Lemma 7. Let � � � � - �

�
�	 � 
� be bounded solutions of��� for some� � 
,�� �	 � 
�. Suppose

that� � ��� � �- ��� and��� ��� � ��- ��� � �, and
) *� �+ � ) *�-+. Then there exists� � and�- in

"
such that� � �� �� � �- ��- � and���� �� �� � ���- �� - �.
Proof. We change variables again. Let� � correspond to� � on the largest interval, containing
� � �, where��� is positive, say

*��� � ��� +. Let �- correspond to�- on the largest interval, containing
� � �, where��� is positive, say

*�� � �� +. If
�� �� � , then it follows from Theorem 1 that��� � ��,

whereas if
�� � �

this follows from Lemma 6. Similarly,��� � ��. Clearly � � ��� � �- �
�� for all

� � *�� � �� +, since bounded solution do not cross in the�� � � ��-plane.

We have that�- �
�� � � � and� �- �

�� � � �. We will now prove that� �� �
�� � � � �- �

�� � by showing

that �� �- �- �
�� � 
 �� ���- �

�� � � �. Let � �� and� �- be the points in the intervals under consideration

such that� � �� �� � � �- ��
�
- � �

��. By the energy identity we have that
�� �- �- �

�� � 
 �� ���- �
�� �� � 	� �� ��- �� �- ��- 
 	� �� ��� �� �� ��-

� ) *�-+ 
 � ��� � 
 �) *� �+ 
 � ��� � � ��� ��
�
� �

�
����� ��

�
� � �

�, ��� �� �� �� 	
� ) *�-+ 


) *� �+ 
 ��� ��
�
� �

�
����� ��

�
� � �

�, ��� �� �� �� &
From Lemma 4 and the observation that��� ��

�
� � �

�
� � ��� � � �

�- �
�� � � �, we conclude that
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��� ��
�
� �

�
����� ��

�
� � �

�, ��� �� �� �� � � &

Having assumed that
) *� �+ � ) *�-+, we now see that� �� �

�� � � � �- �
�� �.

In the same way we can show that� �� �
�� � � � �- �

�� �. By continuity there exists a
�� � ��� � �� �

such that� �� �
�� � � � �- �

�� �, which proves the lemma. �

We now complete the proof of Theorem 2. Let� � and �- satisfy the assumptions in the

theorem. The previous lemma shows that if by contradiction
) *� �+ � ) *�- +, then there exists

points� � and�- such that

� � �� �� � �- ��- � � � �� �� �� � ��- ��- � � � and ���� �� �� � ���- �� - � &

By translation invariance we may take� � � �- � �. The following lemma now shows that
� � � �-, which contradicts the assumption. Therefore

) *� �+ � ) *�-+, which proves the theorem.

Lemma 8. Let � � � � - �
�
�	 � 
� be bounded solutions of��� for some� � 
,�� �	 � 
�. Suppose

that
) *� �+ � ) *�- + and

� � ��� � �- ��� � � �� ��� � ��- ��� � � and ���� ��� � ���- ��� &

Then� � � �-.
Proof. We will show that

����� ��� 
 ���� ��� � ����- ��� 
 ���- ��� (19)

and then an application of the Comparison Lemma completes the proof. From the energyidentity

we obtain at� � �

����� 
 ���� � 
) *� � + � � �� �� 
 	� �� ��� �-
� �� �  ��� for

� � '� , �

where is a positive constant. By the assumptions and from Lemma 5, it follows that


) *� �+ � � �� � ���� 
 	� �� ��� ����- � 
) *�- + � � ��- ���� 
 	� �� ��- ����- � � &

Inequality (19) is now easily verified. �

4 A priori bounds

In this section we derive a priori estimates for bounded solutions of the EFK equation (9) or (10).

Where possible, we will indicate how the methods can be generalised to arbitrary � ���. We will

prove Theorem 4 which states that every bounded solution for� � 
� �
(� � �� � �� +) satisfies�� �� � � � ' for all � � "

. We first derive a weaker bound for all� � �, which follows from the

shape of the potential and the energy identity (7). Subsequently, we sharpen this bound for all� � 
� �
with the help of the maximum principle.

The first question we address, is whether solutions can go to infinity monotonically.
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Remark 7. It was proved in [PT4, PT3] that if� �� � is a solution of�'�� on its maximal interval

of existence�� � � � � �, then for any� � � �� � � � � �, there either exists an infinite number of extrema

of � �� � for � � � �, or � �� � eventually tends to a finite limit monotonically as� ( � . For

bounded solutions this is obvious. Notice that the energy of the solution must be equal to the

energy of the equilibrium point towards which it converges. Besides, if an equilibrium point is a

saddle-focus (complex eigenvalues) then no solution can tend to it monotonically. �
We now prove a slight variation of an important lemma from [PT3], which showsthat when

a solution of �'�� becomes larger than
� ,

, then it will oscillate towards infinity, and thus is

unbounded. The proof can be easily extended to more general potentials� , as is done in [PRT].

The value
� ,

is directly related to the fact that

�
� �� � � � �� � �� � � � �� � � for all � � *
� � � � � +� �
�, &

Lemma 9. For any� � �, let � �� � be a solution of�'��. Suppose that there exists a point
� � �

"
, such that

� �� � � � � , � � � �� � � � � � ��� �� � � � � � and ���� �� � � � � & (20)

Then, there exists a first critical point of� on �� � �� �, say��, and we have

� ��� � � 
� �� � � � 
� , � � � ��� � � � � ��� ��� � � � � and ���� ��� � � � &

Besides,� �� ��� �� � � �� �� � ��, and the following estimate holds:

� �� ��� �� 
 � �� �� � �� � 
 ��,� *) *�+ 
 � �� �� � ��+� ��� � 
 � � ��� �
& (21)

Proof. We write � ��� � � 
 � �. Since� �� �� � �� � � and��� �� � � � �, we see that� ��� � �� � � �

���� �� � � � � �� �� � �� � � and thus���� � � in a right neighbourhood of� � . We now conclude

that
� � def� 	�� �� � � � �� ���� � � on �� � � � ��

is well-defined. By Remark 7 we know that either� �� � attains a critical point on�� � �� �, or
� �� � tends to a limit monotonically. In both cases we conclude that� � is finite. Since���� � �
on �� � � � ��, we have that��� �� �� � ��� �� � � � �. Using the energy identity and the fact that
���� �� �� � � and�� �� � � � �, we obtain

� �� �� � �� � ) *�+ 
 '
, ���� �� � ��-

� ) *�+ 
 '
, ���� �� ���-

� ) *�+ 
 '
, ���� �� ���- � �, ��� �� ���- � � �� �� ��� &

It follows from the definition of� � and the initial data at� � , that���� � �, ��� � � and�� � � on
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�� � � � ��, and thus� �� �� � � �� � �. It is seen from the shape of the potential that

� �� �� � �� � � ��� for all � � *
� �� � � � � �� � �+ &

Therefore,� �� �� � �� � � �� �� ��� and� �� �� � � �� � � imply that� �� �� � 
� �� � � � 
� ,. From

Lemma 3 we now conclude that� �� � � does not decrease monotonically to some finite limit and

therefore there exists a first critical point of� on �� � �� �, say��. We now define

�- def� 	�� �� � � � �� ��� � � on �� � � � ���

which is well-defined since��� �� �� � �, and�- is finite because�- � �� � � . Clearly

� ��- � � � �� �� � 
� �� � � � � �� �� - � � � � ���� �� - � � � � and � ��� � �� - � � � �� ��- �� � � &

It is not too difficult to see that, since� �� �� �� � � �� ��- �� on ��- � �� +,

��� � � � � ��� � � and � ��� � � 
���� � � ��� � � on ��- � �� + &

To summarise, we have that

� ��� � � 
� �� � � � � � ��� � � � � ��� ��� � � � � ���� ��� � � � and � �� ��� �� � � �� �� � �� &

We still have to prove the estimate (21). By the energy identity (7) we have that� �� �� � �� �
) *�+. For� �� �� � �� �

) *�+ the estimate has already been proved. Therefore we may assume that

� �� �� � �� �
) *�+, so that��� �� � � � 
�, *) *�+ 
 � �� �� � ��+ def� 
� � �.

From the definition of� � and�- we see that��� �� �� � 
� , ���� �� �� � �, and

� ��� � � 
���� � � ��� � � �� ��� �� on �� � � � - � &

Therefore

��� �� � � 
� � 	� � �� ��� � �� 
 � ��- for � � �� � � � - + & (22)

By definition,�- is the first zero of��� �� �, thus�- 
 � � � 
 -�� �� ��� ��
def� �-. Integrating (22) twice

and using the fact that�� �� �� � �, we obtain

� �� � � �- � 
 � �� �� � 
�
� --, � � �� ��� ��

� !-,�
� 
 �� � -

� �� ��� ��
&

Because�� � � on
*� � � �- � � - +, we see that
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� ��- � 
 � �� �� � � �� � � �- � 
 � �� �� � 
 �� � -
� �� ��� ��

def� 
� &

Since� � �� � � � ��� � � for � � 
' and�- � � � 
 � � � � � 
� , (� � � � �� � �), we have

that

� �� ��� �� � � ��- � � � �� � 
 � � &
Moreover,� �� �� � � � � �� � � � for � � 
�,, and we finally obtain that

� �� ��� �� � � �� � 
 � � � � �� �� 

�� �� ���� � � � �� �� 
 � �
� ,�� &

Since� �
�,� � � ,
, it is seen from the definitions of� and� , and the fact that� �� �� ��� �

� �� �� � ��, that (21) holds. �

Remark 8. Notice that the estimate (21) is by no means sharp. We will use the estimate to

show that once a solution gets larger than
� ,

it will start oscillating, and the amplitude of the

oscillations tends to infinity. For the EFK potential we have given the explicit estimate (21),

but in general it suffices that� ��� strictly decreases to
� as
�� � ( � . In this paper we do

not need any information on the speed at which the solution tends to infinity, and therefore we

are satisfied with this rather weak estimate. It can in fact be shown that if a solution of (10)

obeys (20) at some� � �
"

, then the solution blows up in finite time (i.e., the maximal interval

of existence for� � � � is finite) [HV]. �
Remark 9. The following symmetric counterpart of Lemma 9 holds. If there exists a point
� � �

"
, such that

� �� � � � 
� , � � � �� � � � � � � �� �� � � � � � and ���� �� � � � � �

then, there exists a first critical point of� on �� � �� �, say��, and we have

� ��� � � 
� �� � � � �, � � � ��� � � � � ��� ��� � � � � and ���� ��� � � � &

Besides,� �� ��� �� � � �� �� � ��, and an estimate similar of (21) holds. �
The next lemma implies that if a solution� �� � obeys (20) then it becomes wildly oscillatory

for � � � �. The function� �� � then has an infinite number of oscillations on the right-hand side

of � � and the amplitude of these oscillations grows unlimited. The function sweeps from one

side of the potential to the other.

Lemma 10. For any� � �, let � �� � be a solution of�'��. Suppose that there exists a�� �
"

such that

� ��� � � �, � � � ��� � � � � ��� ��� � � � � and ���� ��� � � � & (23)

Then� �� � has for� � �� an infinite, increasing sequence of local maxima��
 �%
�� and minima
��
 �%
� �, where�
 � �
� � � �
� � for every 	 � �. The extrema are ordered:� ��
� �� �

� ��
� �� � � ��
 � � �,

, and� ��
 � ( � as	 ( � .
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Proof. Combining Lemma 9 and Remark 9 we obtain the infinite sequences of local max-

ima and minima and the ordering� ��
� �� � 
� ��
� �� � � ��
 � � �,
is immediate. Clearly

�� ��
 ��%
�� is an increasing sequence.

It also follows that�� �� ��
 ��� is a decreasing sequence, and we assert that� �� ��
 �� ( 
�
and thus� ��
 � ( � as	 ( � . Suppose by contradiction that�� �� ��
 ��� is bounded, then
�� �� ��
 ��� is bounded as well. Hence� �� � is bounded for� � ��. However, estimate (21) then

ensures that� �� ��
 �� tends to
� as	 ( � , contradicting the assumption that�� �� ��
 ��� is

bounded. �

Note that if� �� � attains a maximum at� � � above the line� � �,
then (23) holds with

�� � � for either� �� � or � �
��. The next lemma states our first a priori bound.

Lemma 11. For any� � �, let � �� � be a bounded solution of�'��. Then
�� �� � � � � ,

for

all � � "
.

Proof. We argue by contradiction and thus suppose that� �� � � � ,
for some� � "

. Since
� �� � is bounded, we infer from Lemma 3 that� �� � attains a local maximum larger then

�,
,

say at� � � "
. By translation invariance we may assume that� � � �. Clearly � ��� � �,

,
�� ��� � � and��� ��� � �. Without loss of generality we may assume that���� ��� � � (otherwise

we switch to� �� � � � �
��, which also is a bounded solution of�'��). We are now in the

setting of Lemma 10. Thus� �� � is unbounded if� �� � � � � ,
for some� � �

"
. The case where

� �� � � � 
� , for some� � �
"

is excluded in a similar manner. �

Remark 10. This method of obtaining an a priori estimate on all bounded solutions is applicable

to a class of non-symmetric potentials which strictly decrease to
� as
�� � ( � . In that case

we can find
� � 	 � 
 � � such that

� �	� � � �
� �
� �� � � � �	� � � �
� for all � � �	 � 
� �

� � �� � � � for all � � 	 and � � �� � � � for all � � 
 &
Then every bounded solutions� �� � of (1) for � � � satisfies	 � � �� � � 
.

For the potential in (5) a lower bound can be found in an analogous manner. In general, if for

some
 � "

� ��� � � �
� for all � � 
 and � � �� � � � for all � � 
 �
then
 is an upper bound on the set of bounded solutions. �

We are now going to use the maximum principle to get sharper a priori bounds for the EFK

equation. The following lemma shows that if a bounded solution has two local minima below the

line � � ', then the solution stays below this line between these minima. To shorten notation,

we will write � �� � instead of
�����% � �� �.
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Lemma 12. For any� � 
��
, let � �� � and� �� � be solutions of�'��, and let
� � � � � � � �

� . Suppose that� �� � � � � �� � � � ' and��� �� � � � � �� �� � � � �. If � �� � � 
, for � � �� � � � � �, then

either� � ' or � �� � � ' on �� � � � � �.
Proof . The proof is based on repeated application of the maximum principle. Let� �� � �
� �� � 
 '. The function� �� � obeys, for� � �� � � � � �,

� ��� � � �� �� � ,� � � 
 � � � , �� 
 '� � 
 �� � ,� �� 
 '�- � � �

where the inequality is ensured by the hypothesis that� �� � � 
,. Now we define� �� � �
� �� �� � 
 �� �� � . From the definition of� and� we see that

� �� 
 �� � � ��� � 
 �� � � �� �� � ��� � � ��� � � �� �� � ,� &
By the hypotheses on� in � � and� � we find that� �� � obeys the system���

��
� �� 
 �� � 
 �� � ,� �� 
 '�- � � on �� � � � � � �� �� � � � � �� �� � � 
 �� �� � � � � �
� �� � � � � �� �� � � 
 �� �� � � � � &

By the maximum principle we have that� �� � � � on �� � � � � �. Finally, � �� � obeys the system���
��
� �� 
 �� � � � � on �� � � � � � �
� �� � � � � �� � � 
 ' � � �
� �� � � � � �� � � 
 ' � � &

By the strong maximum principle we obtain that either� � �, or � �� � � � on �� � � � � �. This

proves Lemma 12. �

Remark 11. The symmetric counterpart of the previous lemma shows that if a solution� �� �
of �'�� has two local maxima above
' and � �� � � ,

between the maxima, then we have
� �� � � 
' between the maxima. �

Note that for bounded solutions the condition that
, � � �� � � ,
is automatically satisfied

(Lemma 11). For heteroclinic solutions the previous lemma and remark (with� � � 
� and
� � � �� ) imply that every heteroclinic solution is uniformly bounded from above by' and

from below by
'.
For the case of a general bounded solution, let us look at the consecutive extrema for� � �

(and similarly for� � �) of a bounded solution� �� �. Suppose that� is a bounded solution which

does not tend to a limit. In that case we will prove that arbitrarily largenegative� � and arbitrarily

large positive� � can be found, such that� �� � � and� �� � � are local minima below the line� � ',
and thus the conditions in Lemma 12 are satisfied. We will need the following lemma, which has

two related consequences. Firstly, it shows that if� �� � has a maximum above the line� � ',
then the first minimum on at least one of the sides of this maximum lies below the line � � '.
Secondly, we infer that a solution does not have two consecutive minima above the line� � '.
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Lemma 13. For any� � � let � �� � be a solution of�'��. Suppose that there exists a point
� � �

"
, such that

� �� � � � '� �� �� � � � � � � �� �� � � � � � and ���� �� � � � � &

Then there exists a�� � �� � �� � such that� ��� � � ' and�� �� � � � on �� � � �� +.

Proof. The proof is along the same lines as the proof of Lemma 9. Since� �� �� � �� � � and
��� �� � � � �, we see that� ��� � �� � � � 
���� �� � � � � �� �� � �� � � and thus���� � � in a right

neighbourhood of� �. We now conclude that

� � def� 	�� �� � � � �� ���� � � on �� � � � ��

is well-defined. By Remark 7 we conclude that� � is finite. Since���� � � on �� � � � ��, we

have that��� �� �� � ��� �� � � � �. Using the energy identity and the facts that���� �� �� � � and
�� �� � � � �, we obtain

� �� �� � �� �
) *�+ 
 '

, �� �� �� � ��- �
) *�+ 
 '

, ���� �� ���- � � �� �� ��� &

It follows from the definition of� � and the initial data at� �, that���� � �, ��� � � and�� � �
on �� � � � ��, and so� �� �� � � �� � �. It is easily seen from the shape of the potential, that� ��� �
� �� �� � �� for all � � *'� � �� � ��, so that� �� �� � '. This proves the lemma. �

We can now apply Lemma 12 to prove Theorem 4. We will only prove that� �� � � ' for

all � � "
(the proof of the assertion that� �� � � 
', is analogous). We argue by contradiction.

Suppose there exists an� � �
"

such that� �� � � � '. We will show that there exists a constant
� � � *
� � � � � such that

� �� � � � '� � � �� � � � � and ��� �� � � � � & (24)

Similarly we obtain a constant� � � �� � �� + such that

� �� � � � '� � � �� � � � � and ��� �� � � � � &

From Lemmas 11 and 12 we then conclude that� �� � � ' on �� � � � � �, which contradicts the

fact that� �� � � � '. We will only prove the existence of� � . The proof of the existence of� �
is similar. By Remark 7 we see that either� �� � has an infinite number of local minima on the

left-hand side of� � or � �� � tends to a limit monotonically as� ( 
� . In the second case

Lemma 3 guarantees that� � � 
� satisfies (24). In the first case we prove that at least one

of the minima on the left-hand side of� � lies below the line� � '. By contradiction, suppose

there exist two consecutive local minima�� and� � above the line� � ' (�� � � � � � �). Then

there clearly exists a local maximum� � � ��� � � ��. By translation invariance we may assume

that� � � �. We now have that� ��� � ', �� ��� � � and��� ��� � �. We now first assume that
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���� ��� � �. Then we are in the setting of Lemma 13 and we conclude that� �� �� � ', thus we

have reached a contradiction. On the other hand, if���� ��� � �, we switch to� �� � � � �
�� and,

by the same argument, we conclude that� ��� � � '. This completes the proof of Theorem 4.

Remark 12. The method employed in this section to obtain a better a priori bound from a weaker

one has a nice geometrical interpretation, which makes it easy to apply the method to �'� with

general� ��� (a similar idea is used in [PRT]). Let us assume that we have an a priori bound,

i.e., for some� � � all bounded solutions of�'� are in

�
�	 � 
�. Suppose now that we can find

constants� � 	 and� � � � �!� (i.e.,� � �� � �!� +), such that


� �� 
 � � � � �� � for all � � *	 � 
+ �

which means that the line
� �� 
 � � stays below� �� � on the interval under consideration. Then
� is a new (improved) lower bound on the set of bounded solutions.

Similarly, when we can find constants� � 
 and� � � � �!� , such that


� �� 
 � � � � ��� for all � � *	 � 
+ �

then� is a new (improved) upper bound on the set of bounded solutions. Remark that a new

upper bound might allow us to find an improved lower bound, and vice versa. �
5 Conclusions for the EFK equation

We first make the observation that every bounded solution (except� � � ') has a zero.

Lemma 14. For any� � 
� �
, let � �� � �� ' be a bounded solution of�'��. Then� �� � has at

least one zero.

Proof. Suppose� �� � does not have a zero. We may assume that� �� � � � for all � � "
. Either

� �� � has a local minimum in the range�� � '�, or � �� � is homoclinic to�. The latter would imply

that
) *�+ � 
 	
 , and besides� �� � must attain a local maximum in the range�� � '�. It is easily

seen from the energy identity that these two observations lead to a contradiction. We complete

the proof by showing that� �� � cannot have a local minimum in the range�� � '�.
Suppose that after translation we have

� ��� � �� � '� � � � ��� � � and ��� ��� � � &

We may suppose that in addition���� ��� � � (otherwise we switch to� �� � � � �
��). In a

manner that is completely analogous to the proof of Lemma 13, it can be shown that thereexists

a �� � �� �� � such that� ��� � � '. This contradicts Theorem 4. �

Lemma 2 shows that the only possible bounded solutions are equilibrium points, monotone

heteroclinic solutions, homoclinic solutions with a unique extremum and periodic solutionswith
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a unique maximum and minimum. Lemma 14 shows that any non-constant bounded solution

has a zero, which means that except for the equilibrium points and the decreasing kink, every

bounded solution has a zero at which it has a positive slope. Excluding the equilibrium points

and the decreasing kink from these considerations, we conclude from Theorem 1 that no two

solutions can have the same positive slope at their zeros, and from Theorem 2 thatthe solution

with the larger slope has the higher energy. From these considerations we draw the following

conclusions, to finish the proof of Theorem 5.� Starting at low energies, it follows from the energy identity that solutions which lie in the

levels. � 
 �! have no extrema in the range
*
� , ��,+, and thus are unbounded.� Similarly, for . � 
 �! the equilibrium solution� � � is the only bounded solution, since

any other would have a zero and this would contradict Theorem 2.� There are no equilibrium points (and thus no connecting orbits) in the energy levels. �
�
 �! � ��. Hence, it follows immediately from Lemma 14 and Theorem 2 that in each of

these energy levels the periodic solution which have been proved to exist in [PT4], is the

only bounded solution.� For the energy level. � � we derive that beside the equilibrium points� � � ', the

only bounded solutions are a unique monotonically increasing and a unique monotonically

decreasing heteroclinic solution, of which the existence has been proved in [PT1]. In

particular there exist no homoclinic connections to� '.� Finally, there are no equilibrium points and thus no connecting orbits in the energy levels
. � �. Periodic solutions in these energy levels cannot have maxima smaller than 1 by

Theorem 2 (comparing them to the increasing kink). Therefore, Theorem 4 excludes the

existence of periodic solutions for energies. � �.

We recall how crucially these arguments depend on the real-saddle characterof the equilib-

rium points. Both Theorem 4 and the Comparison Lemma do not hold when� � �� . The variety

of solutions which exist for� � �� , shows that this bound is sharp.

Up to now, we did not use in an essential manner the invariance of�'�� under the transforma-

tion � ( 
�. This invariance can be used to obtain further information on the shape of bounded

solutions of (9). The next lemma states that every bounded solution is antisymmetric with respect

to its zeros.

Lemma 15. For any� � �� � �� +, let � �� � be a bounded solution of���. Suppose that� �� � � � �
for some� � �

"
. Then� �� � � �� � � �� � 
 �� for all � � "

.

Proof. The proof is analogous to the proof of Lemma 2. Without loss of generality we may

assume that� � � �. Define� �� � � 
� �
��. By the symmetry of (9),� �� � is also a bounded

solution of (9). Clearly� ��� � � ��� and �� ��� � � � ���. From Theorem 1 we conclude that
� �� � � � �� �. �
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We already saw that the periodic solutions of (9) can be parametrised by the energy. The next

lemma shows that they can also be parametrised by their period.

Lemma 16. Let � � �� � �� +. Then the periodic solutions of��� can be parametrised by the period
$ � �$ � �� �, where

$ �
def� ,
� ,�� ' � �� 
 ' &

Proof. By Lemma 15 any periodic solution, of period$, is antisymmetric with respect to its

zeros, and thus has exactly two zeros on the interval
*� � $ �. Using a variational method, it has

been proved in [PTV] that for every period$ � �$ � �� � there exists at least one periodic solution
� �� � of (9) with exactly two zeros on the interval

*� � $ �. Therefore, we only need to show the

uniqueness of these solutions.

We argue by contradiction. Suppose there are two periodic solutions� � �� �- of (9) with

period$. By Lemmas 2 and 15 we have that (after translation), for
� � '� ,

��� ��� � � � � � �� �! � � � � and � � �� � � � for � � �
 �! � �! � &
Clearly, both solutions are increasing on�
 �! � ��.

We see from Theorem 1 that��� �
 �! � �� ��- �
 �! �, and without loss of generality we may

assume that��� �
 �! � � ��- �
 �! �. Let

� � def� 	�� �� � 
 �! �� �- � � � on �
 �! � � ��&
We assert that� � � �! . Suppose that� � � �! . Then� � � � since the solutions are symmetric

with respect to� � �. However,� � and�- are increasing on�
 �! � � � �, and� � �
 �! � � �- �
 �! �
and� � �� � � � �- �� � �. This implies that there exist� � and�- in �� � � � � such that� � �� �� � �- ��- �
and��� �� �� � ��- ��- �, contradicting Theorem 1.

Hence, we have established that

� � �� � � �- �� � � � for � � �
 �! � �! � & (25)

When we multiply the differential equation of� � by �- and integrate over�
 �! � �! �, then we

obtain

� �
� ��
� �� ��- �
� � �

�� �� � ���� � � � 
 � ���	 ��

�
� ��
� �� �� � �
� � �

�� �- � ���- � �- � 
 �-� ��	 �� &

Here we have used partial integration and the fact that���� �� �! � � � (by Lemma 15). Since�- is

a solution of (9), this implies that

� �
� ��
� �� �� ��- ��-- 
 �-���

�� �

which contradicts (25). �

24



6 Transversality

The unique monotonically increasing heteroclinic solution� �� � of (10) for � � 
� �
is antisym-

metric by Lemma 15. Removing the translational invariance by taking the unique zero of � �� � at

the origin, we have

� ��� � � � � � ��� � � and � �� ��� � � &

In this section we will apply a technique similar to the one in [BCT] to provethat � �� � is a

transverse intersection of� � �
'� and� � �� '� in the zero energy set (here we write� � �� �� '�
instead of� � �� �� '� � � � � ��). If the intersection would not be transversal, then it follows from the

symmetry of the potential that there are only two possibilities. We will exclude these possibilities

with the help of the Comparison Lemma and some delicate and rather technical estimates. When

the potential is not symmetric we still expect the intersection to be transversal, but a proof along

the same lines seems more involved.

The following lemma provides a bound the orbits� �� � in the stable manifold of� ' that lie

close to the kink� �� �. This bound will be useful later on, since it enables the application of the

Comparison Lemma to these solutions.

Lemma 17. For any� � 
� �
, let � �� � be the unique monotonically increasing heteroclinic

solutions of�'�� with its zero at the origin. Suppose that� �� � is a solution of�'�� such that
� � � � �� '�, and

�� ��� �� � 
 � ��� �� � � � � for
� � � � '� , � � and� � *� �� � & (26)

Then for� � � sufficiently small we have
�� �� � � � ' for all � � �.

Proof. Recall that� �� � increases monotonically from
' to � '. The fact that� �� � � 
' on*� �� � is immediate from (26). It is easily seen that the monotone kink� �� � obeys the system���
��
� ���� � �� �� � � 
 � � � � � � on �
� � �� �
� �� ��� � � �
� �� �
� � � � &

Since� � �, it follows from the strong maximum principle that� �� �� � � � on �
� � ��, and in

particular� �� �
 '� � �. Let � �� � obey (26), then this implies that

��� �
'� � � � � �
'� � ' and � �� � � 
, on
*
 '�� � �

for � sufficiently small. Besides,� �� � � ' and��� �� � � �. It now follows from Lemma 12 that
� �� � � ' on

*
 '�� �. �

We now start the proof of Theorem 6. We emphasise that we assume that the potential� is

symmetric, which greatly reduces the number of possibilities that we have to check in order to

conclude that the intersection of� � �
'� and� � �� '� is transversal.
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For any� � 
� �
, let � �� � be the unique monotonically increasing heteroclinic solution

of �'��. Since� �� � is antisymmetric by Lemma 15, we have that

� ��� � � � � � ��� � � and � �� ��� � � �

and by Lemma 4 we have� ��� ��� 
 �� � ��� � �. Besides,� lies in the zero-energy manifold

� �� ��� 
 '
, �� �� �- � �, �� � �- 
 � �� � � � �

where� �� � � 
 	
 �� - 
 '�-. Therefore

� ��� ��� � �� � ��� � �, � � ��� 
 '
�� � ��� � �
� 
  �� � ��� 
 '

�� � ��� � (27)

where � 
 ��- �- 
 , � �. The tangent space to the zero energy manifold at the point� �
�� � � � ��� � � � � ��� ���� is �� � � ��� ��� � ��� ��� � � � � � ����� � ��! &

Now the tangent spaces to the two-dimensional manifolds� � �
'� and� � �� '� at this point

both contain the vector

� � �� � ��� � � � � ��� ��� � �� � (28)

because of the differential equation.

Let us suppose, seeking a contradiction, that these stable and unstable manifolds do not inter-

sect transversally in the zero energy set. Then their tangent spaces, which are two-dimensional,

coincide. We denote this two-dimensional tangent space by�� . Because of the symmetry of�
and reversibility,�� � � � � � � � lies in� � �
'� if and only if �
� � � � 
� � � � lies in� � �� '�. It then

follows that

�� � � � � � � � � �� � �
� � � � 
� � � � � �� & (29)

This symmetry relation implies that there are only two possibilities for�� . Namely, let�� be

spanned by	 � �� � � � � � � � and (28). We may assume that� � � (replacing	 by 	 
 
� � ���� ).

If � �� �, then we see from (29) that� � � (otherwise�� � ��� � � � � ��� ��� � ��, �� � � � � � � � and
�� � � � 
� � � � would be three linearly independent vectors in�� ). Besides,� is directly related to
� since�� � �� � � ��� ��� � ��� ��� � � � � � ����� . On the other hand, if� � �, then also� � �. Thus,

we are left with two possibilities:

case A: �� � ��� � � � � � �� �� �� � � � � ��- �� or

case B: �� � � �� � � ��� � 
�� � ��� � � � ��� ��� � � �� ��� ��� � �� � ����� �� �� � � � � ��- �&

Note that the symmetry of the potential has reduced the number of possibilities enormously.
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In case A let� � ', � � ' � � and consider the point on� � �� '� given by

�� � � � � � �� � � ��� � ��� � �� � � ��- � � � � ��� � � ��- � � �' � ��� � � ��- � � � ��� ��� � � ��- �� &
Moreover, it should be clear that for� small enough the conditions of Lemma 17 are satisfied, so

that
�� �� � � � ' on

*� �� �. We will deal with this case in Lemma 19, where we show that under

the present conditions,� �� � �� � � �� '�, which contradicts the assumption.

Now suppose that case B holds and let� � �, � � 
'. Then there is a point�� � � � � � �� � � ��� � ���
on� � �� '� of the form

�� ��- � � � � ��� � �� � ��� � � ��- � �� �� - � � � ��� ��� 
 � �� ��� ��� � �� � ���� � � ��- �� &
Now

�� � 
 � � � ��� � �� � ��� � � ��- � �
and, using (27),

�� ��� 
 � ��� � ��� � 
� �� ��� ��� � �� � ���� � � ��- �
� � �� �  �� � ��� � ��� � ��� � � ��- �

� � �� � 
 � � � ��� � � � � ��� � ��� � ��� � � ��- � &

Because � � we infer that

�� ��� 
 ��� � ��� 
 �� ��� 
 �� � � ��� � �
�
 � � ��� � '

�� � ���� � � ��- � &

Besides, it should be clear that for� small enough the conditions of Lemma 17 are satisfied, so

that
�� �� � � � ' on

*� �� �. We will deal with this case in Lemma 18, where we show that under

the present conditions,� �� � �� � � �� '�, which contradicts the assumption.

We now prove two technical lemmas (adopted from [BCT] to the case of an antisymmet-

ric heteroclinic orbit) to exclude the two possibilities which could occur if theintersection of

� � �
'� and� � �� '� is not transversal. We show that in both case A and case B the initial data

of � and� are such that for some small positive�, we arrive in the situation of the Comparison

Lemma. We then conclude that� cannot be in the stable manifold of'.
The next lemma deals with case B.

Lemma 18. For any� � 
��
, let � �� � be the unique monotonically increasing heteroclinic so-

lutions of �'�� with its zero at the origin. Suppose that� �� � is a solution of�'�� with
�� �� � � � '

on
*� �� �, satisfying (for some� � �)

	� � �� ��� 
 ��� � ��� 
 �� ��� 
 �� � � ��� � �� and 	� � �� � ��� 
 � � ���� � � �

and
�� ��� �� ���� ��� � � � �- �

where	 � � � � � � are constant. Then, for� sufficiently small,� ��� �� � � �� '�.
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Proof. The solution of� exists on
*� �� � and the initial data of� are�-close to those of� .

Therefore there exists�� � � such that if� � �� � �� � the function� and its derivatives of all orders

exist and are uniformly bounded on
*� � '+, independent of� � �� � �� � and for all� satisfying the

assumptions. Consequently, by Taylor’s theorem we infer that for some� � � and for all
� � *� � '+

� �� � 
 � �� � � � ��� 
 � ��� � ��� ��� 
 � � �����
� 	� ���� ��� 
 � �� �����- 
 � � �

� 
� �- � �� 
 	� � � -�- 
 � � � &
� � �� � 
 � � �� � � �� ��� 
 � � ��� � ���� ��� 
 � �� ����� 
 � �-

� � 
 � � -� 
 � �- &
�� �� 
 ��� �� � 
 �� �� 
 �� � �� � � �� �� 
 ��� ��� 
 �� �� 
 �� � ���

� � �� ��� 
 ���� ��� 
 �� ��� 
 �� � � �����
� 	� � �� ���� 
 ���� � ��� 
 �� ���� 
 �� �� � �����- 
 � � �

� 
�' � � �� �- � ��� 
 	�� � �-�- 
 � � � &
�� ��� 
 ���� �� � 
 �� ��� 
 �� � � �� � � �� ��� 
 ���� ��� 
 �� ��� 
 �� � � ���

� � �� ���� 
 ���� � ��� 
 �� ���� 
 �� �� � ����� 
 � �-
� �� 
 � � �-� 
 � �- &

Here we have used the fact that for some constant� � �,
������ ��� 
 ���� ��� � � ��
� 
 ��� �� ��� � � ��� 
 � � ��� � � � � - &

Let �� � � �� �'� � � and �� � �
� �'�� �, and we define

� �� � � �
�

�� ��� 
 �� � ���-,�
�
&

Then, on
*� � � �� �+, we have

�� �� � 
 � � �� � � � and �� ��� 
 ���� �� � 
 �� ��� 
 �� � � �� � � � &

We now introduce� �� � � � -��. Then� �� � � *� � � �� �+ # *� � '+ for � � � sufficiently small. We

obtain that
�� 
 � � �� �� �� � 
� � - � ���� 
 	� � � ���� 
 � �- � � �

for � � � sufficiently small, and

�� �� 
 ��� �� �� �� 
 �� �� 
 �� � �� �� �� � 
�' � ��� �- � ����� 
 	�� � � ���� 
 � �- � � �

for � � � sufficiently small.
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We can now apply the Comparison Lemma to conclude that� �� � does not tend to' as� (
� , which proves the lemma. �

The following lemma excludes case A, and thus completes the proof of Theorem 6.

Lemma 19. For any� � 
��
, let � �� � be the unique monotonically increasing heteroclinic so-

lutions of �'�� with its zero at the origin. Suppose that� �� � is a solution of�'�� with
�� �� � � � '

on
*� �� �, satisfying (for some� � �)

	� � ��� ��� 
 �� ��� � �� and 	� � � ��� � � �

and ��� ��� 
 � � ��� �� ����� ��� 
 � ��� ��� � � � �- �
where	 � � � � � � are constant. Then, for� sufficiently small,� ��� �� � � �� '�.
Proof. We proceed as in the proof of Lemma 18. We find, by Taylor’s theorem, that for some

� � �, � � � and� � *� � '+,
� �� � 
 � �� � � � 
 � �-� 
 � �-
�� �� � 
 � � �� � � 
� �- � �� � � ��� 
 	� � �-�- 
 � � �

�� �� 
 ��� �� � 
 �� �� 
 �� � �� � � �� 
 �' � ��� �-� 
 � �-

and

�� ��� 
 ��� � �� � 
 �� ��� 
 �� � � �� � � �� ��� 
 ���� ��� 
 �� ��� 
 �� � � ���
� ��� ��� � 
 ���� � ��� 
 �� ��� � 
 �� �� � ���� �
� 	� ��� �� � 
 ����� � ��� 
 �� �� � 
 �� ��� � ���� �- 
 � � �

� 
,� �- � �, � �� ��� 
 	�� � -�- 
 � � � &
Here we have used the following facts. Firstly,� ��� � ��� � � by �'�� and

�� ��� � 
 ���� � ��� � � �� �� 
 ��� ��� � �� ��� 
 � � ���
� ��� � �� 
 	 ���� �, � �� ��

for � sufficiently small. Secondly, differentiating�'��, we obtain

� �� � � ����� � � � ���- 
 '� � � �

from which we deduce that

�� �� � 
 ����� � ��� 
 �� �� � 
 �� ��� � ��� � � �� ��� 
 ��� � ��� 
 � �� ��� 
 �� � � ���
� � �� � ��� 
 � � ���� 
 ��� ����- ���

� 
� �' � ��� �- 
 �� �- 
 �� � ���	 -�- � 
� �- �

since�� ��� � � � ��� � � �- � ,� � ���, for � sufficiently small.
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Let �� � � �� �'� � � and we define

� �� � � �
�

�� ��� 
 �' � ��� ���-,�
�
&

Then, on
*� � � �� �+, we have

� �� � 
 � �� � � � and �� �� 
 ��� �� � 
 �� �� 
 �� � �� � � � &

If � �� � � �-��, then� �� � � *� � � �� �+ # *� � '+ for � � � sufficiently small and

�� � 
 � � � �� �� �� � 
� �- � �� � ������ 
 	� � � ���� 
 � �- � � �

for � sufficiently small, and

�� �� 
 ��� �� �� �� 
 �� �� 
 �� � �� �� �� � 
,� � - � �, � �� ����� 
 	�� � ���� 
 � �- � � �

for � sufficiently small.

We can now apply the Comparison Lemma to conclude that� �� � does not tend to' as
� ( � , which proves the lemma. �

Remark 13. The special symmetry of� 
 � � has enabled us to prove that the heteroclinic so-

lution is transversal. For general� ��� transversality of heteroclinic solutions is much harder to

check. However, for homoclinic solutions this difficulty does not arise, since every homoclinic

solution (for� � �� � �!� +) is symmetric with respect to its extremum. We will give an outline of

the proof that every homoclinic solution is a transversal intersection.

Without loss of generality we may assume that� �� � is a positive homoclinic solution of�'�
to � with a unique maximum at� � �. As usual, we suppose that� � �� � �!� �� �� ���� +. The

method in [BCT] for homoclinic solutions can be extended to general� ���, as was done above

for heteroclinic solutions. To be able to apply the Comparison Lemma to� �� � a solution in

� � ��� close to� �� �, we need a very mild assumption on� ���, but only in a special case (when
� � �!� �� �� ���� , then we need that� � �� � �� 
� �� � � ���� in some left neighbourhood of� � �). The

only fairly specific condition in the rest of the proof is that
� �� ������ �� ��� � �, which follows directly

from Remark 6. �
7 Stability of the kink

In this section we look at the stability of the kink for the EFK equation (12) and prove Theorem 7.

To fix ideas, for� � �� let � �� � be the unique monotonically increasing heteroclinic solution

of ���, such that� ��� � � (removing the translational invariance). The existence of this solution

can be proved by a shooting method [PT1], but it can also be found as the minimiser ofthe

functional � *� + � �� ��
, ���� �- �

'
, ��� �- �

'
� ��- 
 '�- � �� &
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The minimum is taken over all functions� �� � with � 
 � � � - �" �, where� �  % �" � is an

antisymmetric function such that such that� �� � � 
' for � � 
'. (see [KKV, PTV]).

The minimising property of the kink� �� � and its transversality in the zero energy set allow us

to conclude that for� � �� the kink is asymptotically stable in
� � �" �. Another possible choice

is to work in the space of bounded uniformly continuous functions. The analysis below applies

to both function spaces.

To study the stability of the kink, we write� �� � �� � � �� � � � �� � ��. The differential equation

for the perturbation
� �� � �� is then

��
� � � 
�

� !�
��!

�
� -�
��-

� �' 
 �� - �� 
 ���- 
 �� &

Note that the nonlinear term
�� �� ��- 
 �� is  � from
� � to

� �.
We have to investigate the spectrum of the linearised operator

�� def� 
� � ���� � � �� 
 ,� � � �� �� �

where
� �� � � � 
 �� - �� � ( � as� ( �� &

We consider
�

as an unbounded operator from� �� � � � � �" � � � � �" � to
� � �" �. It is

well-known that the essential spectrum of
�

is

� � �� � � �
� � 
,+ �

and that the remaining part of the spectrum� �� � � � � �� � consists entirely of isolated real eigen-

values of finite multiplicity [He].

The minimising property of the kink,� *� + � �� � �� *� + �� � 
 � � � - ��

implies that

��� � � �� � � � for all
� � � ! & (30)

Any eigenfunction of
�

in
� � is in

� ! since it obeys a regularising differential equation. By sub-

stituting eigenfunctions in (30) we see that all eigenvalues of
�

are in �
� � �+, and we conclude

that the linear operator
�

generates a �-semigroup on
� �.

The EFK equation is autonomous, thus� � �� � is an eigenfunction with eigenvalue�. In fact,

the zero eigenvalue is simple, which follows from the transversality of� � �� '� and� � �
'�. To

see this, we note that the flow of the tangent plane� � � �� � of the stable manifold of� ' at points
�� � � � � � �� � � ��� � �� � on the heteroclinic orbit, is given by the linearised equation around the kink.

Since� � �� '� is two-dimensional this implies that there are exactly two linearly independent

solutions of
�� � � which tend to� as

� ( � , corresponding to two independent directions
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in the tangent planes� � � �� �. A similar statement holds for the tangent plane� � � �� � of

the unstable manifold of
'. Because an eigenfunction with eigenvalue� obeys this linearised

equation
�� � � and tends to� as� ( �� , it corresponds to a common direction in the tangent

planes� � � �� � and� � � �� �. Therefore, a second independent eigenfunction with eigenvalue
� would imply that the stable and unstable manifolds do not intersect transverselyin the zero

energy set, which contradicts Theorem 6.

We note that this reasoning also applies to the space of bounded uniformly continuous func-

tions since there is an exponential dichotomy when� ( �� .

Following [He, BJ] we exploit the translation invariance to conclude that thelocal stable

manifolds (having co-dimension 1) of the translates of the kink� �� � fill a tubular neighbourhood

of �� �� � � � � �� � � � " � in function space. The family of kinks�� �� � � � � �� � � � " � forms

the one-dimensional center manifold of� and its translates. This implies asymptotic stability and

thus proves Theorem 7.

8 Continuation and existence of solutions

This section is devoted to the continuation of bounded solutions of��� for values of� that are

sufficiently negative. The results in this section show that not only do bounded solutions not

intersect each other in the�� � � � �-plane, but they also completely fill up part of the�� � � � �-plane.

The fact that solutions can be continued also implies the existence of solutions, andwe will make

some general remarks about that.

The main result of this section is Theorem 3. In the proof of this theorem we use the notation

of Equation���. Let � � �� � be a periodic solution of��� for � � ��. We define	 � � �� � � �� �
and 
 � �
� � � �� �. Suppose that�� � 
,�� �	 � 
�. Then this periodic solution is part of a

continuous one-parameter family of periodic solutions. We will use the implicit function theorem

to prove this assertion. In Theorem 3 the energy is taken as parameter. Here we first take the

maximum value of solutions as parameter and then we show that the energy can be usedas

parameter equally well.

Without loss of generality we may assume that� � attains a maximum at� � �. Then
��� ��� � � and����� ���, and from Remark 6 we see that

���� ��� � � and ������ ��� 
 ����� ��� � � &

Let �� � � be the first point where� � attains a minimum.

We now look at a family of solutions� �� � � � � � of ��� with initial data

�� � � � � � �� � � ��� � �� � � � � � � �� � � � � � �� �

where�� � � � is in a small neighbourhood of�� � � � � � def� �� � ��� � � ��� ����. Note that� �� � � � � � � � is

the periodic solution� � �� �.
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To show that� � is part of a continuous family it suffices to prove that there exists a one-

parameter family of points�� � � � � � in a neighbourhood of��� � � � � � � � such that

�� �� � � � � � � � and ���� �� � � � � � � � &

Let � be the parameter, then to be able to apply the implicit function theorem we have to show

that the determinant

� def� det

� �� ��� �� �����
�� ��
�

�� ����
�
� ��� � � � � � � �

is non-zero.

It follows from Remark 6 that

��� ��� � � � � � � � � � and ����� ��� � � � � � � � 
 ���� ��� � � � � � � � � � & (31)

Taking� �� � � ���
�
�� � � � � � � �, we see that

� ��� � � � � � ��� � � � � �� ��� 
 �� ��� � ' and � ��� ��� 
 �� � ��� � � �

and

� ���� � �� �� � � � �� �� &
Following the proof of the Comparison Lemma we conclude that for all� � �

� � � � � � � � � � �� 
 �� � � � and � ��� 
 �� � � � & (32)

We now see from (31) and (32) that

det

� �� ��� � �� ������ � ���
�� ��
�

� �� ������ � ��
�

� ��� � � � � � � � � det

� � � � �
� � � � � � � �

which immediately implies that� �� �.
Above we have used the amplitude of the periodic solution as a parameter. We can also use

the energy. as a parameter, taking� and� as variables. In that case we look at a family of

solutions� �� � � � . � of ��� with initial data

�� � � � � � �� � � ��� � �� � � � . � � �� � � � 
�,. 
 ,� �� � � �� �

where�� � . � is in a small neighbourhood of�� � �
) *� � +�. We define� �� � � ���


�� � � � �
) *� � +�, and

we notice that� ��� � ', � � ��� � �, � ��� ��� 
 �� � ��� � � and

� �� ��� 
 �� ��� �
� �
�,) *� � + 


,� �� � 
 �����
�����
�
�

� 
� � �� � �

�,) *� � + 


,� �� � �

 �

� 
� �� � �������� ���

 � � 
������ ��� � ����� ���� ���

� � �

by ��� and Remark 6. The previous analysis now applies once more and we conclude that Theo-
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rem 3 holds.

Another possibility for continuation of solutions is to fix the energy level. , take � as a

parameter and use� and� as variables. Finally, instead of changing� as a parameter we can also

deform the potential� ���. This offers the possibility to obtain periodic solutions via continuation

starting from a linear equation and then deforming the potential.

A different possible starting point for the continuation of bounded solutions is the second

order equation (� � �), because for small positive� the bounded solutions of�'� can be obtained

from the second order equation by means of singular perturbation theory [F, J, AH].

The continuation of periodic solutions can come to an end in a limited number of ways:� the value of � becomes too large compared the critical value� �� �� � ��
� ��, i.e.,� � 
,�� �� �� � ��
� ��. This may either happen when we increase� , or when we

deform the potential, or when the range of� �� � expands.� the amplitude of the periodic solutions goes to infinity.� the amplitude of the periodic solutions goes to zero, i.e., the periodic orbits converge toan

equilibrium point.� the periodic solutions converge to a chain of connecting orbits (homoclinic and/or hetero-

clinic).

Considering homoclinic solutions we note that it follows from Remark 13 that under very

weak assumptions on the potential homoclinic solutions are transversal intersections and thus

can be continued (for example starting at� � � using singular perturbation theory). Another

possibility is to obtain the homoclinic solutions as a limit of periodic solutions.

Finally, with regard to heteroclinic solutions there is an important resultfrom [KKV], which

states that if there are two equilibrium points� � and� � (� � � � �) such that

� �� � � � � �� �� �
� �� �� � � � � and � �� �� �� � � �
� ��� � � �� � � for all � � �� � � � �� �

then for all� � � there exists a heteroclinic solution of�'� connecting these equilibrium points.

On the other hand, the heteroclinic connections can also be obtained as a limit of periodic solu-

tions, and when the potential is symmetric then the heteroclinic solution is a transversal intersec-

tion and thus can be continued.
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