
On the Value of Learning for

Bernoulli Bandits with Unknown Parameters

Sandjai Bhulai and Ger Koole
Vrije Universiteit Amsterdam

Faculty of Sciences
De Boelelaan 1081a

1081 HV Amsterdam
The Netherlands

E-mail: {sbhulai, koole}@cs.vu.nl

Published in IEEE Transactions on Automatic Control 45:2135-2140, 2000

Abstract

In this paper we investigate the multi-armed bandit problem, where each arm
generates an infinite sequence of Bernoulli distributed rewards. The parameters
of these Bernoulli distributions are unknown and initially assumed to be Beta-
distributed. Every time a bandit is selected its Beta-distribution is updated to
new information in a Bayesian way. The objective is to maximize the long term
discounted rewards.

We study the relationship between the necessity of acquiring additional in-
formation and the reward. This is done by considering two extreme situations
which occur when a bandit has been played N times; the situation where the
decision maker stops learning and the situation where the decision maker ac-
quires full information about that bandit. We show that the difference in reward
between this lower and upper bound goes to zero as N grows large.

Keywords: Bandit problem, Bayesian adaptive control, partially observed Mar-
kov decision problem.

1 Introduction
The bandit problem of Bellman is a classical problem in sequential adaptive control.
The importance of this model follows from its direct applications [1, 2, 4]. Further-
more this problem is perhaps the simplest problem in the important class of Bayesian
adaptive control problems [7, 8]. Even though the dynamic programming equation
can be explicitly written down, it is difficult to obtain closed form solutions.

The multi-armed bandit problem of Bellman models sequential trials of alter-
native arms on a machine. The successive rewards for each arm forms a Bernoulli
process with an unknown success probability. Since the characteristics of the pro-
cesses are unknown, one learns about them when the processes are observed. This
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model plays an important part in sequential clinical trials, where the arms represent
alternative treatments for a disease. In this paper we model the arms as projects
with unknown rewards.

There are two reasons for selecting a particular project to work on. The first
reason is to obtain a high reward. The second is to acquire information which can
be used to determine whether subsequent selections of the same project are profitable
in future. The possible contradiction between these two reasons for choosing an arm
makes the problem difficult and interesting. The amount of information one has
about the projects plays an important role. It helps to answer the question whether
one should select a less rewarding but more informative selection over one that is
more rewarding but less informative.

A survey on bandit models can be found in Kumar [7]. Detailed expositions are
given by Berry and Fristedt [2] and Gittins [4]. Gittins and Wang [5] have investi-
gated the relationship between the importance of acquiring additional information
and the amount of information which is already available. They have quantified a
learning component in terms of dynamic allocation indices and have shown that this
component is a decreasing function in the number of selections.

Berry and Kertz [3] have studied the worth of perfect information for multi-armed
bandits. They have defined an information comparison region in order to compare
the reward of the decision maker with the reward of the decision maker who has
perfect information. Relations between these comparisons and the concept of regret
in the minimax approach to bandit processes were established.

The methods studied in [3, 5] are cumbersome in practice, since the computa-
tional complexity is too large. In this paper we tackle this problem by adopting a
direct approach. We consider two extreme situations, which occur when a bandit
has been played N times; the situation where the decision maker stops learning and
the situation where the decision maker acquires full information about that bandit.
We express the difference in reward between this lower and upper bound in N and
show that it goes to zero as N grows large.

2 Problem formulation
Suppose that there are M projects to work on. At every epoch t = 1, 2, . . . one
of the projects must be selected. The work conducted on a particular project can
result in either a success or a failure with a fixed unknown probability. When the
conducted work is successful the project yields a reward of one unit, zero otherwise.
The resulting sequence of successes and failures forms a Bernoulli process with an
unknown parameter. The problem in this setting is to choose a project at each epoch
such that the long term discounted rewards are maximized.

This problem can be classified as a partially observed Markov decision problem.
Typically such a problem is a sequential decision process where the information con-
cerning the parameters of interest is not available or incomplete. This feature of
incompleteness cannot be ignored, e.g. by replacing uncertain parameter values with
their expected values, when some actions in the system gather additional informa-
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tion. Although such problems can theoretically be solved as dynamic programs, no
algorithmic solution can be obtained due to an infinite state space.

The approach to solve a partially observed Markov decision problem is to trans-
form it into an equivalent full observation problem, e.g. by techniques discussed in
Rieder [10]. This method results in a Bayesian adaptive control problem, but has
a state space which is very large. The state space can be reduced by choosing the
Beta distribution as prior distribution for the unknown parameter. This distribution
has the conjugate property, i.e., the posterior distribution belongs to the same fam-
ily of distributions as the prior distribution (see DeGroot [6], Chapter 9). Since the
unknown parameter lies in the interval [0, 1] it is natural to choose the Beta distribu-
tion as the underlying distribution. This assumption does not pose many restrictions
on our model. The Beta distribution becomes degenerate at the true value of the
unknown parameter as more information is accumulated. A Beta distribution with
parameters x and y will be denoted with F(x,y) and the corresponding probability
density function with f(x,y). Recall that a Beta distribution F(x,y) with parameters
x, y ∈N has the following probability density function f(x,y)

f(x,y)(z) =
1

B(x, y)
zx−1 (1− z)y−1 =

(x+ y − 1)!
(x− 1)! (y − 1)!

zx−1 (1− z)y−1,

for z ∈ [0, 1], where B(x, y) is the Beta function.
The formal Markov decision problem for the multi-armed bandit can now be

stated as follows. Let S = (N0 × N0)M denote the state space for the process,
where state s = (x1, y1, . . . , xM , yM ) ∈S denotes that project i is in state (xi, yi).
The state (x, y) for a particular project represents the number of successes and the
number of failures respectively which are observed for that project. Note that this
state corresponds to a Beta distribution with parameters x+1 and y+1. We denote
the initial state by s1 and we assume that it is known. Let A = {1, . . . ,M} denote
the action space, where action a represents selecting project a to work on. The
transition probabilities are given by

p
(
s′
∣∣ s, a) =


xa+1

xa+ya+2 , for s′ = s+ e2a−1

ya+1
xa+ya+2 , for s′ = s+ e2a

0, otherwise,

where ei is the 2M -dimensional unit vector with all entries zero except for the i th

entry, which is one. Given state s and action a the expected direct reward is deter-
mined by F(x+1,y+1). The expectation of such a random variable with this probability
distribution yields the following expected direct reward

r(s, a) = xa+1
xa+ya+2 .

Then the Markov decision process is characterized by the tuple (S,A, p, r). The set
of histories at epoch t of this process is defined as the set Ht = (S × A)t−1 × S. A
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policy π is defined as the set of decision rules (π1, π2, . . . ) with πt : Ht → A. For each
fixed policy π and each realization ht of a history, the random variable At is given
by at = πt(ht). The random variable St+1 takes values st+1 ∈S with probability
p(st+1 | st, at). Let λ ∈ (0, 1) be the discount factor and π be a fixed policy, then the
expected discounted reward criterion function Rπ(s1) is defined by

Rπ(s1) = E
π
∞∑
t=1

λt−1 r(St, At) with S1 = s1.

Let Π denote the set of all policies. Note that Rπ(s1) is well defined for all π ∈Π and
s1 ∈S, since the rewards are bounded by 1. The Markov decision problem is to find
a policy π∗ such that R(s1) = Rπ

∗
(s1) = max{Rπ(s1) |π ∈Π}. By Theorem 6.2.10 of

Puterman [9] we know that there exists an optimal deterministic stationary policy.

3 The value of information
The Markov decision model in the previous section satisfies the following dynamic
programming equation

V (s) = max
i=1, ... ,M

{
xi+1

xi+yi+2

[
1 + λV (s+ e2i−1)

]
+ yi+1

xi+yi+2 λV (s+ e2i)
}
,

where V (s) denotes the optimal reward starting from state s ∈S satisfying s =
(x1, y1, . . . , xi, yi, . . . , xM , yM ). For ease of notation we denote the expression be-
tween brackets as Ti V (s). Even though the dynamic programming equation can be
explicitly written down, it is difficult to obtain closed form solutions or computa-
tional results because of the large state space.

The dynamic programming equation shows that the decision maker not only re-
ceives a direct reward in selecting a project, but also gains information that can lead
to better decisions in future. When action a is chosen, the parameter of project a ei-
ther has distribution F(xa+2,ya+1) or F(xa+1,ya+2), depending on whether a success or
failure is observed. Since a random variable with such a distribution has lower vari-
ance than a random variable with probability distribution F(xa+1,ya+1) the decision
maker is better informed. A formal proof of this statement is given in Lemma 3.1.

One could argue that when a particular project has been selected N times, where
N can be large, enough information about the project has been obtained. Therefore
basing future decisions only on this information for this project should not result in
a great difference. In that case the decision maker does not need to keep record of
changes in the state for this project anymore. This means that the decision maker
stops learning about the unknown parameter of this particular project.

In order to compare this situation with the standard model we formulate this
problem again as a Markov decision problem. Since the decision maker stops learning
about a project when it has been selected N times, the corresponding state is frozen
and we obtain the following finite state space S = {(x, y) ∈N0 ×N0 |x+ y ≤ N}M .
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Take A = A and change the transition probabilities as follows.

p
(
s′
∣∣ s, a) =



xa+1
xa+ya+2 , for xa + ya < N and s′ = s+ e2a−1

ya+1
xa+ya+2 , for xa + ya < N and s′ = s+ e2a

1, for xa + ya = N and s′ = s

0, otherwise.

Furthermore define r = r, then (S,A, p, r) defines the Markov decision process in
case the decision maker stops learning about project i when the information for this
project has been accumulated to N samples. The appropriate modification to the
dynamic programming equation becomes

V (s) = max
i=1, ... ,M

{
1{xi+yi=N}

[
xi+1

xi+yi+2 + λV (s)
]

+ 1{xi+yi<N} Ti V (s)
}
.

Note that in a situation where it is optimal to select an action that does not change
state, that action will remain optimal. Therefore V (s) can be rewritten as follows:
V (s) = max

{
1{xi+yi=N}

1
1−λ

xi+1
xi+yi+2 + 1{xi+yi<N} Ti V (s) | i = 1, . . . ,M

}
.

Intuitively it is clear that if the decision maker does not use new information for
future selections anymore, then the expected total reward will be less than V (s),
where this information is taken into account. The next lemma formalizes this state-
ment.

Lemma 3.1. V (s) ≤ V (s) for all s ∈S.

Proof. Define the operator T for functions W : S → R as

T W (s) = max
k=1, ... ,M

{
xk+1

xk+yk+2

[
1 + λW (s+ e2k−1)

]
+ yk+1

xk+yk+2 λW (s+ e2k)
}
.

Define V0(s) = 0 for all s ∈S and Vn(s) = T Vn−1(s). By Proposition 6.2.4 of
Puterman [9] we know that the operator T is a contraction mapping on the Banach
space of all bounded real valued functions on S endowed with the supremum norm.
Therefore V (s) is the unique solution to T W (s) = W (s) and V (s) = limn→∞ Vn(s)
for arbitrary V0.

We have to prove that a state with more information is more rewarding, therefore
it suffices to prove that

V (s) ≤ xi+1
xi+yi+2 V (s+ e2i−1) + yi+1

xi+yi+2 V (s+ e2i),

for all i = 1, . . . ,M . We prove this relation by induction on n for the functions
Vn. Clearly this relation holds for V0. Fix i and suppose that the relation holds for
n ∈N. Assume that the maximizing action for Vn+1(s) is a. Since Vn+1(s) = T Vn(s)
we derive

Vn+1(s) = max
k=1, ... ,M

{
xk+1

xk+yk+2

[
1 + λVn(s+ e2k−1)

]
+ yk+1

xk+yk+2 λVn(s+ e2k)
}

= xa+1
xa+ya+2

[
1 + λVn(s+ e2a−1)

]
+ ya+1

xa+ya+2 λVn(s+ e2a).
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First suppose that i 6= a, then by applying the induction hypothesis we derive that
the latter expression is less or equal than

xa+1
xa+ya+2 + λ xa+1

xa+ya+2

[
xi+1

xi+yi+2Vn(s+e2a−1+e2i−1) + yi+1
xi+yi+2Vn(s+e2a−1+e2i)

]
+

λ ya+1
xa+ya+2

[
xi+1

xi+yi+2Vn(s+e2a+e2i−1) + yi+1
xi+yi+2Vn(s+e2a+e2i)

]
.

By rearranging terms we find that this expression is equal to

xi+1
xi+yi+2

[
xa+1

xa+ya+2 + λ xa+1
xa+ya+2Vn(s+e2i−1+e2a−1) + λ ya+1

xa+ya+2Vn(s+e2i−1+e2a)
]
+

yi+1
xi+yi+2

[
xa+1

xa+ya+2 + λ xa+1
xa+ya+2Vn(s+e2i+e2a−1) + λ ya+1

xa+ya+2Vn(s+e2i+e2a)
]
.

By definition of Ta, the latter expression is equal to

xi+1
xi+yi+2 TaVn(s+ e2i−1) + yi+1

xi+yi+2 TaVn(s+ e2i)

≤ max
k=1, ... ,M

{
xi+1

xi+yi+2 TkVn(s+ e2i−1) + yi+1
xi+yi+2 TkVn(s+ e2i)

}
.

The argument for i = a is completely analogous. Hence we have

Vn+1(s) = max
k=1, ... ,M

{
xk+1

xk+yk+2

[
1 + λVn(s+ e2k−1)

]
+ yk+1

xk+yk+2 λVn(s+ e2k)
}

≤ max
k=1, ... ,M

{
xi+1

xi+yi+2 TkVn(s+ e2i−1) + yi+1
xi+yi+2 TkVn(s+ e2i)

}
≤ xi+1

xi+yi+2 max
k=1, ... ,M

{
TkVn(s+e2i−1)

}
+ yi+1
xi+yi+2 max

k=1, ... ,M

{
TkVn(s+e2i)

}
= xi+1

xi+yi+2Vn+1(s+ e2i−1) + yi+1
xi+yi+2 Vn+1(s+ e2i).

The proof is concluded by taking the limit in n.

At this point we know that R(s) ≤ R(s) and our main interest is to compare R(s)
with R(s), i.e., to give an upper bound to R(s)−R(s). However, it is not straight-
forward to carry out this computation, therefore we define another Markov decision
process which has a higher reward than R(s) and which will facilitate the comparison.

Suppose that when a particular project has been selected N times, the decision
maker obtains full information about the unknown parameter of that project. Then
the decision maker does not need to learn anything about the unknown parameter
and can base his future decisions on the realization of the unknown parameter.

The state space of the process is equal to S when none of the projects have
been selected N times. After this moment the state space changes to a single value
representing the realization of the unknown parameter. This results in a complicated
state space. The state space can be represented by S =

{
s | s = (s, z) ∈S × [0, 1]M

}
.

In this case the state s consists of s with augmented extra information z. The value
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of zi represents the realization of the unknown parameter of project i. Although this
information can only be used after a project has been selected N times, we define
the state space slightly bigger for ease of notation.

Let V (s) denote the optimal expected reward starting in state s ∈S. Note that
the set of states which V and V share is given by S. For states s ∈S the extra
information z is not available and can be disregarded. Therefore we will write V (s)
instead of V

(
(s, z)

)
for all s ∈S and z ∈ [0, 1]. Intuitively it is clear that if the decision

maker has full information, then the expected total reward will be greater than V (s)
for all s ∈S. The following lemma justifies this intuition.

Lemma 3.2. V (s) ≤ V (s) for all s ∈S.

Proof. Let s ∈S and fix i ∈A. Define V i
0(s) = V (s) and V

i
n(s) inductively by

V
i
n(s) = xi+1

xi+yi+2 V
i
n−1(s+ e2i−1) + yi+1

xi+yi+2 V
i
n−1(s+ e2i).

Note that V i
n(s) represents the situation where the decision maker has already ac-

quired more information about project i. The decision maker looks n steps ahead
and consequently knows more about project i. In Lemma 3.1 it was proven that
V (s) ≤ xi+1

xi+yi+2V (s + e2i−1) + yi+1
xi+yi+2 V (s + e2i), for all i ∈A. By repeating this

argument we derive 0 ≤ V i
0(s) ≤ V i

1(s) ≤ · · · . Now define V n(s) as follows

V n(s) = max
i=1, ... ,M

{
1{xi+yi=N}V

i
n(s) + 1{xi+yi<N} Ti V (s)

}
.

Then it follows that V (s) ≤ V n(s) for all n ∈N. Note that V (s) = limn→∞ V n(s); the
case where the decision maker has full information. By the Monotone Convergence
Theorem it finally follows that V (s) ≤ V (s).

Comparing R(s) with R(s) for a given s ∈S is still not easy, since both processes
differ in the amount of information when a project has already been selected N
times. In case of R(s) the decision maker knows S which has extra information z.
However in case of R(s) the decision maker has less information, because he only
knows S. Therefore for a given a policy π ∈Π, with decision rules based on z, one
cannot compare Rπ(s)−Rπ(s), since the latter term is not well defined.

The value of the realization z is determined by the probability distribution of the
unknown parameter. If we adjust this probability distribution, then we will be able
to carry out the comparison. Let F (x+1,y+1) denote the probability distribution with
positive probability mass concentrated on only two points as follows. Let β = x+1

x+y+2

and choose 0 < δ < 1
N+2 , then β + δ < 1. Define the probability mass function f by

f (x+1,y+1)(z) =


∫ β+δ

0 f(x+1,y+1)(u) du for z = β + δ∫ 1
β+δ f(x+1,y+1)(u) du for z = 1.
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The Markov decision process (S,A, p, r) can now be defined as follows. Let S = S.
Define the action space A = A and the transition probabilities by

p
(
s′
∣∣ s, a) =



xa+1
xa+ya+2 , for xa+ya < N−1 and s′ = s+e2a−1

ya+1
xa+ya+2 , for xa+ya < N−1 and s′ = s+e2a

xa+1
xa+ya+2 f (xa+2,ya+1)(u) for xa+ya = N−1, s′ = s+e2a−1 and z′a = u

ya+1
xa+ya+2 f (xa+1,ya+2)(u) for xa+ya = N−1, s′ = s+e2a and z′a = u

1, for xa+ya = N and s′ = s

0, otherwise,

where u ∈ [0, 1]. Define the direct reward by

r
(
(s, z), a

)
=


xa+1

xa+ya+2 , for xa+ya < N

za, for xa+ya = N.

Note that the difference between V and V is reflected in the transition probabilities.
In the former case one had to deal with a continuous probability distribution. In the
latter case the probability distribution is discrete and concentrated on two special
points only. If Z1 and Z2 are two random variables with probability distribution
F(x,y) and F (x,y) respectively, then Z2 is stochastically larger than Z1; i.e., P(Z1 > z)
≤ P(Z2 > z) for all z ∈ [0, 1]. From Proposition 8.1.2, Ross [11] we know that in this
case E[h(Z1)] ≤ E[h(Z2)] for all increasing functions h. Therefore we have the
following corollary.

Corollary 3.3. 0 ≤ R(s) ≤ R(s) ≤ R(s) ≤ R(s) for all s ∈S.

The process with reward R(s) is constructed in such a way, that the information
structure when a project has been selected N times is nearly the same as in R(s).
The decision maker either observes β + δ or 1 as the realization for the unknown
parameter. In the first case the decision maker has the same information as in R(s),
namely the expectation. In the second case we know that since 1 is the highest
possible reward, the decision maker is going to select that project continuously in
future. This fact enables us to prove the main theorem.

Theorem 3.4. 0 ≤ R(s)−R(s) ≤ maxi∈A λN−(xi+yi)

1−λ

[
δ + l(s)

δ2 (N+3)

]
for all s ∈S and

δ < 1
N+2 where l(s) =

∑M
i=1 1{xi+yi<N}.

Proof. Because of Lemma 3.1 the difference R(s) − R(s) is non-negative. Also by
Corollary 3.3 we know that R(s) − R(s) ≤ R(s) − R(s). Therefore it suffices to
prove the bound for the latter term. We adopt the same approach as in the proof of
Lemma 3.1. Define the operator T for functions W : S → R as

T W (s) = max
i=1, ... ,M

{
1{xi+yi=N}

[
1

1−λ
xi+1

xi+yi+2

]
+ 1{xi+yi<N} TiW (s)

}
.
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Define V 0(s) = 0 for all s ∈S and V n(s) = T V n−1(s). By Proposition 6.2.4 of
Puterman [9] we know that the operator T is a contraction mapping on the Banach
space of all bounded real valued functions on S endowed with the supremum norm.
Therefore V (s) is the unique solution to T W (s) = W (s) and V (s) = limn→∞ V n(s)
for arbitrary V 0. Similarly, the operator T is defined for functions W : S → R as

T W (s) = max
i=1, ... ,M

{
1{xi+yi=N}

1
1−λ

(
xi+1

xi+yi+2 + δ
)

+

1{xi+yi=N−1}

[
xi+1

xi+yi+2 +λ xi+1
xi+yi+2

(
q(xi+1,yi)W (s+ e2i−1)+

(
1− q(xi+1,yi)

)
1

1−λ

)
+

λ yi+1
xi+yi+2

(
q(xi,yi+1)W (s+ e2i)+

(
1− q(xi,yi+1)

)
1

1−λ

)]
+ 1{xi+yi<N−1} TiW (s)

}
,

where q(xi,yi) =
∫ β+δ

0 f(xi+1,yi+1)(z) dz with β = xi+1
xi+yi+2 . Note that this equation

represents the situation where the decision maker receives the realization of the
unknown parameter (under the modified probability distribution) after selecting a
project N−1 times. When it is optimal to select this project again after this moment,
then it will be optimal to select it continuously thereafter, since the state does not
change.

Now we prove the statement by induction. Let s ∈S, then clearly the statement
holds for V 0(s)−V 0(s) = 0. Now suppose that the statement holds for n ∈N. Assume
w.l.o.g. that the first m projects have reached level N , the second m′ projects level
N − 1 and the remaining M −m−m′ projects have not reached level N − 1 yet for
an arbitrary fixed m ∈{0, . . . ,M} and m′ ∈{0, . . . ,M −m}. Now assume that it is
optimal to choose one of the first m projects. Then for i = 1, . . . ,m the difference
is less than[

1
1−λ

(
xi+1

xi+yi+2 +δ
)]
−
[

1
1−λ

xi+1
xi+yi+2

]
= δ λN−(xi+yi)

1−λ ≤ max
k∈A

λN−(xk+yk)

1−λ

[
δ+

l(s)
δ2 (N+3)

]
.

Next consider the second m′ projects. First note that for a random variable U with
a Beta distribution with parameters (xi + 1, yi + 1) the following holds.

1− q(xi,yi) = P
(
U > β + δ) ≤ P({U < β − δ} ∪ {U > β + δ}

)
= P

(
{U − β < −δ} ∪ {U − β > δ}

)
= P

(
|U − β| > δ

)
≤ Var U

δ2 ≤ 1
δ2 (xi+yi+3)

.

The last inequality follows by Chebyshev’s Inequality. Now for j = m+1, . . . ,m+m′

the difference is given by[
xj+1

xj+yj+2 + λ
xj+1

xj+yj+2

(
q(xj+1,yj)V n(s+ e2j−1) +

(
1− q(xj+1,yj)

)
1

1−λ

)
+

λ
yj+1

xj+yj+2

(
q(xj ,yj+1)V n(s+ e2j) +

(
1− q(xj ,yj+1)

)
1

1−λ

)]
− Tj V n(s)
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≤ λ xj+1
xj+yj+2

(
q(xj+1,yj)V n(s+ e2j−1) +

(
1− q(xj+1,yj)

)
1

1−λ − V n(s+ e2j−1)
)

+

λ
yj+1

xj+yj+2

(
q(xj ,yj+1)V n(s+ e2j) +

(
1− q(xj ,yj+1)

)
1

1−λ − V n(s+ e2j)
)

≤ λ xj+1
xj+yj+2

([
V n(s+ e2j−1)− V n(s+ e2j−1)

]
+ 1

δ2 (N+3)
1

1−λ

)
+

λ
yj+1

xj+yj+2

([
V n(s+ e2j)− V n(s+ e2j)

]
+ 1

δ2 (N+3)
1

1−λ

)
.

Note that l(s+ e2j−1) = l(s+ e2j) = l(s)− 1. By applying the induction hypothesis
we derive that the last expression is less than

λ
1−λ

(
max

{
λN−(xi+yi); i ∈A \ {j}, λN−(xj+yj+1)

}[
δ + l(s)−1

δ2 (N+3)

]
+ 1

δ2 (N+3)

)
≤ max

i∈A
λN−(xi+yi)

1−λ

[
δ + l(s)

δ2 (N+3)

]
.

Finally consider the last M −m−m′ projects. Note that for k = m+m′, . . . ,M we
have l(s) = l(s+ e2k−1) = l(s+ e2k). Therefore the expression Tk

[
V n(s)−V n(s)

]
is

given by

xk+1
xk+yk+2 λ

(
V n(s+e2k−1)−V n(s+e2k−1)

)
+ yk+1

xk+yk+2 λ
(
V n(s+e2k)−V n(s+e2k)

)
≤ λ

1−λ max
{
λN−(xi+yi); i ∈A \ {j}, λN−(xj+yj+1)

}[
δ + 1

δ2 (N+3)

]
≤ max

i∈A
λN−(xi+yi)

1−λ

[
δ + 1

δ2 (N+3)

]
.

Now it follows that V n+1(s)− V n+1(s) satisfies the statement of the theorem. The
proof is concluded by taking the limit in n.

The bounds in the previous theorem still contain δ > 0. Since δ was arbitrarily
chosen, we can minimize the bound for fixed N with respect to δ. This will result
in a bound independent of δ and the result is stated in the following theorem.

Theorem 3.5. 0 ≤ R(s)−R(s) ≤ maxi∈A λN−(xi+yi)

1−λ
3√2+

3
√

1
4

3√N+3
3
√
l(s) for all s ∈S.

Proof. Let N be fixed and define g(δ) = maxi∈A λN−(xi+yi)

1−λ

[
δ + l(s)

δ2 (N+3)

]
. Then

δ̂ = 3

√
2 l(s)
N+3 solves

d g(δ)
d δ

= max
i∈A

λN−(xi+yi)

1−λ

[
1− 2 l(s)

δ3 (N+3)

]
= 0.

Hence δ̂ minimizes g. Although Theorem 3.4 is formulated for δ < 1
N+2 the theorem

holds for general δ > 0. When f is defined to be degenerate at 1 when β + δ ≥ 1,
one can easily check that Theorem 3.4 still holds. Now the theorem follows by
substituting δ̂ in g, since 0 ≤ R(s)−R(s) ≤ g(δ̂).
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Observe that the bound in Theorem 3.5 has the property that the difference goes to
zero as N grows large. However, this is not due to discounting, since

R(s)−R(s) ≤ max
i∈A

λN−(xi+yi)

1−λ
3√2+

3
√

1
4

3√N+3

3
√
l(s) ≤ 1

1−λ
3√2+

3
√

1
4

3√N+3

3
√
M.

The latter bound, which is less tight, also goes to zero as N grows large even
without the discount factor. Moreover, observe that this bound also holds for
any state. One can even show that the bound for the reward at any time t is[
( 3
√

2 + 3
√

1
4) 3
√
M
]
/ 3
√
N + 3.

4 Numerical results
In this section we illustrate Theorem 3.5 derived in the previous section by showing
that in practice the state space can indeed be chosen finite in order to be close to
the optimal solution.

Suppose that in the initial state s1 = (0, . . . , 0) the decision maker wants to
obtain a solution which differs less than ε = 10−3 from the optimal solution. We
call such a solution a ε-optimal solution. Note that the initial state s1 represents
the situation where the decision maker does not have any information about the
unknown parameters of the projects.

By using the bounds derived in Theorem 3.5 one can determine the value of N
for which the decision maker can stop learning about the unknown parameter of a
particular project. However since the total reward will increase for λ close to one,
the value of N will grow large. Therefore it is better to look at the relative difference
R(s)−R(s)

R(s) . This leads to the following table when M and λ are varied.

λ M = 2 M = 3
0.7 21 21
0.8 32 33
0.9 66 66

In practice it suffices to take smaller values of N . Figure 1 depicts two situations with
two and three projects respectively. The three lines reflect the cases with λ = 0.90,
λ = 0.80 and λ = 0.70 from top to down respectively for V (s1). The dashed lines
represent the bounds on the error on the total reward obtained by using V (s1) instead
of V (s1); thus the dashed lines represent the upperbound V (s1) +

[
V (s1)− V (s)

]
.

One can see that the total reward converges very fast already for small values of
N . It turns out that for λ = 0.90 one can take N = 28 instead of N = 108 in order
to derive a ε-optimal total reward. The following table summarizes the values of N
which can be taken instead of the larger value which one derives from the theorem.

λ M = 2 M = 3
0.7 9 10
0.8 13 14
0.9 28 33
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Figure 1: Comparison of bounds

These values of N are small enough to make the problem computationally tractable
and to derive a ε-optimal solution.
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