Convexity in tandem queues

Ger Koole
Department of Mathematics, Vrije Universiteit Amsterdam, The Netherlands

Probability in the Engineering and Informational Sciences 18(1), 2004

Abstract

We derive convexity results and related properties for the value functions of tandem queueing systems. The results for standard multi-server queues are new. For completeness we also prove and generalize existing results on tandems of controllable queues. The results can be used to compare queueing systems. This is done for systems with and without batch arrivals, and for systems with different numbers of on-off sources.

1 Introduction

During the last two decades the study of controlled queueing systems has been a fertile area of research. One well-researched notion is that optimal controls are often monotone in the state of the system. For example, under certain assumptions about costs, the optimal choice of a server’s rate turns out to be increasing in the size of the queue that is served. This type of results is usually obtained by proving monotonicity properties of value functions of queueing systems. However, these monotonicity results can also be useful to derive other types of results, such as comparing the performance of different systems. As an example, consider the standard single server M/M/1 queue. It is well-known that the dynamic programming value function is a convex function of the number of customers in queue for many standard criteria. This is the basic step to show that for any additional controlled arrivals stream customers should be admitted only up to a certain threshold level (e.g., see [10]). On the other hand, convexity is crucial in comparing uncontrolled single server queues with different numbers of on-off arrival processes (see [9]), and for comparing tandem systems consisting of ·/G/s queues with their fluid limits ([2]). This shows that it is equally interesting to prove monotonicity results for controlled queueing systems as for uncontrolled queueing systems. Conceptually there is no difference in the treatment of the two types of systems.

Let us consider the different classes of systems for which monotonicity properties have been derived. For one and two-dimensional systems a, in our opinion fairly complete picture is given in [8]. The results for systems of higher dimension fall apart in first-order
and second-order results. The first-order results compare value functions in different states (e.g., optimality of $c\mu$ rule in [5], optimality of shortest queue routing in [7]), the second-order results deal with properties related to convexity. The only result known in the last class is that of [16] (and its generalizations in [3]). It considers a tandem (or a cycle) of queues where each queue has a controlled departure rate. For suitably chosen objective functions this can be translated to results for single-server queues. However, this cannot be done for multi-server queues. For this type of queueing systems there are no known results.

In this paper we present monotonicity results for tandems of multi-server queues. For the sake of completeness and to facilitate comparison we also present results for controlled queues.

Central in our approach is dynamic programming (dp), by propagating certain properties related to convexity through the dynamic programming value function. The concept of event-based dp (as introduced in [8]) allows us to treat classes of value functions at once and to present the results in a concise and clear way. It consists of cutting up the value function in smaller parts, the event operators. Each operator corresponds to a (physical) event in the system, such as arrivals or departures from a certain queue. For the direct costs and the random environment there are also operators, to enable us to compose the value function is entirely of event operators. We formally introduce event-based dp and the operators that we consider in this paper in Section 2.

After having formulated the subject of study, the operators that constitute the value function, we have to formulate the properties of which we will inductively show that the value function satisfies them. These properties are formulated in terms of inequalities that are mostly related to convexity. There are two types of second-order properties. The first is multimodularity, a property of functions on the lattice introduced in [6]. The second is a property that is known as directional convexity (see [14]). Section 3 is devoted to the study and comparison of multimodularity, directional convexity and related properties. Characterizations are given that simplify the proofs in later sections.

The main results are derived in Section 4. For each class of functions (characterized by the second-order properties) those operators are selected that are closed under the set of functions. From this it follows that value functions with these operators as building blocks are elements of the same class of functions. The first class to be considered are multimodular functions, and results equivalent to those obtained in [16] for tandem queues are derived in the more general framework of event-based dp. The operators are characterized by the fact that the service rate need to be controllable. By restricting the class of multimodular functions to those which have also a first-order property we can allow for standard single-server queues. However, we argue that multimodularity is not the right class for multi-server queues. Therefore we move to the class of directional convex functions (with an additional first-order property) and we show that the multi-server operators are closed under this set. These results are valid for tandem systems of arbitrary dimensions, the result was only known for the considerably simpler two-dimensional case ([8]).

Applications that are based upon multimodularity or directional convexity of the value function are related to the comparison of queueing systems. We give examples of two
types of comparison results. The first type is concerned with systems with different types of arrival processes, but with the same average number of arrivals per time unit. The first example compares a system with Poisson arrivals with the same system, except for the arrival process, that is twice as slow, but every arrival consists of a batch of size two. It is shown that the batch arrivals give a worse performance for all performance measures for which the value function is directional convex. The second example generalizes the result of [9] to tandem systems. In [9] systems with identical on-off sources are compared, and it is shown that a system with \(K \) on-off sources behaves better than one with 1 on-off source (but with a \(K \) times higher arrival rate).

The second type of comparison result is concerned with showing that the performance of the tandem system is convex in one of the parameters. As an example we show that this is indeed the case for the rate at which customers arrive from the exterior into one of the queues, given that the value function itself is directional convex. An application of this type of result is in load balancing between parallel (tandem) systems. Suppose that customers arrive at a service facility, and they have to be routed in a Bernoulli fashion to the parallel processing unit, each consisting of a tandem system. Convexity of the performance of each tandem queue in the Bernoulli parameter makes the problem of minimizing total performance a convex programming problem, that is easy to solve. Of course similar results can be derived for other system parameters. This type of result can be seen as a generalization of results in [11] to tandem systems. All these applications can be found in Section 5.

The results in this paper parallel to some extents the results obtained in Chapter 3 of [12]. They were obtained independently and use completely different methods. From a methodological point of view both Meester and I find that both methods merit to be published.

2 Models

The method we use to derive our results is inductively showing certain properties of the dynamic programming (dp) value function. A general tool, to simplify and generalize this task is event-based dp, as introduced in [8]. In that paper it is also applied to certain classes of models, which are in essence one or two-dimensional. Our current interest is in higher-dimensional models. As event-based dp simplifies the current analysis as well, we start with describing the main ideas behind it. After that we analyze the current class of systems.

Event-based dp is based on two crucial ideas. One is to split up the dp value function in smaller components, the event operators. The other is to give the set of functions which is to be propagated a central place, instead of the model itself. For a general description of event-based dp, see [8]. We restrict ourselves right away to the type of model that is studied in this paper.

We take \(\mathbb{N}_0^{m+1} \) as state space (with \(\mathbb{N}_0 = \{0, 1, \ldots\} \)). For \(x = (x_0, \ldots, x_m) \in \mathbb{N}_0^{m+1} \) the component \(x_i, \ i > 0 \), represents the number of customers at queue \(i \). The variable \(x_0 \) is the
state of the environment. Let \(\mathcal{V} \) be the class of functions from \(\mathbb{N}_0^m + 1 \) to \(\mathbb{R} \). We are going to define the event operators, the building blocks of the value function. The operators that we are using in this paper are of two types: controlled and uncontrolled. E.g., we consider both a regular server that is active as long as there are customer waiting to be served, and a server of which the service rate can be controlled. One of the benefits of event-based dp is that we consider both types of operators in the same framework, which makes clear what difference in model assumptions is necessary to deal with different operators.

In giving names to the operators we use \(C \) for “controlled”, \(A \) for “arrivals”, \(D \) for “departures”, \(TS \) for “tandem server”, and \(M \) for “multiple”. The operators \((\mathcal{V} \to \mathcal{V}) \) are, for all \(f \in \mathcal{V} \):

- \(T_{Ai}(f(x)) = f(x + e_i) \);
- \(T_{A}(f(x)) = \min\{f(x), c + f(x + e_i)\} \);
- \(T_{D}(f(x)) = f((x - e_i)^+) \);
- \(T_{CD}(f(x)) = \begin{cases}
\min\{c + f(x - e_i), f(x)\} & \text{if } x_i > 0, \\
 f(x) & \text{otherwise};
\end{cases} \)
- \(T_{TS}(f(x)) = \begin{cases}
 f(x - e_i + e_{i+1}) & \text{if } x_i > 0, \\
 f(x) & \text{otherwise};
\end{cases} \)
- \(T_{CTS}(f(x)) = \begin{cases}
\min\{c + f(x - e_i + e_{i+1}), f(x)\} & \text{if } x_i > 0, \\
 f(x) & \text{otherwise};
\end{cases} \)
- \(T_{MD}(f(x)) = \begin{cases}
 x_i f(x - e_i) + (S - x_i) f(x) & \text{if } x_i < S, \\
 S f(x - e_i) & \text{otherwise};
\end{cases} \)
- \(T_{MDS}(f(x)) = \begin{cases}
 x_i f(x - e_i + e_{i+1}) + (S - x_i) f(x) & \text{if } x_i < S, \\
 S f(x - e_i + e_{i+1}) & \text{otherwise}.
\end{cases} \)

Of course, the operators incorporating one or more tandem servers are only defined for \(i = 1, \ldots, m - 1 \), the other operators for \(i = 1, \ldots, m \). Furthermore, for ease of notation, we used \(c \) in every operator that involves costs for some action. This \(c \) is arbitrary and can be different for each operator.

The coefficients of \(f \) in the operators can be interpreted as probabilities, except for the operators with multiple servers: there the coefficients sum to \(S \). We could divide by \(S \) to obtain probabilities, but this division could also be part of the environment operator to be introduced next. As to keep the notation as simple as possible we assume the latter.

Next to these operators dealing with the movements of customers in the system, we introduce an operator for the direct costs and one that determines how the environment (i.e., \(x_0 \)) changes state and influences the transitions:

- \(T_{Costs}(f(x)) = C(x) + \alpha f(x) \) for some cost function \(C \), and discount factor \(\alpha \geq 0 \);
- \(T_{env}(f_1, \ldots, f_i)(x) = \sum_{y \in \mathbb{N}_0} \lambda(x_0, y) \sum_{j=1}^{i} q^j(x_0, y) f_j(x^*) \), where \(x^* \) is equal to \(x \) with the 0th component replaced by \(y \).

We see that \(T_{env} : \mathcal{V}^l \to \mathcal{V} \). To see how these operators can constitute the value function \(V_n \) it is best to consider an example, that models a simple tandem system of \(M/M/1 \) queues (the server at queue \(i \) has rate \(\mu_i \)) with Poisson arrivals (at rate \(\lambda \)) and some arbitrary cost function:

\[
V_{n+1}(x) = T_{Costs} \left[T_{env} \left(T_{A(1)}(V_n), T_{TS(1)}(V_n), \ldots, T_{TS(m-1)}(V_n), T_{D(m)}(V_n) \right) \right](x), \quad (1)
\]
with the parameters of T_{env} chosen such that it models the well-known concept of uniformization (e.g., see \cite[Section 11.5]{13}), by taking $T_{\text{env}}(f_1, \ldots, f_{m+1})(x) = \sum_{j=1}^{m+1} p(j) f_j(x)$ with $p(1) = \lambda / (\lambda + \sum_i \mu_i)$ and $p(i) = \mu_{i-1} / (\lambda + \sum_j \mu_j)$, $i = 2, \ldots, m+1$. That V_n is indeed equal to the value function of the continuous-time tandem server model can be easily seen by writing out (1).

The operator T_{env} however can serve many more purposes. We see that if the environment moves from x_0 to y, which occurs with probability $\lambda(x_0, y)$ (but, due to the uniformization we can also see this as a transition rate), then with probability $q^j(x_0, y)$ an event of type j occurs. This is exactly the definition of a Markov arrival stream (\cite{4}). A Markov arrival stream can best be interpreted as a Markov arrival process with additional marks indicating the type of event. It is shown in \cite{4} that any marked point process can be approximated arbitrarily close with a Markov arrival stream. This shows the versatility in modeling capacities of T_{env}. A relatively simple example of the use of T_{env} can be found in Section 5, where it is used to model parallel on-off processes.

Describing formally how V_{n+1} can be constructed from V_n is done in \cite{8}. We will not repeat it here, from equation (1) the main ideas will be clear. With this construction many different systems with different criteria can be modeled. The main classes of models are those in discrete time and continuous time (modeled with uniformization). The standard criteria (finite horizon, infinite horizon discounted and average costs) can be modeled as well. (Note that for the infinite horizon models there are existence questions to be addressed. We will not deal with them here, but concentrate on the properties of V_n for finite n.) However, more general systems can be addressed as well, which are not time-homogeneous, which have salvage costs, etc.

The next step is formulating sets of functions $F \subset V$ such that if $V_n \in F$, then so is V_{n+1} for particular choices of V_n. For these sets we show, for some or all of the operators T introduced above, that if $f \in F$, then also $T f \in F$. From this it readily follows that if $V_0 \in F$ and $C \in F$, then also $V_n \in F$ for all n. The sets F should be chosen such that some useful results can be derived from it. The different sets F and their comparison are the subjects of the next section.

Remark 2.1 In \cite{16,8} T_{CTSi} is generalized to a continuously controlled operator of the form $\min_{\mu \in [0,1]} \{c_\mu + \mu f(x - e_i + e_{i+1}) + (1 - \mu)f(x)\}$, with 0 as only possible action if $x_i = 0$. The results of the next sections remain the same under this generalization; we have decided not to include it as it complicates the notation.

3 Inequalities

The sets of functions that we consider are defined by inequalities. Remember that our state space is $(m+1)$-dimensional. However, we will pose no restrictions on the environment, thus the inequalities are essentially m-dimensional. The inequalities are both of first and second order. The two basic second order properties are directional convexity and multimodularity. We start with directional convexity (dc).
Definition 3.1 A function \(f \in \mathcal{V} \) is called directional convex if for all \(x, y, z \in \mathbb{N}_0^{m+1} \),
\[
f(x + y) + f(x + z) \leq f(x) + f(x + y + z),
\]
which inequality we write as \(DC(y, z) \).

Later, when studying queueing models, it will become clear that Definition 3.1 is difficult to use in our proofs. Therefore we derive an alternative characterization of directional convexity. To do so, we define the following inequalities for some function \(f \in \mathcal{V} \), for all \(x \in \mathbb{N}_0^{m+1}, i, j \in \{1, \ldots, m\}, i \neq j \):
\[
\begin{align*}
CC(i) & : 2f(x + e_i) \leq f(x) + f(x + 2e_i); \\
Super(i, j) & : f(x + e_i) + f(x + e_j) \leq f(x) + f(x + e_i + e_j).
\end{align*}
\]
The inequalities are easily interpreted: \(CC \) stands for componentwise convexity, \(Super(i, j) \) is known as supermodularity. Note that \(CC(i) \) is equal to \(Super(i, i) \).

All functions satisfying a certain inequality \(A \) for all \(x \) are denoted by \(\mathcal{F}(A) \). We also write \(\mathcal{F}(A, B) = \mathcal{F}(A) \cap \mathcal{F}(B) \). The set of all dc functions is denoted with \(\mathcal{F}(DC) \).

The characterization of directional convexity is as follows (see also [14]; for completeness we also supply a proof).

Lemma 3.2 \(\mathcal{F}(CC(i), i = 1, \ldots, m; Super(i, j), i, j = 1, \ldots, m, i \neq j) = \mathcal{F}(DC) \).

Proof The inclusion \(\supset \) follows from the definition of directional convexity: taking \(y = z = e_i \) gives \(CC(i) \), taking \(y = e_i \) and \(z = e_j \) gives \(Super(i, j) \). The inclusion \(\subset \) follows by induction to \(\sum_i(y_i + z_i) \). If \(\sum_i(y_i + z_i) = 2 \), then \(DC(y, z) \) is either \(CC(i) \) for some \(i \) or \(Super(i, j) \) for some \(i, j \). Assume that \(\sum_i(y_i + z_i) > 2 \), and suppose that \(\sum_i y_i > 1 \). Then for some \(i \) \(y \) can be written as \(y = e_i + u \) with \(u \geq 0 \). Now \(DC(y, z) \) is the sum of
\[
f(x + e_i + u) + f(x + e_i + z) \leq f(x + e_i) + f(x + e_i + u + z)
\]
and
\[
f(x + e_i) + f(x + z) \leq f(x) + f(x + e_i + z).
\]
Both inequalities hold by induction.

Lemma 3.2 greatly simplifies the proofs in the next section: instead of having to prove \(DC(y, z) \) for all possible \(y \) and \(z \), we can restrict to \(y \) and \(z \) being unit vectors.

Next we define multimodularity. It was introduced in Hajek [6] for the study of assignment rules to a queue, its relation to monotonicity results for tandem queues was recognized in [15] (on top of p. 295). First define \(d_0 = e_1, d_i = -e_i + e_{i+1}, i = 1, \ldots, m - 1, \) and \(d_m = -e_m \). Let \(\mathcal{D} = \{d_0, \ldots, d_m\} \).

Definition 3.3 A function \(f \in \mathcal{V} \) is called multimodular (mm) if for all \(x \in \mathbb{Z}^{m+1}, v, w \in \mathcal{D}, v \neq w \), such that \(x + v, x + w \in \mathbb{N}_0^{m+1} \)
\[
f(x) + f(x + v + w) \leq f(x + v) + f(x + w),
\]
which inequality we write as \(MM(v, w) \).
Note that f is only defined on \mathbb{N}_0^{m+1}. The definition makes sense because it follows from $x + v, x + w \in \mathbb{N}_0^{m+1}$ that also $x, x + v + w \in \mathbb{N}_0^{m+1}$.

The usefulness of multimodularity lies in the fact that the basic transitions given in the operators are elements of \mathcal{D}. In the next lemma we derive a more general characterization of multimodularity, which will help us in comparing multimodularity with directional convexity.

Lemma 3.4 A function f is mm if and only if

$$f(x) + f(x + v_1 + \cdots + v_k) \leq f(x + v_1 + \cdots + v_l) + f(x + v_{l+1} + \cdots + v_k)$$

(2)

for $\{v_1, \ldots, v_k\} \in \mathcal{D}$, $0 < l < k$, and $v_i \neq v_j$ for $i \neq j$.

Proof The if-part of the proof is trivial; the only if-part follows by induction to k. For $k = 2$ Eq. (2) is equivalent to mm. Consider some $k > 2$, and assume that (2) holds up to $k - 1$. Furthermore, assume that $l + 1 < k$. This does not restrict generality, by reordering v_1, \ldots, v_k in descending order in case $l + 1 = k$ we find $l + 1 < k$ because $k > 2$. Equation (2) is equal to the sum of

$$f(x) + f(x + v_1 + \cdots + v_{k-1}) \leq f(x + v_1 + \cdots + v_l) + f(x + v_{l+1} + \cdots + v_{k-1})$$

and

$$f(x + v_{l+1} + \cdots + v_{k-1}) + f(x + v_1 + \cdots + v_k) \leq f(x + v_1 + \cdots + v_{k-1}) + f(x + v_{l+1} + \cdots + v_k).$$

Both inequalities hold by induction, the second in the state $x + v_{l+1} + \cdots + v_{k-1}$.

With $\mathcal{F}(MM)$ we denote the set of mm functions.

An inequality that will prove to be useful is superconvexity, introduced in [8] for the control of various 2-dimensional queueing models. It is defined for all $i, j = 1, \ldots, m$, $i \neq j$, as:

- $SuperC(i, j)$: $f(x + e_i) + f(x + e_i + e_j) \leq f(x + 2e_i) + f(x + e_j)$.

For $m = 2$ it is readily seen that $\mathcal{F}(MM) = \mathcal{F}(Super(1,2), SuperC(1,2), SuperC(2,1))$. For general m we have the following.

Lemma 3.5 $\mathcal{F}(MM) \subset \mathcal{F}(SuperC(i, j))$ for all $i \neq j$.

Proof If $i < j$, then $SuperC(i, j)$ is equal to (2) applied in $x + e_i$ with $d_0 + \cdots + d_{i-1} = e_i$ and $d_i + \cdots + d_{j-1} = -e_i + e_j$. If $i > j$, then it is (2) applied in $x + e_i + e_j$ with $d_j + \cdots + d_{i-1} = e_i - e_j$ and $d_i + \cdots + d_m = -e_i$.

Next we compare the sets of dc and mm functions.

Lemma 3.6 $\mathcal{F}(MM) \not\subseteq \mathcal{F}(DC)$.

Proof We first show \subset. Because of Lemma 3.2 it suffices to show for $f \in \mathcal{F}(MM)$ that $CC(i)$ and $Super(i,j)$ holds for all i,j. We do this using Lemma 3.4. We have $e_i = d_0 + \cdots + d_{i-1}$ and $-e_i = d_i + \cdots + d_m$. Equation (2) in $x + e_i$ gives $CC(i)$. To show $Super(i,j)$, assume (without restricting generality) that $i < j$. Next to $e_i = d_0 + \cdots + d_{i-1}$ we need $-e_j = d_j + \cdots + d_m$ and $e_i - e_j = d_0 + \cdots + d_{i-1} + d_j + \cdots + d_m$. Equation (2) in $y = x + e_j$ is equivalent to $Super(i,j)$.

We give a function on \mathbb{N}_0^2 that is dc but that does not satisfy $SuperC(1,2)$. Because of Lemma 3.5 this function is neither mm. This function is $f(x) = x_1x_2$. Verifying $CC(1)$, $CC(2)$, and $Super(1,2)$ in all x is simple. It is also easily seen that $SuperC(1,2)$ does not hold for any x.

Remark 3.7 So far we discussed the second order property directional convexity, and compared it to multimodularity. Another natural question is to compare both properties with the traditional convexity on the lattice, defined by the inequality $2f(x) \leq f(x-y) + f(x+y)$ that has to hold for each $y \in \mathbb{Z}^m$ and x such that $x-y, x+y \in \mathbb{N}_0^{m+1}$. In Theorem 2.2 of [1] it is shown that mm implies convexity; it is also easily seen that the function $f(x) = x_1x_2$ is not convex (while we just showed in the proof of Lemma 3.6 that x_1x_2 is dc). On the other hand, $g(x) = \max\{x_1, x_2\}$ is convex ([1], Counterexample 2.1), but g is not supermodular (e.g., $Super(1,2)$ in $x = 0$ does not hold), thus it is neither dc. In conclusion, if we denote with $\mathcal{F}(C)$ the set of convex functions, $\mathcal{F}(MM) \subset \mathcal{F}(C), \mathcal{F}(DC)$, but there is no such ordering between $\mathcal{F}(C)$ and $\mathcal{F}(DC)$.

This closes the discussion of second order properties. We continue with first order properties. Define the following inequalities for some function $f \in \mathcal{V}$, for all $x \in \mathbb{N}_0^{m+1}$, $i \in \{1, \ldots, m\}$:

- $I(i)$: $f(x) \leq f(x + e_i)$;
- $F(i)$: $f(x + e_{i+1}) \leq f(x + e_i)$.

Inequality $I(i)$ simply states that f is increasing (in the non-strict sense) in i. $F(i)$ means that it is advantageous to have customers further down the line. Note that $F(i)$ is only defined for $i < m$. We introduce the notation $\mathcal{F}(I) = \mathcal{F}(I(i), i = 1, \ldots, m)$ and $\mathcal{F}(F) = \mathcal{F}(F(i), i = 1, \ldots, m-1)$.

Lemma 3.8 If $i < j$ then $\mathcal{F}(F(i), \ldots, F(j-1), I(j)) \subset \mathcal{F}(I(i))$, and thus $\mathcal{F}(F(1), \ldots, F(m-1), I(m)) = \mathcal{F}(I, F)$.

Proof The proof simply consists of adding the inequalities that constitute the smaller (left hand) set in each possible state x.

4 Results

In this section we discuss first the operators that can be controlled. The suitable set of functions for these operators is $\mathcal{F}(MM)$. Later on we consider the other operators and
functions. First we assume that the value function is \(m \), and we consider the consequences for the operators. After that we prove that the value function is indeed \(m \) for certain operators. The monotonicity results for the controlled operators shown in the proof are equal to those in [16] for controlled tandem systems. Our interest is mainly in the structure of the value functions. Note furthermore the generalizations with respect to the results of [16] due to event-based dp and the inclusion of the environment.

Theorem 4.1 For all \(f \in \mathcal{F}(MM) \)

\[
T_{A(1)}f, \ldots, T_{A(m)}f, T_{CA(1)}f, T_{CTS(1)}f, \ldots, T_{CTS(m-1)}f, T_{CD(m)}f \in \mathcal{F}(MM),
\]

and, if \(C \in \mathcal{F}(MM) \), and \(f_1, \ldots, f_i \in \mathcal{F}(MM) \),

\[
T_{\text{costs}}f, T_{\text{env}}(f_1, \ldots, f_i) \in \mathcal{F}(MM).
\]

Proof Assume that \(f \in \mathcal{F}(MM) \). Consider \(T_{A(i)} \) for some \(i \). We have to show that \(T_{A(i)}f(x) + T_{A(i)}f(x + v + w) \leq T_{A(i)}f(x + v) + T_{A(i)}f(x + w) \) for all \(v, w \in \mathcal{D} \). This is equivalent to \(f(x + e_i) + f(x + e_i + v + w) \leq f(x + e_i + v) + f(x + e_i + w) \), which holds by induction. To facilitate the notation in the rest of this proof and other proofs as well we add the state to the inequality, thus we had to show that \(MM(v, w)(x + e_i) \).

Now we continue by considering \(T_{CA(1)}, T_{CTS(1)}, \ldots, T_{CTS(m-1)}, T_{CD(m)} \), all at the same time. Let us introduce some further notation. Each of these operators \(T_C \) has the form \(T_Cf(x) = \min\{c + f(x + y), f(x)\} \), with \(y \in \mathcal{D} \). We first prove the following property of the minimizers. The optimizing actions of \(T_Cf \) are such that:

- If \(c + f(x + y) \leq f(x) \) for some \(x \), then \(c + f(x + d + y) \leq f(x + d) \) for any \(d \in \mathcal{D} \) such that \(d \neq y \);
- If \(f(x) \leq c + f(x + y) \), then \(f(x + y) \leq c + f(x + 2y) \).

The first expression follows directly because \(m \) is equivalent to \(f(x) - f(x + y) \leq f(x + d) - f(x + d + y) \). For the second expression we use Lemma 3.4 to get

\[
f(x + y) + f(x + y + \sum_{v \in \mathcal{D}} v) \leq f(x + 2y) + f(x + y + \sum_{v \in \mathcal{D}, v \neq y} v).
\]

Because \(\sum_{v \in \mathcal{D}} v = 0 \) and \(\sum_{v \in \mathcal{D}, v \neq y} v = -y \) it follows that \(2f(x + y) \leq f(x) + f(x + 2y) \) (which is convexity of \(f \) in \(y \)), from which the second expression follows.

In fact, we just showed that the optimal actions are *transition-monotone* ([16]), which means that every event occurring at an operator makes it more attractive for the other operators to choose the action that forces a state change. Reversed, if a transition occurs it is less likely that it is still optimal for the same operator to take the action that makes the state change. We now use this monotonicity of the operators to prove the theorem. Consider some operator \(T_C \) with vector \(y \). We have to show that

\[
T_Cf(x) + T_Cf(x + v + w) \leq T_Cf(x + v) + T_Cf(x + w)
\]
for all \(v, w \in \mathcal{D} \). If the minimizing actions in \(x + v \) and \(x + w \) are equal, then it follows immediately by induction. For example, assume that the minimizing action is a state change, thus \(T_C f(x + v) + T_C f(x + w) = c + f(x + y + v) + c + f(x + y + w) \). Then

\[
T_C f(x) + T_C f(x + v + w) \leq c + f(x + y) + c + f(x + y + v + w) \leq c + f(x + y + v) + c + f(x + y + w),
\]

the second inequality by \(MM(v, w)(x + y) \).

Assume that both minimizing actions are different, and that \(y \neq v, w \). Then we can take \(T_C f(x + v) + T_C f(x + w) = f(x + v) + c + f(x + y + w) \), without loss of generality. But then

\[
T_C f(x) + T_C f(x + v + w) \leq f(x) + c + f(x + y + v + w) \leq f(x + v) + c + f(x + y + w),
\]

the second inequality by Lemma 3.4.

Finally, assume that \(y = v \). By the monotonicity of the optimal action we known that if the actions are different, then it must be such that \(T_C f(x + v) + T_C f(x + w) = f(x + v) + c + f(x + y + w) = f(x + v) + c + f(x + v + w) \). It follows that

\[
T_C f(x) + T_C f(x + v + w) \leq c + f(x + y) + f(x + v + w) = T_C f(x + v) + T_C f(x + w).
\]

The proof for \(T_{costs} \) and \(T_{env} \) is trivial.

Theorem 4.1 shows us that models consisting of the controlled operators corresponding to a tandem system (plus additional uncontrolled arrivals at any of the queues) has a mm value function. By Lemma 3.6 other properties such as convexity in all of the state components follow. Uncontrolled operators however cannot be propagated through mm alone. To see this, consider \(T_{D(i)} \) and \(f \in \mathcal{F}(MM) \). As \(\mathcal{F}(MM) \subset \mathcal{F}(CC(i)) \), let us see what we need to have \(T_{D(i)} \in \mathcal{F}(CC(i)) \). For \(x_i = 0 \) we need \(I(i) \), indicating also that mm is not enough for the study of uncontrolled operators. The first step in this direction is the following theorem.

Theorem 4.2 For all \(f \in \mathcal{F}(F, I) \), if the costs of operating \(c \geq 0 \) for all operators \(T_{CTS(1)}, \ldots, T_{CTS(m-1)}, T_{CD(m)} \), then

\[
T_{A(1)} f, \ldots, T_{A(m)} f, T_{CA(1)} f, \ldots, T_{CA(m)} f, T_{CTS(1)} f, \ldots, T_{CTS(m-1)} f, T_{CD(m)} f \in \mathcal{F}(F, I);
\]

for all \(f_1, \ldots, f_i \in \mathcal{F}(F, I) \), if \(C \in \mathcal{F}(F, I) \), then

\[
T_{costs} f; T_{env}(f_1, \ldots, f_i) \in \mathcal{F}(F, I).
\]
Proof We consider, for each operator, the inequalities that constitute \(F(F(I), I(m)) = F(F(I)) \), thus we only have to consider \(F(1), \ldots, F(m - 1), I(m) \).

For \(T_{A(1)}, \ldots, T_{A(m)} \), the result follows directly by induction. Consider \(T_{C_A(i)} \). Consider \(F(j) \). We have to show \(T_{C_A(i)} f(x + e_{j+1}) \leq T_{C_A(i)} f(x + e_j) \); this follows by taking on the l.h.s. the minimizing action of the r.h.s. For, if it is optimal to accept a customer in \(x + e_j \), then

\[
T_{C_A(i)} f(x + e_{j+1}) \leq f(x + e_i + e_{j+1}) \leq f(x + e_i + e_j) = T_{C_A(i)} f(x + e_j).
\]

The proof for \(I(m) \) is equivalent. Consider \(T_{C_T S(i)} \). The proof is similar to that of \(T_{C_A(i)} \), except for \(F(i) \), if \(x_i = 0 \) and the optimal action in \(x + e_i \) is serving. Then

\[
T_{C_T S(i)} f(x + e_{i+1}) = f(x + e_{i+1}) \leq c + f(x + e_i) = T_{C_A(i)} f(x + e_i).
\]

The same line of reasoning works for \(I(m) \) and \(T_{C_D(m)} \). The proof for \(T_{costs} \) and \(T_{env} \) is again trivial.

For \(f \in F(F(I)) \) we have that \(f(x - e_i + e_{i+1}) \leq f(x) \) if \(x_i > 0 \) and \(f(x - e_m) \leq f(x) \) if \(x_m > 0 \), thus if \(c = 0 \) for the operators \(T_{C_T S(1)}, \ldots, T_{C_T S(m-1)} \), then it is always optimal to serve, and thus the operators are equal to their uncontrolled equivalent. This leads to the following corollary:

Corollary 4.3 For all \(f \in F(MM, F(I)) \)

\[
T_{T_S(1)} f, \ldots, T_{T_S(m-1)} f, T_{D(m)} f \in F(MM, F(I)).
\]

Remark 4.4 The necessity to include \(F(i) \) if the server at queue \(i \) is uncontrolled was already recognized in [16], Section 4. However, to propagate \(F(i), F(i + 1), \ldots, F(m - 1) \) and \(I(m) \) are also necessary. In fact Theorem 4.2 can be generalized slightly by assuming only \(F(i), \ldots, F(m - 1) \) and \(I(m) \); then the service operators can be uncontrolled from queue \(i \) on.

We next move to the operators that model multiple servers. We first argue why the set of \(mm \) functions does not propagate. By Lemma 3.5 \(SuperC(i, j) \) holds if \(f \) is \(mm \). Let us apply \(T_{M_D(i)} \) with \(S = 2 \) in state \(x \) with \(x_i = 0 \). Thus we need to show

\[
T_{M_D(i)} f(x + e_i) + T_{M_D(i)} f(x + e_i + e_j) \leq T_{M_D(i)} f(x + 2e_i) + T_{M_D(i)} f(x + e_j),
\]

which is equal to

\[
f(x) + f(x + e_i) + f(x + e_j) + f(x + e_i + e_j) \leq 2f(x + e_i) + 2f(x + e_j),
\]

which gives, after cancellation of terms, submodularity, the inverse of supermodularity. As supermodularity is a consequence of \(mm \), this line of reasoning does not work. The solution is to relax the conditions on the value function, and to show that for this bigger class of functions the operators related to multiple servers do propagate.
Theorem 4.5 For all $f \in \mathcal{F}(DC, F, I)$

$$T_{A(1)}f, \ldots, T_{A(m)}f, T_{MTS(1)}f, \ldots, T_{MTS(m-1)}f, T_{MD(m)}f \in \mathcal{F}(DC, F, I),$$

and, if $C \in \mathcal{F}(DC, F, I)$, and $f_1, \ldots, f_l \in \mathcal{F}(DC, F, I)$,

$$T_{costs}f, T_{env}(f_1, \ldots, f_l) \in \mathcal{F}(DC, F, I).$$

Proof As usual, the proof for the operators $T_{A(1)}, \ldots, T_{A(m)}$, T_{costs}, T_{env} is simple. Let us concentrate on the servers. Of course, because of the Lemmas 3.2 and 3.8, we only have to consider $CC(i)$ for all i, $Super(i, j)$ for all $i \neq j$, $F(1), \ldots, F(m)$, and $I(m)$. The proof for $F(i)$ and $I(m)$ is simple. Consider $T_{MTS(k)}$. Propagating $CC(i)$ for $i \neq k$ is trivial; consider $i = k$. We consider the cases $S \leq x_i$, $S = x_i + 1$, and $S \geq x_i + 2$.

- If $S \leq x_i$, then all S servers are busy in $x_i, x + e_i$ and $x + 2e_i$, and thus:

$$2T_{MTS(i)}f(x + e_i) = 2Sf(x + e_{i+1}) \leq Sf(x - e_i + e_{i+1}) + Sf(x + e_i + e_{i+1}) = T_{MTS(i)}f(x) + T_{MTS(i)}f(x + 2e_i),$$

where the inequality holds by applying $CC(i)$ in $x - e_i + e_{i+1} S$ times, which we write as $S \times CC(i)(x - e_i + e_{i+1})$.

- If $S = x_i + 1$, then we get:

$$2T_{MTS(i)}f(x + e_i) = 2Sf(x + e_{i+1}) \leq (S - 1)f(x - e_i + e_{i+1}) + f(x) + Sf(x + e_i + e_{i+1}) = T_{MTS(i)}f(x) + T_{MTS(i)}f(x + 2e_i).$$

The inequality is equal to $(S - 1) \times CC(i)(x - e_i + e_{i+1}) + Super(i, i+1)(x) + F(i)(x)$. Note that if $x_i = 0$, and thus $S = 1$, then the coefficient of $CC(i)(x - e_i + e_{i+1})$ is 0, avoiding negative queue lengths.

- If $S \geq x_i + 2$, then

$$2T_{MTS(i)}f(x + e_i) = 2(x_i + 1)f(x + e_{i+1}) + 2(S - x_i - 1)f(x + e_i) \leq x_i f(x - e_i + e_{i+1}) + (S - x_i)f(x) + (x_i + 2)f(x + e_i + e_{i+1}) + (S - x_i - 2)f(x + 2e_i) = T_{MTS(i)}f(x) + T_{MTS(i)}f(x + 2e_i),$$

which follows from $x_i \times CC(i)(x - e_i + e_{i+1}) + (S - x_i - 2) \times CC(i)(x) + 2Super(i, i+1)(x)$. Again, the coefficients are such that $CC(i)(x - e_i + e_{i+1})$ is only used if $x_i > 0$.

We now propagate $T_{MTS(k)}$ for $Super(i, j)$. Again, $k \neq i, j$ is trivial; assume that $k = i$. First assume that $j \neq i + 1$. We consider the cases $S \leq x_i$ and $S \geq x_i + 1$.

- If $S \leq x_i$, then all S servers are busy in all states. This gives, by $S \times Super(i, j)(x - e_i + e_{i+1})$,

$$T_{MTS(i)}f(x + e_i) + T_{MTS(i)}f(x + e_j) = Sf(x + e_{i+1}) + Sf(x - e_i + e_{i+1} + e_j) \leq Sf(x - e_i + e_{i+1}) + Sf(x + e_{i+1} + e_j) = T_{MTS(i)}f(x) + T_{MTS(i)}f(x + e_i + e_j).$$

12
• If $S \geq x_i + 1$, then

$$T_{MTS(i)} f(x + e_i) + T_{MTS(i)} f(x + e_j) = (x_i + 1)f(x + e_{i+1}) + (S - x_i - 1)f(x + e_i) + x_i f(x - e_i + e_{i+1} + e_j) + (S - x_i)f(x + e_j) \leq x_i f(x - e_i + e_{i+1}) + (S - x_i)f(x) + (x_i + 1)f(x + e_{i+1} + e_j) + (S - x_i - 1)f(x + e_i + e_j) = T_{MTS(i)} f(x) + T_{MTS(i)} f(x + e_i + e_j).$$

The inequality holds because of $x_i \times Super(i, j)(x - e_i + e_{i+1}) + (S - x_i - 1) \times Super(i, j)(x) + Super(i + 1, j)(x)$.

Now assume that $k = i$ and $j = i + 1$. We consider the cases $S \leq x_i$ and $S \geq x_i + 1$.

• If $S \leq x_i$, then all S servers are busy in all states. This gives, by $S \times Super(i, i + 1)(x - e_i + e_{i+1})$,

$$T_{MTS(i)} f(x + e_i) + T_{MTS(i)} f(x + e_j) = S f(x + e_{i+1}) + S f(x - e_i + 2e_{i+1}) \leq S f(x - e_i + e_{i+1}) + S f(x + 2e_{i+1}) = T_{MTS(i)} f(x) + T_{MTS(i)} f(x + e_i + e_j).$$

• If $S \geq x_i + 1$, then

$$T_{MTS(i)} f(x + e_i) + T_{MTS(i)} f(x + e_j) = (x_i + 1)f(x + e_{i+1}) + (S - x_i - 1)f(x + e_i) + x_i f(x - e_i + 2e_{i+1}) + (S - x_i)f(x + e_{i+1}) \leq x_i f(x - e_i + e_{i+1}) + (S - x_i)f(x) + (x_i + 1)f(x + 2e_{i+1}) + (S - x_i - 1)f(x + e_i + e_{i+1}) = T_{MTS(i)} f(x) + T_{MTS(i)} f(x + e_i + e_j).$$

The inequality holds because of $x_i \times Super(i, i + 1)(x - e_i + e_{i+1}) + (S - x_i - 1) \times Super(i, i + 1)(x) + CC(i + 1)(x)$.

Now consider $T_{MD(m)}$, first for $CC(m)$. We consider the cases $S \leq x_m$, $S = x_m + 1$, and $S \geq x_m + 2$.

• If $S \leq x_m$, then all S servers are busy in x, $x + e_m$ and $x + 2e_m$, and thus:

$$2T_{MTS(m)} f(x + e_m) = 2S f(x) \leq S f(x - e_m) + S f(x + e_m) = T_{MTS(m)} f(x) + T_{MTS(m)} f(x + 2e_m),$$

the inequality equals $S \times CC(m)(x - e_m)$.

• If $S = x_m + 1$, then we get:

$$2T_{MTS(m)} f(x + e_m) = 2S f(x) \leq (S - 1)f(x - e_m) + f(x) + S f(x + e_m) = T_{MTS(m)} f(x) + T_{MTS(m)} f(x + 2e_m),$$

the inequality is equal to $(S - 1) \times CC(m)(x - e_m) + I(m)(x)$.

• If $S \geq x_m + 2$, then

$$2T_{MTS(m)} f(x + e_m) = 2(x_m + 1) f(x) + 2(S - x_m - 1) f(x + e_m) \leq$$
As a simple first application, consider two models, with value function

\[V(x) = x_m f(x) + (S - x_m) f(x) + (x_m + 2) f(x + e_m) + (S - x_m - 2) f(x + 2e_m) = T_{\text{MTS}(m)} f(x) + T_{\text{MTS}(m)} f(x + 2e_m), \]

where the inequality equals \(x_m \times CC(m)(x - e_m) + (S - x_m - 2) \times CC(m)(x) \). Proving \(CC(i) \) for \(i \neq m \) is simple.

Finally, we prove \(T_{\text{MD}(m)} \) for Super\((i, j)\). Assume that \(i = m \), the other case being simple. It is readily seen that only Super\((m, j)\) suffices to prove the inequalities. □

We summarize the results of this section in the following corollary.

Corollary 4.6 For \(V_n \) constructed from \(T_{A(1)}, \ldots, T_{A(m)}, T_{CA(1)}, T_{\text{CTS}(1)}, \ldots, T_{\text{CTS}(m-1)}, T_{CD(m)}, T_{\text{env}}, \) and \(T_{\text{costs}} \) with \(C \in \mathcal{F}(MM) \), and if \(V_0 \in \mathcal{F}(MM) \), then \(V_n \in \mathcal{F}(MM) \) for all \(n > 0 \);

for \(V_n \) constructed from \(T_{A(1)}, \ldots, T_{A(m)}, T_{CA(1)}, T_{\text{CTS}(1)}, \ldots, T_{\text{CTS}(m-1)} \) with \(c > 0 \), \(T_{CD(m)} \) with \(c > 0 \), \(T_{\text{TS}(1)}, \ldots, T_{\text{TS}(m-1)}, T_{\text{D}(m)}, T_{\text{env}}, \) and \(T_{\text{costs}} \) with \(C \in \mathcal{F}(MM, F, I) \), and if \(V_0 \in \mathcal{F}(MM, F, I) \), then \(V_n \in \mathcal{F}(MM, F, I) \) for all \(n > 0 \);

for \(V_n \) constructed from \(T_{A(1)}, \ldots, T_{A(m)}, T_{\text{MTS}(1)}, \ldots, T_{\text{MTS}(m-1)}, T_{\text{MD}(m)}, T_{\text{env}}, \) and \(T_{\text{costs}} \) with \(C \in \mathcal{F}(DC, F, I) \), and if \(V_0 \in \mathcal{F}(DC, F, I) \), then \(V_n \in \mathcal{F}(DC, F, I) \) for all \(n > 0 \).

Up to now we have not really discussed the crucial role played by the direct costs \(C \) of \(T_{\text{costs}} \). As we can take any function \(C \) satisfying the right set of inequalities, there are many possibilities. An obvious choice is \(C(x) = \sum_i c_i x_i \), with \(c_1 \geq \cdots \geq c_m \) if \(C \in \mathcal{F}(F) \). If \(C \in \mathcal{F}(MM) \) we can also take \(C(x) = \sum_i (x_i - B_i)^+ P_i \), introducing a penalty \(P_i \) for each customer that exceeds the buffer level \(B_i \) in queue \(i \).

5 Applications

We give some applications to the comparison of models with different input processes. As a simple first application, consider two models, with value function \(V_n \) and \(V'_n \) that are different only in the fact that the first has an operator \(T_{A(1)}(x) \), where the latter has \(\frac{1}{2} T_I + \frac{1}{2} T_{A(1)}(x) \). Here \(T_I \) is simply the identity operator, i.e., \(T_I f(x) = f(x) \). We did not discuss it yet, but it is clear that if \(f \in \mathcal{F} \) for some set \(\mathcal{F} \), then also \(T_I f \in \mathcal{F} \). An operator that models convex combinations is easily built with \(T_{\text{env}} \), thus \(\frac{1}{2} T_I + \frac{1}{2} T_{A(1)}(x) \) falls within our framework. In words, under \(V_n \) arrivals at queue 1 are twice more likely to occur than under \(V'_n \), but each arrival in \(V'_n \) is a batch of size 2. Thus the resulting load is equal. We would like to show that \(V_n(x) \leq V'_n(x) \). Propagating this for all operators of \(V_n \) other than \(T_{A(1)} \) is trivial, as the same operators occur in \(V'_n \). Thus let us try to show

\[
T_{A(1)} V(x) \leq (\frac{1}{2} T_I + \frac{1}{2} T_{A(1)}(x)) V_n(x). \tag{3}
\]

This is equivalent to

\[
V_n(x + e_1) \leq \frac{1}{2} V_n(x) + \frac{1}{2} V'_n(x + 2e_1).
\]

Now assume that \(V_n \) is convex in \(x_1 \). Then

\[
V_n(x + e_1) \leq \frac{1}{2} V_n(x) + \frac{1}{2} V_n(x + 2e_1) \leq \frac{1}{2} V'_n(x) + \frac{1}{2} V'_n(x + 2e_1),
\]

14
and thus (3) holds. Thus if the value function is convex in the first component, the model with batch arrivals has greater costs. To check that the value function satisfies CC(1) we use Corollary 4.6, noting that $F(DC) \subset F(CC(1))$. This also poses conditions on the performance measure. E.g., if all service operators are controlled, then we have the condition $C \in F(MM)$, which allows for decreasing direct costs. On the other hand, if the operators are uncontrolled, then we need $C \in F(MM, F, I)$ or $C \in F(DC, F, I)$, and thus the direct costs must be increasing in all components.

This example is a nice illustration how convexity in the first state component can be used to compare systems with different arrival processes. More complex systems can be handled as well, as we show next. We consider the model of [9], in which a single queue is considered with an arrival process consisting of parallel on-off processes. In [9] the number of on-off processes is varied (while keeping the total offered load equal), and it is shown that systems with many on-off sources perform better, for direct costs for which the value function is convex. See Lemma 3.4 of [9]. We generalize Lemma 3.4 to tandems of queues.

To do so, we first show how to model N on-off sources (in fact, the whole value function) with the environment operator. Consider first the states. The set of all possible states of the on-off sources is $\{0, \ldots, K\}$, representing the number of on-off sources that is on. If necessary, we could model an additional environment variable (note that a multi-dimensional environment can always be written as a one-dimensional environment, because the number of states remains countable), but we will not do so. With $x \in \mathbb{N}_0^n$ we denote the state of the queues. As in [9], p is the probability that an on-off source goes on, q is the probability that an on-off source goes off. When a source is on, customers arrive with rate λ. Furthermore, assume that the service rates of queue 1 up to m are equal to μ_1, \ldots, μ_m, and assume that $(p + q + \lambda)K + \sum_i \mu_i = 1$. Then

$$T^K_{\text{env}}(f_I, f_A, f_1, \ldots, f_m)(k, x) = (K - k)pf_I(k + 1, x) + kqf_I(k - 1, x) + (kp + (K - k)(q + \lambda))f_I(k, x) + k\lambda f_A(k, x) + \sum_i \mu_if_i(k, x).$$

Denote with $V^K_n(k, x)$ the value function at stage n, of the system with K sources. (With respect to the notation in [9], we dropped the environment variable x, and replaced N, n, and k by K, k, and n, respectively.) Using the definition of T^K_{env}, and writing T_i as a generic way to indicate the service operator at queue i, we have the following recursive expression for $V^K_n(k, x)$:

$$V^K_{n+1}(k, x) = T_{\text{costs}}[T^K_{\text{env}}(V_n, T_A(1)V_n, T_1V_n, \ldots, T_mV_n)](k, x).$$

Having modeled the tandem system with on-off source input, we are ready to compare V^K_n with V^I_n. The equivalent of (20) from [9] for tandem system, that we have to show here, is:

$$\sum_{k=0}^K \binom{K}{k} p^k q^{K-k} \left((K - k)V^K_n(k, x) + kV^K_n(k, x + y)\right) \leq \ldots$$
\[K(p + q)^{K-1}qV_n^1(0, x) + K(p + q)^{K-1}pV_n^1(1, x + y), \]
for all \(x, y \geq 0 \).

The comparison result follows by taking \(y = 0 \), and observing that the coefficients are proportional to the stationary probabilities of the on-off sources. The comparison holds thus for an initially stationary arrival process. To prove (4) we first have to assume that \(V_n^K \in \mathcal{F}(DC) \). We discuss those parts of the proof of (4) that are different from the proof given in [9] for a single dimension. To prove the terms related to arriving customers we need

\[(K - k)^2V_n^K(k, x) + (K - k)kV_n^K(k, x + e_1) + k(K - k)V_n^K(k, x + y) + k^2V_n^K(k, x + y + e_1) \leq (K - k)KV_n^K(k, x) + kKV_n^K(k, x + y + e_1) .\]

This holds (after cancellation of terms) by directional convexity of the value function.

To propagate the tandem servers we have to assume that the operators are uncontrolled, thus \(T_{MTS(i)} \) for \(i < m \) and \(T_{MD(m)} \). Otherwise it might occur that the minimizing action at the r.h.s. of (4) are different. In conclusion, Lemma 3.4 of [9], and with that the related Theorems 3.5 and 3.6 of [9] are generalized to tandem system with uncontrolled operators and cost functions that belong to \(\mathcal{F}(DC, F, I) \).

Directional convexity is also useful for certain minimization problems involving multiple systems. Here we consider customers that have to be handled by one of a group of parallel tandem systems. The arrival stream has to be split up in a Bernoulli fashion. Convexity of the objective function makes that the global minimum can be found using a simple minimization procedure such as steepest descent. To prove this convexity, we have to show that the performance measure for a single tandem system is convex in the rate assigned to that system. We will prove this, using again directional convexity in the state. Define the operator \(T_{A(i)}^\lambda \), for \(\lambda \in [0, 1] \), by \(T_{A(i)}^\lambda f(x) = \lambda f(x + e_i) + \bar{\lambda} f(x) \) (with \(\bar{\lambda} = 1 - \lambda \)), and let \(V_n^\lambda(x) \) be the value function of a tandem system with uncontrolled operators as defined in Section 2 and \(T_{A(i)}^\lambda \). We would like to show convexity in \(\lambda \), i.e.,

\[V_n^{\alpha\lambda_1 + \bar{\alpha}\lambda_2}(x) \leq \alpha V_n^{\lambda_1}(x) + \bar{\alpha} V_n^{\lambda_2}(x). \]
(5)

If we assume \(\lambda_1 \leq \lambda_2 \), then for each of these value functions, if \(T_{A(i)} \) occurs, then an arrivals occur with a probability in \([\lambda_1, \lambda_2]\). Thus we can rewrite \(T_{A(i)}^\beta \), \(\beta \in [\lambda_1, \lambda_2] \), as \(T_{A(i)}^\beta = \lambda_1 T_{A(i)} + (\lambda_2 - \lambda_1) T_{A(i)}^\gamma + \bar{\lambda}_2 T_I \), with \(\gamma = (\beta - \lambda_1)/(\lambda_2 - \lambda_1) \). Note that if \(\beta \in [\lambda_1, \lambda_2] \), then \(\gamma \in [0, 1] \). Thus proving (5) for all \(\alpha \) is, given that the standard arrival operator propagates (which is the case for all sets of functions that we considered), equivalent to proving

\[V_n^{\alpha}(x) \leq \alpha V_n^1(x) + \bar{\alpha} V_n^0(x) \]

for all \(\alpha \). This inequality follows from

\[\alpha V_n^{\alpha}(x + y) + \bar{\alpha} V_n^{\alpha}(x) \leq \alpha V_n^1(x + y) + \bar{\alpha} V_n^0(x), \]
which we will prove for all $y \geq 0$. Note the similarity with equation (4). Again, the only operator that is not trivial to propagate is $T_{\lambda(i)}$; it results in

$$\alpha^2 V_n^\alpha(x + y + e_i) + \alpha\tilde{\alpha}V_n^\alpha(x + e_i) + \tilde{\alpha}^2 V_n^\alpha(x + y) \leq \alpha V_n^1(x + y + e_i) + \tilde{\alpha}V_n^0(x).$$

It suffices to show that the l.h.s. is smaller than $\alpha V_n^\alpha(x + y + e_i) + \tilde{\alpha}V_n^\alpha(x)$, which is equivalent to

$$V_n^\alpha(x + y) + V_n^\alpha(x + e_i) \leq V_n^\alpha(x + y + e_i) + V_n^\alpha(x),$$

which holds by the directional convexity of V_n^α. Thus for the same systems as the last example with on-off sources, we have shown that the performance is convex in the arrival rate. This generalizes part (i) of Theorem 2.7 of [11] to multi-stage systems.

Acknowledgement I thank Ludolf Meester for some interesting discussions and additional insights while we were (in vain) trying to bridge the gap between our methods. I also would like to thank a referee of an earlier version of this paper for his detailed comments.

References

