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Introduction

Recent years have witnessed a truly quantitative revolution in the world of finance. Finan-
cial markets have to deal with a huge variety of traded derivatives and call for advanced
mathematical models. Moreover, the same theory can also be applied to institutions, such
as banks or insurance companies, that are constantly forced to cope with different kinds of
risk. Consequently, risk management has become a very important research area. In view
of that this thesis is dedicated to risk measure theory. It consists of two parts. The first
two chapters are theoretical. Their goal is to familiarize us with the notion of a measure
of risk and to present some representation results concerning them. On the other hand, in
Chapter 3 and Chapter 4 we construct two mappings wanted to be measures of risk and
investigate their properties.

We start with the classic approach. In Chapter 1 we define a static risk measure and
present some axioms that are welcome to be met. We also introduce the first examples
of risk measures. More precisely, the Value at Risk and the Average Value at Risk are
investigated here. Next we relax assumptions and allow certain random variables to be
values of risk measures. In other words, we introduce conditional measures of risk and
extend definitions of the Value at Risk and the Average Value at Risk to that case.

Chapter 2 is a further generalization. In order to deal with multi-period models, we intro-
duce the notion of a dynamic risk measure. Again convexity and coherence are defined in
a current framework. First we treat time in a continuous manner and consider measures
of risk for final payments. Then we are interested in ones in discrete time, but for general
stochastic processes. The main result of that part is a characterization theorem for coher-
ent risk measures. It turns out that each of them, under some technical assumptions, can
be represented by the essential supremum of conditional expectations over some stable set
of probability measures. From a theoretical point of view, it is really a meaningful result.
However, it does not answer the question what stable set to take. Due to that, we try to
define a dynamic risk measure directly. More precisely, we introduce a mapping that seems
to us reasonable and then verify whether it is indeed a dynamic risk measure.

In Chapter 3 we introduce the Recalculated Conditional Average Value at Risk and the
Iterated Conditional Average Value at Risk. The idea is based on [HW 04]. In that pa-
per Mary Wirch and Julia Hardy develop dynamic risk measures only for final payments.
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Introduction

We generalize these results, since our mappings assign risk to stochastic processes. We
additionally show that they are coherent and satisfy the time consistency and relevance
properties.

Similarly, Chapter 4 is devoted to the other mapping. On a basis of [PR 05] and [M 07] we
define the Pflug–Ruszczyński risk measure. Although it does not fulfill all desirable axioms,
it is interesting because of an easy implementation in a Markovian model. The significant
fact is that, applying Bayesian decision theory, the risk measure can be extended for an
incomplete information case. That plays an important role in practice.

The results presented in the thesis show that theoretical knowledge about dynamic mea-
sures of risk is already very wide. Regardless, there is still lack of risk measures that are
rational and can be easily used by financial and insurance institutions. I hope that two
examples, the Iterated Conditional Average Value at Risk and the Pflug–Ruszczyński risk
measure, are only the beginning of the intensive work on that research field.
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Chapter 1

Preliminaries

Consider an investor who wants to decide what financial position he should take. Because
of the uncertainty of the future, it is important not only to maximize the income but
also to compare risks associated with every possible choice. The aim of this chapter is to
make this feasible by introducing the definition of risk and by presenting the most popular
methods of its measurement.

1.1. Static risk measures

As a starting point we choose a static setting. In other words, we suppose that the investor
is interested in rating his position only once, at the beginning (at time t = 0).

1.1.1. Definitions and characterization

Let (Ω,F , P) be a given probability space. At once we note that throughout the whole the-
sis all equalities, inequalities etc. between random variables are understood in a P-almost
sure sense.

A random variable X : Ω → R, which represents a discounted future value of a financial
position, is called a risk. By X we denote the set of all risks to be investigated, i.e., X ⊂
L0(Ω,F , P). It will be seen later that we often restrict ourselves to the space Lp(Ω,F , P)
for some p ∈ [1, +∞].

Definition 1.1. A (static) measure of risk (risk measure) is a mapping ρ : X → R̄ satis-
fying the following conditions:

• monotonicity: ρ (X1) ≤ ρ (X2) for all X1, X2 ∈ X with X1 ≥ X2,

• translation invariance: ρ(X + c) = ρ(X) − c for X ∈ X and c ∈ R.

Since the above definition is very broad, it is reasonable to narrow down the class of all risk
measures. It can certainly be done in many ways, but analists mostly consider coherent or
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1 Preliminaries

convex measures of risk. Historically the notion of coherence was introduced by Philippe
Artzner et al. in [ADEH 99]. Next Hans Föllmer and Alexander Schied generalized it by
defining convex risk measures (see [FS 04]). In this thesis we mainly concentrate on them.
The motivation for that may be found in the later part of this section.

Definition 1.2. A risk measure ρ : X → R̄ is convex if

ρ (λX1 + (1 − λ)X2) ≤ λρ (X1) + (1 − λ)ρ (X2) for X1, X2 ∈ X and 0 ≤ λ ≤ 1.

Definition 1.3. A mapping ρ : X → R̄ is called a coherent risk measure if it is a measure
of risk satisfying the following statements:

• subadditivity: ρ (X1 + X2) ≤ ρ (X1) + ρ (X2) for X1, X2 ∈ X ,

• positive homogeneity: ρ(λX) = λρ(X) if λ ≥ 0 and X ∈ X .

It is immediately clear that every coherent risk measure is convex. Conversely, a convex
measure of risk for which the positive homogeneity condition is fulfilled is coherent as well.

Some simple properties of risk measures are given by the following proposition:

Proposition 1.4. For a risk measure ρ : X → R̄ we have

ρ (X + ρ(X)) = 0 for X ∈ X when |ρ(X)| < +∞.

If additionally ρ is positive homogeneous, then it holds that

(1) ρ(0) = 0, i.e., ρ is normalized,

(2) ρ(c) = −c for all c ∈ R.

Proof. Fix X ∈ X such that |ρ(X)| < +∞. By translation invariance one has

ρ (X + ρ(X)) = ρ(X) − ρ(X) = 0.

If ρ is positive homogeneous, then ρ(0) = ρ(2 · 0) = 2ρ(0), so

ρ(0) = 0.

Therefore
ρ(c) = ρ(0) − c = −c, c ∈ R.

Since
ρ (X + ρ(X)) = 0,

ρ(X) can be seen as an amount of money that has to be added to the risk X to make
it acceptable to the investor. In that connection it is obvious that each measure of risk
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1.1 Static risk measures

has to be translation invariant. Furthermore, a position giving higher income is less risky,
so monotonicity seems to be rational as well. Subadditivity is less intuitive. But consider
a firm with two departments. Under the subadditivity condition it suffices to compute
ρ(X) and ρ(Y ) for risks X and Y associated with positions of every department sepa-
rately, because ρ(X +Y ) is upper bounded by ρ(X)+ρ(Y ). Sometimes it is regarded that
the value of the risk measure should be proportional to the risk. It leads us to positive
homogeneity. However, some people find this axiom too strict. All that proves that the
research on convex measures of risk is really worthwhile.

We have already introduced the notion of a coherent risk measure. However, it is still not
specified how it can be constructed. Due to that, we present a theorem that characterizes
the class of coherent risk measures.

Definition 1.5. A risk measure ρ : Lp(Ω,F , P) → R̄, p ∈ [1, +∞), satisfies the Lp-Fatou
property if for each bounded sequence (Xn)n∈N ⊂ Lp(Ω,F , P) and X ∈ Lp(Ω,F , P) such

that Xn
Lp

−−−→
n→∞

X the following inequality holds:

ρ(X) ≤ lim inf
n→∞

ρ (Xn) .

Theorem 1.6. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. Then a mapping
ρ : Lp(Ω,F , P) → R̄ is a coherent risk measure satisfying the Lp-Fatou property if and only
if there exists a convex Lq(P)-closed and Lq(P)-bounded set Q of probability measures that
are absolutely continuous with respect to P such that

ρ(X) = sup
Q∈Q

EQ(−X), X ∈ Lp(Ω,F , P).

For the proof the reader is referred to [I 03] (Theorem 1.1).

The above theorem is a useful tool if we want to decide whether a risk measure is coherent
or not. A plain application of it can be found below.

(1) Consider a negative expectation ρNE defined by

ρNE(X) = E(−X).

A set of probability measures associated with ρNE is just the singleton {P}, thus ρNE

is coherent.

(2) Let ρWC be given by
ρWC(X) = ess sup(−X).

The mapping ρWC is called a worst-case risk measure. It holds that

ρWC(X) = sup
Q∈Q

EQ(−X)

for Q = {Q � P}, so Theorem 1.6 guarantees coherence of ρWC. Note that if ρ is
a coherent risk measure with the Fatou property, one has ρ ≤ ρWC.
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1 Preliminaries

1.1.2. Value at Risk

We have already defined two coherent risk measures, a negative expectation and a worst-
case measure. But, because of their simplicity, they are not very popular. Here and in the
next section we introduce risk measures that are more applied in risk management.

A well-known risk measure that is widely used by financial institutions is the Value at Risk.
Later on we will see that it is not convex and, as a consequence, increasingly criticized.
Now we present its definition.

Definition 1.7. The Value at Risk at a level α ∈ (0, 1] of a risk X is given by

VaRα X = −q+
X(1 − α),

where q+
X(1 − α) is the upper (1 − α)-quantile of X (see Proposition A.2).

Proposition 1.8. For X ∈ X and α ∈ (0, 1] the following equalities are satisfied:

VaRα X = q−−X(α) = inf {x ∈ R | P(X + x < 0) ≤ 1 − α} . (1.1)

Proof. By (A.1) we obtain

q−−X(α) = sup {x | P(−X < x) < α} = sup {x | P(X ≤ −x) > 1 − α}

= − inf {x | P(X ≤ x) > 1 − α} = −q+
X(1 − α) = VaRα X.

In a similar way we get that

q−−X(α) = inf {x | P(X + x < 0) ≤ 1 − α} .

Since
VaRα X = inf {x ∈ R | P(X + x < 0) ≤ 1 − α} ,

VaRα X can be interpreted as an amount of money that needs to be added to make sure
that the probability of a loss is less than or equal to 1 − α. Due to that, Value at Risk is
usually computed for a safety level α large enough (close to 1).

We have already mentioned that the Value at Risk is not coherent. Now it is an appropriate
moment to verify this assertion.

Remark 1.9. For a fixed α ∈ (0, 1] VaRα is monotone, translation invariant and positive
homogeneous, but it is not subadditive.

Proof.

• Monotonicity : Take risks X1, X2 ∈ X such that X1 ≥ X2. Then

AX2 := {x | P (X2 + x < 0) ≤ 1 − α} ⊂ {x | P (X1 + x < 0) ≤ 1 − α} =: AX1

and, as a result of Proposition 1.8,

VaRα X2 = inf AX2 ≥ inf AX1 = VaRα X1.
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1.1 Static risk measures

• Translation invariance: A risk X ∈ X and c ∈ R satisfy

VaRα(X + c) = inf {x | P(X + c + x < 0) ≤ 1 − α}

= inf {x | P(X + x < 0) ≤ 1 − α} − c = VaRα X − c.

• Positive homogeneity : It can be shown in the same manner as translation invariance.

• No subadditivity : Let X1, X2 be independent random variables Bernoulli distributed.
More precisely,

X1 =

{

200 with probability 0.9

−100 with probability 0.1,
X2 =

{

200 with probability 0.9

−100 with probability 0.1.

Then

X1 + X2 =











400 with probability 0.81

100 with probability 0.18

−200 with probability 0.01.

We know that VaR0.9 X1 = VaR0.9 X2 = −200. On the other hand, VaR0.9 (X1 + X2)
= −100. Hence

VaR0.9 (X1 + X2) = −100 > −400 = VaR0.9 X1 + VaR0.9 X2.

1.1.3. Average Value at Risk

We have already shown that the Value at Risk is not subadditive. Because of that the
Average Value at Risk (often called the Conditional Value at Risk or the Expected Shortfall)
was constructed. Due to its coherence, the Average Value at Risk has become very popular
and displaced the Value at Risk.

Definition 1.10. For a risk X ∈ X and α ∈ (0, 1) we define the Average Value at Risk by

AVaRα X =
1

1 − α

∫ 1

α

VaRγ X dγ.

As the name suggests, the Average Value at Risk at a level α is simply the conditional
expectation of the Value at Risk at γ given that γ ≥ α.

11



1 Preliminaries

It is possible to extend the above definition for safety levels α = 0 and α = 1. Namely,
applying Lemma A.6, we get that

AVaR0 X :=

∫ 1

0

VaRγ dγ = −

∫ 1

0

q+
X(1 − γ) dγ = −

∫ 1

0

q+
X(γ) dγ = E(−X),

AVaR1 X := lim
α→1

AVaRα X = lim
α→1

1

1 − α

∫ 1

α

VaRγ X dγ = lim
α→1

VaRα X = VaR1 X

= inf {x | P(−X > x) = 0} = ess sup(−X).

In practice, computing the Average Value at Risk directly from its definition is quite
complicated and takes a lot of time. However, it turns out that it can also be obtained as
a solution for a certain optimization problem.

Lemma 1.11. Let α ∈ (0, 1) and q be a (1−α)-quantile of X. Then the following equalities
hold

AVaRα X =
1

1 − α
E(X − q)− − q = inf

x∈R

(

1

1 − α
E(X + x)− + x

)

, X ∈ X . (1.2)

Moreover, the above infimum is attained at VaRα X.

Proof. By Lemma A.6 we have

E(X − q)− =

∫ 1

0

(

q+
X(γ) − q

)−
dγ =

∫ 1−α

0

(

q − q+
X(γ)

)

dγ = (1 − α)q −

∫ 1

α

q+
X(1 − γ) dγ

= (1 − α)q +

∫ 1

α

VaRγ X dγ = (1 − α) (AVaRα X + q) ,

so the first equality is satisfied.

To prove the second one we define

Ψ(x) = E(X − x)−.

Because of Lemma A.6, it holds true that

Ψ(x) =

∫ 1

0

(

q+
X(γ) − x

)−
dγ.

Let F be the cumulative distribution function of X. Then, by Fubini’s theorem,

∫ x

−∞

F (t) dt =

∫ x

−∞

E 11{X≤t} dt = E

(∫ x

−∞

11{X≤t} dt

)

= E

(∫ x

min{X,x}

dt

)

= E(X − x)−

= Ψ(x).

It follows that Ψ is increasing and convex.
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1.1 Static risk measures

Note that if Ψ∗ denotes the Fenchel–Legendre transform of Ψ restricted to [0, 1], Ψ∗ is
given by

Ψ∗ : [0, 1] 3 y 7→ sup
x∈R

(xy − Ψ(x)) =

∫ y

0

q+
X(γ) dγ.

Indeed,

• For y = 0: Ψ∗(0) = supx (−Ψ(x)) = − infx Ψ(x) = − limx↘−∞ Ψ(x) = 0.

• For y = 1: x − Ψ(x) = x −
∫ 1

0

(

q+
X(γ) − x

)−
dγ =

∫ 1

0
min

{

x, q+
X(γ)

}

dγ, thus the
function x 7→ x − Ψ(x) is increasing. As a consequence, Ψ∗(1) = supx (x − Ψ(x)) =

limx↗+∞

∫ 1

0
min

{

x, q+
X(γ)

}

dγ =
∫ 1

0
q+
X(γ) dγ.

• For 0 < y < 1: we know that the function f : x 7→ xy − Ψ(x) is concave. More-
over, f ′

+(x) = y − F (x) and f ′
−(x) = y − F (x−). Hence x0 maximizes f if and

only if F (x0−) ≤ y ≤ F (x0). In other words, x0 is a maximizer of f if it is
a y-quantile of X. Then we write x0 = qX(y) and Ψ∗(y) = supx (xy − Ψ(x)) =

x0y −
∫ 1

0

(

q+
X(γ) − x0

)−
dγ = x0y −

∫ y

0

(

x0 − q+
X(γ)

)

dγ =
∫ y

0
q+
X(γ) dγ.

Therefore

inf
x∈R

(

E(X + x)− + (1 − α)x
)

= − sup
x∈R

((1 − α)x − Ψ(x)) = −Ψ∗(1 − α)

= −

∫ 1−α

0

q+
X(γ) dγ = −

∫ 1

α

q+
X(1 − γ) dγ =

∫ 1

α

VaRγ X dγ

= (1 − α) AVaRα X.

It has been mentioned that the Average Value at Risk is coherent. Now we develop a the-
orem verifying this statement.

Theorem 1.12. For α ∈ [0, 1) and X ∈ L∞(Ω,F , P) it holds that

AVaRα X = sup
Q∈Q

EQ(−X), where Q =

{

Q � P

∣

∣

∣

dQ

dP
≤

1

1 − α

}

.

Proof. First notice that for α = 0 it holds that AVaR0 X = E(−X) = supQ∈Q EQ(−X) for
Q = {P}, so the statement is obvious.

Now assume that α ∈ (0, 1). Let ρ be given by

ρ(X) = sup
Q∈Q

EQ(−X)

for Q as in the formulation of the theorem.
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1 Preliminaries

Take X ∈ L∞(Ω,F , P) with X < 0. Define a probability measure P̃ by the Radon–Nikodym
derivative

dP̃

dP
=

X

EX
.

Then P̃ is equivalent to P and

ρ(X) = sup
Q∈Q

EQ(−X) = sup
Q∈Q

EP̃

(

−X
dQ

dP

dP

dP̃

)

=
E(−X)

1 − α
sup
ϕ∈A

EP̃ ϕ

for A = {0 ≤ ϕ ≤ 1 | E ϕ = 1 − α}.

Let q denote a (1 − α)-quantile of X. One has P(X < q) ≤ 1 − α < 1 = P(X < 0) and
thus q < 0. We define

ϕ0 = 11{X<q} +κ 11{X=q}, where κ =

{

1−α−P(X<q)
P(X=q)

, P(X = q) > 0

0, P(X = q) = 0.

Since P(X < q) ≤ 1−α and 1−α−P(X < q) = 1−α−P(X ≤ q)+P(X = q) ≤ P(X = q),
we get that 0 ≤ κ ≤ 1 and also 0 ≤ ϕ0 ≤ 1. It is easy to see that if P(X = q) = 0, then
P(X < q) = P(X ≤ q) = 1 − α. Hence

E ϕ0 = P(X < q) + κ P(X = q) = 1 − α

and ϕ0 ∈ A.

We know that for every ϕ ∈ A it holds that

(ϕ0 − ϕ)

(

dP̃

dP
−

q

EX

)

=
(ϕ0 − ϕ)(X − q)

EX
≥ 0.

Therefore

EP̃ ϕ0 − EP̃ ϕ = E

(

(ϕ0 − ϕ)
dP̃

dP

)

≥ E

(

(ϕ0 − ϕ)
q

EX

)

=
q

EX
E(ϕ0 − ϕ) = 0.

We get that
EP̃ ϕ0 = sup

ϕ∈A

EP̃ ϕ

and then

ρ(X) =
E(−X)

1 − α
EP̃ ϕ0 =

E(−X)

1 − α
E

(

ϕ0
dP̃

dP

)

= −
E(ϕ0X)

1 − α

= −
1

1 − α

(

−E(X − q)− + q P(X < q) + κq P(X = q)
)

=
1

1 − α
E(X − q)− − q.
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1.2 Conditional risk measures

Finally, by (1.2),

ρ(X) = AVaRα X.

Now take an arbitrary X ∈ L∞(Ω,F , P). Then c := supω∈Ω X + 1 < ∞ and, by the first
part of the proof,

AVaRα X =
1

1 − α

∫ 1

α

VaRγ X dγ =
1

1 − α

∫ 1

α

VaRγ(X − c) dγ − c = AVaRα(X − c) − c

= sup
Q∈Q

EQ(−X + c) − c = sup
Q∈Q

EQ(−X),

so we are done.

Corollary 1.13. For α ∈ [0, 1) the Average Value at Risk AVaRα : L∞(Ω,F , P) → R̄ is
coherent and satisfies the Fatou property.

Proof. The assertion follows from Theorem 1.6 and Theorem 1.12.

1.2. Conditional risk measures

In this section we aim to extend the definition of a static risk measure. More precisely, we
want to allow the investor to rate his positions only once, but at time t ∈ [0, T ), where
T > 0 is the terminal date.

1.2.1. Definitions

Suppose that we are given a sub-σ-algebra G in addition to the probability space (Ω,F , P).
G can be interpreted as knowledge about the underlying risk at time t. Then, intuitively,
a conditional measure of risk should be a mapping from X to the set of G-measurable
random variables. Here we limit ourselves to all Lp-integrable risks, i.e., X = Lp(Ω,F , P).

Let L0(Ω,G, P) denote the set of all random variables measurable with respect to (G, B̄),
where B̄ is the Borel σ-algebra of R̄.

Definition 1.14. A mapping ρ( · | G) : Lp(Ω,F , P) → L0(Ω,G, P), p ∈ [1, +∞), is a con-
ditional risk measure if it is

• monotone: ρ (X1| G) ≤ ρ (X2| G) for all X1, X2 ∈ Lp(Ω,F , P) with X1 ≥ X2,

• conditional translation invariant: ρ(X + Y | G) = ρ(X| G) − Y for X ∈ Lp(Ω,F , P)
and Y ∈ Lp(Ω,G, P).

Analogously to the previous section we also define a convex (respectively coherent) condi-
tional measure of risk.
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1 Preliminaries

Definition 1.15. A conditional risk measure ρ( · | G) : Lp(Ω,F , P) → L0(Ω,G, P) is convex
if for all X1, X2 ∈ Lp(Ω,F , P) and Λ ∈ Lp (Ω,G, P) such that 0 ≤ Λ ≤ 1 it holds that

ρ (ΛX1 + (1 − Λ)X2| G) ≤ Λρ (X1| G) + (1 − Λ)ρ (X2| G) .

Definition 1.16. A conditional risk measure ρ( · | G) : Lp(Ω,F , P) → L0(Ω,G, P) is called
coherent if it satisfies the following properties:

• subadditivity: ρ (X1 + X2| G) ≤ ρ (X1| G) + ρ (X2| G) for X1, X2 ∈ Lp(Ω,F , P),

• conditional positive homogeneity: ρ(ΛX| G) = Λρ(X| G) if Λ ∈ Lp
+(Ω,G, P) and

X ∈ Lp(Ω,F , P).

Recall that we investigated static risk measures under the assumption that the risk mea-
surement takes place only at t = 0. Due to the fact that there is no additional information
about risk available at this time, we set G = {∅, Ω}. Then, for every X ∈ X , ρ(X) is
G-measurable as a constant and thus ρ = ρ( · | G). It proves that the static risk measure is
just a trivial case of the conditional one.

The simplest example of a conditional coherent risk measure is given by

ρ(X| G) = E (−X| G) for X ∈ Lp(Ω,F , P).

ρ( · | G) is called a negative conditional expectation.

1.2.2. Conditional Value at Risk

Now we present a more complicated example of a conditional risk measure, the Conditional
Value at Risk. As we will see, it is a natural extension of the Value at Risk.

Let p ∈ [1, +∞) and X ∈ Lp(Ω,F , P). Theorem A.8 guarantees the existence of a proba-
bility kernel P (X,G) : Ω × B → [0, 1] from (Ω,G) to (R,B) such that

P (X,G)( · , B) = P(X ∈ B| G)( · ) P-a.s.

for B ∈ B. Knowing that we can define the Conditional Value at Risk.

Definition 1.17. The Conditional Value at Risk of X ∈ Lp(Ω,F , P) at a level α ∈ (0, 1)
is given by

VaRα(X| G)(ω) = VaRα

(

P (X,G)(ω, · )
)

.

By Proposition 1.8 and law invariance we get

VaRα(X| G)(ω) = VaRα

(

P (X,G)(ω, · )
)

= VaRα (P(X ∈ · | G)(ω))

= inf {x ∈ R | P(X + x < 0 | G)(ω) ≤ 1 − α} .
(1.3)

It is not immediately clear that VaRα(X| G) is G-measurable. But we have the following
theorem:
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1.2 Conditional risk measures

Theorem 1.18. For every X ∈ Lp(Ω,F , P) and α ∈ (0, 1) the function VaRα(X| G) : Ω →
R is G-measurable.

Moreover, VaRα( · | G) is monotone, conditional translation invariant and conditional pos-
itive homogeneous.

Proof. To show that VaRα(X| G) is a G-measurable function it suffices to prove that for
each x ∈ R the following holds

(VaRα(X| G))−1 ((−∞, x]) ∈ G.

We have

(VaRα(X| G))−1 ((−∞, x]) = {ω | VaRα(X| G)(ω) ≤ x}

= {ω | inf {y | P(X + y < 0 | G)(ω) ≤ 1 − α} ≤ x}

= {ω | P(X + x < 0 | G)(ω) ≤ 1 − α}

=
{

ω | P (X,G) (ω, (−∞,−x)) ≤ 1 − α
}

=
(

P (X,G) ( · , (−∞,−x))
)−1

([0, 1 − α]) ∈ G,

since (−∞,−x) ∈ B and, as a consequence, P (X,G) ( · , (−∞,−x)) is G-measurable.

Now we move on to properties of the Conditional Value at Risk.

• Monotonicity : Take risks X1, X2 ∈ Lp(Ω,F , P) such that X1 ≥ X2. Then

{x | P (X2 + x < 0 | G) (ω) ≤ 1 − α} ⊂ {x | P (X1 + x < 0 | G) (ω) ≤ 1 − α}

and consequently

VaRα (X2| G) (ω) ≥ VaRα (X1| G) (ω) for every ω ∈ Ω.

Conditional translation invariance and conditional positive homogeneity can be proved in
a similar way. Here we concentrate on homogeneity.

• Conditional positive homogeneity : Let X ∈ Lp(Ω,F , P) and Λ ∈ Lp
+(Ω,G, P). Ap-

plying Proposition 2.13 from [YZ 99] we get that

VaRα(ΛX| G)(ω) = inf {x | P(ΛX + x < 0 | G)(ω) ≤ 1 − α}

= inf {x | P (Λ(ω)X + x < 0 | G) (ω) ≤ 1 − α} .

First suppose that ω ∈ Ω is such that Λ(ω) = 0. Then

VaRα(ΛX| G)(ω) = 0 = Λ(ω) VaRα(X| G)(ω).

Now assume that Λ(ω) > 0. We have

VaRα(ΛX| G)(ω) = Λ(ω) inf {x | P (X + x < 0 | G) (ω) ≤ 1 − α}

= Λ(ω) VaRα(X| G)(ω).

Because for the trivial sub-σ-algebra G = {∅, Ω} VaRα( · | G) coincides with VaRα, the
Conditional Value at Risk is not subadditive.

17
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1.2.3. Conditional Average Value at Risk

Like in the previous section, we define the Conditional Average Value at Risk by analogy
to the Average Value at Risk (see Lemma 1.11).

We use the following notation: L0
G = L0(Ω,G, P).

Definition 1.19. For X ∈ Lp(Ω,F , P), p ∈ [1, +∞), and α ∈ (0, 1) we define a mapping

AVaRα(X| G) : Ω 3 ω 7→ inf
Y ∈L0

G

E

(

1

1 − α
(X + Y )− + Y

∣

∣

∣
G

)

(ω),

which is called the Conditional Average Value at Risk.

Again we have a theorem concerning measurability of the risk measure defined above.

Theorem 1.20. For X ∈ Lp(Ω,F , P) and α ∈ (0, 1) we know that AVaRα(X| G) : Ω → R̄

is G-measurable.

The infimum in Definition 1.19 is attained at VaRα(X| G), i.e.,

AVaRα(X| G) = VaRα(X| G) +
1

1 − α
E
(

(X + VaRα(X| G))− | G
)

. (1.4)

In addition, AVaRα( · | G) is coherent.

Proof. Due to Proposition 2.13 in [YZ 99], we know that

AVaRα(X| G)(ω) = inf
Y ∈L0

G

E

(

(X + Y )−

1 − α
+ Y

∣

∣

∣
G

)

(ω)

= inf
Y ∈L0

G

E

(

(X + Y (ω))−

1 − α
+ Y (ω)

∣

∣

∣
G

)

(ω).

For Y ∈ L0
G the value of E

(

(X + Y (ω))− /(1 − α) + Y (ω) | G
)

(ω) depends on Y only by
Y (ω). Hence, by Lemma 1.11,

AVaRα(X| G)(ω) = VaRα(X| G)(ω) +
1

1 − α
E
(

(X + VaRα(X| G))− | G
)

(ω).

VaRα(X| G) and E
(

(X + VaRα(X| G))− | G
)

are G-measurable, hence AVaRα(X| G) is G-
measurable as well.

Coherence of AVaRα( · | G) can be easily proved by applying Proposition 2.13 from [YZ 99]
again. We skip it.

18



Chapter 2

Dynamic risk measures

Risk measurement is aimed at dealing with the uncertainty of the future and should pre-
vent us from potential losses. However, as time goes by, the world is changing. In that
connection there is a need to extend the notion of the conditional risk measure to a dy-
namic setting.

Recall our investor. Suppose that the last of his financial positions will have expired
by T > 0. Let T stand for the set of all time instants up to T . In other words,
T = {0, 1, . . . , T} or T = [0, T ], depending on whether we treat time in a discrete manner
or not. By T− we denote the set T \ T , i.e., T− = {0, 1, . . . , T − 1} or T− = [0, T ), re-
spectively. The investor would like to assign his positions repeatedly, for every t ∈ T−, to
make his measurements update constantly. Hence we have to construct a process of risk
measures that is adapted to accessible information.

First we discuss dynamic risk measures for final payments. Next, having already some
knowledge about them, we will move on to ones for general processes.

2.1. Continuous time dynamic risk measures for final pay-

ments

In this section we deal with the case of continuous time, so T = [0, T ]. Let (Ω,F , P) be
a probability space endowed with a filtration (Ft)t∈T such that F0 = {∅, Ω} and FT = F .
Certainly, Ft, t ∈ T , stands for a situation in the market at time t. As before, we want
to rate positions we are interested in, but now they are no longer random variables, but
stochastic processes. Here we restrict ourselves to ones with only final payments, i.e., we
consider processes (Xt)t∈T with Xt = 0 for t 6= T . Then (Xt)t∈T can simply be identified
with the random variable XT . As a consequence, from a practical point of view, nothing
changes and the set of positions X is a subset of L0(Ω,F , P). Now we are ready to introduce
a dynamic measure of risk for final payments.
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2 Dynamic risk measures

2.1.1. Definitions

Definition 2.1. A mapping ρ : Ω × T− × X 3 (ω, t, X) 7→ ρ(ω, t, X) = ρt(X)(ω) ∈ R̄ is
called a dynamic risk measure for final payments if the following conditions are met:

• the process (ρt(X))t∈T−
is (Ft)t∈T−-adapted,

• ρ is monotone: ρt (X1) ≤ ρt (X2), t ∈ T−, if X1, X2 ∈ X and X1 ≥ X2,

• ρ is dynamic translation invariant: it holds that ρt(X + Y ) = ρt(X) − Y for t ∈ T−,
X, Y ∈ X such that Y is Ft-measurable.

The above is strikingly similar to Definition 1.14. The same holds true for the interpreta-
tion, so we do not repeat it. Instead we introduce convexity and coherence in the current
framework. As we will see, they are already familiar too.

Definition 2.2. A dynamic risk measure for final payments ρ : Ω× T− ×X → R̄ is called
convex if for t ∈ T− and an Ft-measurable random variable Λ ∈ X such that 0 ≤ Λ ≤ 1
we have

ρt (ΛX1 + (1 − Λ)X2) ≤ Λρt(X1) + (1 − Λ)ρt(X2), X1, X2 ∈ X .

Definition 2.3. A dynamic risk measure for final payments ρ : Ω×T−×X → R̄ is coherent
if it satisfies the following properties:

• subadditivity: ρt(X1 + X2) ≤ ρt(X1) + ρt(X2) if t ∈ T− and X1, X2 ∈ X ,

• dynamic positive homogeneity: ρt(ΛX) = Λρt(X) for t ∈ T−, X ∈ X and Ft-
measurable Λ ∈ X with Λ ≥ 0.

2.1.2. Groundwork

We aim to characterize the class of coherent dynamic risk measures in a similar way as in
Theorem 1.6. But we start with developing a representation theorem for convex dynamic
measures of risk. We introduce the technical property that is necessary for the formulation.

Definition 2.4. Let p ∈ [1, +∞). We say that a dynamic risk measure for final payments
ρ : Ω × T− × Lp(Ω,F , P) → R̄ satisfies the Lp-Fatou property if for a bounded sequence

(Xn)n∈N ⊂ Lp(Ω,F , P) and X ∈ Lp(Ω,F , P) such that Xn
Lp

−−−→
n→∞

X it holds true that

ρt(X) ≤ lim inf
n→∞

ρt(Xn), t ∈ T−.

Suppose that ρ : Ω × T− × X → R̄ is a dynamic risk measure. Fix t ∈ T−. Then

Aρ
t = {X ∈ X | ρt(X) ≤ 0}

is called an acceptance set. The name is reasonable, since if ρt(X) ≤ 0 for a certain position
X, then we want to take it.
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2.1 Continuous time dynamic risk measures for final payments

Theorem 2.5. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. If ρ : Ω × T− ×
Lp(Ω,F , R) → R̄ is a convex dynamic risk measure for final payments, then equivalent are:

(1) There exists a mapping α : Ω × T− ×Qq → (−∞, +∞] such that

ρt(X) = ess sup
Q∈Qq

(EQ(−X| Ft) − αt(Q)) , X ∈ Lp(Ω,F , P),

where Qq = {Q � P | dQ/dP ∈ Lq(Ω,F , P)}.

More precisely, α is given by

αt(Q) = ess sup
X∈Aρ

t

EQ(−X| Ft).

(2) For t ∈ T− the acceptance set Aρ
t = {X ∈ Lp(Ω,F , P) | ρt(X) ≤ 0} is ‖ · ‖p-closed.

(3) The risk measure ρ satisfies the Lp-Fatou property.

Proof.
(1) ⇒ (3): It is obvious.

(3) ⇒ (2): For any sequence (Xn)n∈N ⊂ Aρ
t with Xn

Lp

−→ X there exists N ∈ N such that
(Xn)n≥N is bounded. Since the Fatou property holds, we get that

ρt(X) ≤ lim inf
n→∞

ρt(Xn) ≤ 0,

so X ∈ Aρ
t . In that case Aρ

t is ‖ · ‖p-closed.

(2) ⇒ (1): Define α as in the formulation of the theorem and set

ϕt(X) = ess sup
Q∈Qq

(EQ(−X| Ft) − αt(Q)) , Qq =

{

Q � P

∣

∣

∣

dQ

dP
∈ Lq(Ω,F , P)

}

. (2.1)

Since

αt(Q) = ess sup
X∈Aρ

t

EQ(−X| Ft) = ess sup
X∈L

p
F

(EQ(−X| Ft) − ρt(X)) ,

we immediately get that

ϕt(X) ≤ ρt(X), X ∈ Lp(Ω,F , P).

To prove the opposite inequality it suffices to show that if Z ∈ Lp (Ω,Ft, P) with Z ≥
ϕt(X), then it also holds that Z ≥ ρt(X). For the indirect proof suppose that there exist
X ∈ Lp(Ω,F , P) and Z ∈ Lp (Ω,Ft, P) such that Z ≥ ϕt(X), but Z < ρt(X) with positive
probability. The latter is equivalent to X + Z /∈ Aρ

t , because ρt(X + Z) = ρt(X) − Z. We
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2 Dynamic risk measures

know that Aρ
t is ‖ · ‖p-closed, {X + Z} is compact and both are convex. Hence, by the

separation theorem for convex sets (see Theorem A.10), there exists a linear continuous
functional l : Lp(Ω,F , P) → R such that

l(X + Z) < inf
Y ∈Aρ

t

l(Y ). (2.2)

Observe that

l(Y ) ≥ 0 if Y ≥ 0. (2.3)

Indeed, for λ ≥ 0 and Y ∗ ≥ 0, λY ∗ ∈ Aρ
t . Therefore l(X + Z) < infY ∈Aρ

t
l(Y ) ≤ l (λY ∗) =

λ l (Y ∗) and thus −∞ < l(X + Z) ≤ limλ↗+∞ λ l (Y ∗). Finally l (Y ∗) ≥ 0.

The Riesz representation theorem (Theorem A.11) guarantees the existence of a function
g ∈ Lq(Ω,F , P) with

l(X) = E(Xg). (2.4)

Because of (2.3), g ≥ 0. Furthermore, due to (2.2), l 6= 0. The latter is equivalent to
P(g = 0) < 1, so P(g > 0) > 0. Therefore we can define a probability measure Q by its
Radon–Nikodym derivative with respect to P as follows:

dQ

dP
=

g

Eg
.

Obviously, Q ∈ Qq. Using (2.4) and (2.2) we get

EQ (−(X + Z)) = −
l(X + Z)

Eg
> − inf

Y ∈Aρ
t

l(Y )

Eg
= sup

Y ∈Aρ
t

l(−Y )

Eg
= sup

Y ∈Aρ
t

EQ(−Y ). (2.5)

Now we want to show that

sup
Y ∈Aρ

t

EQ(−Y ) = EQ (αt(Q)) . (2.6)

Since EQ(−Y ) = EQ (EQ(−Y |Ft)) ≤ EQ (αt(Q)), Y ∈ Aρ
t , it holds that

sup
Y ∈Aρ

t

EQ(−Y ) ≤ EQ (αt(Q)) .

Fix Y1, Y2 ∈ Aρ
t and set Y3 = 11B Y1 + 11Bc Y2, where B = {EQ(−Y1| Ft) ≥ EQ(−Y2| Ft)}.

Then Y3 ∈ Aρ
t and, because B ∈ Ft,

EQ(−Y3| Ft) = 11B EQ(−Y1| Ft) + 11Bc EQ(−Y2| Ft) ≥ EQ(−Y1| Ft) ∨ EQ(−Y2| Ft).

Therefore the family FQ = {EQ(−Y | Ft) | Y ∈ Aρ
t} is directed upwards and, due to Theo-

rem A.12, there exists a sequence (Yn)n∈N such that

EQ(−Yn| Ft) ↗ ess sup
Y ∈Aρ

t

EQ(−Y | Ft) = αt(Q).
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2.1 Continuous time dynamic risk measures for final payments

Hence, by the monotone convergence theorem,

sup
Y ∈Aρ

t

EQ(−Y ) ≥ lim
n→∞

EQ(−Yn) = lim
n→∞

EQ (EQ(−Yn| Ft)) = EQ

(

lim
n→∞

EQ(−Yn| Ft)
)

= EQ (αt(Q)) ,

so (2.6) is satisfied.

Finally, applying consecutively (2.5), (2.6) and (2.1) we get that

EQ (ϕt(X)) ≤ EQZ < EQ(−X) − sup
Y ∈Aρ

t

EQ(−Y ) = EQ (−X − αt(Q))

= EQ (EQ(−X| Ft) − αt(Q)) ≤ EQ (ϕt(X)) ,

which yields a contradiction, thus

ϕt(X) = ρt(X), X ∈ Lp(Ω,F , P).

Now, by Theorem 2.5, we quickly obtain the next result.

Theorem 2.6. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. Suppose that
ρ : Ω×T−×Lp(Ω,F , R) → R̄ is a coherent dynamic risk measure for final payments. Then
the following are equivalent:

(1) For every t ∈ T− there exists a convex Lq(P)-closed set Qt
q such that

ρt(X) = ess sup
Q∈Qt

q

EQ(−X| Ft), X ∈ Lp(Ω,F , P).

More precisely, the set Qt
q is of the form

Qt
q =

{

Q � P

∣

∣

∣

dQ

dP
∈ Lq(Ω,F , P), αt(Q) = 0

}

,

where αt is the Legendre–Fenchel transform of ρt given by

αt(Q) = ess sup
X∈Aρ

t

EQ(−X| Ft).

(2) For t ∈ T− the acceptance set Aρ
t = {X ∈ Lp(Ω,F , P) | ρt(X) ≤ 0} is ‖ · ‖p-closed.

(3) ρ satisfies the Lp-Fatou property.
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Proof. The fact that assertion (1) implies assertion (3) is obvious. Moreover, from Theo-
rem 2.5 it follows that the implication (3) ⇒ (2) is true as well.

(2) ⇒ (1): Fix t ∈ T− and define Qt
q by

Qt
q =

{

Q � P

∣

∣

∣

dQ

dP
∈ Lq(Ω,F , P), αt(Q) = 0

}

.

First we verify the convexity of Qt
q. Take Q1, Q2 ∈ Qt

q and α ∈ [0, 1]. For a probability mea-
sure Q, given by Q = λQ1+(1−α)Q2, and X ∈ Aρ

t we define a set AX
Q = {EQ(−X| Ft) > 0}.

Then AX
Q ∈ Ft and

∫

AX
Q

EQ(−X| Ft) dQ ≥ 0. On the other hand,

∫

AX
Q

EQ(−X| Ft) dQ =

∫

AX
Q

−X dQ = λ

∫

AX
Q

−X dQ1 + (1 − λ)

∫

AX
Q

−X dQ2

= λ

∫

AX
Q

EQ1(−X| Ft) dQ1 + (1 − λ)

∫

AX
Q

EQ2(−X| Ft) dQ2

≤ λαt (Q1) + (1 − λ)αt (Q2) = 0.

Hence Q
(

AX
Q

)

= 0. It follows that 0 ≤ αt(Q) = ess supX∈Aρ
t
EQ(−X| Ft) ≤ 0, so Q ∈ Qt

q.
Therefore Qt

q is indeed convex.

In a similar way we check whether Qt
q is Lq(P)-closed. Fix a sequence (Qn)n∈N ⊂ Qt

q and
Q such that dQn/dP → dQ/dP in Lq as n → ∞. Then we also have the weak convergence
in Lq and, in particular,

0 ≤

∫

AX
Q

EQ(−X| Ft) dQ =

∫

AX
Q

−X dQ = lim
n→∞

∫

AX
Q

−X dQn = lim
n→∞

∫

AX
Q

EQn
(−X| Ft) dQn

≤ lim
n→∞

αt (Qn) = 0, X ∈ Aρ
t , AX

Q = {EQ (−X| Ft) > 0} .

Again αt(Q) = 0 and Q ∈ Qt
q.

Furthermore, note that αt (Q
∗) ∈ {0, +∞}, Q∗ ∈ Qq = {Q � P | dQ/dP ∈ Lq(Ω,F , P)}.

It is obvious that αt (Q∗) ≥ 0. Define A = {αt (Q∗) > 0}. Then A ∈ Ft. Thus, for λ > 0
and X ∈ Aρ

t , λ 11A X ∈ Aρ
t as well and

αt (Q∗) = ess sup
X∈Aρ

t

EQ∗(−X| Ft) ≥ ess sup
X∈Aρ

t

EQ∗(−λ 11A X| Ft) = λ 11A ess sup
X∈Aρ

t

EQ∗(−X| Ft)

= λ 11A αt (Q
∗) .

Letting λ ↗ +∞ we obtain

αt (Q
∗) =

{

+∞ on A

0 on Ac.
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2.1 Continuous time dynamic risk measures for final payments

Therefore

ess sup
Q∈Qt

q

EQ(−X| Ft) = ess sup
Q∈Qt

q

(EQ(−X| Ft) − αt(Q)) = ess sup
Q∈Qq

(EQ(−X| Ft) − αt(Q)) .

We apply Theorem 2.5, what finishes the proof.

2.1.3. Technical properties

Theorem 2.6 gives us a characterization of the class of coherent dynamic risk measures.
Unfortunately, the set Qt

q depends on time. We want to strengthen assumptions of the the-
orem in order to obtain the representation result with a time-independent set of probability
measures. It is the aim of the next section. Here we introduce some technical properties
that will be necessary for the formulation.

Time consistency

It is quite evident that each reasonable dynamic risk measure should satisfy a kind of time
consistency condition. In the literature one can find different definitions. We use the one
from [B 05].

Definition 2.7. Let ρ : Ω × T− × X → R̄, be a dynamic risk measure for final payments.
Then ρ is called time-consistent if for all stopping times σ, τ with σ ≤ τ and X1, X2 ∈ X
the following implication holds:

ρτ (X1) ≤ ρτ (X2) ⇒ ρσ (X1) ≤ ρσ (X2) .

The above condition gives us information about riskiness of positions. More precisely, if
one position is less risky than others in the future, then it is also less risky at every earlier
moment, e.g., today.

Relevance

A risk measure should be sensitive about every loss possibility. In other words, the value
of the risk measure of the position that generates loss with positive probability has to be
positive with positive probability as well. Formally, we introduce the relevance property:

Definition 2.8. We call the mapping ρ : Ω × T− × X → R̄ relevant if for A ∈ F with
P(A) > 0 and t ∈ T− we have

P (ρt(− 11A) > 0) > 0.
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2 Dynamic risk measures

Stability of the set of probability measures

Let Q be a set of probability measures absolutely continuous with respect to P. By Qe we
denote the set of all probability measures in Q that are equivalent to P. Then we define
a density process of Q ∈ Q with respect to P by

ZQ
t = E

(

dQ

dP

∣

∣

∣
Ft

)

, t ∈ T .

It is clear that
(

ZQ
t

)

t∈T
is a P-martingale. Moreover, ZQ

T = dQ/dP. Now we are ready to
set the definition of stability forth.

Definition 2.9. The set Q of probability measures absolutely continuous with respect to P is
called stable (under pasting) if for Q1, Q2 ∈ Qe with density processes

(

ZQ1
t

)

t∈T
,
(

ZQ2
t

)

t∈T
and a stopping time τ ∈ T the process (Zτ

t )t∈T , given by

Zτ
t =

{

ZQ1
t , t ≤ τ

ZQ1
τ

Z
Q2
t

Z
Q2
τ

, t > τ,

defines a probability measure Qτ that is an element of Q.

2.1.4. Characterization theorem

Here we present the already announced theorem:

Theorem 2.10. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. Let ρ : Ω ×
T−×Lp(Ω,F , P) → R̄ be a time-consistent relevant coherent dynamic risk measure for final
payments. Then equivalent are:

(1) There exists a stable convex Lq(P)-closed set Q∗
q ⊂ {Q ∼ P | dQ/dP ∈ Lq(Ω,F , P)}

such that

ρt(X) = ess sup
Q∈Q∗

q

EQ(−X| Ft), X ∈ Lp(Ω,F , P), t ∈ T−.

(2) For t ∈ T− the acceptance set Aρ
t = {X ∈ Lp(Ω,F , P) | ρt(X) ≤ 0} is ‖ · ‖p-closed.

(3) ρ has the Lp-Fatou property.

Proof. The implications (1) ⇒ (3) and (3) ⇒ (2) can be shown similarly as in the proof of
Theorem 2.6.

(2) ⇒ (1): Due to Theorem 2.6, we know that

ρt(X) = ess sup
Q∈Qt

q

EQ(−X| Ft), X ∈ Lp(Ω,F , P), t ∈ T−, (2.7)
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2.1 Continuous time dynamic risk measures for final payments

where Qt
q = {Q � P | dQ/dP ∈ Lq(Ω,F , P), αt(Q) = 0}.

From time consistency of ρ it follows that Aρ
t ⊂ Aρ

s for s ≤ t. Therefore we have

Qs
q ⊂ Qt

q. (2.8)

Indeed, fix any Q ∈ Qs
q and for X ∈ Aρ

t define AX = {EQ(−X| Ft) > 0}. Since AX ∈ Ft,
11AX

X ∈ Aρ
t ⊂ Aρ

s as well. Hence 0 ≤ EQ ( 11AX
EQ(−X| Ft) | Fs) = EQ (− 11AX

X| Fs) ≤
ess supY ∈Aρ

s
EQ(−Y | Fs) = αs(Q) = 0. It follows that EQ(−X| Ft) ≤ 0. Finally we have

0 ≤ αt(Q) = ess supX∈Aρ
t
EQ(−X| Ft) ≤ 0, so Q ∈ Qt

q.

We define Q∗
q = Q0

q. Theorem 2.6 guarantees that Q∗
q is convex and Lq(P)-closed. It

remains to show that it is stable.

Take Q1, Q2 ∈
(

Q∗
q

)e
. Let

(

ZQ1
t

)

t∈T
,
(

ZQ2
t

)

t∈T
denote density processes associated with

Q1 and Q2, respectively. Assume that

Zτ
T = ZQ1

τ

ZQ2

T

ZQ2

τ

for a stopping time τ is not an element of ZQ∗
q =

{

ZQ
T | Q ∈ Q∗

q

}

. Now we proceed similarly
as in the proof of Theorem 2.5. By the separation theorem for convex sets (Theorem A.10),
there exists a linear continuous functional l : Lq(Ω,F , P) → R with

l (Zτ
T ) < inf

Q∈Q∗
q

l
(

ZQ
T

)

.

Furthermore, due to Theorem A.11, there is a function f ∈ Lp(Ω,F , P) such that

l(X) = E(Xf), X ∈ Lq(Ω,F , P).

Then, using (2.7),

E (−Zτ
T f) = −l (Zτ

T ) > sup
Q∈Q∗

q

l
(

−ZQ
T

)

= sup
Q∈Q∗

q

E
(

−ZQ
T f
)

= sup
Q∈Q∗

q

EQ(−f) = ρ0(f).

However, we also have

E (−Zτ
T f) = −E

(

ZQ1
τ

ZQ2

T

ZQ2
τ

f

)

= −E

(

E

(

dQ1

dP

∣

∣

∣
Fτ

) dQ2

dP

E
(

dQ2

dP
| Fτ

) f

)

= −EQ1



E

(

dQ1

dP

∣

∣

∣
Fτ

) dQ2

dQ1

E

(

dQ2

dQ1

dQ1

dP

∣

∣Fτ

) f



 = −EQ1





dQ2

dQ1

EQ1

(

dQ2

dQ1

∣

∣Fτ

) f





= −EQ1





EQ1

(

dQ2

dQ1
f
∣

∣Fτ

)

EQ1

(

dQ2

dQ1

∣

∣Fτ

)



 = EQ1 (EQ2(−f | Fτ)) .
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2 Dynamic risk measures

Furthermore, by (2.8) and (2.7),

EQ1 (EQ2(−f | Fτ)) ≤ EQ1

(

ess sup
Q∈Qτ

q

EQ(−f | Fτ)

)

= EQ1 (ρτ (f)) ≤ sup
Q∈Q∗

q

EQ (ρτ (f))

= ρ0 (−ρτ (f)) .

We know that ρτ (−ρτ (f)) = ρτ (f). Thus, by time consistency, we get that ρ0 (−ρτ (f)) =
ρ0(f) and finally

ρ0(f) < E (−Zτ
T f) ≤ ρ0(f),

which is a contradiction. Therefore Q∗
q is stable.

Relevance of ρ implies that Q is equivalent to P if Q ∈ Q∗
q (for details see Theorem 3.5 in

[D 02]).

Let ϕ be given by
ϕt(X) = ess sup

Q∈Q∗
q

EQ(−X| Ft).

We want to show that for X ∈ Lp(Ω,F , P) and t ∈ T− it holds true that

ρt(X) = ϕt(X). (2.9)

By (2.8) one immediately gets that ρt(X) ≥ ϕt(X), X ∈ Lp(Ω,F , P), t ∈ T−. Now we
want to show that the opposite inequality holds too. For the indirect proof assume the
contrary, i.e., suppose that there exist X ∈ Lp(Ω,F , P) and ε > 0 such that P(Aε) > 0,
where

Aε = {ρt(X) ≥ ε + ϕt(X)} .

Then

ρt (X + ϕt(X)) = ρt(X) − ϕt(X) ≥ ε 11Aε
= ρt(−ε 11Aε

)

and, because of time consistency and relevance of ρ,

ρ0 (X + ϕt(X)) ≥ ρ0(−ε 11Aε
) = ερ0(− 11Aε

) > 0.

On the other hand,

ρ0 (X + ϕt(X)) = sup
Q∈Q∗

q

EQ (−X − ϕt(X))

= sup
Q∈Q∗

q

EQ

(

EQ(−X| Ft) − ess sup
Q∈Q∗

q

EQ(−X| Ft)

)

≤ 0.

Finally we get that 0 < ρ0 (X + ϕt(X)) ≤ 0, which yields a contradiction. So we have
shown that equality (2.9) holds.
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2.2 Discrete-time dynamic risk measures for processes

We finish this section with a theorem that gives a characterization of coherent dynamic
risk measures. It is an analogue of Theorem 1.6 in a dynamic setting.

Theorem 2.11. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. Then the
following statements are equivalent:

(1) A dynamic risk measure ρ : Ω × T− × Lp(Ω,F , P) → R̄ is coherent, time-consistent,
relevant and has the Lp-Fatou property.

(2) There exists a stable convex Lq(P)-closed set Q∗
q of probability measures that are

equivalent to P and have Lq-integrable Radon–Nikodym derivatives with respect to P

such that

ρt(X) = ess sup
Q∈Q∗

q

EQ (−X| Ft) , X ∈ Lp(Ω,F , P), t ∈ T−. (2.10)

Proof.

(2) ⇒ (1): Let ρ be defined by (2.10). It is easy to see that ρ is a relevant coherent
dynamic risk measure that satisfies the Lp-Fatou property. Time consistency follows from
Theorem 5.1 in [ADEHK 07].

(1) ⇒ (2): Assume that ρ is a dynamic risk measure for final payments such that all
axioms from the formulation of the theorem are satisfied. Then Theorem 2.10 yields that
there exists a stable convex Lq(P)-closed set Q∗

q of probability measures equivalent to P

with Lq-integrable Radon–Nikodym derivatives such that for t ∈ T− it holds true that

ρt(X) = ess sup
Q∈Q∗

q

EQ(−X| Ft), X ∈ Lp(Ω,F , P).

That finishes the proof.

2.2. Discrete-time dynamic risk measures for processes

From now on, time is treated in a discrete manner. We assume that there is a time
horizon T ∈ N, so T = {0, 1, . . . , T} and T− = {0, 1, . . . , T − 1}. We no longer restrict
ourselves to assign positions with only final payments. Conversely, we intend to consider
general stochastic processes that are adapted. The set of them we denote by X . Moreover,
X p ⊂ X is the set of all processes X = (X0, X1, . . . , XT ) such that Xt ∈ Lp (Ω,Ft, P) for
t ∈ T . Furthermore, we suppose that the interest rate r > −1 is known and constant. The
last assumption can be easily relaxed. Everything else remains the same as in the previous
section.
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2 Dynamic risk measures

2.2.1. Definitions and technical properties

It is easy to guess what a dynamic risk measure for processes is. The definition is just
a generalization of that from Section 2.1. It is also the case for the notion of convexity
(coherence). Nevertheless, we state these definitions here, simply for the sake of complete-
ness.

Definition 2.12. A mapping ρ : Ω × T− × X 3 (ω, t, X) 7→ ρ(ω, t, X) = ρt(X)(ω) ∈ R̄ is
called a dynamic risk measure if the following conditions are met:

• the process (ρt(X))t∈T−
is (Ft)t∈T−-adapted,

• ρ is independent of the past: for t ∈ T− and X ∈ X ρt(X) does not depend on
X0, X1, . . . , Xt−1,

• ρ is monotone: ρt

(

X(1)
)

≤ ρt

(

X(2)
)

, t ∈ T−, if X(1), X(2) ∈ X and X(1) ≥ X(2),

• ρ is dynamic translation invariant: it holds that

ρt(X + Y ) = ρt(X) −
T
∑

n=t

Yn

(1 + r)n−t

for t ∈ T−, X, Y ∈ X such that Y = (0, . . . , 0, Yt, . . . , YT ) and
∑T

n=t Yn/(1 + r)n−t is
Ft-measurable.

Definition 2.13. A dynamic risk measure ρ : Ω × T− × X → R̄ is convex if

ρt

(

ΛX(1) + (1 − Λ)X(2)
)

≤ Λρt

(

X(1)
)

+ (1 − Λ)ρt

(

X(2)
)

,

for X(1), X(2) ∈ X , t ∈ T− and Λ ∈ Lp(Ω,Ft, P) with 0 ≤ Λ ≤ 1.

Definition 2.14. A dynamic risk measure ρ : Ω × T− × X → R̄ is called coherent if it
satisfies the following properties:

• subadditivity: ρt

(

X(1) + X(2)
)

≤ ρt

(

X(1)
)

+ ρt

(

X(2)
)

, X(1), X(2) ∈ X , t ∈ T−,

• dynamic positive homogeneity: ρt(ΛX) = Λρt(X) for X ∈ X and Ft-measurable
Λ ∈ X with Λ ≥ 0.

The only property that needs a comment is the independence of the past. For any fixed
t ∈ T− and a position X ρt(X) is evaluated at time t, so all payments X0, X1, . . . , Xt−1,
which have already passed, cannot influence the value of ρt(X).

In the current framework we also introduce definitions of the Lp-Fatou property, time
consistency and relevance.
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2.2 Discrete-time dynamic risk measures for processes

Definition 2.15. Let ρ : Ω× T− ×X p → R̄, p ∈ [1, +∞), be a dynamic risk measure. We
say that ρ satisfies the Lp-Fatou property if for t ∈ T−, a sequence (X(n))n∈N ⊂ X p and
X ∈ X p with

sup
k≥t

E

∣

∣

∣
X

(n)
k

∣

∣

∣
≤ 1, n ∈ N, and sup

k≥t

∣

∣

∣
X

(n)
k − Xk

∣

∣

∣

Lp

−−−→
n→∞

0

it holds that

ρm(X) ≤ lim inf
n→∞

ρm

(

X(n)
)

, m ∈ {t, . . . , T − 1}.

Definition 2.16. A dynamic risk measure ρ : Ω × T− × X → R̄ is time-consistent if the
following condition is met:

ρσ (X + Y · eτ ) = ρσ

(

X + (1 + r)T−τ Y · eT

)

for stopping times σ, τ such that σ ≤ τ , X ∈ X p and Y ∈ Lp(Ω,Fτ , P).

Definition 2.17. A dynamic risk measure ρ : Ω×T− ×X → R̄ is relevant if for every set
A ∈ F with P(A) > 0 we have

P (ρt (− 11A · eT ) > 0) > 0, t ∈ T−.

2.2.2. Characterization theorem

This section is dedicated to the main result of the current chapter. We formulate and prove
the equivalents of Theorem 2.5 and Theorem 2.11 for risk measures for general stochastic
processes.

Theorem 2.18. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. Then ρ : Ω ×
T− × X p → R̄ is a time-consistent convex dynamic risk measure that has the Lp-Fatou
property if and only if it is of the form

ρt(X) = ess sup
Q∈Qq

(

EQ

(

−
T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

− αt(Q)

)

, (2.11)

where

αt(Q) = ess sup
X∈X p

EQ

(

−
T
∑

n=t

Xn

(1 + r)n−t
− ρt(X)

∣

∣

∣
Ft

)

,

Qq =

{

Q � P

∣

∣

∣

dQ

dP
∈ Lp(Ω,F , P)

}

.

Proof. Assume that ρ is given by (2.11). Then, obviously, ρ is a dynamic risk measure. It
can be easily verified that the axioms are satisfied as well.
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2 Dynamic risk measures

Now suppose that ρ is a dynamic risk measure satisfying the axioms. Define ϕ by

ϕt(Y ) = (1 + r)T−tρt(0, . . . , 0, Y ), Y ∈ Lp(Ω,F , P).

Then ϕ is a convex dynamic risk measure for final payments that has the Lp-Fatou property.
From Theorem 2.5 it follows that

ϕt(Y ) = ess sup
Q∈Qq

(EQ(−Y | Ft) − αϕ
t (Q))

for αϕ
t (Q) = ess supY ∈Aϕ

t
EQ(−Y | Ft) and Qq = {Q � P | dQ/dP ∈ Lq(Ω,F , P)}. By inde-

pendence of the past and time consistency we get

ρt(X) = ρt (0, . . . , 0, Xt, . . . , XT ) = ρt

(

0, . . . , 0,
T
∑

n=t

(1 + r)T−nXn

)

= (1 + r)t−T ϕt

(

T
∑

n=t

(1 + r)T−nXn

)

= ess sup
Q∈Qq

(

EQ

(

−
T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

−
αϕ

t (Q)

(1 + r)T−t

)

.

Moreover,

αt(Q) = ess sup
X∈X p

(

EQ

(

−
T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

− ρt(X)

)

= (1 + r)t−T ess sup
X∈X p

(

EQ

(

−
T
∑

n=t

(1 + r)T−nXn

∣

∣

∣
Ft

)

− ϕt

(

T
∑

n=t

(1 + r)T−nXn

))

= (1 + r)t−T αϕ
t (Q),

so we are done.

Theorem 2.19. Let p and q be such that p ∈ [1, +∞) and 1/p + 1/q = 1. The following
are equivalent:

(1) A dynamic risk measure ρ : Ω × T− × X p → R̄ is coherent, time-consistent, relevant
and satisfies the Lp-Fatou property.

(2) There exists a stable convex Lq(P)-closed set Q∗
q of probability measures that are

equivalent to P and have Lq-integrable Radon–Nikodym derivatives with respect to P

such that

ρt(X) = ess sup
Q∈Q∗

q

EQ

(

−
T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

, X ∈ X p, t ∈ T−.
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2.2 Discrete-time dynamic risk measures for processes

Proof. It is an analogue of the previous proof. The only difference is we need to use
Theorem 2.10 instead of Theorem 2.5.

At the end of this section we develop a simple remark:

Remark 2.20. Let p ∈ [1, +∞) and ρ : Ω × T− × X p → R̄ be a time-consistent relevant
coherent dynamic risk measure with the Lp-Fatou property. For X ∈ X p we define a process
M = (Mt)t∈T−

by

Mt =
ρt(X)

(1 + r)t
−

t−1
∑

n=1

Xn

(1 + r)n
.

Then M is a Q-supermartingale for Q ∈ Q∗
q.

Proof. We define

ϕt(X) = (1 + r)T−tρt(0, . . . , 0, X), X ∈ Lp(Ω,F , P).

Then ϕ is a time-consistent relevant coherent dynamic risk measure for final payments and
has the Lp-Fatou property. Moreover,

ρt(X) = ρt

(

0, . . . , 0,
T
∑

n=t

(1 + r)T−nXn

)

= (1 + r)tϕt

(

T
∑

n=t

Xn

(1 + r)n

)

.

Hence

Mt =
ρt(X)

(1 + r)t
−

t−1
∑

n=1

Xn

(1 + r)n
= ϕt

(

T
∑

n=t

Xn

(1 + r)n

)

−
t−1
∑

n=1

Xn

(1 + r)n
= ϕt

(

T
∑

n=1

Xn

(1 + r)n

)

.

Let Z be given as follows:

Z =

T
∑

n=1

Xn

(1 + r)n
.

Since ϕt+1 (−ϕt+1(Z)) = ϕt+1(Z), we also have ϕt (−ϕt+1(Z)) = ϕt(Z). Then, by Theo-
rem 2.11,

0 = ϕt (−ϕt+1(Z) + ϕt(Z)) = ess sup
Q∈Q∗

q

EQ (ϕt+1(Z) − ϕt(Z)| Ft) .

For Q ∈ Q∗
q and t ∈ T− it holds that

EQ (Mt+1 − Mt | Ft) = EQ (ϕt+1(Z) − ϕt(Z) | Ft) ≤ 0,

so (Mt)t∈T−
is indeed a Q-supermartingale.
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Chapter 3

Recalculated and Iterated Conditional

Average Value at Risk

In the previous chapter we were concentrated on theoretical aspects of dynamic risk mea-
sures. We found that if a measure of risk satisfies some technical properties, then it can be
represented as the essential supremum of expectations with respect to probability measures
from a certain stable set. However, in practice it is really hard to decide what set we should
consider. As a consequence, there is a problem with developing a reasonable risk measure.
Here we want to deal with this drawback. We do not want to create a set of probability
measures, but rather define a function that, as we will see, is a time-consistent coherent
dynamic risk measure.

We still suppose that the time is discrete, i.e., T = {0, 1, . . . , T} for a time horizon T ∈ N

and the interest rate r > −1 is known and constant.

3.1. Basic idea

In this section we define two dynamic risk measures, the Recalculated Conditional Average
Value at Risk and the Iterated Conditional Average Value at Risk. As their names suggest,
both of them are based on the Conditional Average Value at Risk. The following idea was
introduced in [HW 04]. However, in this paper the Iterated Conditional Tail Expectation
was considered. We will see later on that the procedure can be applied to any reasonable
conditional measure of risk.

We start with an easy, but illustrative example of a binomial tree with two time steps. For
simplicity we assume that there is no interest rate, i.e., r is equal to 0. By X we denote
a process of cash flows represented by Figure 3.1a. In that case the natural filtration
(Ft)t∈{0,1,2} is given by

F0 = {∅, Ω}, F1 = σ ({x} × {u, d}, x ∈ {u, d}) , F2 = σ ({(x, y)}, x, y ∈ {u, d}) .
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3 Recalculated and Iterated Conditional Average Value at Risk

We can simplify the figure by considering the process of only final payments. More precisely,
we compute the future net value of cash flows at time 2 and get the tree as in Figure 3.1b.
Set the stochastic process presented there by Y .

0

200

(u)
0.9

200

(uu)0.9

−100

(ud)

0.1

−100

(d)

0.1

200

(du)0.9

−100

(dd)

0.1

(a) Process X

0

0

(u)
0.9

400

(uu)0.9

100

(ud)

0.1

0

(d)

0.1

100

(du)0.9

−200

(dd)

0.1

(b) Process Y

Figure 3.1: Binomial trees

We define the Recalculated Conditional Average Value at Risk at level α ∈ (0, 1) by

RAVaRα
t X = AVaRα (Y2| Ft) , t ∈ {0, 1}.

For α = 0.9 we have

RAVaR0.9
0 X(ω) = −70, RAVaR0.9

1 X(ω) =

{

−100, ω ∈ {(uu), (ud)}

200, ω ∈ {(du), (dd)} .

On the other hand, we can proceed in a different way and, also on a basis of the Conditional
Average Value at Risk, create another dynamic risk measure. This new measure we will
call the Iterated Conditional Average Value at Risk and denote by IAVaR. To construct it
we use backward induction. First we take

IAVaR0.9
1 X = AVaR0.9 (X2| F1) − X1.

Hence the value of the Iterated Conditional Average Value at Risk at time 1 is equal to
the Conditional Average Value at Risk given the sub-σ-algebra F1 reduced by the income
at that time. Due to translation invariance, it makes sense. We have

IAVaR0.9
1 X(ω) =

{

−100, ω ∈ {(uu), (ud)}

200, ω ∈ {(du), (dd)}

}

= RAVaR0.9
1 X(ω).

36



3.2 Formal definitions

Furthermore, we want to define IAVaR0.9
0 X. Instead of considering the one-period model

given by Figure 3.2a as in the case of the Recalculated Conditional Average Value at Risk,
we examine the tree from Figure 3.2b.

0

200

(u)0.9

−100

(d)

0.1

(a) Initial model

0

100

(u)0.9

−200

(d)

0.1

(b) New model

Figure 3.2: One-period model from 0 to 1

The values at nodes (u) and (d) are just equal to − IAVaR0.9
1 X(ω) for ω ∈ {(uu), (ud)}

and ω ∈ {(du), (dd)}, respectively. Then we have

IAVaR0.9
0 X(ω) = AVaR0.9

(

− IAVaR0.9
1 X| F0

)

(ω) = 200 > RAVaR0.9
0 X(ω).

We have introduced two functions that are, as we will see later, dynamic risk measures.
Obviously, they do not coincide and, what is more important, they can lead us to different
decisions. In our example RAVaR0.9

0 X = −70 ≤ 0 and we should accept the position X.
On the other hand, IAVaR0.9

0 X = 200 > 0, so the decision whether to accept X or not
depends on our attitude to risk. If we are risk averse, it ought to be rejected.

3.2. Formal definitions

In the previous section we gave an idea of how to define the Recalculated Conditional
Average Value at Risk and the Iterated Conditional Average Value at Risk. Now it is an
appropriate moment to provide formal definitions. We have already mentioned that the
use of the Conditional Average Value at Risk is our choice and each coherent conditional
measure of risk can be exploited. Due to that, we present general definitions of a recalcu-
lated risk measure and an iterated risk measure.

As usual, there is a filtered probability space (Ω,F ,Ft∈T , P) given. We additionally assume
that F0 = {∅, Ω} and FT = F . Let X = (Xt)t∈T ∈ X be a stochastic process representing
our cash flows. Fix a sequence (ρ ( · | Ft))t∈T−

of coherent conditional risk measures.

Definition 3.1. A process (Rt(X))t∈T−
such that

Rt(X) = ρ

(

T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

, t ∈ T−,

is called a recalculated risk measure of X.
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3 Recalculated and Iterated Conditional Average Value at Risk

Remark 3.2. A mapping R : Ω×T− ×X 3 (ω, t, X) 7→ R(ω, t, X) = Rt(X)(ω) ∈ R̄ given
by

Rt(X) = ρ

(

T
∑

n=t

Xn

(1 + r)n−t

∣

∣

∣
Ft

)

, t ∈ T−,

is a coherent dynamic risk measure.

Proof. First of all, note that (Rt(X))t∈T−
is adapted for any X ∈ X and Rt(X) depends

only on Xt, . . . , XT .

If X(1), X(2) ∈ X with X(1) ≥ X(2) and t ∈ T−, then we have
∑T

n=t X
(1)
n /(1 + r)n−t ≥

∑T
n=t X

(2)
n /(1 + r)n−t. By monotonicity of ρ ( · | Ft), we get that Rt

(

X(1)
)

≤ Rt

(

X(2)
)

.

Similarly, Rt(X + Y ) = Rt(X) −
∑T

n=t Yn/(1 + r)n−t for t ∈ T− and X, Y ∈ X such that

Y = (0, . . . , 0, Yt, . . . , YT ) and
∑T

n=t Yn/(1 + r)n−t is Ft-measurable.

Subadditivity and dynamic positive homogeneity of R immediately follow from the fact
that ρ ( · | Ft) for each t ∈ T− is a coherent conditional measure of risk.

Definition 3.3. Let (It(X))t∈T−
be given by backward induction as follows

IT−1(X) =
1

1 + r
ρ (XT | FT−1) − XT−1,

It(X) =
1

1 + r
ρ (−It+1(X)| Ft) − Xt, t ∈ {0, 1, . . . , T − 2}.

(3.1)

Then the above process is called an iterated risk measure of X.

Remark 3.4. A mapping I : Ω × T− × X 3 (ω, t, X) 7→ I(ω, t, X) = It(X)(ω) ∈ R̄ that
satisfies conditions (3.1) for every X ∈ X is a coherent dynamic risk measure.

Proof. Independence of the past and adaptedness are obvious. Monotonicity, translation
invariance, subadditivity and dynamic positive homogeneity can be shown by backwards
induction. To do so, take X(1), X(2), X, Y ∈ X and a non-negative random variable Λ.

• Base case: Assume additionally that Y = (0, . . . , 0, YT−1, YT ), YT−1 +YT /(1+ r) and
Λ are FT−1-measurable. Since Y is adapted, we get that YT is FT−1-measurable. By
direct calculations it can be verified that the following holds:

IT−1

(

X(1)
)

≤ IT−1

(

X(2)
)

if X(1) ≥ X(2),

IT−1(X + Y ) = IT−1(X) − YT−1 −
YT

1 + r
,

IT−1

(

X(1) + X(2)
)

≤ IT−1

(

X(1)
)

+ IT−1

(

X(2)
)

,

IT−1(ΛX) = ΛIT−1(X).
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3.3 Time consistency and relevance

• Inductive step: Fix t ∈ {0, 1, . . . , T − 2} and suppose that It+1 is a coherent con-
ditional risk measure. Assume that Y = (0, . . . , 0, Yt, . . . , YT ),

∑T
n=t Yn/(1 + r)n−t

and Λ are Ft-measurable. Hence
∑T

n=t+1 Yn/(1 + r)n−t−1 is Ft-measurable as well.
Therefore

It

(

X(1)
)

=
1

1 + r
ρ
(

−It+1

(

X(1)
)

| Ft

)

− X
(1)
t ≤

1

1 + r
ρ
(

−It+1

(

X(2)
)

| Ft

)

− X
(2)
t

= It

(

X(2)
)

if X(1) ≥ X(2),

It(X + Y ) =
1

1 + r
ρ (−It+1(X + Y )| Ft) − Xt − Yt

=
1

1 + r
ρ (−It+1 (X + (0, . . . , 0, Yt+1, . . . , YT )) | Ft) − Xt − Yt

=
1

1 + r
ρ (−It+1(X)| Ft) − Xt −

T
∑

n=t

Yn

(1 + r)n−t
= It(X) −

T
∑

n=t

Yn

(1 + r)n−t

and

It

(

X(1) + X(2)
)

=
1

1 + r
ρ
(

−It+1

(

X(1) + X(2)
)

| Ft

)

− X
(1)
t − X

(2)
t

≤
1

1 + r
ρ
(

−It+1

(

X(1)
)

| Ft

)

− X
(1)
t + ρ

(

−It+1

(

X(2)
)

| Ft

)

− X
(2)
t

= It

(

X(1)
)

+ It

(

X(2)
)

,

It(ΛX) =
1

1 + r
ρ (−It+1 (ΛX) | Ft) − ΛXt =

Λ

1 + r
ρ (−It+1(X)| Ft) − ΛXt

= Λ It(X).

So It is also coherent.

Definition 3.5. The Recalculated Conditional Average Value at Risk at level α ∈ (0, 1)
of X is a recalculated risk measure for a sequence (ρ ( · | Ft))t∈T−

such that ρ ( · | Ft) =
AVaRα ( · | Ft), t ∈ T−.

Analogously we define the Iterated Conditional Average Value at Risk.

Definition 3.6. A dynamic risk measure (It)t∈T−
satisfying (3.1) for every X ∈ X and

ρ ( · | Ft) = AVaRα ( · | Ft), t ∈ T−, is called the Iterated Conditional Average Value at Risk
at level α.

3.3. Time consistency and relevance

We have already shown that both the Recalculated Conditional Average Value at Risk
and the Iterated Conditional Average Value at Risk are coherent. However, it will be very
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3 Recalculated and Iterated Conditional Average Value at Risk

welcome if they are additionally time-consistent and relevant. In that case, without ap-
plying Theorem 2.19 and going through the notion of stability, we have constructed two
reasonable dynamic risk measures, which can be used in practice.

We start with considering the Recalculated Conditional Average Value at Risk. Obviously,
we have

RAVaRα
σ

(

X + (1 + r)T−τ Y · eT

)

= AVaRα

(

T
∑

n=σ

Xn

(1 + r)n−σ
+

Y

(1 + r)τ−σ

∣

∣

∣
Fσ

)

= RAVaRα
σ (X + Y · eτ )

for α ∈ (0, 1), σ ≤ τ that are stopping times, X ∈ X and Y ∈ L0 (Ω,Fτ , P). Hence the
Recalculated Conditional Average Value at Risk is indeed time-consistent.

The case of the Iterated Conditional Average Value at Risk is more complicated. Note that
it suffices to show that for each t ∈ T− and a stopping time τ ≥ t it holds that

IAVaRα
t (X + Y · eτ ) = IAVaRα

t

(

X + (1 + r)T−τ Y · eT

)

, X ∈ X , Y ∈ L0(Ω,Fτ , P).

Again we do backward induction. First assume that τ ≥ T − 1. Since

(1 + r)T−τ Y = (1 + r)Y 11{τ=T−1} +Y 11{τ=T}

and Y 11{τ=T−1} is FT−1-measurable, we have

IAVaRα
T−1

(

X + (1 + r)T−τ Y · eT

)

=
1

1 + r
AVaRα

(

XT + (1 + r)T−τ Y | FT−1

)

− XT−1

=
1

1 + r
AVaRα

(

XT + Y 11{τ=T} | FT−1

)

− XT−1 − Y 11{τ=T−1}

= IAVaRα
T−1 (X + Y · eτ ) .

Now suppose that t ∈ {0, 1, . . . , T − 2}, τ ≥ t and the following is true

IAVaRα
t+1 (X + Y · eτ ′) = IAVaRα

t+1

(

X + (1 + r)T−τ ′

Y · eT

)

for every stopping time τ ′ ≥ t + 1, X ∈ X and Y ∈ L0(Ω,Fτ , P). Similarly as before,

(1 + r)T−τ Y = (1 + r)T−t Y 11{τ=t} +(1 + r)T−τ ′

Y 11{τ≥t+1},

where τ ′ = max{t + 1, τ}. Then τ ′ is a stopping time such that τ ′ ≥ τ , so Y is Fτ ′-
measurable. Moreover, Y 11{τ=t} and Y 11{τ≥t+1} are Ft- and Fτ ′-measurable, respectively.
Therefore, by inductive assumption, one has

IAVaRα
t+1

(

X + (1 + r)T−τ Y · eT

)

= IAVaRα
t+1

(

X + (1 + r)T−τ ′

Y 11{τ≥t+1} · eT

)

− (1 + r)Y 11{τ=t}

= IAVaRα
t+1

(

X + Y 11{τ≥t+1} · eτ ′

)

− (1 + r)Y 11{τ=t} .
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3.4 Artzner game

Furthermore,

IAVaRα
t

(

X + (1 + r)T−τ Y · eT

)

=
1

1 + r
AVaRα

(

− IAVaRα
t+1

(

X + (1 + r)T−τ Y · eT

)

| Ft

)

− Xt

=
1

1 + r
AVaRα

(

− IAVaRα
t+1

(

X + Y 11{τ≥t+1} · eτ ′

)

| Ft

)

− Xt − Y 11{τ=t} .

By independence of the past we finally get that

IAVaRα
t

(

X + (1 + r)T−τ Y · eT

)

=
1

1 + r
AVaRα

(

− IAVaRα
t+1 (X + Y · eτ ) | Ft

)

− Xt − Y 11{τ=t}

= IAVaRα
t (X + Y · eτ ) .

Hence also the Iterated Conditional Average Value at Risk is a time-consistent risk measure.

Note that for the Conditional Average Value at Risk given any sub-σ-algebra G the following
statement is satisfied:

AVaRα(X| G) ≥ 0

P (AVaRα(X| G) > 0) > 0
for X ≤ 0 such that P(X < 0) > 0. (3.2)

Because X ≤ 0, it is clear that VaRα(X| G) ≥ 0 and AVaRα(X| G) ≥ 0. Let A be
given by A = {VaRα(X| G) > 0}. If P(A) > 0, we are done, because, by (1.4), we have
AVaRα(X| G) > 0 on A. Therefore assume that P(A) = 0. Then, by (1.4) as well, we get
that AVaRα(X| G) = −E (X| G) /(1 − α), so P (AVaRα(X| G) > 0) > 0.

From (3.2) it immediately follows that both the Recalculated Conditional Average Value
at Risk and the Iterated Conditional Average Value at Risk are relevant.

3.4. Artzner game

Consider an example that is due to Philippe Artzner. There are three coins, not necessarily
fair. More precisely, the probability of showing heads for each of them is equal to p ∈ (0, 1).
There are two possible games. In the first one we get 1, if the third coin shows heads. In the
second, we win 1, if no less than two coins show heads. We want to compare the riskiness
of these games by using the Iterated Conditional Average Value at Risk. Let X(i), i = 1, 2,
denote the income process for the i-th game. The streams are presented in Figure 3.3,
where an up-move means that a coin shows heads. Again we consider the natural filtration
(Ft)t∈{0,1,2,3}, i.e.,

F0 = {∅, Ω}, F1 = σ
(

{x} × {u, d}2, x ∈ {u, d}
)

,

F2 = σ ({(x, y)} × {u, d}, x, y ∈ {u, d}) , F3 = σ ({(x, y, z)}, x, y, z ∈ {u, d}) .
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3 Recalculated and Iterated Conditional Average Value at Risk

(u)

p

(uu)p

(1, 1)
(uuu)

p

(0, 1)
(uud)

1 − p

(ud)

1 − p

(1, 1)
(udu)

p

(0, 0)
(udd)

1 − p

(d)

1 − p
(du)p

(1, 1)
(duu)

p

(0, 0)
(dud)

1 − p

(dd)

1 − p

(1, 0)
(ddu)

p

(0, 0)
(ddd)

1 − p

Figure 3.3: Income stream tree for the Artzner game

Note that, due to (1.1) and (1.2), for a random variable X such that

X =

{

a, with probability θ ∈ (0, 1)

b, with probability 1 − θ,
a > b,

it holds that

VaRα X = inf {x | P(X + x < 0) ≤ 1 − α} =

{

−b, α > θ

−a, α ≤ θ,

AVaRα X = VaRα X +
1

1 − α
E (X + VaRα X)−

=

{

−b + 1
1−α

E(X − b)− = −b, α > θ

−a + 1
1−α

E(X − a)− = a(α−θ)−b(1−θ)
1−α

, α ≤ θ.
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3.4 Artzner game

First we concentrate on the process X(1). It is immediate that

IAVaRα
2

(

X(1)
)

=
1

1 + r
AVaRα

(

X
(1)
3

∣

∣F2

)

=

{

0, α > p
α−p

(1+r)(1−α)
, α ≤ p.

Since IAVaRα
2 is constant, we get that

IAVaRα
1

(

X(1)
)

=
1

1 + r
AVaRα

(

− IAVaRα
2

(

X(1)
)

| F1

)

=

{

0, α > p
α−p

(1+r)2(1−α)
, α ≤ p,

IAVaRα
0

(

X(1)
)

=
1

1 + r
AVaRα

(

− IAVaRα
1

(

X(1)
))

=

{

0, α > p
α−p

(1+r)3(1−α)
, α ≤ p.

Now we move on to the investigation of X(2). We consider two cases.

• Suppose that α > p. Then we have

IAVaRα
2

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

X
(2)
3

∣

∣F2

)

(ω) =

{

− 1
1+r

, ω ∈ {(u, u)} × {u, d}

0, ω /∈ {(u, u)} × {u, d},

IAVaRα
1

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

− IAVaRα
2

(

X(2)
)

| F1

)

(ω) = 0,

IAVaRα
0

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

− IAVaRα
1

(

X(2)
))

(ω) = 0.

• Now assume that α ≤ p. We compute

IAVaRα
2

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

X
(2)
3

∣

∣F2

)

(ω)

=











− 1
1+r

, ω ∈ {(u, u)} × {u, d}
α−p

(1+r)(1−α)
, ω ∈ {(u, d), (d, u)} × {u, d}

0, ω ∈ {(d, d)} × {u, d},

IAVaRα
1

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

− IAVaRα
2

(

X(2)
)

| F1

)

(ω)

=

{

− (α−p)(α+p−2)
(1+r)2(1−α)2

, ω ∈ {u} × {u, d}2

− (α−p)2

(1+r)2(1−α)2
, ω ∈ {d} × {u, d}2,

IAVaRα
0

(

X(2)
)

(ω) =
1

1 + r
AVaRα

(

− IAVaRα
1

(

X(2)
))

(ω) =
(α − p)2(α + 2p − 3)

(1 + r)3(1 − α)3
.

We summarize all results in Table 3.1. The star in the last row is as follows

? =











>, α − 2p + 1 < 0

=, α − 2p + 1 = 0

<, α − 2p + 1 > 0.
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3 Recalculated and Iterated Conditional Average Value at Risk

IAVaRα
t ω ∈

α ≥ p α < p

X(1) X(2) X(1) X(2)

2
{(u, u)} × {u, d} 0 > − 1

1+r

α−p

(1+r)(1−α)
> − 1

1+r

{(u, d), (d, u)} × {u, d} 0 = 0 α−p

(1+r)(1−α)
= α−p

(1+r)(1−α)

{(d, d)} × {u, d} 0 = 0 α−p

(1+r)(1−α)
< 0

1
{u} × {u, d}2 0 = 0 α−p

(1+r)2(1−α)
> − (α−p)(α+p−2)

(1+r)2(1−α)2

{d} × {u, d}2 0 = 0 α−p

(1+r)2(1−α)
< − (α−p)2

(1+r)2(1−α)2

0 {u, d}3 0 = 0 α−p

(1+r)3(1−α)
? (α−p)2(α+2p−3)

(1+r)3(1−α)3

Table 3.1: The Iterated Conditional Average Value at Risk for the Artzner game

Since for α ≥ p the results are trivial, we comment only those for α < p.

At time 2 in the case ω ∈ {(u, d), (d, u)}×{u, d} both processes have the same risk, because
incomes depend only on the third throw. If ω ∈ {(u, u)}×{u, d}, there is a sure income of
1 associated with X(2). Therefore X(2) is less risky. Similarly, for ω ∈ {(d, d)} × {u, d} we
have nothing from X(2), but still a chance for a positive income from X(1), so the second
game is more risky.

At time 1 if ω ∈ {u}×{u, d}2, then the income from X(2) is more probable, so this process
has lower risk. For ω ∈ {d} × {u, d}2 we have a reversed situation.

At time 0 we have no additional information and every possible ordering can occur, de-
pending on parameters α and p.

3.5. Geometric Brownian motion

In general, computing the Iterated Conditional Average Value at Risk can cause problems,
because there are no closed formulas for it. However, for some specific processes it is pos-
sible. This is the case for a geometric Brownian motion.

Suppose that a process X = (Xt)t∈[0,T ] is a geometric Brownian motion with parameters µ
and σ > 0. In other words, X is of the form

Xt = exp (µt + σWt) ,

where W is a standard Brownian motion. Since we consider discrete time, define X̃ =
(X0, X1, . . . , XT ) and a filtration generated by X̃, i.e., Ft = σ (X0, X1, . . . , Xt), t ∈ T . Let
Y be given by Yt = ln Xt = µt + σWt, t ∈ T .
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3.5 Geometric Brownian motion

Fix t ∈ T+. We want to find a distribution of a random variable Yt| Y0, Y1, . . . , Yt−1. Since
Y0 is a constant, the above random variable equals Yt| Y1, . . . , Yt−1. We name its density
by fYt| Y1,...,Yt−1

. We know that

fYt| Y1,...,Yt−1
(yt| y1, . . . , yt−1) =

fY1,...,Yt
(y1, . . . , yt)

fY1,...,Yt−1 (y1, . . . , yt−1)
,

where fZ1,...,Zn
is a joint density of random variables Z1, . . . , Zn.

Take n ∈ N ∩ T+ and note that the two following systems of equations are equivalent


















Y1 = y1

Y2 = y2
...

Yn = yn,



















Y1 = y1

Y2 − Y1 = y2 − y1
...

Yn − Yn−1 = yn − yn−1.

Therefore we have

fY1,...,Yn
(y1, . . . , yn) = f (y1)

n−1
∏

k=1

f (yk+1 − yk) ,

where f is a density of a random variable normally distributed with parameters µ and σ.
Hence

fYt|Y1,...,Yt−1 (yt| y1, . . . , yt−1) =
f (y1)

∏t−1
k=1 f (yk+1 − yk)

f (y1)
∏t−2

k=1 f (yk+1 − yk)
= f (yt − yt−1) .

Due to that, Yt| Y1, . . . , Yt−1 has a normal distribution with parameters µ + ln Xt−1 and σ.
As a consequence, Xt|X1, . . . , Xt−1 is log-normal distributed with the same parameters.
Knowing that we can come back to our example.

Recall that, by (1.3) and (1.4), we have

VaRα (Z| G) (ω) = inf {x | P (Z + x < 0 | G) (ω) ≤ 1 − α} ,

AVaRα (Z| G) = VaRα (Z| G) +
1

1 − α
E
(

(Z + VaRα (Z| G))− | G
)

.

For a fixed x ∈ R we compute

P (Xt + x < 0 | Ft−1) = E
(

11{Xt+x<0} |X1, . . . , Xt−1

)

=

∫ −x

∞

f log-normal
µ+ln Xt−1,σ(t) dt

=

{

0, x ≥ 0

Φ
(

ln(−x)−µ−ln Xt−1

σ

)

, x < 0.

Therefore, for x < 0,

P (Xt + x < 0 | Ft−1) ≤ 1 − α if and only if x ≥ −Xt−1 exp
(

µ + σΦ−1(1 − α)
)

,
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3 Recalculated and Iterated Conditional Average Value at Risk

where Φ stands for a standard normal cumulative distribution function. Then

VaRα (Xt| Ft−1) = −Xt−1 exp
(

µ + σΦ−1(1 − α)
)

= −cαXt−1,

where cα = exp (µ + σΦ−1(1 − α)). Moreover,

E ((Xt + VaRα (Xt| Ft−1))
− | Ft−1

)

= E
(

(Xt − cαXt−1)
− | Ft−1

)

=

∫ cαXt−1

−∞

(−t + cαXt−1) f log-normal
µ+ln Xt−1,σ(t) dt

= − exp

(

µ + lnXt−1 +
σ2

2

)(

1 − Φ

(

− ln (cαXt−1) + µ + ln Xt−1 + σ2

σ

))

+ cαXt−1Φ

(

ln (cαXt−1) − µ − lnXt−1

σ

)

= −Xt−1 exp

(

µ +
σ2

2

)

Φ
(

Φ−1(1 − α) − σ
)

+ (1 − α)cαXt−1.

It follows that

AVaRα (Xt| Ft−1) = −
Φ (Φ−1(1 − α) − σ) exp

(

µ + σ2

2

)

1 − α
Xt−1 = −dαXt−1

for dα = Φ (Φ−1(1 − α) − σ) exp (µ + σ2/2) /(1 − α).

Our aim is to show that

IAVaRα
t

(

X̃
)

= −
T−t
∑

n=0

(

dα

1 + r

)n

Xt. (3.3)

Again we do mathematical induction.

We have

IAVaRα
T−1

(

X̃
)

=
1

1 + r
AVaRα (XT | FT−1) − XT−1 = −

(

1 +
dα

1 + r

)

XT−1.

Now fix t ∈ {0, 1, . . . , T − 2} and suppose that the following holds

IAVaRα
t+1

(

X̃
)

= −
T−t−1
∑

n=0

(

dα

1 + r

)n

Xt+1.

Then

IAVaRα
t

(

X̃
)

=
1

1 + r
AVaRα

(

− IAVaRα
t+1

(

X̃
)∣

∣Ft

)

− Xt

=
1

1 + r
AVaRα

(

T−t−1
∑

n=0

(

dα

1 + r

)n

Xt+1

∣

∣

∣
Ft

)

− Xt

=
T−t
∑

n=1

dn−1
α

(1 + r)n
AVaRα (Xt+1| Ft) − Xt = −

T−t
∑

n=0

(

dα

1 + r

)n

Xt.

As a consequence, (3.3) holds true.
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Chapter 4

Pflug–Ruszczyński risk measure

This chapter is dedicated to the Pflug–Ruszczyński measure. Its static version is indeed
due to Georg Pflug and Andrzej Ruszczyńki (see [PR 05]). However, the dynamic version
was created by André Mundt in his PhD thesis ([M 07]). The measure was constructed
intuitively there. Then, under assumption that the model has a Markovian structure and
by applying Markov decision theory, a closed formula was obtained. Here we proceed in
a different way. First we define a dynamic risk measure explicitly. Later on we motivate
our choice by developing an optimization problem for which the measure is a solution.

Again we consider discrete time with a time horizon T ∈ N+, i.e., T = {0, 1, . . . , T},
T− = {0, 1, . . . , T − 1}. Additionally by T+ we denote the set {1, . . . , T}.

4.1. Definition and properties

Let (Ω,F , P) be a probability space endowed with a filtration (Ft)t∈T such that F0 = {∅, Ω}
and FT = F . We restrict ourselves to consider only income processes that are adapted
and integrable, so X = {(I0, I1, . . . , IT ) | It ∈ L1 (Ω,Ft, P) , t ∈ T }. Moreover, by ct > 0,
t ∈ T , we denote a discounting factor from time t to 0. It means that an income of 1 at t
has a value ct at time 0. In particular, c0 = 1. The final wealth is discounted with a factor
cT+1 > 0. We also assume that ct+1 < ct, t ∈ T . Due to the time value of money principle,
it seems reasonable.

Fix a sequence (γt)t∈T such that γt ∈ (0, 1), t ∈ T . For each t ∈ T− define a static risk
measure by

ρ(t)(X) = λtE(−X) + (1 − λt) AVaRγt
(X), X ∈ L1(Ω,F , P), (4.1)

where
λt =

ct+1

ct

.

Note that every ρ(t) is just a convex combination of two coherent risk measures, the neg-
ative expectation and the Average Value at Risk. As a consequence, the new measure is
coherent as well.
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4 Pflug–Ruszczyński risk measure

Now we are ready to state the already mentioned definition:

Definition 4.1. A mapping ρPR : Ω × T− ×X 3 (ω, t, I) 7→ ρPR
t (I)(ω) ∈ R̄ such that

ρPR
t (I) = −

ct+1

ct

(

It + VaRγt
(It| Ft−1) 11T+(t)

)+
+ E

(

T
∑

n=t+1

cn

ct

ρ(n) (In| Fn−1)
∣

∣

∣
Ft

)

,

where each ρ(n) is given by (4.1), is called the dynamic Pflug–Ruszczyński risk measure.

From the above definition it immediately follows that the process
(

ρPR
t (I)

)

t∈T−
is adapted

with respect to the filtration (Ft)t∈T−
for every I ∈ X . It is also clear that ρPR is indepen-

dent of the past. Furthermore, we have the following theorem:

Theorem 4.2. Let t ∈ T−. Then the following statements are true:

(1) Let Y = (0, . . . , 0, Yt+1, . . . , YT ) ∈ X be a predictable process such that the sum
∑T

n=t+1 cnYn is Ft-measurable. Then

ρPR
t (I + Y ) = ρPR

t (I) −
T
∑

n=t+1

cn

ct

Yn, I ∈ X .

(2) For I(1), I(2) ∈ X such that I
(i)
t + VaRγt

(

I
(i)
t

∣

∣Ft−1

)

11T+(t) ≤ 0, i = 1, 2, it holds that

ρPR
t

(

I(1)
)

≤ ρPR
t

(

I(2)
)

if I(1) ≥ I(2),

ρPR
t

(

I(1) + I(2)
)

≤ ρPR
t

(

I(1)
)

+ ρPR
t

(

I(2)
)

.

(3) If Λ ∈ L∞ (Ω,Ft−1, P) and Λ > 0, then

ρPR
t (ΛI) = ΛρPR

t (I).

Proof. Fix I ∈ X and a predictable process Y = (0, . . . , 0, Yt+1, . . . , YT ) ∈ X such that
∑T

n=t+1 cnYn is measurable with respect to Ft. Since

ρPR
t (I + Y ) = −

ct+1

ct

(

It + VaRγt
(It| Ft−1) 11T+(t)

)+
+ E

(

T
∑

n=t+1

cn

ct

ρ(n) (In + Yn| Fn−1)
∣

∣

∣
Ft

)

= ρPR
t (I) −

T
∑

n=t+1

cn

ct

Yn,

assertion (1) holds.

Assertions (2) and (3) are obvious.
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4.1 Definition and properties

In general, dynamic translation invariance, monotonicity, dynamic positive homogeneity
and subadditivity (see Definition 2.12 and Definition 2.14) do not hold. To see that,
consider the following example. Let Ω = {ω1, ω2, ω3, ω4}, P (ωi) = 1/4 for each i = 1, . . . , 4
and

F0 = {∅, Ω} , F1 = σ ({ωi, ωi+1} , i = 1, 3) , F2 = σ ({ωi} , i = 1, . . . , 4) .

Suppose that we are given a constant interest rate r > 0. Hence ct = (1 + r)−t, t = 0, 1, 2.
Take γ1 = 0.9 and ξ = 11{ω1,ω2}. Define a process Y = (Y0, Y1, Y2) via

Y0 = 0, Y1 = ξ, Y2 = −
c1

c2
ξ.

Then Y is adapted and Y0 + c1Y1 + c2Y3 = 0 is F0-measurable. On the other hand,

ρPR
0 (Y ) = E

(

c1ρ
(1) (Y1) + c2ρ

(2) (Y2| F1)
)

= c1ρ
(1)(ξ) + c1Eξ = (c1 − c2) Eξ > 0.

We also have

ρPR
1 (0, 0, 0) = ρPR

1 (0, 1, 0) = 0,

ρPR
1 (0, ξ, 0) = −

c2

c1
(ξ + VaRγ1 ξ)+ = −

c2

c1
ξ,

ρPR
1 (0,−ξ, 0) = −

c2

c1
(−ξ + VaRγ1 (−ξ))+ = −

c2

c1
(1 − ξ) .

Hence

ρPR
1 (0, 1, 0) > ρPR

1 (0, ξ, 0) with positive probability, but 1 ≥ ξ,

ρPR
1 (0, ξ, 0) 6= ξρPR

1 (0, 1, 0) ,

ρPR
1 (0, 0, 0) > ρPR

1 (0, ξ, 0) + ρPR
1 (0,−ξ, 0) .

However, Theorem 4.2 guarantees that the dynamic Pflug–Ruszczyński measure is "al-
most" a dynamic risk measure in the sense of Definition 2.12. It is due to the fact that the
dynamic translation invariance property is satisfied for all predictable processes and ρPR

is monotone for I ∈ X with It + VaRγt
(It| Ft−1) 11T+(t) ≤ 0, t ∈ T−.

As in the case of the Iterated Conditional Average Value at Risk, from (3.2) it follows that
the dynamic Pfug–Ruszczyński risk measure is relevant. Unfortunately, it does not satisfy
the time consistency condition. Extending the last example with stopping times σ = 0 and
τ = 1 we get that

ρPR
σ (ξ · eτ ) = ρPR

0 (0, ξ, 0) = E
(

c1ρ
(1)(ξ)

)

= c1ρ
(1)(ξ) = −c2Eξ,

ρPR
σ

(

cτ

c2
ξ · e2

)

= ρPR
0

(

0, 0,
c1

c2
ξ

)

= E
(

c1ρ
(2) (ξ| F1)

)

= −c1Eξ.

Therefore

ρPR
σ (ξ · eτ ) 6= ρPR

σ

(

cτ

c2

ξ · e2

)

.

We finish the section with a simple remark:
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4 Pflug–Ruszczyński risk measure

Remark 4.3. Let ξ ∈ L1(Ω,F , P) and I ∈ X . We define two processes as follows:

S
(1)
t = ctρ

PR
t (0, . . . , 0, ξ),

S
(2)
t = ctρ

PR
t (I) + ct+1

(

It + VaRγt
(It| Ft−1) 11T+(t)

)+
+

t
∑

n=1

cnρ(n) (In| Fn−1) ,
t ∈ T−.

Then S(i), i = 1, 2, is a martingale with respect to the filtration (Ft)t∈T−
.

Proof. Since for t ∈ T− it holds that

S
(1)
t = E

(

cT ρ(T ) (ξ| FT−1) | Ft

)

,

S
(2)
t = E

(

T
∑

n=t+1

cnρ(n) (In| Fn−1)
∣

∣

∣
Ft

)

+
t
∑

n=1

cnρ(n) (In| Fn−1)

= E

(

T
∑

n=1

cnρ(n) (In| Fn−1)
∣

∣

∣
Ft

)

,

we are done.

Compare the last remark to Remark 2.20. The latter guarantees that the process is only
a supermartingale, if the dynamic risk measure is, in particular, time-consistent. The
dynamic Pflug–Ruszczyński risk measure is not, but for it we have even stronger result.

4.2. Motivation

In this section we concern ourselves with motivating the definition of the dynamic Pflug–
Ruszczyński measure. Although it could be surprising at first glance, it makes sense to
consider such a measure. Our main tool will be Markov decision theory (see Appendix B).
That involves the necessity of an assumption that the model is Markovian.

4.2.1. Basic idea

Consider a company for which I = (I0, I1, . . . , IT ) ∈ X is an income process. At each time
t ∈ T− a manager determines an amount at that is going to be consumed at time t + 1.
It follows that at is an Ft-measurable random variable. We define an accumulated wealth
process of the company by

{

W0 = I0,

Wt+1 = W+
t + It+1 − at, t ∈ T−.

If for any t ∈ T it holds that Wt < 0, the company faces a loss of −Wt. Then it is obliged
to pay immediately qt/ctW

−
t , where

qt =
ct − ct+1γt

1 − γt

, t ∈ T .
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4.2 Motivation

The number qt can be seen as an insurance premium at time t. Because ct+1 < ct, t ∈ T ,
we also get that ct < qt, t ∈ T .

Taking t ∈ T− as a starting point, we aim at maximizing the discounted expected utility
associated with all future cash flows. It is clear that at time n > t the company has an
amount of the discounted value of

cnan−1 − qnW−
n + cT+1W

+
T 11{T}(n)

at its disposal. As a consequence, we want to maximize

1

ct

(

T
∑

n=t+1

(

cnan−1 − qnW−
n

)

+ cT+1W
+
T

)

over all decision vectors (at, . . . , aT−1) ∈ X (T−t), where

X (T−t) = {(Xt, . . . , XT−1) | Xn is Fn-measurable, t ≤ n ≤ T − 1} .

Hence we define a mapping ρ : Ω × T− ×X → R̄ by

ρt(I) = − ess sup
(at,...,aT−1)∈X (T−t)

1

ct

E

(

T
∑

n=t+1

(

cnan−1 − qnW−
n

)

+ cT+1W
+
T

∣

∣

∣
Ft

)

(4.2)

for I ∈ X and t ∈ T−. In the next section we will prove that the above essential supremum
is attained and ρ coincides with ρPR on some subset of X .

4.2.2. Optimization problem solving via Markov decision theory

As we have already mentioned, we want to solve the optimization problem from (4.2). To
do so, we need to introduce the Markov environment for the income process I.

Suppose that Y0, Y1, . . . , YT are stochastically independent random variables such that Ft =
σ (Ys, s ≤ t), t ∈ T . Moreover, there is also given a Markov chain (Zt)t∈T such that
Z0 = c ∈ R and Zt+1 depends only on Zt and Yt+1, t ∈ T−. Therefore there is a measurable
function ft : R2 → R with

Zt = ft (Zt−1, Yt) .

We consider only income processes I such that It depends only on Zt for each t ∈ T . Then
there exists a measurable function gt : R2 → R, t ∈ T+, such that the following holds

It = gt (Zt−1, Yt) .

The set of all these processes I we denote by XM.
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4 Pflug–Ruszczyński risk measure

Now we concentrate on defining a Markov decision process. Let S ⊂ R2 be a state space
equipped with a sub-σ-algebra S = B2

S. If s = (w, z) ∈ S, it means that w and z are
realizations of the wealth process and the Markov chain, respectively. An action space we
denote by A. Then A ⊂ R and its sub-σ-algebra equals A = BA. An element a ∈ A is
simply an amount of money dedicated to be consumed. There are no restriction on actions,
so a restriction set D = S × A ⊂ R3. For t ∈ T− we set

Π(T−t) =
{

π(T−t) = (πt, . . . , πT−1) | πn : S → A is measurable, n = t, . . . , T − 1
}

.

The above is a set of (T−t)-step admissible policies. E ⊂ R (equipped with a sub-σ-algebra
E = BE) is a set of all disturbances. A transition function Tt : D × E → S is defined as
follows

Tt (w, z, a, y) =
(

w+ + gt(z, y) − a, ft(z, y)
)

.

By Qt : D × E → [0, 1] with

Qt (w, z, a, B) = P (Yt ∈ B)

we denote a transition law. Finally we define rewards. The one-step reward function is
given by

rt : D 3 (w, z, a) 7→ rt (w, z, a) = ct+1a − qtw
− ∈ R.

A terminal reward function is the following mapping

VT : S 3 (w, z) 7→ VT (w, z) = cT+1w
+ − qT w− ∈ R.

For π(T ) = (π0, π1, . . . , πT−1) ∈ Π(T ) we define a Markov decision process by

X0 = s0 = (w0, z0) ∈ S, Xt = Tt (Xt−1, πt−1 (Xt−1) , Yt) , t ∈ T+.

We introduce value functions:

Vt,π(T−t)(s) = E

(

T−1
∑

n=t

rn (Xn, πn (Xn)) + VT (XT )
∣

∣

∣
Xt = s

)

, π(T−t) ∈ Π(T−t),

Vt(s) = sup
π(T−t)∈Π(T−t)

Vt,π(T−t)(s).

Fix t ∈ T+ and suppose that y = (y1, . . . , yt) ∈ Et is a realization of a random vector
(Y1, . . . , Yt). Take ω ∈ {(Y1, . . . , Yt) = y}. Since both W and Z are adapted, there exists a
measurable function hW,Z

t : Et → S such that

Xt = (Wt, Zt) = hW,Z
t (Y1, . . . , Yt)

or, equivalently,

Xt(ω) = (Wt, Zt) (ω) = hW,Z
t (y).
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4.2 Motivation

It follows that for I ∈ XM we have

ρt(I)(ω) = − ess sup
a=(at,...,aT−1)

1

ct

E

(

T
∑

n=t+1

(

cnan−1 − qnW−
n

)

+ cT+1W
+
T

∣

∣

∣
Ft

)

(ω)

= − sup
a

1

ct

E

(

T−1
∑

n=t

(

cn+1an − qnW−
n

)

+ qtW
−
t + cT+1W

+
T − qT W−

T

∣

∣

∣
Xt = hW,Z

t (y)

)

= −
qt

ct

(

hW,Z
t (y)

)−

1
− sup

π(T−t)

1

ct

E

(

T−1
∑

n=t

rn (Xn, πn (Xn)) + VT (XT )
∣

∣

∣
Xt = hW,Z

t (y)

)

= −
qt

ct

(

hW,Z
t (y)

)−

1
−

1

ct

Vt

(

hW,Z
t (y)

)

,

where ( · )1 stands for the projection onto the first coordinate. In general, it holds that

ρt(I) = −
qt

ct

W−
t −

1

ct

Vt (Xt) . (4.3)

Now it is an appropriate moment for the most important theorem of this section. We
apply Markov decision theory and, by using the dynamic programming theorem (see The-
orem B.4), we get explicit formulas for the value functions.

Theorem 4.4. Let t ∈ T and s∗ = (w∗, z∗) ∈ S. Then the value function is given by

Vt (s
∗) = ct+1 (w∗)+ − qt (w∗)− − 11T−(t)

T
∑

n=t+1

cnE
(

ρ(n) (In|Zn−1) |Zt = z∗
)

. (4.4)

Moreover, the optimal policy π
(T−t)
∗ =

(

π∗
t , . . . , π

∗
T−1

)

∈ Π(T−t) and the optimal Markov
process (X∗

t , . . .X∗
T ) are as follows

π∗
n(s) = w+ − VaRγn

(In+1|Zn = z) , t ≤ n ≤ T − 1,

X∗
t = s∗,

X∗
n =

(

In + VaRγn

(

In|Zn−1 = Z∗
n−1

)

, fn

(

Z∗
n−1, Yn

))

, t + 1 ≤ n ≤ T.

Proof. First note that for a ∈ R, s = (w, z) ∈ S and t ∈ T+ we have

ct+1

(

w+ + gt (z, Yt) − a
)+

− qt

(

w+ + gt (z, Yt) − a
)−

= ct+1

(

w+ + gt (z, Yt) − a
)

− (qt − ct+1)
(

w+ + gt (z, Yt) − a
)−

= ct+1

(

w+ + gt (z, Yt)
)

− cta + (ct − ct+1)

(

a −
qt − ct+1

ct − ct+1

(

w+ + gt (z, Yt) − a
)−
)

= ct+1

(

w+ + gt (z, Yt)
)

− cta + (ct − ct+1)

(

a −
1

1 − γt

(

w+ + gt (z, Yt) − a
)−
)

.
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4 Pflug–Ruszczyński risk measure

Therefore

sup
a

(

rt−1 (s, a) + E

(

ct+1

(

w+ + gt (z, Yt) − a
)+

− qt

(

w+ + gt (z, Yt) − a
)−
))

= −qt−1w
− + ct+1

(

w+ + Egt (z, Yt)
)

− (ct − ct+1) inf
a

(

−a +
E (w+ + gt (z, Yt) − a)

−

1 − γt

)

= −qt−1w
− + ct+1

(

w+ + Egt (z, Yt)
)

− (ct − ct+1)
(

AVaRγt
gt (z, Yt) − w+

)

= −qt−1w
− + ctw

+ + ct (λtEgt (z, Yt) − (1 − λt) AVaRγt
gt (z, Yt))

= −qt−1w
− + ctw

+ − ctρ
(t) (gt (z, Yt))

= −qt−1w
− + ctw

+ − ctE
(

ρ(t) (It|Zt−1) |Zt−1 = z
)

.

The proof is by backward induction. Obviously,

VT (s) = cT+1w
+ − qT w−.

Furthermore, due to Theorem B.4, we obtain

VT−1(s) = JT−1(s) = sup
a

(

rT−1(s, a) +

∫

E

JT (TT (s, a, y)) QT (s, a; dy)

)

= sup
a

(

rT−1(s, a) +

∫

E

VT

(

w+ + gT (z, y) − a, fT (z, y)
)

QT (s, a; dy)

)

= −qT−1w
− + cT w+ − cT E

(

ρ(T ) (IT |ZT−1) |ZT−1 = z
)

.

Moreover, the supremum is attained at

a∗ = π∗
T−1(w, z) = −VaRγT

(

gT (z, YT ) + w+
)

= w+ − VaRγT
(IT |ZT−1 = z)

and
W ∗

T = w+ + gT (z, YT ) − a∗ = gT (z, YT ) + VaRγT
(IT |ZT−1 = z) .

Now suppose that the assertion holds for t + 1, t ∈ {0, . . . , T − 2}. Then, again by Theo-
rem B.4,

Vt(s) = Jt(s) = sup
a

(

rt(s, a) +

∫

E

Jt+1 (Tt+1 (s, a, y)) Qt+1 (s, a; dy)

)

= sup
a

(

rt(s, a) +

∫

E

Vt+1

(

w+ + gt+1(z, y) − a, ft+1(z, y)
)

Qt+1 (s, a; dy)

)

= sup
a

(

rt(s, a) + E

(

ct+2

(

w+ + gt+1 (z, Yt+1) − a
)+

− qt+1

(

w+ + gt+1 (z, Yt+1) − a
)−
))

− E

(

T
∑

n=t+2

cnE
(

ρ(n) (In|Zn−1) |Zt+1 = ft+1 (z, Yt+1)
)

)

= −qtw
− + ct+1w

+ − ct+1E
(

ρ(t+1) (It+1|Zt) |Zt = z
)

−
T
∑

n=t+2

cnE
(

E
(

ρ(n) (In|Zn−1) |Zt+1

)

|Zt = z
)

= −qtw
− + ct+1w

+ −
T
∑

n=t+1

cnE
(

ρ(n) (In|Zn−1) |Zt = z
)

.
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4.3 Artzner game

Furthermore,

a∗ = π∗
t (w, z) = w+ − VaRγt+1 (gt+1 (z, Yt+1)) = w+ − VaRγt+1 (It+1|Zt = z) ,

W ∗
t+1 = w+ + gt+1 (z, Yt+1) − a+ = gt+1 (z, Yt+1) + VaRγt

(It+1|Zt = z) .

This completes the proof.

Theorem 4.5. The following holds true:

ρt(I) = −
ct+1

ct

W+
t + E

(

T
∑

n=t+1

cn

ct

ρ(n) (In|Zn−1)
∣

∣

∣
Zt

)

, I ∈ XM, t ∈ T−. (4.5)

Proof. The assertion immediately follows from (4.3) and (4.4).

Once again we remind the reader that the assumption of a Markovian structure of the
model was essential to obtain the above formula. Because of that, (4.5) holds only on
the set XM. It is obviously a drawback. Nevertheless, most of the discrete-time models
(including the most important ones) meet the assumption.

To conclude the section note that for the optimal wealth process W ∗ we obtain

ρt (I) = −
ct+1

ct

(

It + VaRγt
(It|Zt−1) 11T+(t)

)+
+ E

(

T
∑

n=t+1

cn

ct

ρ(n) (In|Zn−1)
∣

∣

∣
Zt

)

,

which coincides with the definition of the dynamic Pflug–Ruszczyńki measure (see Defini-
tion 4.1).

4.3. Artzner game

Recall the example from Section 3.4. Name the income processes by I(1) and I(2). They
are presented in Figure 3.3. Let Yi, i = 1, 2, 3, denote a result of the i-th throw. Then

Yi =

{

1, with probability p

0, with probability 1 − p,

where 1 and 0 mean that the i-th coin shows heads and tails, respectively. We also define
a Markov chain by

Z0 = 0, Zt+1 = Zt + Yt+1, t ∈ {0, 1, 2}.

Then we write

I(1) = (0, 0, Y3) , I(2) =
(

0, 0, 11{Z3≥2}

)

.
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4 Pflug–Ruszczyński risk measure

Since I
(i)
j = 0, i = 1, 2, j = 0, 1, 2, we get that

ρPR
0

(

I(1)
)

= c3E
(

ρ(3) (Y3|Z2)
)

= c3ρ
(3) (Y3) ,

ρPR
t

(

I(1)
)

=
c3

ct

E
(

ρ(3) (Y3|Z2) |Zt

)

=
c3

ct

ρ(3) (Y3) , t = 1, 2.

Now we move on to the process I(2). We have

ρPR
0

(

I(2)
)

= c3E
(

ρ(3)
(

11{Z3≥2} |Z2

))

= c3

(

2(1 − p)ρ(3) (Y3) − p
)

p,

ρPR
1

(

I(2)
)

=
c3

c1
E
(

ρ(3)
(

11{Z3≥2} |Z2

)

|Z1

)

=

{

c3
c1

(

(1 − p)ρ(3) (Y3) − p
)

, Z1 = 1
c3
c1

p ρ(3) (Y3) , Z1 = 0,

ρPR
2

(

I(2)
)

=
c3

c2

E
(

ρ(3)
(

11{Z3≥2} |Z2

)

|Z2

)

=
c3

c2

ρ(3)
(

11{Z3≥2} |Z2

)

=











− c3
c2

, Z2 = 2
c3
c2

ρ(3) (Y3) , Z2 = 1

0, Z2 = 0.

Now we compute ρ(3) (Y3). Since

AVaRγ3 (Y3) =
γ3 − p

1 − γ3
11(0,p] (γ3) ,

we obtain

ρ(3) (Y3) = −λ3p +
(1 − λ3)(γ3 − p)

1 − γ3

11(0,p] (γ3) .

As before, we summarize the results, see Table 4.1. The star in the last row can be ">",
"<" or "=", depending on parameters. For the most important case when all three coins
are fair (p = 1/2), it holds that the process I(1) has a higher risk and then ? denotes ">".
Note that all inequalities (except for t = 0) are the same as in Section 3.4 for the Iterated
Conditional Average Value at Risk. Because of that, we do not make a comment.

ρPR
t ω ∈ I(1) I(2)

2
{Z2 = 2} c3

c2
ρ(3) (Y3) > − c3

c2

{Z2 = 1} c3
c2

ρ(3) (Y3) = c3
c2

ρ(3) (Y3)

{Z2 = 0} c3
c2

ρ(3) (Y3) < 0

1
{Z1 = 1} c3

c1
ρ(3) (Y3) > c3

c1

(

(1 − p)ρ(3) (Y3) − p
)

{Z1 = 0} c3
c1

ρ(3) (Y3) < c3
c1

p ρ(3) (Y3)

0 Ω c3ρ
(3) (Y3) ? c3

(

2(1 − p)ρ(3) (Y3) − p
)

p

Table 4.1: The Pflug–Ruszczyński measure for the Artzner game
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4.4 Incomplete information

4.4. Incomplete information

Sometimes it happens that we do not have complete information about the market. Nev-
ertheless, we still want to assign the riskiness of different financial positions. As we will see
in this section, we can deal with the problem by extending the definition of the dynamic
Pflug–Ruszczyński risk measure. As previously, it is can be done under the assumption
that the model is Markovian. Again we assume that there exist a generating Markov chain
(Zt)t∈T and random variables Y0, Y1, . . . , YT such that Ft = σ (Ys, s ≤ t). However, each
Yt, t ∈ T , depends now on a parameter ϑ ∈ Θ ⊂ R. Since ϑ can be unknown, we also treat
it as a random variable with some distribution L(Θ) on Θ. We additionally suppose that
Y0, Y1, . . . , YT are independent under ϑ.

Similarly as in Section 4.2.2, we aim at defining a Markov decision process. Due to the
incompleteness of information, we want to apply Bayesian decision theory. In that con-
nection we have to extend the state space S to S̃ = S × P(Θ), where P(Θ) denotes the
set of all probability measures on Θ. Moreover, we fix µ0 ∈ P(Θ) as the so-called prior
distribution. It is our initial prediction of the law of ϑ. Then, using the Bayes operator,
we get the sequence (µt)t∈T such that µt+1 is an update of µt, t ∈ T−. Every µt, t ∈ T+,
is called the posterior distribution. We do not go into details, but again we are able to
define a Markov decision process Xt = (Wt, Zt, µt). Therefore we can state the following
definition:

Definition 4.6. A mapping

ρB,µ0 : Ω × T− × XM 3 (ω, t, I) 7→ ρ(ω, t, I) = −
qt

ct

W−
t (ω) −

1

ct

Vt (Xt(ω)) ,

where Vt is the value function for the process X, is called the Bayesian Pflug–Ruszczyński
risk measure.

In general, it is hard to obtain explicit formulas for the value functions. However, in some
special cases it is possible. To see that, assume that Y0 = 0 and Yt given ϑ = θ, t ∈ T+, is
Bernoulli distributed with

P (Yt = u| ϑ = θ) = θ, P (Yt = d| ϑ = θ) = 1 − θ.

Moreover, as an initial estimate µ0 of L(Θ) take the uniform distribution on the interval
[0, 1]. Note that U ([0, 1]) = Beta(1, 1) and if µt = Beta(α, β), then

µt+1 = Beta
(

α + 11{u} (Yt+1) , β + 11{d} (Yt+1)
)

.

We have the following theorem, which is due to André Mundt. Here we only state it. If
the reader is interested in the proof, see Proposition 5.1 in [M 07].

57



4 Pflug–Ruszczyński risk measure

Theorem 4.7. A Bayesian Pflug–Ruszczyński risk measure for µ0 = U ([0, 1]) is given by
the following formula:

ρ
B,U([0,1])
t (I) = −

ct+1

ct

W+
t +

T
∑

n=t+1

cn

ct

Et,α,β

(

ρ
(n)
t,α,β (In| Yt+1, . . . , Yn−1, Zt)

∣

∣Zt

)

, I ∈ XM,

where Et,α,β and ρ
(n)
t,α,β denote the expectation and the risk measure ρ(n) with respect to the

probability measure Pt,α,β on σ (Zt, Yt+1, . . . , YT ) defined by

Pt,α,β (Zt = z, Yt+1 = yt+1, . . . , YT = yT )

= P (Zt = z)
T
∏

n=t+1

P

(

Yn = yn

∣

∣

∣
ϑ =

α +
∑n−1

k=t+1 11{u} (yk)

α + β − t − 1

)

.

Hence we have the result that is analogous to (4.5), but the probability measure that we
use now is much more complicated.

We come back to the Artzner game (see Section 4.3). Again we aim at measuring the
riskiness of I(1) = (0, 0, 0, Y3) and I(2) =

(

0, 0, 0, 11{Z3≥2}

)

. By direct computations we
obtain the results presented in Table 4.2. For simplicity we assume that γ3 > 3/4. Note
that the orderings are still the same as in the cases of the Iterated Conditional Average
Value at Risk and the dynamic Pflug–Ruszczyński risk measure.

t θt ω ∈ I(1) I(2)

2 1+Z2

4

{Z2 = 2} −3c4
4c2

> − c3
c2

{Z2 = 1} − c4
2c2

= − c4
2c2

{Z2 = 0} − c4
4c2

< 0

1 1+Z1

3

{Z1 = 1} −2c4
3c1

> −2(3c3+c4)
9c1

{Z1 = 0} − c4
3c1

< − c4
9c1

0 1
2

Ω − c4
2

> − c3+c4
4

(a) ρ
B,δθt

t

t ω ∈ I(1) I(2)

2
{Z2 = 2} −3c4

4c2
> − c3

c2

{Z2 = 1} − c4
2c2

= − c4
2c2

{Z2 = 0} − c4
4c2

< 0

1
{Z1 = 1} −2c4

3c1
> −4c3+c4

6c1

{Z1 = 0} − c4
3c1

< − c4
6c1

0 Ω − c4
2

> −2c3+c4
6

(b) ρ
B,U([0,1])
t

Table 4.2: The Bayesian Pflug–Ruszczyński measures for the Artzner game

From Table 4.2 one can easily see that

ρ
B,δθt
t

(

I(1)
)

= ρ
B,U([0,1])
t

(

I(1)
)

, t ∈ {0, 1, 2},

ρ
B,δθ2
2

(

I(2)
)

= ρ
B,U([0,1])
2

(

I(2)
)

,

ρ
B,δθ1
1

(

I(2)
)

< ρ
B,U([0,1])
1

(

I(2)
)

on {Z1 = 1} ,

ρ
B,δθ1
1

(

I(2)
)

> ρ
B,U([0,1])
1

(

I(2)
)

on {Z1 = 0} ,

ρ
B,δθ0
0

(

I(2)
)

> ρ
B,U([0,1])
0

(

I(2)
)

,
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4.4 Incomplete information

where θt is given by

θt =











1+Z2

4
, t = 2

1+Z1

3
, t = 1

1
2
, t = 0.

As a consequence, if we start with no knowledge about the parameter ϑ, we attach less
risk to I(2) using the Bayesian approach with µ0 = U ([0, 1]) than applying the ordinary
Pflug–Ruszczyński risk measure under the assumption that ϑ is known and equals 1/2.
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Appendix A

Some useful facts

In this chapter we present some useful results. For more details and proofs the reader is
referred to the literature.

A.1. Probability theory

A.1.1. Quantiles and quantile functions

Let (Ω,F , P) be a probability space.

First we want to define a quantile of a random variable.

Definition A.1. A real number qX is called a α-quantile (for α ∈ [0, 1]) of a random
variable X if it holds that P(X < qX) ≤ α ≤ P(X ≤ qX).

Proposition A.2. The set of all α-quantiles of X is an interval [q−X(α), q+
X(α)], where

q−X(α):= sup {x ∈ R | P(X < x) < α} = inf {x ∈ R | P(X ≤ x) ≥ α} ,

q+
X(α):= inf {x ∈ R | P(X ≤ x) > α} = sup {x ∈ R | P(X < x) ≤ α} .

(A.1)

Real numbers q−X(α) and q+
X(α) are called a lower α-quantile of X and an upper α-quantile

of X, respectively.

Now we go over to quantile functions.

Definition A.3. Let F : (a, b) → R be an increasing function with

c = lim
x↘a

F (x), d = lim
x↗b

F (x).

Then q : (c, d) → (a, b) is called an inverse function for F if

F (q(s)−) ≤ s ≤ F (q(s)+) for every s ∈ (c, d).
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A Some useful facts

Definition A.4. An inverse function q : (0, 1) → R of a distribution function F is called
a quantile function.

Lemma A.5. Let q be an inverse function for an increasing function F . Then F is also
an inverse function for q.

See Lemma A.17 in [FS 04] for the proof.

Lemma A.6. Suppose that U is a random variable uniformly distributed on the interval
[0, 1] and F : R → [0, 1] is increasing and right-continuous. Let q be an inverse function
for F . Then F is a cumulative distribution function for q ◦ U .

The proof can be found in [FS 04], see Lemma A.19.

A.1.2. Conditional probability

Suppose that (S,S) and (T, T ) are two measurable spaces. Then we define a probability
kernel as follows:

Definition A.7. A mapping P : S × T → [0, 1] is called a probability kernel from (S,S)
to (T, T ) if the following conditions are fulfilled:

• a function P ( · , B) is S-measurable for fixed B ∈ T ,

• a function P (s, · ) is a probability measure for fixed s ∈ S.

We have two very useful theorems, which we want to cite here:

Theorem A.8 (Conditional distribution). Let (S,S) be a Borel space and (T, T )
a measurable space. Suppose that ξ and η are random elements in S and T , respectively.
Then there exists a unique P ◦ η−1-a.s. probability kernel P from (T, T ) to (S,S) such that

P(ξ ∈ · | η) = P (η, · ).

For the proof see [K 97], Theorem 5.3.

Theorem A.9. Let
(

(Sn,BSn
)n∈N

)

be a sequence of Borel spaces. For each n ∈ N we define
Tn =

∏n
k=0 Sk. Moreover, T stands for

∏∞
k=0 Sk. Assume that µ is a probability measure

on S0 and Pn : Tn × BSn+1 → [0, 1] is a probability kernel from (Tn,BTn
) to

(

Sn+1,BSn+1

)

,
n ∈ N. Then there exists a unique probability measure P on T such that

P (B0 × B1 × · · · × Bn) =

∫

B0

µ (dx0)

∫

B1

P0 (x0; dx1)

∫

B2

P1 (x0, x1; dx2)

· · ·

∫

Bn

Pn−1 (x0, x1, . . . , xn−1; dxn)

for B0 × B1 × · · · × Bn ∈ Tn.

The proof can be found [BS 96], see Proposition 7.28.

62



A.2 Functional analysis

A.2. Functional analysis

Theorem A.10 (Separation theorem for convex sets). Let X be a real normed linear
space and Y, Z ⊂ X be non-empty, disjoint and convex. If moreover Y is compact and Z
is closed, then there exists a linear continuous functional l : X → R such that

sup
x∈Y

l(x) < inf
x∈Z

l(x).

Theorem A.11 (Riesz). Let (X,F , µ) be a σ-finite measurable space and p, q be such
that p ∈ [1, +∞) and 1/p + 1/q = 1. Suppose that l : Lp(X,F , µ) → R is a bounded linear
functional. Then there exists a unique g ∈ Lq(X,F , P) such that ‖g‖q = ‖L‖ and

l(f) =

∫

X

fg dµ, f ∈ Lp(X,F , P).

For the proof see Theorem 18.6 in [Y 06].

A.3. Analysis

Theorem A.12 (Essential supremum). Let (X,F , P) be a probability space and F be
a family of random variables. Then there exists a unique random variable g : Ω → R̄ such
that

• g ≥ f P-a.s. for all f ∈ F ,

• if h ≥ f P-a.s. for a random variable h and each f ∈ F , then h ≥ g P-a.s.

We call the function g the essential supremum of F and denote by ess sup F .

Moreover, there exists a sequence (fn)n∈N ⊂ F such that

sup
n∈N

fn = ess sup F.

If additionally F is directed upwards, i.e., for all f1, f2 ∈ F there is f3 ∈ F such that
f3 ≥ f1 ∨ f2, the sequence (fn)n∈N can be chosen in such a way that fn ≤ fn+1, n ∈ N.

The proof can be found in [N 75], see Proposition VI-1-1.
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Appendix B

Markov decision processes

This section is devoted to basic Markov decision theory. We give an overview of some
definitions and theorems that are useful in Chapter 4. For more details and proofs the
reader is referred to [HL 96].

We concentrate on the case of the finite time horizon. Therefore the set of time instants,
denoted by T , equals {0, 1, . . . , T} for some T ∈ N+. Let T− stands for T \ {T}. We state
a model as follows:

Definition B.1. By discrete-time Markov decision (control) model we call a five-tuple
{(S,BS) , (A,BA) , {A(s) | s ∈ S} , Qt, rt} such that

• state space: (S,BS) is a Borel space,

• action (control) set: (A,BA) is a Borel space,

• {A(s) | s ∈ S} is a family of nonempty measurable sets A(s) such that A(s) ⊂ A
denotes the set of feasible actions being in the state s ∈ S, we define the set of all
feasible state-action pairs by D = {(s, a) | s ∈ S, a ∈ A(s)},

• transition law: Qt : D × S → [0, 1] is a stochastic kernel from (D,BD) to (S,BS),
t ∈ T ,

• one-step reward function: rt : D → R is measurable.

Often instead of rewards we consider costs. Then almost everything remains the same, we
only have to change maximizing problems to minimizing ones, etc.

We define

H0 = S, Ht+1 = D × Ht, t ∈ T−.

The set Ht, t ∈ T , is called an admissible history up to time t and ht ∈ Ht is a t-history.
Moreover,

H̄0 = H0, H̄t+1 = S × A × H̄t, t ∈ T−.
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B Markov decision processes

Definition B.2. Let π = (π0, π1, . . . πT−1) be such that πt : Ht×BA → [0, 1] is a probability
kernel from (Ht,BHt

) to (A,BA) with

πt (ht, A (st)) = 1

for every t ∈ T−. Then π is a policy.

We construct a probability space (Ω,F , P). Let Ω, given by Ω = H̄T , be equipped
with a product σ-algebra F . Fix any probability measure µ on S and a policy π =
(π0, π1, . . . , πT−1). Then, due to Theorem A.9, there exists a unique probability measure
P such that

P (HT ) = 1,

P (s0 ∈ B) = µ(B), B ∈ BS,

P (at ∈ C| ht) = πt (ht, C) , C ∈ BA,

P (xt+1 ∈ B| ht, at) = Qt (xt, at, B) , ht = (x0, a0, x1, a1, . . . , xt−1, at−1, xt) ∈ Ht.

Now we introduce a Markov decision process:

Definition B.3.
(

Ω,F , P, (Xt)t∈T

)

is called a Markov decision process (Markov control
process).

Note that transition law is sometimes defined by means of the following equations

x0 = s0, s0 ∈ S,

xt+1 = F (xt, at, ξt) , t ∈ T−

where (ξt)t∈T is a sequence of independent random variables that are independent of the
initial state s0 as well. Then each ξt, t ∈ T , is called a disturbance.

Suppose that (S, A, {A(s) | s ∈ S} , Qt, rt) is a given Markov decision model. The aim is
to maximize the function J given by

J (π, s) = E

(

T−1
∑

t=0

rt (xt, at) + cT (xT )

)

,

where cT : S → R is a measurable function called a terminal reward function. We also
define a value function via

J∗(s) = inf
π

J (π, s) .

We want to find a policy π∗ with

J (π∗, s) = J∗(s), s ∈ S.

Such a policy is the so-called optimal policy and the following theorem enables us to find
it.
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Theorem B.4 (Dynamic programming theorem). Let (Jt)t∈T be a sequence of func-
tions defined backwards by

JT (s) = cT (s),

Jt(s) = max
a∈A(s)

(

r(s, a) +

∫

S

Jt+1(y) Q(s, a; dy)

)

, t ∈ {0, 1, . . . , T − 1} .
(B.1)

If for each t ∈ T Jt is measurable and there exists a function π∗
t : S → A such that π∗

t is
a maximizer of (B.1) and π∗

t (s) ∈ A(s) for all s ∈ S, then the policy π∗ =
(

π∗
0, . . . , π

∗
T−1

)

is optimal and
J∗(s) = J (π∗, s) , s ∈ S.

For the proof see Theorem 3.2.1 in [HL 96].
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