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Introduction

Evaluating the total capital requirement of an insurance company is an important
risk management issue, as well as the allocation of this capital to its various
business units.

Regarding economic capital, it has become a topic discussed at various in-
dustry conferences, received attention by regulators and rating agencies, and has
shown up over the years in various other disciplines, in particular in the banking
and insurance industry.

It is well known that insurance companies are obligated to hold a sufficient
amount of capital to remain solvent. Holding this capital protects the compa-
ny from insolvency, and ensures the future of the company as a going-concern.
While it is desirable that it holds large amounts of capital, usually this does not
come without cost. Investors demand a premium for lending capital and this cost
of capital can indirectly be passed to the policyholders in the form of a higher
premium loading. The capital required by the insurer is often viewed by rat-
ings agencies as a measure of the company’s capacity to bear risks. There has
been a recent surge in the literature in developing a framework of risk measure-
ments for computing capital requirements which is an important part of the risk
management process for the insurance companies.

Further, a fundamental question in actuarial science is how to allocate a given
amount of capital between the different busines lines of the company. This task
is called the capital allocation problem. The term “capital allocation” has been
used in finance literature where a similar concept of fair division of capital in a
diversified portfolio of investments has been investigated.

Capital allocation is generally not an end in itself, but rather a step in a
decision-making process. There are more reasons for allocating the economic
capital to the business units. Firstly, as was mentioned, there is a cost associated
with holding capital and the insurance company may wish to accurately deter-
mine this cost by line of business and thereby redistribute this cost equitably
across the lines. Secondly, capital is often viewed as a measure of the level of risk
inherent in the company and division of the capital therefore provides a division
of the level of risks inherent across the business units. This division of total com-
pany risk can be useful to the insurance company wishing to allocate expenses
across the lines of business, prioritizing new capital budgeting projects, or even
deciding which lines of business to expand or to contract. Last, capital allocation
formulas provide a useful device for fair assessment of performance of managers
of various business units. Salaries and bonuses may be linked to performance. In
summary, the richer information often derived from capital allocation improves
management of the insurance enterprise.

This master thesis is devoted to economic capital aggregation in the first place
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and then its allocation to the business lines.

In the first chapter we introduce dependence measures. Besides the known Pear-
son correlation coeficient we mention dependence measures which are connected
to copulas. We also provide an introduction to the copula theory.

In the second chapter we derive the aggregated economic capital using the corre-
lation matrix. Because individual risks are dependent, we can see the advantages
resulting from the diversification effect. It means that the total economic capital
is always less than the sum of capitals of individual business units.

The third chapter is devoted to economic capital aggregation using copulas and
we give a brief overview of copulas used in practice.

In the fourth chapter we discuss the capital allocation principles. Because in
the literature one can find a numerous ways how to allocate the capital we choose
the main of them.

In the fifth chapter we apply the allocation principles to the exact numerical
examples. We will demonstrate on these examples differences between using in-
dividual principles.
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1. Dependence measures

There are many ways how to measure dependence. In this chapter we introduce
essential dependence measures and their advantages and disadvantages. The
first one is the well-known linear correlation and the second one is the class of
measures based on copulas. Both of these measures give a scalar measurement
for two random variables (X,Y).

1.1 Linear correlation

The Pearson coefficient of linear correlation measures the linear dependence be-
tween pair of random variables (X,Y) and is easily countable. It is defined by

ρ(X, Y ) =
cov(X, Y )√
var(X)var(Y )

,

where
cov(X, Y ) = E(XY )− E(X)E(Y )

var(X) = E(X2)− E(X)2.

Correlation takes values in [−1, 1] while the frontier values ±1 need not to be
reached for some marginal distributions. If the random variables X,Y are inde-
pendent, then ρ(X, Y ) = 0, but the reverse implication does not hold.
Moreover, |ρ(X, Y )| = 1 responds to perfect linear dependence between X, Y , i.e.
Y = a + bX almost surely for some a ∈ R, b 6= 0, with b > 0 for the positive
linear dependence and b < 0 for the negative linear dependence. Correlation is
invariant under strictly increasing linear transformation as well, so

ρ(a1X + b1, a2Y + b2) = sgn(a1a2)ρ(X, Y ).

Let us look at the main disadvantages of using the Pearson correlation coeficient
as dependence measure:

• Correlation is defined for the random variables with finite variances only.
For instance, this property can cause problems when we work with heavy-
tailed distributions. It does not deliberate the tail dependencies.

• If the random variables X,Y are independent then ρ(X, Y ) = 0, but the
converse is false. Also ρ(X, Y ) ≈ 0 does not mean weak dependence between
random variables.
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• Correlation is not invariant under nonlinear strictly increasing transforma-
tions,

ρ(t1(X), t2(Y )) 6= ρ(X, Y )

for t1, t2 strictly increasing functions.

Despite of these shortcomings correlation still plays a crucial role in financial the-
ory. It is the canonical measure in the case of multivariate normal distributions,
and more generally for elliptical distributions. In insurance industry the losses
often have the lognormal distribution which belong to this category.

1.2 Copula-based dependence measures

The study and applications of copulas in statistics and probability have extended
in the last years. The interest in copulas grows for two main reasons: At first, as
a way of studying scale-free measures of dependence; and secondly, as a starting
point for constructing families of bivariate distributions.

1.2.1 Introduction to the theory of copulas

We focus on bivariate copulas of continuous random variables with distribution
functions X1, X2. In advance we introduce the definition of copula:

Definition 1.2.1. (bivariate case) A two-dimensional copula C is a joint distri-
bution function of standard uniform distributed random variables (U1, U2) defined
on [0, 1]2

C(u1, u2) = P (U1 < u1, U2 < u2), u1, u2 ∈ [0, 1].

We can also use an alternative definition of a copula which is more formal:

Definition 1.2.2. A bivariate copula is any function [0, 1]2 → [0, 1] which has
the following three properties:

1. C(u1, 0) = C(0, u2) = 0

2. C(u1, 1) = u1, C(1, u2) = u2

3. ∀u1, u2, v1, v2 ∈ [0, 1], u1 ≤ v1, u2 ≤ v2

C(v1, v2)− C(v1, u2)− C(u1, v2) + C(u1, u2) ≥ 0.

Both definitions are equivalent.

We already described the concept of copulas. There are some basic terms used
in connection with copulas.
Survival copula: C̄(u1, u2) = C(1− u1, 1− u2) + u1 + u2 − 1
Dual copula: C̃(u1, u2) = u1 + u2 − C(u1, u2)
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Co-copula: C∗(u1, u2) = 1− C(1− u1, 1− u2).
Though, only the survival copula fulfills the definition of copulas. In the other
two terms is name copula used just formally.

The following theorem is essential to many applications of copulas in statistical
theory and explains the role of copulas in the relationship between multivari-
ate distribution functions and their univariate margins. It also shows that any
distribution function can be described by a copula and vice versa.

Theorem 1.2.1. (Sklar)
Let F be the bivariate joint distribution function with continuous marginal dis-
tribution functions F1 and F2. Then there exists a copula C such that
F (x1, x2) = C(F1(x1), F2(x2)) for all x1, x2 ∈ [−∞,∞].

As we have seen, a copula fully explains the dependence structure of continu-
ous random variables without reference to their marginal distribution. We define
the case of the perfect dependence:

Definition 1.2.3. X1, X2 are comonotonic if for their copula holds
C(u1, u2) = CU(u1, u2) = min(u1, u2).
X1, X2 are countermonotonic if for their copula holds
C(u1, u2) = CL(u1, u2) = max(u1 + u2 − 1, 0).

Comonotonicity, resp.countermonotonicity is the strongest dependence struc-
ture which can occur between two random variables.
The useful property of copulas is that they are invariant under strictly increasing
transformations of random variables:

Theorem 1.2.1. For t1, t2 strictly increasing functions have that the random
vectors (X1, X2) and (t1(X1), t2(X2)) have the same copula C(u1, u2).
Furthermore, we obtain:

• For t1 strictly increasing and t2 strictly decreasing (t1(X1), t2(X2)) has a
copula u1 − C(u1, 1− u2).

• For t1 strictly decreasing and t2 strictly increasing (t1(X1), t2(X2)) has a
copula u2 − C(1− u1, u2).

• For t1, t2 strictly decreasing (t1(X1), t2(X2)) has a copula u1 +u2−1+C(1−
u1, 1− u2).

Consequence 1.2.1. Continuous random variables are comonotonic (counter-
monotonic) if and only if X2 = t(X1) almost surely, where t is an increasing
(decreasing) function.

The next two theorems concern with partial derivatives of copulas.
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Theorem 1.2.2. Let C be a copula. For any v ∈ [0, 1] the partial derivative
∂C(u,v)
∂u

exists for almost all u, and for such v and u

0 ≤ ∂

∂u
C(u, v) ≤ 1.

Similarly, for any u ∈ [0, 1] the partial derivative ∂C(u,v)
∂v

exists for almost all v,
and for such u and v

0 ≤ ∂

∂v
C(u, v) ≤ 1.

Furthermore, the functions u → ∂C(u,v)
∂v

and v → ∂C(u,v)
∂u

are defined and nonde-
creasing almost everywhere on [0, 1].

Theorem 1.2.3. Let C be a copula. If ∂C(u,v)
∂v

and ∂2C(u,v)
∂u∂v

are continous on [0, 1]2

and ∂C(u,v)
∂u

exists ∀u ∈ (0, 1) when v = 0, then ∂C(u,v)
∂u

and ∂2C(u,v)
∂v∂u

exist in (0, 1)2

and
∂2C(u, v)

∂u∂v
=
∂2C(u, v)

∂v∂u.

Often we are more interested in the conditional distribution of a copula.
Because the copula is increasing in each argument,

CU2|U1(u2|u1) = P (U2 ≤ u2|U1 = u1) = lim
δ→0

C(u1 + δ, u2)− C(u1, u2)

δ
=

∂

∂u1

C(u1, u2),

and the partial derivative exists almost everywhere. The conditional distribution
can be interpreted the following way: Suppose that continuous risks (X1, X2)
have the (unique) copula C. Then 1− CU2|U1(q|p) is the probability that X2

exceeds its qth quantile under the condition that X1 attains its pth quantile.

Next we give some examples of the most useful copulas.

Fundamental copulas
The independence copula is

CI(u1, u2) = u1u2.

It is obvious that continuous random variables are independent if and only if their
dependence structure is given by the independence copula.
The Fréchet upper bound (or comonotonicity copula) is

CU(u1, u2) = min(u1, u2).

It represents the perfect positive dependence; it is a distribution function of
(U,U).
The Fréchet lower bound (or countermonotonicity copula) is defined by

CL(u1, u2) = max(u1 + u2 − 1, 0).
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This is the case of perfectly negative dependent random variables; it is a joint
distribution function of (U, 1 − U). Every copula is bounded by Fréchet lower
and upper bound copulas

CL(u1, u2) ≤ C(u1, u2) ≤ CU(u1, u2),∀(u1, u2) ∈ [0, 1]2.

Elliptical copulas
Elliptical copulas are the copulas of elliptical distributions. First we define the
elliptical distributions and the notion of the special case of spherical distributions.

Definition 1.2.4. A random vector X = (X1, . . . , Xd)
′ has a spherical distribu-

tion if for every orthogonal map U ∈ Rdxd (i.e., maps satisfying UU ′ = U ′U = Id)

UX =d X.

The characteristic function ψ(t) = E[exp(it′X)] of such distributions takes a
particularly simple form. There exists a function φ : R>0 → R such that ψ(t) =
ψ(t′t) = ψ(t21 + . . . + t2d). This function is the characteristic generator of the
spherical distribution and the notation X ∼ Sd(ψ) is used.

Definition 1.2.5. X has an elliptical distribution if

X =d µ+ AY,

where Y ∼ Sk(ψ) and A ∈ Rdxk and µ ∈ Rd are a matrix and vector of constants,
respectively.

Mathematically the elliptical distributions are the affine maps of spherical
distributions in Rd.
The most used distributions from this family are multivariate (in our case bi-
variate) normal and the Student t−distribution. They do not have simple closed
forms and are restricted to have a radial symmetry.
The Gauss (normal) copula is given by

CGa
ρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp

{
−(s2

1 − 2ρs1s2 + s2
2)

2(1− ρ2)

}
ds1ds2,

where Φ−1 is the inverse of the univariate standard normal distribution function
and |ρ| < 1, the linear correlation coefficient, is the copula parameter.
The student t−copula with ν degrees of freedom and correlation coefficient ρ is
an elliptical copula defined as:

Ct
ρ,ν(u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π(1− ρ2)1/2
exp

{
1 +

(s2
1 − 2ρs1s2 + s2

2)

ν(1− ρ2)

}− ν+2
2

ds1ds2,

where t−1
ν denotes the inverse of the distribution function of the standard

univariate t-distribution with ν degrees of freedom and ν and ρ are the copula
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parameters.

Archimedean copulas
The Archimedean copulas are the important class of copulas for many reasons.
They can be easily constructed, a lot of families of copulas belong to this class
and they possess many nice properties.

Definition 1.2.6. Let ϕ be a continuous, strictly decreasing function from [0, 1]
to [0,∞] such that ϕ(1) = 0, and let the ϕ[−1] be the pseudo-inverse of ϕ.Then
the function C from [0, 1]2 to [0, 1] given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)),

C satisfies the Fréchet boundary conditions for copulas and is called the Archimedean
copula. The function ϕ is called the additive generator of the copula. Moreover,
if ϕ(0) =∞ then ϕ is a strict generator and C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) is said
to be a strict Archimedean copula.

There are some properties which the Archimedean copulas possess. As Lei
Hua mentioned in [8], they behave like the binary operation:

• Commutative
C(u, v) = C(v, u),∀u, v ∈ [0, 1]

• Associative
C(C(u, v), w) = C(u,C(v, w)),∀u, v, w ∈ [0, 1]

• Order preserving
C(u1, v1) ≤ C(u2, v2), u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]

• If c > 0 is any constant, then cϕ is also a generator of C.

For instance the Fréchet lower bound and the independent copula belong to this
family of copulas. Other well-known representatives are
Gumbel copula:
CGu
θ (u1, u2) = exp(−((−lnu1)θ + (−lnu2)θ)

1
θ ), 1 ≤ θ <∞

Clayton copula:
CCl
θ (u1, u2) = (u−1

1 + u−1
2 − 1)

−1
θ .

1.2.2 Measures of concordance

This section is devoted to dependence measures related to copulas, which are
more suitable than the Pearson coefficient of linear correlation in some cases. We
denote the common risk measure ρ(X, Y ) and require to have these properties:

1. ρ(X, Y ) = ρ(Y,X) (symmetry)
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2. −1 ≤ ρ(X, Y ) ≤ 1 (normalisation)

3. ρ(X, Y ) = 1⇔ X,Y are comonotonic
ρ(X, Y ) = −1⇔ X,Y are countermonotonic

4. ρ(t(X), Y ) = ρ(X, Y )⇔ t a is strictly increasing function
ρ(t(X), Y ) = −ρ(X, Y )⇔ t a is strictly decreasing function

The Pearson coefficient merely satisfies the properties 1,2. That is why we estab-
lish dependence measures fulfilling properties 1-4 called measures of concordance.
We can also require the property of independence
5. ρ(X, Y ) = 0⇔ X, Y are independent.
Unfortunately, the 4. and 5. property are mutually contradicting so there is no
dependence measure satisfying both properties.

Definition 1.2.7. Two observations (x1, y1) and (x2, y2) of a pair (X, Y ) of con-
tinuous random variables are concordant if (x1− x2)(y1− y2) > 0 and discordant
if (x1 − x2)(y1 − y2) < 0.

In other words, X, Y are concordant if both values of one pair are greater than
the corresponding values of the other pair; it happens when x1 < x2 and y1 < y2

or x1 > x2 and y1 > y2. Alike (x1, y1) and (x2, y2) are said to be discordant if for
one pair one value is greater and the second value is smaller than for the other
pair, that is if x1 < x2 and y1 > y2 or x1 > x2 and y1 < y2. Concordance function
Q is then defined by

Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0],

the difference between the probabilities of concordance and discordance between
two random vectors (X1, Y1) and (X2, Y2). Measures of concordance are discussed
in [11] more closely.

1.2.3 Rank correlation

Rank correlations are scalar measures which are derived from the concordance
function. They are appropriate for identification of copulas from data by looking
at the ranks of the data alone. Moreover, they depend only on the copula and
not on the marginal distributions. There are two main representatives of rank
correlation: Kendall’s tau and Spearman’s rho. We are going to discuss them
more closely.
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Kendall’s tau

Definition 1.2.8. For a vector of continuous random variables (X,Y) with joint
distribution function Kendall’s tau is given by

ρt = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] (1.1)

= Esgn[(X1 −X2)(Y1 − Y2)], (1.2)

where (X1, Y1) and (X2, Y2) are independent identically distributed random vari-
ables with the joint distribution function H.

Spearman’rho

Let (X1, Y1),(X2, Y2) and (X3, Y3) be three independent random vectors with a
joint distribution function H. The Spearman’s rho is defined to be proportional
to the probability of concordance minus the probability of discordance for a pair
of random vectors (X1, Y1) and (X2, Y3) with the same margins, but one vector
has distribution function H, while the components of the other are independent:

ρs = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]).

There is also the other definition of ρs which we are interested in because it
involves the concept of copulas:

Definition 1.2.9. For random variables X and Y with marginal distribution
functions F and G Spearman’s rho is given by ρs = ρ(F (X), G(Y )).

We can see that Spearman’s rho is the linear correlation of transformed ran-
dom variables by means of marginal distribution functions.

As we said, Kendall’s tau and Spearman’s rho depend only on copulas. There-
fore in the next proposition the alternative definitions are given.

Proposition 1. Suppose X and Y have continuous marginal distributions and
the unique copula C. Then the rank correlations are given by

ρt(X, Y ) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1,

ρs(X, Y ) = 12

∫ 1

0

∫ 1

0

(C(u1, u2)− u1u2)du1du2.

Altough both Kendall’s tau and Spearman’s rho measure the probability of
concordance between random variables with a given copula, their values often
differ. We subscribe relationship between ρt(X, Y ) = ρt and ρs(X, Y ) = ρs:

• −1 ≤ 3ρt − 2ρs ≤ 1
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• 1+ρs
2
≥
(

1+ρt
2

)2
,

1−ρs
2
≥
(

1−ρt
2

)2

• 3ρt−1
2
≤ ρs ≤ 1+2ρt−ρ2t

2
, ρt ≥ 0

ρ2t+2ρt−1

2
≤ ρs ≤ 3ρt+1

2
, ρt ≤ 0.

For more information we refer to [12].

1.2.4 Coefficients of tail dependence

As well as the rank correlation, coefficients of tail dependence belong to depen-
dence measures expressed by copulas. They measure the strength of dependence
in the tails of bivariate distributions. These coefficients are defined by limiting
conditional probabilities of quantile excesses. We distinguish two cases of the tail
dependence; the upper and the lower tail dependence. In the first case we look
at the probabibility that Y exceeds its α − quantile under the condition that X
exceeded its α− quantile, and then consider the limit as α goes to infinity. The
roles of X and Y are obviously interchangeable. By [9] we have definition:

Definition 1.2.10. Let X and Y are random variables with distribution functions
F and G. The coefficient of the upper tail dependence of X and Y is

λu := λu(X, Y ) = lim
α→1−

P (Y > G−1(α)|X > F−1(α)),

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1], then X and Y are said to show
upper tail dependence or extremal dependence in the upper tail; if λu = 0, they
are asymptotically independent in the upper tail.
Analogously, the coefficient of the lower tail dependence is

λl := λl(X, Y ) = lim
α→0+

P (Y ≤ G−1(α)|X ≤ F−1(α)),

provided a limit λl ∈ [0, 1] exists.

Because F and G are continuous distribution functions, we can rewrite defi-
nition 1.2.10 by using formulas for conditional probabilities in terms of copulas
as

λl = lim
α→0+

P (Y ≤ G−1(α), X ≤ F−1(α))

P (X ≤ F−1(α))
(1.3)

= lim
α→0+

C(α, α)

α
(1.4)

for the lower tail dependence and

λu = lim
α→1−

Ĉ(1− α, 1− α)

1− α
= lim

α→0+

Ĉ(α, α)

α
(1.5)
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for the upper tail dependence. Ĉ denotes the survival copula of C and for radially
symetric copulas λu = λl. The tail dependence parameters are easily evaluated if
the copula has a simple closed form. For copulas without a simple closed form,
as the Gaussian copula for instance, an alternative formula is used.
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2. Linear aggregation of
economic capital

2.1 Introduction

In agreement with the new risk-based solvency regulations, insurance compa-
nies are required to compute their economic capital. It is still a relatively new
framework in the insurance industry. It depends on distribution functions and
the dependence structure between sub-risks and business units. The model for
capital aggregation can be based on the simple linear aggregation between the
losses or on the copulas. The linear aggregation model is based on aggregating
risks X1, X2, . . . , Xn using correlations and the individual risk measures. In this
chapter we will discuss the linear approach to the capital aggregation.

2.2 Risk measures

Definition 2.2.1. A risk measure is a mapping ρ from a set Γ of real-valued
random variables defined on (Ω,F, P ) to R:

ρ : Γ→ R : X ∈ Γ→ ρ[X].

Generally it has a nonnegative value but in some important cases this require-
ment would be limiting. Firstly risk measures have been related to principles for
determining insurance premia in nonlife insurance. Recently, they started to be
used in a risk management where ρ[X] represents the amount of capital to be set
aside to make the loss X an acceptable risk. The most known properties for risk
measures are requirements of coherence and they are defined the following way:

Definition 2.2.2. A risk measure ρ is called coherent if it satisfies the following
properties:

1. Translation invariance: ρ[X + a] = ρ[X]− a for any X ∈ Γ and a ∈ R.

2. Positive homogeneity: ρ[aX] = aρ[X] for any X ∈ Γ and a > 0.

3. Subadditivity: ρ[X + Y ] ≤ ρ[X] + ρ[Y ] for any X, Y ∈ Γ.

4. Monotonicity: X ≤ Y ⇒ ρ[X] ≤ ρ[Y ] for any X, Y ∈ Γ.

Sometimes we are also interested in the other property of risk measure:

5. Law invariance: For any X1, X2 ∈ Γ with P [X1 ≤ x] = P [X2 ≤ x] for all
x ∈ R, ρ[X1] = ρ[X2].
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Coherent risk measures are mentioned in [1].
Now we mention two risk measures which are frequently used in practice.

• Value at Risk
Value at Risk (VaR) is the most widely used risk measure in financial insti-
tutions. It is usually chosen in situations where we want to avoid the default
event but the information about size of the shortfall is not so important.

Definition 2.2.3. Suppose it is given some confidence level α ∈ (0, 1).
The VaR of a portfolio at the confidence level α is defined by the smallest
number x such that the probability that the loss X exceeds x is no larger
than (1− α). Formally,
V aRα= inf{x ∈ R : P (X > x) ≤ 1− α} = inf{x ∈ R : FX(x) > α}.

In other words, VaR is a α− quantile of the loss distribution. The typical
value of the confidence level in the insurance industry is 99.5%. VaR is
not a coherent risk measure because it does not satisfy the requirement
of subadditivity. It is highly criticized for violating this property because
then there are no benefits from the diversification effect. However, there
is a known case where VaR satisfies this property. For jointly elliptically
distributed random variables the VaR is a coherent risk measure.

• Expected shortfall
As we said, VaR does not give us any information about the severity of de-
fault. Therefore we introduce the next risk measure the Expected shortfall,
also called the Conditional Tail Expectation (CTE) or Tail Value-at-Risk
(TVaR) at probability level α. The expected shortfall is defined as the av-
erage of all losses which are greater than or equal to VaR; it is the average
loss in the worst (1− α)% cases. We denote it ESα and define as

ESα(X) =
1

1− α

∫ 1

α

V aRX(x)dx = E[X|X > F−1
X (α)].

CTEα is the coherent risk measure.

2.3 Economic capital

At its most basic level, economic capital can be defined as sufficient surplus to
cover potential losses, at a given risk tolerance level, over a specified time horizon.
In other words, it is the amount of capital which a company needs to remain sol-
vent. According to the survey presented in [14], there are three main definitions
of economic capital:
Definition 1 Economic Capital is defined as sufficient surplus to meet potential
negative cash flows and reductions in value of assets or increases in value of lia-
bilities at a given level of risk tolerance, over a specified time horizon.
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Definition 2 Economic Capital is defined as the excess of the market value of
the assets over the fair value of liabilities required to ensure that obligations can
be satisfied at a given level of risk tolerance, over a specified time horizon.
Definition 3 Economic Capital is defined as sufficient surplus to maintain sol-
vency at a given level of risk tolerance, over a specified time horizon.

Computation of economic capital is based on the institution’s financial strength
and on the expected loss. Financial strength is represented by the probability
that the company stays solvent over the measurement period on the confidence
level. The expected loss is the average loss which can occur in the given time
horizon. We will consider the business which faces the random loss S over the
one - year horizon. We denote the economic capital EC[S] and define it in the
following way:

Definition 2.3.1. Economic capital is given by

EC[S] = ρ(S)− ES,

where ρ is a risk measure and S is the random variable representing the loss of
the company.

ρ(S) is called the total balance sheet capital requirement. Thence we define the
economic default as the occurence that S exceeds ρ(S). According to Solvency
II and the Swiss Solvency test, we will work with two risk measures: the Value-
at-Risk and the Expected Shortfall. The standard approach is to use VaR at the
confidence level 99.5% and ES is adopted at 99% as a risk measure. However,
as we mentioned afore, VaR violates the property of subadditivity and therefore
it is not a coherent risk measure. This property is very important because it
guarantees the diversification effect between risks. By using VaR as a risk measure
and considering two risks X, Y , we do not necessarily obtain

V aR(X + Y ) ≤ V aR(X) + V aR(Y ).

On the other hand, VaR is subadditive in the ideal situation where the all losses
are ellipticaly distributed.

2.4 Diversification effect

The aggregation of capital leads to the diversification effect. Consider two busi-
ness units with risks X1 and X2. Next, we assume that the total balance sheet
stand-alone capital for each unit is computed using the risk measure ρ(X). If each
of the units is not responsible for shortfall of the other one, the total balance sheet
capital for each portfolio is given by ρ(Xj), j = 1, 2. If they are considered on ag-
gregate basis the purpose is to avoid the shortfall of the aggregate risks X1 +X2.
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As consistent with [7] the following inequality holds:

(X1 +X2 + ρ(X1) + ρ(X2))+ ≤ (X1 − ρ(X1))+ + (X2 − ρ(X2))+.

It means that the shortfall of aggregated business units is always smaller than
the sum of shortfalls of the stand-alone business units. The explanation is that
the shortfall of one business unit can be compensated by the gain of the other
one. This also implies

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Because taking expectations is a linear operation, for the total economic capital
we get

EC(X1 +X2) ≤ EC(X1) + EC(X2).

The diversification gain represents the percentage of the economic capital which
an insurance company can save by the positive aggregation of more risks.

Definition 2.4.1. The diversification gain for a portfolio S aggregating the risks
X1, X2, . . . , Xn is given by:

Dρ = 100%− EC(S)∑n
i=1EC(Xi)

.

2.5 Correlation matrix

In this approach at first we compute the required economic capital for each busi-
ness unit of the company. The next and important step is aggregation of these
capitals into a total capital amount. Let X1, X2, . . . Xn be the individual losses
of the business units and S =

∑n
i=1Xi the total loss of the company. Further,

we denote R = {rij}ni,j=1 the correlation matrix between losses Xi, where the
correlation is defined as

rij = r(Xi, Xj) =
cov(Xi, Xj)√
σ2(Xi)σ2(Xj)

.

If the EC(X1), EC(X2), . . . , EC(Xn) are economic capitals computed by the for-
mula given in 2.3.1, the total capital which is needed as the protection against
bankrupcy according to [13] is

EC(S) =

√∑
i,j

rijEC(Xi)EC(Xj). (2.1)

For instance, the diversification effect for the two risks X1, X2 looks like

EC(X1) + EC(X2) =
√
EC(X1)2 + 2rijEC(X1)EC(X2) + EC(X2)2.
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As a special case where the subrisks are comonotonic, i.e., the extreme events
happen at the same time, the aggregate capital is simply the sum of the individual
capitals

EC(S) =
n∑
i=1

EC(Xi).
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3. Copula approach for
computing economic capital

3.1 Introduction

Copulas became more considerable in recent years, especially in finance and statis-
tics. Risk professionals pay more attention to the choice of copulas in risk man-
agement.
Copulas were originally introduced as mathematical functions as a useful tool to
model dependence. The term is derived from the latin word “copula”, contraction
of co-apula, meaning connection, bond, tie (co means together and apere means
to join).

In this chapter we will explain the role of copulas in economic capital calcu-
lations. There is an interesting comparison of correlation coefficient and copulas
in [4].

3.2 Bottom up and top down approach

Several approaches can be used to risk capital aggregation. Most of them belong
to the class of bottom-up aggregation methods and only few of them use the
top-down approach.
Bottom-up approach
In the bottom-up aggregation approaches, one develops marginal models for the
loss distribution of each business unit independently. These marginal distribu-
tions are merged to a joint distribution using correlation structure or a copula
function. The dependence between business lines is modelled indirectly (on the
base of historical data or expert evaluation). The simultaneous distribution of
the risks is defined by the marginal loss distributions and a correlation or copula
structure.
Top-down approach
Top down approaches, by contrast, do not try to identify single risks but rather
start from aggregated data. The empirical panel of data allows to estimate the
joint distribution of the total risk. Consequently, single losses are not required in
this approach.

In both approaches a common time horizon for the parameter estimation has
to be determined. In the perfect case the time horizon corresponds to the in-
ternal capital allocation cycle which is usually one year. The task of estimating
joint distributions may be decomposed into two parts

1. estimation of the marginal distributions

20



2. estimation of the dependence structure.

Copulas may be thought of as a more flexible version of correlation matrices.

3.3 The most used copulas in finance

As copulas join risks together, they tell us how risk Y behaves if we know risk X.
We can find it for all realizations of X, regardless of whether is X small, medium
or large. Here are some examples:

• An independent copula means that the realizations for Y occurs indepen-
dently of what happens with X.

• A comonotonic copula means the full positive dependence between X and
Y, i.e., knowing X implies knowing Y.

• A Gaussian copula means that there is a linear dependence between X and
Y after transformation.

In insurance and finance two families of copulas are taken into account: Archimedean
and elliptical. Within Archimedean copulas the Gaussian and the Student t cop-
ula are considered and among the elliptical family we deal with the Clayton and
Gumbel copula.

The Gaussian copula
The Gaussian copula is the most popular copula used in applications. It is im-
plied by a multivariate Gaussian distribution (normal distribution). A multivari-
ate Gaussian distribution is a set of normally distributed marginal distributions
that are combined by a Gaussian copula. The Gaussian copula is often used by
insurance companies to derive aggregate risk distributions without consideration
of the impact when marginal risk distributions are no longer normal. If other
than normal marginal distributions are combined by a Gaussian copula, the re-
sulting joint distribution is referred to as a meta-Gaussian distribution. We shall
use the Gaussian copula as a benchmark to which we compare the other copulas.

The Student t copula
The Student t copula is the copula that is implied by a multivariate Student t
distribution. In the bivariate case, the Student t copula has the parameter ρ like
the Gaussian copula. Additionally it has the (scalar) parameter ν which repre-
sents the degrees of freedom. With the increasing ν also increases the positive
tail dependence. As the degrees of freedom of a Student t copula increase, the
copula approaches a Gaussian copula, so the Gaussian copula can be regarded as
a limiting case of the Student t copula, where ν →∞.
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The Gumbel copula
Contrary to the Normal and Student copulas, it is not derived from a known
multivariate distribution, but it is part of the Archimedian copulas. The Gumbel
copula is different from the elliptical described copulas. It can model only inde-
pendence or positive dependence structures and it depends on a single parameter.
The main interest for using a Gumbel copula is that it confronts the solvency of
a company to unfavourable scenarios (stress scenarios), i.e., where major events
tend to be linked, while the most common claims remain independent.

The Clayton copula
The Clayton copula displays lower tail dependence and zero upper tail depen-
dence. The Clayton copula assigns a higher probability to joint extremely neg-
ative realisations as compared to the Gaussian copula, while it assigns a lower
probability to joint extremely positive realisations.

Differences between copulas
Some copulas allow to model both positive and negative dependence in their
standard versions by assigning appropriate copula parameters. To these copulas
belong the Gaussian and the Student t copula. The Student t copula assigns a
higher probability to joint extreme events than the Gaussian copula. The Student
t copula displays symmetric tail dependence.

Asymmetric tail dependence is prevalent if the probability of joint extreme
negative realisations differs from that of joint extreme positive realisations. Fur-
ther, the Clayton copula assigns a higher probability to joint extreme negative
events than to joint extreme positive events. The Clayton copula is said to dis-
play lower tail dependence , while it displays zero upper tail dependence .
The converse can be said about the Gumbel copula (displaying upper but zero
lower tail dependence).
For illustration we refer to the picture 3.3 from the book [9] where the simulations
of Gaussian, Clayton, Gumbel and Student t copulas are given. In the case of the
Student t copula we can see the symmetric tail dependence while for the Clayton
and the Gumbel copula only the lower or upper tail dependencies can be seen.
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Two thousand simulated points from four distributions with standard normal
margins a) Gaussian b) Gumbel c) Clayton and d) Student t.

3.4 Fitting copula to data

It is very difficult to find a good model that describes both marginal behaviour
and the dependence structure of the risks effectively. This section is devoted
to estimation of copula parameters from empirical data. The main method is
to estimate parameters with maximum likelihood method (MLE), alternatives
are the method of moments using rank correlation and the computation of the
non-parametric empirical copula. Authors of [3] presented three methods and we
shortly discuss.
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Gaussian Student t Clayton Gumbel
ρS

6
π
arcsinρ

2

ρt
2
π
arcsinρ 2

π
arcsinρ θ

θ+2
1− 1

θ

Table 3.1: Relationships between rank correlations and copula parameters.

• Parameter estimation using correlation measures
Depending on which particular copula we want to fit, it may be easier to
use empirical estimates of Spearman’s or Kendall’s rank correlation to infer
the copula parameter from these correlation measures. For some copulas a
simple relationship exists between either ρS or ρt and the copula parameter,
hence the copula parameter may easily be computed from the estimate
of one of the two correlation measures ρS and ρt. In the Table 3.1 the
relationships between Spearman’s rho ρS and Kendall’s tau ρt and copula
parameters are given.

The general method of computing is always similar: we look for a theoretical
relationship between one of the rank correlations and the parameters of
the copula and substitute empirical values of the rank correlation into this
relationship to get estimates of some or all of the copula parameters.

The advantage of this approach is that it is computationally very fast. The
approach seems useful as it allows to estimate starting values for numerical
parameter estimations that are based on a MLE, speeding up the copula
parameter estimation.

• Maximum likelihood method (MLE)
In classical statistics fitting a multivariate distribution is done by using
the maximum likelihood method for a multivariate parametric family of
distributions. The copula technique is different since it suggests the pos-
sibility of a two stage statistical procedure: estimate the marginal distri-
butions and the copula function separately from each other. By the choice
of the marginal distributions we determine the copula, hence the chosen
dependence structure, and therefore different statistical tools for fitting the
marginals may generate distinct dependencies. We mention the three ap-
proaches to fitting of the marginals:

1. Parametric estimation
We choose an appropriate parametric model for the data and fit it by
MLE, i.e., we fit parametric distributions to the marginal. In insurance
data it is common to consider a standard actuarial loss distribution
such as Pareto or lognormal.

2. Non-parametric estimation with variant of empirical distri-
bution function
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We replace the marginal distributions by their empirical distributions.

3. Extreme value theory for the tails
We can model the body of the distribution empirically, but for the
the tails we use a semiparametrical model using a generalized Pareto
distribution (GPD).

• Empirical copulas
Empirical copulas may be used alternatively to the parametric copulas
which we presented earlier. The empirical copula asymptotically converges
to the true copula for N →∞. It may be used for Monte Carlo simulations
or for a visualisation of the goodness-of-fit of some parametric copula, by
comparing a parameterised copula to the empirical copula.

3.5 Conclusion

Knowledge of copulas rapidly increased in the last years. They started to play an
important role in insurance industry and finance as a tool for computing economic
capital. They offer a flexible structure which can be used in many situations.
Unfortunately, the right choice of the copula is a very difficult exercise. To the
right choice of copula is for instance devoted paper [10]. The main problem is
that estimating the copula requires high quality data which are very often not
available.

One may think that for economic capital calculations we only need data that
reveals the structure of the upper tail dependence. It is true that economic
capital is most sensitive to upper tail dependence and these observations are
extremely rare. In the absence of empirical data fitting a copula becomes a
meaningless exercise. Typically for the aggregation across risk types (life, non-
life, credit, market,. . . ) data availability is a significant challenge. Moreover,
from a computational point of view, in most cases it is an extremely complicated
task.
With regards to economic capital aggregation, the challenge consists of simple but
still consistent and well balanced models. This is not an easy task and requires
experience and lot of training. But still, despite of these disadvantages, copulas
play the unchangeable role in financial and probability theory.
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4. Capital allocation to the lines
of business

4.1 Introduction

The theme of this chapter is the sharing of capital between the business units
of the insurance company. We call this sharing “allocation”. The problem of
allocation is interesting and non-trivial, because the simple sum of individual
business unit capitals is usually larger than the total economic capital of the
company needed. That is, there is a decline in total costs to be expected by
pooling the activities of the company, and this advantage needs to be shared
fairly between the constituents. There are number of reasons why companies
want to allocate their total capital across the lines of business:

• There is a need to redistribute the total cost associated with holding the
capital in the form of charges.

• Allocation is a necessary activity for financial reporting purposes.

• Capital allocation is a useful device for comparing performance of the busi-
ness units by determining the return on allocated capital for each unit.

4.2 The allocation problem

We assume that the business lines of an insurance company face risksX1, X2, . . . , Xn

and the total risk of the whole company is S =
∑n

i=1Xi. Moreover, the aggregate
level of capital K = EC(S) of the insurance company has already been derived
from the formula

K = EC(S) = ρ(S)− ES.

The company wishes to decompose this capital across its business units, in other
words to find the nonnegative real numbers K1, K2, . . . , Kn such that

n∑
i=1

Ki = K.

We rewrite it formally:

Definition 4.2.1. Denote the vector of losses by XT = (X1, X2, . . . , Xn). An
allocation A is the mapping

A : XT → Rn
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such that A(XT ) = (K1, K2, . . . , Kn)T ∈ Rn where

n∑
i=1

Ki = K, (4.1)

S is the total company loss and K is the total company capital.

4.1 is called full allocation requirement. If the subadditivity property of the
risk capital holds, then it is obvious that

n∑
i=1

[EC(Xi)−Ki] ≥ 0,

which represents the diversification benefit.

Definition 4.2.2. For a company with n business units and corresponding risks
XT = (X1, X2, . . . , Xn), the i− th business unit’s diversification benefit is given
by

δi = EC(Xi)−Ki

for i = 1, . . . , n.

4.3 Proportional allocation principles

Using the proportional allocation approach, every business line gets the same
ratio as reduction because of the group diversification. The particular allocated
capitals are obtained by first choosing a risk measure ρ and then attributing the
capital Ki = αρ[Xi] to each unit i, i = 1, 2, . . . , n. The factor α is chosen such
that the full allocation requirement is satisfied. This leads to the proportional
allocation principle

Ki =
K∑n

j=1 ρ[Xj]
ρ[Xi], i = 1, 2, . . . n.

We will discuss more closely four proportional allocation principles given in the
next table. The foundation for these principles is in the paper [6].

Haircut allocation ρ[Xi] = F−1
Xi

(p)
Quantile allocation ρ[Xi] = F−1

Xi
(FSc(K))

Covariance allocation ρ[Xi] = Cov[Xi, S]
CTE allocation ρ[Xi] = E[Xi|S > F−1

S (p)]

If the risk measure is law-invariant, the proportional allocation is not influenced
by dependencies between the risks Xi.
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4.3.1 The haircut allocation principle

The haircut allocation principle is based on allocating the capital Ki, i = 1, 2, ..., n
to business unit i, where

Ki = γF−1
Xi

(p).

The value of γ is chosen such that the full allocation requirement is satisfied. It
leads to the formula of the capital allocation:

Ki =
K∑n

j=1 V aRp(Xj)
V aRp(Xi), i = 1, . . . , n.

It is evident that this principle does not make allowance for a dependence struc-
ture between the losses Xi of the individual business units. Furthermore, if we
use VaR as a risk measure for computing risk capital ρ(S) = V aR(S), we obtain

Ki =
V aRp(S)− ES∑n
j=1 V aRp(Xj)

V aRp(Xi), i = 1, 2, . . . , n.

Because VaR is not a subadditive risk measure, it may happen that the allo-
cated amount of capital Ki exceeds the respective stand-alone capitals V aR(Xi).

4.3.2 The quantile allocation principle

Before we introduce this principle, we give some definitions which we will need.

Definition 4.3.1. The α-mixed inverse distribution function F
−1(α)
X of X is de-

fined:
F
−1(α)(p)
X = αF−1

X (p) + (1− α)F−1+
X (p)

where F−1+
X (p) = sup{x ∈ R|FX(x) ≤ p}, p ∈ (0, 1), α ∈ [0, 1].

Definition 4.3.2. The comonotonic sum Sc is defined as

Sc =
n∑
i=1

F−1
Xi

(U),

where U is a uniform random variable on (0, 1).

Now we will consider the approach where we adopt the probability level among
the business lines and determine an α-mixed inverse with α ∈ [0, 1]. Again, the
full allocation requirement has to be satisfied. This gives rise to the quantile
allocation principle:

Ki = F
−1(α)
Xi

(βp),

with α and β chosen such that
∑n

i=1 Ki = K. The allocated capitals Ki, i =
1, 2, . . . , n do not make allowance for a dependence structure between the different
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risks X1, X2, . . . , Xn. The appropriate levels of α and β are derived as a solution
from

K =
n∑
i=1

F
−1(α)
Xi

(βp).

We can adopt this formula as

K = F
−1(α)
Sc (βp),

βp = FSc(K).

It leads to
K = F

−1(α)
Sc (FSc(K)).

The quantile allocation principle can be rewritten as

Ki = F
−1(α)
Xi

(FSc(K)), i = 1, 2, . . . , n.

Note that the quantile allocation principle can be considered as a special case
of the haircut allocation principle where p = F c

S(K).

4.3.3 The variance-covariance allocation principle

This ad hoc approach is widely used in the insurance industry. Unlike the previous
two criteria, the variance-covariance principle takes into account the dependence
structure between losses. This principle is given by

Ki =
K

V ar[S]
Cov[Xi, S], i = 1, 2, . . . , n.

V ar[S] is the variance of the aggregate loss and Cov[Xi, S] covariance between
the individual loss Xi and aggregate loss S. The lines of business facing a loss
that is more correlated with the total loss S are required to hold a larger amount
of capital than the less correlated ones.

4.3.4 The CTE allocation principle

As we said earlier, the Conditional Tail Expectation (CTE) defined as

CTEp(S) = E[S|S > F−1
S (p)],

where S is the total loss and p ∈ (0, 1) given probability level, is the coherent risk
measure. We define the CTE allocation principle:

Ki =
K

CTEp[S]
E[Xi|S > F−1

S (p)], i = 1, 2, . . . , n.

This allocation rule also takes into account the dependencies between risks.
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4.4 Euler allocation principle

The Euler allocation principle, also known as the gradient allocation principle,
is an old allocation method known from game theory as the Aumann-Shapley
value. Euler capital allocation considers the impact of changes of positions on
the necessary risk capital. This principle is based on fairness- it means that each
business unit profits from the diversification benefit. Moreover, by [18] Euler
allocation principle is the only per-unit capital allocation principle suitable for
performance measurement.

4.4.1 Risk contributions

We are interested in how much business unit i contributes to EC. We define the
risk contribution of Xi to ρ(S) by ρ(Xi|S).

Definition 4.4.1. Let µi = E[Xi]. Then
the total portfolio Return on Risk Adjusted Capital is defined by

RORAC(S) =
E[S]

ρ(S)
=

∑n
i=1 µi
ρ(S)

,

the portfolio RORAC of the i-th asset is defined by

RORAC(Xi|S) =
E[Xi]

ρ(Xi|S)
=

µi
ρ(Xi|S)

.

From the economic point of view, the next two properties of risk contributions
are needed.

Definition 4.4.2. Let S denote total risk of the company. Then:

• Risk contributions ρ(X1|S), . . . , ρ(Xn|S) to company risk ρ(S) satisfy the
full allocation property if

n∑
i=1

ρ(Xi|S) = ρ(S).

• Risk contributions ρ(Xi|S) are RORAC compatible if there are some εi > 0
such that

RORAC(Xi|S) > RORAC(S)⇒ RORAC(S + hXi) > RORAC(S)

for all 0 < h < εi.
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4.4.2 Euler allocation

First we mention the notion of homogeneous risk measures and functions and
Euler’s theorem, which are essential for the Euler allocation principle.

Definition 4.4.3. A risk measure ρ is called homogeneous of degree τ if for all
h > 0 the following equation holds:

ρ(hX) = hτρ(X).

A function f : U ⊂ Rn → R is called homogeneous of degree τ if for all h > 0
and u ∈ U with hu ∈ U the following equation holds:

f(hu) = hτf(u).

Theorem 4.4.1 (Euler’s theorem). Let U ⊂ Rn be an open set and f : U → R
be a continuously differentiable function. Then f is homogeneous of degree τ if
and only if it satisfies the following equation:

τf(u) =
n∑
i=1

ui
∂f(u)

∂ui
, u = (u1, . . . , un) ∈ U.

Dirk Tasche in [15] shows that for a “smooth” function the only vector field
which is suitable for performance measurement with the function is the gradient
of the function.

Definition 4.4.4. Let ρ be a risk measure and fρ the function defined by fρ,S =
ρ(S). Assume that fρ is continuously differentiable. If there are risk contribu-
tions ρ(X1|S), . . . , ρ(Xn|S) that are RORAC compatible, then ρ(Xi|S) is uniquely
determined as

ρEuler(Xi|S) =
dρ

dh
(S + hXi)|h=0. (4.2)

If ρ is a risk measure which is homogeneous of degree 1, then the risk contri-
butions according to 4.2 are called the Euler contributions. Euler contributions
satisfy both properties of 4.4.2, i.e., they are RORAC compatible and satisfy the
full allocation rule. The process of assigning capital to business units by calcu-
lating Euler contributions is called the Euler allocation.
The RORAC of the risk represents the ratio between the expected profit and the
economic capital contribution necessary to run the risk. According to Euler’s
priciple it is guaranteed that if the RORAC of risk Xi is higher than the RORAC
of total risk S containing the risk, increasing the weight of Xi will improve the
RORAC of the whole portfolio.
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4.4.3 Euler VaR-contributions

VaR is a risk measure that is homogeneous of degree 1, but not subadditive in
general. With reference to [17], under some smoothness conditions which imply
that S has a density a general formula for Euler VaR-contributions can be derived:

V aR(Xi|S) =
dV aR(S + hXi)

dh
|h=0 = E[Xi|S = V aRα(S)].

In general, no closed-form representations of V aRα(S) and the risk contributions
V aRα(Xi|S) are available. These values can often be inferred from Monte-Carlo
samples. This means essentially to generate a sample (S(t), X1

(t), X2
(t), . . . , Xn

(t)),
t = 1, 2, . . . , T and then to estimate the quantities. How to generate values for
VaR is quite obvious, but not for the risk contributions V aRα(Xi|S) as estimat-
ing derivatives of stochastic quantities without closed-form representation is less
clear. If P [S = V aRα(S)] is positive, the conditional expectation is given by

E[Xi|S = V aRα(S)] =
Eα[Xi1{S=V aRα(S)}]

P [S = V aRα(S)]
.

For P [S = V aRα(S)] positive the magnitude will usually be very small, such as
1− α or less.
The effect of diversification in the case of VaR contributions is as follows:

Definition 4.4.5. Let X1, X2, . . . , Xn be the loss variables and S =
∑n

i=1Xi.
Then

DIα(S) =
V aRα(S)− ES∑n
i=1 V aRα(Xi)− ES

denotes the diversification index of risk S with respect to economic capital based
on V aRα. Next,

DIα(Xi|S) =
V aRα(Xi|S)− EXi

V aRα(Xi)− EXi

denotes the marginal diversification index of business unit Xi with respect to
economic capital based on VaRα. DI assuming a value close to 1 indicates that
there is no significant diversification in the portfolio.

4.5 Marginal allocation principle

Marginal risk contributions to the economic capital of a company are differences
of the total capital amount of the company with business unit i and total capital
without business unit i.

Definition 4.5.1. Marginal risk contribution of business unit i, i = 1, 2, . . . , n is
defined by

ρmarg(Xi|S) = ρ(S)− ρ(S −Xi).
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If the used risk measure is subadditive, continuously differentiable and ho-
mogeneous of degree 1, marginal risk contributions are always smaller than the
corresponding Euler contributions ([16], Proposition 2.2).

Proposition 2. Let ρ be a subadditive and continuously differentiable risk mea-
sure that is homogenous of degree 1. Then the marginal risk contributions
ρmarg(Xi|S) defined by 4.5.1 are smaller than the corresponding Euler contri-
butions, i.e.,

ρmarg(Xi|S) ≤ ρEuler(Xi|S).

In particular, the sum of the marginal risk contributions underestimates total
risk:

n∑
i=1

ρmarg(Xi|S) =
n∑
i=1

(ρ(S)− ρ(S −Xi)) ≤ ρ(S).

The main disadvantage of this principle is that the full allocation property is
not satisfied. Therefore sometimes marginal risk contributions are defined as

ρ∗marg(Xi|S) =
ρmarg(Xi|S)∑n
j=1 ρmarg(Xj|S)

ρ(S). (4.3)

Altough now the full allocation property is satisfied, the marginal risk contribu-
tion defined by 4.3 is not RORAC compatible.

4.6 Shapley allocation principle

Game theory provides an excellent framework for allocating capital. This ap-
proach is axiomatic; it means that we define the set of axioms which we need to
be fullfilled by a fair capital allocation principle. We will consider the coherent
risk measure and the coherent allocation principle only. The properties that de-
fine coherent risk measure are introduced in Chapter 1. In this section we assume
all risk measures are coherent and follow the paper [5].

4.6.1 Coherence of allocation principle

We suggest a set of axioms which are necessary properties of reasonable allocation
property. The following notation is used:

• Xi, i = 1, 2, . . . , n are the risks of business units of the company

• S represents the total loss of the company, S =
∑n

i=1Xi

• N is a set of all business units of the company

• A is a set of economic capital allocation problems
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• pairs (N, ρ) consist of a set of n portfolios (business units) and a coherent
risk measure ρ

• K = ρ(S) = ES is economic capital of the company; because of the linearity
of expected value ES we will work with the risk capital only and it will be
denoted K̃ = ρ(S)

Now we can define the coherent allocation principle:

Definition 4.6.1. An allocation principle is a function Π : A → Rn that maps
each allocation problem (N, ρ) into a unique allocation:

Π : (N, ρ) −→


Π1(N, ρ)
Π2(N, ρ)

...
Πn(N, ρ)

 =


K̃1

K̃2
...

K̃n


such that

∑
i∈N K̃i = ρ(S).

Again the condition of full allocation has to be satisfied.

Definition 4.6.2. An allocation principle Π is coherent if for every allocation
problem (N, ρ), the allocation Π(N, ρ) satisfies the three properties:

1. No undercut
∀M ⊆ N,

∑
i∈M

K̃i ≤ ρ(
∑
i∈M

Xi)

2. Symmetry If by joining any subset M ⊆ N\{i, j}, units i and j both make
the same contribution to the risk capital, then K̃i = K̃j.

3. Riskless allocation
K̃n = ρ(αrf ) = −α.

Recall the nth unit is riskless.

The allocation principle is nonnegative if K̃i ≥ 0, i ∈ N . The three axioms in
the previous definition are necessary conditions of the fairness and credibility of
allocation principle.

4.6.2 Allocation to atomic players

Game theory is the study where players use different strategies to achieve their
goals. We focus on coalition games and players who are atomic, meaning that
fractions of players are not allowed.

Definition 4.6.3. A coalition game (N, c) consists of
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• a finite set N of n players

• a cost function c that associates a real number c(U) to each subset U of N
(called a coalition)

The goal of each player is to minimize the costs, and strategy consists of
taking part in a coalition or not. In coalition games, the main question is how to
allocate the cost c(N) between the players.

Definition 4.6.4. A value is a function Φ : G→ Rn that maps each game (N, c)
into a unique allocation:

Φ : (N, c) −→


Φ1(N, c)
Φ2(N, c)

...
Φn(N, c)

 =


K̃1

K̃2
...

K̃n


where

∑
i∈N K̃i = c(N) and G is a set of games with n players.

Because c is usually assumed to be subadditive, players form the largest coali-
tion N since it improves the total cost. The problem is only to find a way of
allocating cost c(N) with minimizing cost of each player. If the K̃i of player i is
higher than c(i), there is a threat that this player leaves the coalition. To avoid
this situation, we give a set of allocations that do not allow threat called the core.

Definition 4.6.5. The core of a coalition game (N, c) is the set of allocations
K̃ ∈ Rn for which

∑
i∈U K̃i ≤ c(U) for all coalitions U ⊆ N .

Next we introduce the notion of a balanced game and important conditions
for the core to be nonempty:
Let C be the set of all coalitions of N and denote 1U ∈ Rn the characteristic
vector of the coalition U : A balanced collection of weights is a collection of |C|
numbers λU in[0, 1] such that

∑
U∈C λU1U = 1N .

A game is balanced if
∑

U∈C λUc(U) ≥ c(N) for all balanced collections of weights.

Theorem 4.6.1 (Bondareva-Shapley theorem). A coalition game has a nonemp-
ty core if and only if it is balanced.

4.6.3 The Shapley value

We use the notation ∆i(U) = c(U ∪ i) − c(U) for any set U ⊂ N, i /∈ U . Two
players i and j are interchangeable in (N, c) if ∆i(U) = ∆j(U) for each U ⊂ N
and i, j /∈ U . A player is a dummy if ∆i(U) = c(i).

Definition 4.6.6. We define three properties:

• Symmetry If players i and j are interchangeable then Φ(N, c)i = Φ(N, c)j
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• Dummy player For a dummy player, Φ(N, c)i = c(i)

• Additivity over games For two games (N, c1) and (N, c2)

Φ(N, c1 + c2) = Φ(N, c1) + Φ(N, c2),

where (N, c1 + c2) is defined by (c1 + c2)(U) = c1(U) + c2(U) for all U ⊆ N.

The Shapley value is the only value that satisfies the properties of symmetry,
dummy player and additivity over games.

At last we give the algebraic definition of the Shapley value which provides
an explicit computational approach.

Definition 4.6.7. The Shapley value KUh for the game (N, c) is defined as:

KUh
i =

∑
U∈Ci

(u− 1)!(n− u)!

n!
(c(U)− c(U\{i})) , i ∈ N,

where u = |U | and Ci represents all coalitions of N that contain i. We can notice
that this computation may be very long because the evaluation of c for each of
the 2n possible coalitions is required.

4.6.4 Economic capital allocation and game theory

Finally, we introduce the concept of capital allocation as coalition games. We
will associate business units of the company with the atomic players of a game,
risk measure ρ with the cost function c

c(U) = ρ(
∑
i∈U

Xi), U ⊆ N

and allocation principles became values. If ρ is coherent and thus subadditive, it
implies c is subadditive in the sense c(U ∪ V ) ≤ c(U) + c(V ). The nonemptiness
of the core is a crucial condition for existence of the coherent allocation principle:

Theorem 4.6.2. If an economic capital allocation problem is modelled as a
coalitional game whose cost function is defined with a coherent risk measure ρ,
then its core is nonempty.

When we model the allocation problem by means of game theory, the Shapley
value yields to the economic capital allocation principle. It is coherent but only
for the no undercut axiom. It satisfies also symmetry by the definition and the
riskless axiom is implied by the dummy player axiom.
The Shapley value is the coherent allocation principle, if it maps games to el-
ements of the core. It holds if conditions of one of the following theorems are
satisfied:
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Theorem 4.6.3. If a game (N, c) is strongly subadditive, its core contains the
Shapley value. (The game is strongly subadditive if it is based on a strongly
subadditive cost function)

Theorem 4.6.4. If for all coalitions U, |U | ≥ 2,∑
T⊆U

(−1)|U |−|T |c(T ) ≤ 0

then the core contains the Shapley value.

In the case of 4.6.3, the strong subadditivity of c implies that ρ is linear. This
result is difficult to accept because it eliminates the diversification effect. If we
consider the conditions of 4.6.4, it is in no way implied by the coherence of the
risk measure ρ.
We can see that we do not have the convincing proof of the existence of coherent
allocations. Although, if we consider the case of non-atomic players, it means
that fractions of players are allowed, we get much stronger existence results.
This model is called the Aumann-Shapley or the Euler allocation principle which
is discussed in 4.4.
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5. Numerical examples

5.1 Introduction

In the previous chapter we introduced the well known principles of capital allo-
cation. Now we will give the practical examples of these approaches and their
impact on amounts of allocated capital.
Typical distributions used for modelling insurance risks are:

• the lognormal distribution

• the Pareto distribution

• the Gamma distribution

• the Weibull distribution.

To demonstrate these principles we will consider four dependent risks correspond-
ing to particular business units of insurance company. Dependence between them
is modelled by correlation matrix

R =


1 0.5 0.25 0.75

0.5 1 0.5 0.25
0.25 0.5 1 0.25
0.75 0.25 0.25 1


which will be common for all examples. First, the economic capitals
Ki, i = 1, . . . , 4 are computed. Then the aggregate capital is derived and allocated
to the business units. The allocation principles which we are going to analyse are
the haircut allocation principle, the variance-covariance allocation principle, the
marginal principle and the Euler principle. The reason why we decided specially
for these principles is that we want to compare different approaches to capital
allocation. For instance both the haircut and variance-covariance allocation prin-
ciple belong to the proportional approach while the variance-covariance allocation
takes into account dependencies between risks, the haircut allocation is based on
quantiles only. Further, in the case of the Euler principle we look into the fact how
the small change of the subrisk influences the whole portfolio and the marginal
principle calculates differences between portfolio with and without the individu-
al risks. We give three examples of economic capital allocation. Each of them
should clarify the properties of these principles from different points of view. For
computing the capitals we used the computer program Wolfram Mathematica.
The source code can be found in the appendix.
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5.2 Example 1

In this example we consider four risks coming from the probability distributions
suitable for modelling insurance risks. These distributions are placed in the table
5.1 together with their mean values and variances.
Computation of individual economic capitals which are given by formula 2.3.1

Risk Distribution Mean Variance

1 Weibull(2.2,121) 107.161 2643
2 Lognormal(4.86,0.41) 140.337 3605.19
3 Pareto(88,2.17) 163.214 72 211.2
4 Gamma(15.3,13) 198.9 2585.7

Table 5.1: Distributions of risks

which we realize by means of the computer program Wolfram Mathematica. As
a risk measure we use the Value-at-Risk at confidence level α = 0.05 which is the
common choice in insurance industry. Then the aggregated capital ES is derived
from 2.1 and we get the following results:
EC1 = 75.7953
EC2 = 74.6039
EC3 = 73.1088
EC4 = 75.6276
ES = 224.585
We can see that all capitals have the similar values. They were chosen purposely
because someone could expect that the allocated capitals would have the similar
values too. However, we want to find the main aspects which influence the amount
of allocated economic capitals for every principle. In Table 5.2 are discussed the
consequential allocated capitals by using different allocation principles. The ratio
principle we add only for the comparison with capitals allocated by a simple ratio.
The graphical representation can be found in plot 5.2 and 5.2, in the former are
diagrammized values and in the latter percentual contribution to the total capital.

Ratio prin-
ciple

Haircut
principle

Var-cov
principle

Marginal
principle

Euler prin-
ciple

EC1 56,9056 22,6883 18,0538 59,5296 63,3692
EC2 56,0111 47,5489 26,2822 58,4727 55,8008
EC3 54,8887 65,178 163,844 47,3952 48,3685
EC4 56,7797 89,17 16,4054 59,1876 57,0466

Table 5.2: Economic capitals allocated to the business lines using of several allo-
cation principles
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The marginal and Euler allocation principle give us very similar results. As
a quite surprising and remarkable conclusion we can consider the capitals which
arise from the variance-covariance principle. It is obvious that this principle is
not very consistent with the others. In this case the total economic capital con-
sists almost exclusively of EC3, the rest of capitals are represented by a minimal
amount. The explanation can be that there is a strong influence of variance of the
corresponding distribution. We notice that the variance of the Pareto distribution
is much greater than the left over so this capital will be dominant. Regarding
the haircut principle we consider 99.5% quantile of the distribution. Hence, the
result depends on how heavy is the tail of the distribution, i.e., how high is the
probability of extreme values. All the distributions we use to model insurance
risks are heavy-tailed but they differ in the length of the tails.

Now we will investigate how the capitals change in case of changing the cor-
relation matrix which represents the dependence structure between risks. The
distributions of losses stay the same, we only use a different correlation matrix

Q =


1 0.5 0.2 0

0.5 1 0.75 0.8
0.2 0.75 1 0.25
0 0.8 0.25 1


We get the following results:

Ratio prin-
ciple

Haircut
principle

Var-cov
principle

Marginal
principle

Euler prin-
ciple

EC1 56,7819 22,639 12,4041 51,4195 43,4288
EC2 55,8894 47,4455 35,1414 50,4314 75,4844
EC3 54,7693 65,0363 161,483 71,0663 53,2531
EC4 56,6563 88,9761 15,0689 51,1798 51,9306

Table 5.3: Economic capitals allocated to the business lines using of several allo-
cation principles
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In the haircut and variance-covariance principle we observe almost no modi-
fications. There is only small increase in amount of EC2. The reason is that the
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second capital is now most dependent on the others so there is a need of increase.
It is not so significant because these two principles are not so influenced by the
dependence structure between risks, unlike the marginal and the Euler principle.
We can notice also an increase of the second capital in the Euler principle which
is not so small. As we said, the Euler principle is strongly influenced by the
dependence structure between risks- it measures the contribution of each risk to
the total capital amount.

5.3 Example 2

As was mentioned, the lognormal distribution is very popular for modelling in-
surance risks. In this example we are interested in four lognormal-distributed
risks but each of them with different parameters. They are given in Table 5.3.
Notice that we chose distributions similar in means but different in variances.

Risk Distribution Mean Variance

1 Lognormal(5.37,0.4 ) 232.758 9400.19
2 Lognormal(5.265,0.6) 231.597 23 242.6
3 Lognormal(5.18,0.73) 231.933 37 863.1
4 Lognormal(4.98,0.97) 232.863 84 715.28

We repeat the method of computation from the previous example and the
results are:
EC1 = 121.477
EC2 = 159.495
EC3 = 178.456
EC4 = 203.36
ES = 493.449

Ratio prin-
ciple

Haircut
principle

Var-cov
principle

Marginal
principle

Euler prin-
ciple

EC1 90,4404 206,152 69,7384 86,3636 97,8224
EC2 118,745 133,573 92,4345 118,559 116,454
EC3 132,862 99,0688 116,968 124,961 122,956
EC4 151,403 54,6555 214,308 163,565 156,217

Table 5.4: Economic capitals allocated to the business lines using of several allo-
cation principles
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We do not observe any unexpected results. As was said earlier, the biggest
impact on variance-covariance capital allocation has the variance of distribution
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and correlation between risks. The result confirm this conjecture. The Euler
and the marginal allocated capitals are stable like in previous example, so is the
haircut principle.

5.4 Example 3

For the last demonstration we decided to choose distributions with similar vari-
ances and different mean values.

Risk Distribution Mean Variance

1 Lognormal(3.95,1.09) 94.071 20 184.
2 Lognormal(5.03,0.67) 191.416 20 759.9
3 Pareto(103,2.59) 167.78 18 421.6
4 Gamma(16.2,35.6) 576.72 20 531.2

EC1 = 85.4249
EC2 = 140.614
EC3 = 62.7197
EC4 = 213.789
ES = 502.547

Ratio prin-
ciple

Haircut
principle

Var-cov
principle

Marginal
principle

Euler prin-
ciple

EC1 65,6914 6,33503 108,35 68,4716 73,1235
EC2 108,131 37,2232 98,5398 108,901 97,7716
EC3 48,2312 76,9779 81,2666 34,078 33,7562
EC4 164,403 265,921 98,2998 175,006 181,805

Table 5.5: Economic capitals allocated to the business lines using of several allo-
cation principles
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We begin with the variance-covariance principle. Although the various distri-
butions are used, all the risks have very similar variances. Therefore, the amounts
of allocated capital are nearly the same despite the original capitals not having
identical values. The marginal and the Euler principle, again, are not so sensitive
to changes in mean or variance, so the results are more - less proportional. The
biggest disproportion can be seen under the haircut principle, where the EC4

coming from the distribution with the largest mean value has the biggest value
of capital.
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Conclusion

The economic capital aggregation and its backward allocation to the business
units is an important task in finance and insurance industry. Economic capital
was originally developed by banks as a tool for capital allocation and performance
measurement. This thesis is devoted to the task of capital aggregation and the
allocation to the business lines of the company. For the economic capital deter-
mination two main methods were used: linear aggregation and copulas.
While linear correlation is the basic tool for economic capital derivation, copulas
represent a quite new concept in risk aggregation. To advantage of linear cor-
relation belongs easy computation. On the other hand, linear correlation does
not take into account tail dependencies but copulas do. Unlike the correlation,
copulas are very computationally complicated. Moreover, it is very difficult to
fit the right copula to data and it requires deeper expert knowledge. That is the
reason why we demonstrate the calculation of aggregated economic capital only
using the linear correlation matrix. We can notice the effect of diversification
in numerical examples- more correlated risks mean larger amounts of economic
capital needed.
The computed aggregated capital has to be backward allocated to the individual
business lines of company. In the second part of the thesis we introduced the
allocation principles of economic capital. We chose the principles which do not
have so common features and they are based on different computation methods.
The largest group of approaches involves proportional principles. It means that
economic capital is shared with the busines units by some proportional rule. The
choice of this rule usually depends on statistical parameters, quantile or vari-
ances for instance. Then we discussed the Euler (or gradient) and the marginal
(or incremental) allocation principle. By these principles the amount of allocated
capital is highly influenced by the dependence structure between risks. For in-
stance, we refer to [2] for a good comparison of the Euler and the haircut principle
and illustration of copula approach to capital aggregation.
In the last chapter numerical examples of these principles are provided. We com-
pared the haircut, variance-covariance, Euler and marginal allocation methods.
The most significant results are:

• Because the haircut allocation principle is based on the quantile of the
loss distribution, the main aspect which influences the amount of allocated
capital is how heavy the tail of the loss distribution is.

• The variance-covariance principle is influenced by variance of distribution
at the first place. Also covariance between risks play the role, but not so
important.

• The marginal principle depends on the dependence structure between risks
more than on some statistical parameters.
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• The Euler allocation principle satisfies the condition of fairness, it can be
derived from game theory. It is the only principle suitable for performance
measurement.

We can see that the Euler principle is the most stable principle in all cases. It
is not so highly influenced by the variance of the portfolio or by the quantile. It
also satisfies the property of RORAC compatibility. Because of these advantages
we consider the Euler principle to be the most appropriate approach to economic
capital allocation.
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Appendix

In this section the source code from Wolfram Mathematica is given for computing
aggregated economic capital using the correlation matrix and allocation principles
can be found. Because we use the same method for all examples, we show only
one code (Example 2). The rest is the same but with different parameters and
distributions.

Clear[mi1,mi2,mi3,mi4,sigma1,sigma2,sigma3,sigma4]

mi1=5.37;

mi2=5.265;

mi3=5.18;

mi4=4.98;

sigma1=0.4;

sigma2=0.6;

sigma3=0.73;

sigma4=0.97;

Economic capitals

Parameters1={Mean[LogNormalDistribution[mi1,sigma1]],

Variance[LogNormalDistribution[mi1,sigma1]]}

Parameters2={Mean[LogNormalDistribution[mi2,sigma2]],

Variance[LogNormalDistribution[mi2,sigma2]]}

Parameter3={Mean[LogNormalDistribution[mi3,sigma3]],

Variance[LogNormalDistribution[mi3,sigma3]]}

Parameters4={Mean[LogNormalDistribution[mi4,sigma4]],

Variance[LogNormalDistribution[mi4,sigma4]]}

kap1=-(Quantile[LogNormalDistribution[mi1,sigma1],0.05]

-Mean[LogNormalDistribution[mi1,sigma1]])

kap2=-(Quantile[LogNormalDistribution[mi2,sigma2],0.05]

-Mean[LogNormalDistribution[mi2,sigma2]])

kap3=-(Quantile[LogNormalDistribution[mi3,sigma3],0.05]

-Mean[LogNormalDistribution[mi3,sigma3]])

kap4=-(Quantile[LogNormalDistribution[mi4,sigma4],0.05]

-Mean[LogNormalDistribution[mi4,sigma4]])

kapital=kap1+kap2+kap3+kap4

K={kap1,kap2,kap3,kap4}

Aggregated economic capital

korelacie={{1,0.5,0.25,0.75},{0.5,1,0.5,0.25},

{0.25,0.5,1,0.25},{0.75,0.25,0.25,1}}

korelacie//MatrixForm
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divcapital=Sqrt[K.correlations.Transpose[{K}]]

(1 0.5 0.25 0.75

0.5 1 0.5 0.25

0.25 0.5 1 0.25

0.75 0.25 0.25 1

)

Ratio principle

simplecapital={divkapital/kapital*kap1,divkapital/kapital*kap2,

divkapital/kapital*kap3,divkapital/kapital*kap4}

Haircut allocation principle

sumakvantilov=Quantile[LogNormalDistribution[mi1,sigma1],0.05]

+ Quantile[LogNormalDistribution[mi2,sigma2],0.05]+

Quantile[LogNormalDistribution[mi3,sigma3],0.05]+

Quantile[LogNormalDistribution[mi4,sigma4],0.05]

quantilekap= {divkapital/sumakvantilov*

Quantile[LogNormalDistribution[mi1,sigma1],0.05],

divkapital/sumakvantilov*Quantile[LogNormalDistribution[mi2,sigma2],0.05],

divkapital/sumakvantilov*Quantile[LogNormalDistribution[mi3,sigma3],0.05],

divkapital/sumakvantilov*Quantile[LogNormalDistribution[mi4,sigma4],0.05]}

Variance - covariance allocation principle

variance={Variance[LogNormalDistribution[mi1,sigma1]],

Variance[LogNormalDistribution[mi2,sigma2]],

Variance[LogNormalDistribution[mi3,sigma3]],

Variance[LogNormalDistribution[mi4,sigma4]]}

covariance=Table[ korelacie[[i,j]]*Sqrt[variance[[i]]]*

Sqrt[variance[[j]]],{i,1,4},{j,1,4}]

covariance//MatrixForm

(9400.19 7390.62 4716.46 21164.6

7390.62 23242.6 14832.7 11093.4

4716.46 14832.7 37863.1 14158.9

21164.6 11093.4 14158.9 84715.2

)

mean={Mean[LogNormalDistribution[mi1,sigma1]],

Mean[LogNormalDistribution[mi2,sigma2]],

Mean[LogNormalDistribution[mi3,sigma3]],

Mean[LogNormalDistribution[mi4,sigma4]]}

meanS=Sum[mean[[i]],{i,1,4}]

varianceS=Total[Total[Table[covariance[[i,j]],{i,1,4},{j,1,4}]]]
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EXiXj=Table[covariance[[i,j]]+mean[[i]]*mean[[j]],{i,1,4},{j,1,4}]

covXS={Total[Table[EXiXj[[1,i]],{i,1,4}]]-mean[[1]]*meanS,

Total[Table[EXiXj[[2,i]],{i,1,4}]]

-mean[[2]]*meanS,Total[Table[EXiXj[[3,i]],{i,1,4}]]-mean[[3]]*meanS,

Total[Table[EXiXj[[4,i]],{i,1,4}]]

-mean[[4]]*meanS}

covcapital={Table[divkapital*covXS[[i]]/varianceS,{i,1,4}]}

Euler allocation principle

delta=0.05;

eulerkap1=Sqrt[{kap1+delta*kap1,kap2,kap3,kap4}.korelacie.

Transpose[{{kap1+delta*kap1,kap2,kap3,kap4}}]]

eulerkap2=Sqrt[{kap1,kap2+delta*kap2,kap3,kap4}.korelacie.

Transpose[{{kap1,kap2+delta*kap2,kap3,kap4}}]]

eulerkap3=Sqrt[{kap1,kap2,kap3+delta*kap3,kap4}.korelacie.

Transpose[{{kap1,kap2,kap3+delta*kap3,kap4}}]]

eulerkap4=Sqrt[{kap1,kap2,kap3,kap4+delta*kap4}.korelacie.

Transpose[{{kap1,kap2,kap3,kap4+delta*kap4}}]]

ratio={eulerkap1-divkapital,eulerkap2-divkapital,

eulerkap3-divkapital,eulerkap4-divkapital}

Euler1=ratio[[1]]/Sum[ratio[[i]],{i,1,4}]*divkapital

Euler2=ratio[[2]]/Sum[ratio[[i]],{i,1,4}]*divkapital

Euler3=ratio[[3]]/Sum[ratio[[i]],{i,1,4}]*divkapital

Euler4=ratio[[4]]/Sum[ratio[[i]],{i,1,4}]*divkapital

Marginal allocation principle

korelacieABC={{1,0.5,0.25},{0.5,1,0.5},{0.25,0.5,1}};

korelacieABD={{1,0.5,0.75},{0.5,1,0.25},{0.75,0.25,1}};

korelacieACD={{1,0.25,0.75},{0.25,1,0.25},{0.75,0.25,1}};

korelacieBCD={{1,0.5,0.25},{0.5,1,0.25},{0.25,0.25,1}};

kapABC=Sqrt[Delete[K,4].korelacieABC.Transpose[{Delete[K,4]}]]

kapABD=Sqrt[Delete[K,3].korelacieABD.Transpose[{Delete[K,3]}]]

kapACD=Sqrt[Delete[K,2].korelacieABC.Transpose[{Delete[K,2]}]]

kapBCD=Sqrt[Delete[K,1].korelacieABC.Transpose[{Delete[K,1]}]]

prirABC=divkapital-kapABC

prirABD=divkapital-kapABD

prirACD=divkapital-kapACD

prirBCD=divkapital-kapBCD

prirastok=prirABC+prirABD+prirACD+prirBCD

upravenyprirD=prirABC/prirastok*divkapital

upravenyprirC=prirABD/prirastok*divkapital

upravenyprirB=prirACD/prirastok*divkapital

upravenyprirA=prirBCD/prirastok*divkapital
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