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In this paper, we consider an Emergency Medical Services (EMS) system with two types of medical re- 

sponse units: Rapid Responder Ambulances (RRAs) and Regular Transport Ambulances (RTAs). The key 

difference between both is that RRAs are faster, but they lack the ability to transport a patient to the 

hospital. To maintain the ability to respond to emergency requests timely when ambulances get busy, we 

consider compliance tables, which indicate the desired locations of the available ambulances. Our system 

brings forth additional complexity to the problem of computing optimal compliance tables, as we have 

two kinds of ambulances. We propose an Integer Linear Program (ILP) computing compliance tables for 

such a system, which uses outcomes of a Hypercube model as input parameters. Moreover, we include 

nestedness constraints and we set bounds on the relocation times in the ILP. To obtain more credible 

results, we simulate the computed compliance tables for different input parameters. Results show that 

bounding the time a relocation may last is beneficial in certain settings. Besides, including the nested- 

ness constraints ensures that the number of relocations and the relocation time is reduced, while the 

performance stays unaffected. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In life-threatening situations, the ability of ambulance service

providers to arrive at the emergency scene within a few minutes

to provide medical aid may make the difference between survival

death. In order to keep response times short, good planning of am-

bulance services is crucial, at the strategic level, at the tactical level

as well as at the operational level. Problems at the strategic and

tactical level deal with the location of ambulance base stations and

number of units per base station. In this paper we focus on the op-

erational level: the real-time relocation of ambulances. 

The most common measure on which ambulance service

providers are judged is the fraction of highest urgency calls re-

sponded to within a certain time threshold. For instance, in the

Netherlands, the response time of an ambulance may not exceed

15 min in 95% of the high priority emergencies. In order to main-

tain a good coverage level of the region, which is commonly used

as measure concerning the ability to respond to requests timely,

idle ambulances can proactively be relocated throughout the re-

gion in real time. Especially when ambulances become unavailable

due to service of patients, it is of utmost importance to carry out
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 relocation policy that redistributes the remaining ambulance ca-

acity over the region in a strategic way. However, ambulance re-

ocations are not popular among ambulance crews as they prefer

o spend their shift at base stations and not on the road. There-

ore, both the number of relocations and the relocation times are

ot allowed to increase excessively. 

A special kind of relocation policy structures are compliance ta-

les . Compliance tables base their decisions on the number of idle

mbulances solely, and are therefore a category of policies with

ow detail about the state of the system. Each row of a com-

liance table indicates, for a given number of available ambu-

ances, the desired locations for these units. Each time this num-

er changes, due to either a dispatch or a service completion,

he corresponding compliance table level is applied. The system is

aid to be in compliance if the configuration given by the compli-

nce table is attained. As compliance tables are simple to explain

o and to use by dispatchers, it is a popular policy structure in

ractice. 

In the Netherlands, several types of medical response units

re used. In addition to the regular ambulances there are for in-

tance mobile intensive care units and trauma helicopters. More-

ver, the use of a new type of response unit is emerging: so-called

apid responder ambulances (RRAs). Recently, the Dutch Minister

f Public Health was questioned by the parliament regarding the

http://dx.doi.org/10.1016/j.cor.2016.11.013
http://www.ScienceDirect.com
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Table 1 

The two-dimensional compliance table indicates the desired lo- 

cations for the available RRAs and RTAs. 

No. of RRAs No. of RTAs Base stations 

1 2 3 4 5 6 

1 0 R 0 0 0 0 0 

2 0 R R 0 0 0 0 

0 1 0 0 0 T 0 0 

1 1 R 0 0 T 0 0 

2 1 R R 0 T 0 0 

0 2 0 T 0 0 T 0 

1 2 R T 0 T 0 0 

2 2 R R,T 0 T 0 0 
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eployment of these RRAs [25] . These units are usually motor cy-

les, used for fast first response to an emergency request. They are

taffed by highly educated persons equipped with the same gear

he regular ambulance personnel takes inside a patient’s house in

rder to provide Advanced Life Support (ALS). Basically, there are

wo differences between RRAs and regular transport ambulances:

RAs are faster, but they lack the ability to transport a patient to a

ospital. 

In this paper, we consider an EMS system with two types of

edical response units: RRAs and Regular Transport Ambulances

RTAs). We design compliance tables for such a system. This brings

orth additional complexity in comparison to systems in which

nly one type of ambulance is present. After all, the state of the

ystem is two-dimensional as we both need to keep track of the

umber of available RRAs and RTAs. We refer to Table 1 for an ex-

mple of a so-called two-dimensional compliance table . 

.1. Related work 

The literature related to EMS planning is quite extensive as all

hree mentioned levels cover a wide range of problems, models

nd methods. A graphic overview of decision problems related to

MS management in the strategic, tactical, and operational level

s displayed by Bélanger et al. [3] . In this literature overview, we

imit ourselves to papers related to compliance tables and systems

ith multiple vehicle types. Concerning the second stream of lit-

rature, we observe that almost all models with multiple vehicle

ypes make a distinction in the level of care an ambulance can pro-

ide: either Advanced (ALS) or Basic Life Support (BLS), and ambu-

ances are classified as such. As stated by McLay [22] , the distinc-

ion between transport/non-transport units is studied very rarely,

he mentioned paper being an exception. 

Research related to EMS systems with multiple vehicle types

s often done in combination with the static location problem, al-

hough papers devoted to dispatching in a multi-tiered system ex-

st as well (see, for instance, [28] ). The static location problem

ims to select the location of the base stations, and the num-

er of ambulances that should be located at each of them, given

he fleet size. Surveys on ambulance location models are provided

y Owen and Daskin [23] , Brotcorne et al. [4] , and Li et al. [18] .

ne of the first static location problems is the Maximal Cover-

ng Location Problem (MCLP) proposed by Church and ReVelle [8] .

his model aims to select locations for ambulances in order to

aximize demand covered within a time threshold. In the MCLP

nly one type of ambulance vehicle is considered. Schilling et al.

24] came up with an extension with multiple vehicle types by

resenting the Tandem Equipment Allocation Model (TEAM) and

he Facility-Location Equipment-Emplacement Technique (FLEET). 

hese models were initially both developed for different fire fighter

nits, but are also relevant in an AL S/BL S context. Other papers

ased on a MCLP-like notion of coverage with ALS and BLS ambu-
ances are written by Charnes and Storbeck [6] and Marianov and

eVelle [20] . 

A probabilistic extension to the MCLP was developed by Daskin

9] , who presented the Maximum Expected Covering Location

roblem (MEXCLP). In this model ambulance unavailability is taken

nto account by the incorporation of a busy fraction : the fraction

f time an ambulance is not available to answer a call. This re-

ulted in a shift from deterministic coverage (or single coverage)

n which an area was covered if at least one ambulance could re-

pond timely to this area, to probabilistic coverage. 

However, some simplifying assumptions with respect to busy

ractions are made by Daskin [9] : ambulances operate indepen-

ently, each ambulance has the same busy fraction and ambulance

usy fractions are invariant with respect to the ambulance loca-

ions. In addition, the busy fraction is an output rather than an in-

ut. These assumptions are generally not met in practice, as men-

ioned by Batta et al. [2] . As a consequence, a part of the research

n static ambulance planning is related to better estimates on the

ctual system performance. Batta et al. [2] included factors cor-

ecting the result of the independence assumption in the MEXCLP,

esulting in the Adjusted MEXCLP model (AMEXCLP). These cor-

ection factors are computed in Larson [17] using the Hypercube

odel, based on an M / M / s -queue, developed by Larson [16] . Re-

ewed correction factors, based on random sampling of base sta-

ions rather than ambulances, were computed by Budge et al. [5] . 

A probabilistic model in which ALS and BLS units are located is

roposed by Mandell [19] . This model, the two-tiered model (TTM),

aximizes the expected covered demand, like the MEXCLP-model.

owever, opposed to MEXCLP, no busy fraction is used in TTM. In-

tead, Mandell [19] computes probabilities concerning the timely

esponse to demand occuring in a certain area, given the num-

er of ALS and BLS ambulances present within two different time

hresholds. More recently, Chong et al. [7] studied an EMS system

ith ALS and BLS ambulances. In this work, the authors focus on

he problem of selecting the number of AL S and BL S ambulances

o deploy, given a certain budget. 

A model simultaneously locating facilities and allocating differ-

nt types of equipment to maximize expected coverage, was pro-

osed by Jayaraman and Srivastava [13] . A similar model, MEXCLP2,

as presented by McLay [22] . As its name suggests, this model is

n extension of the MEXCLP model with two types of ambulances.

n the MEXCLP2, ALS and BLS ambulances are considered, but the

uthor introduces another distinction as well: ALS ambulances are

on-transport Quick Response Vehicles (QRVs), comparable to the

RAs studied in this paper. The regular transport ambulances are

imited to provide BLS care, being a difference with this paper in

hich transport ambulances are also able to provide ALS care. 

The second stream of literature we consider is related to com-

liance tables. One can regard compliance tables as a generaliza-

ion of static location problems. However, these problems do not

ake into account the fact that ambulances get busy, resulting in

 different, temporary, fleet size, hence the classification ‘static’. In

esigning compliance tables one also chooses which waiting sites

o use, but one computes such a solution for each possible num-

er of available ambulances, usually with a smaller set of candidate

ase stations compared to static problems. 

However, if a compliance table is computed by solving a series

f static location problems, no cohesion between the compliance

able levels exists. It could occur in such a solution that many am-

ulances need to change location due to one specific state transi-

ion. It is stated by Van Barneveld et al. [31] that this is not de-

irable, as relocations are generally not popular among ambulance

rews. The concept of nestedness plays an important role in de-

igning compliance tables. In the Maximal Expected Covering Re-

ocation Problem (MECRP), formulated as integer linear program

y Gendreau et al. [11] , compliance tables with bounds on the



70 T.C. van Barneveld et al. / Computers and Operations Research 80 (2017) 68–81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

i  

e  

w  

J  

f  

t

 

o  

u  

b  

m  

E  

i  

n  

r  

t  

s  

l  

t

2

 

p  

s  

c  

s  

s  

t  

f  

e  

o  

t  

t  

b  

s

 

p  

B  

w  

p  

t  

R  

t  

i  

t  

S  

f  

t  

g  

i

 

t  

a  

g  

s  

h  

o  

a  

e  

o  

m  

t  

t  
number of relocations between levels are computed. These restrict

the number of relocations that can occur simultaneously. 

The MECRP was extended to the Minimum Expected Penalty

Relocation Problem (MEXPREP) by Van Barneveld [30] . In this

model the MECRP and MEXCLP model are integrated in order to

compute a compliance table taking into account ambulance un-

availability. A Markov chain model for calculating the performance

of an EMS system using a fixed compliance table was developed

by Alanis et al. [1] . This work serves as the foundation of the

study done by Sudtachat et al. [29] : the output of the Markov

chain model, i.e., the steady-state probabilities, are used as input

parameters in an integer programming model for the computation

of nested compliance tables. This is a special class of compliance

tables in which at most one vehicle is relocated (if it is at a base

station) or redirected (if it is driving) upon the dispatch of an am-

bulance. Moreover, none of the idle ambulances change their loca-

tion (if at a base station) or destination (if driving) at the moment

an ambulance becomes available again, apart from this particular

ambulance. As a consequence, at each decision moment, at most

one ambulance is instructed to relocate or redirect itself. Sudtachat

et al. [29] claim to be the first providing an optimization model for

a compliance table policy, indicating that the problem of finding

compliance tables is understudied and deserves attention. 

1.2. Contribution 

This paper considers the problem of computing compliance ta-

bles in an EMS system with multiple ambulance types: RRAs and

RTAs, both able to provide ALS care. The key differences between

both vehicle types are the speed and the ability to transport pa-

tients to hospitals. A compliance table belonging to such a system

is more complex than the ones for EMS systems with only one

type of medical unit. After all, the state of the system in our model

is described by the number of available units of both types, mak-

ing it two-dimensional instead of the one-dimensional state space

in EMS systems with only one type of vehicle. For each of these

states an ambulance configuration for both types of units needs to

be computed in a two-dimensional compliance table. 

We incorporate cohesion between the different com pliance ta-

ble levels in two different ways. First, we restrict the number of

ambulances that is instructed to relocate at the same decision mo-

ment, per vehicle type. There are several reasons why this restric-

tion in a compliance table would be incorporated. For instance, the

budget an ambulance service provider may spend is limited and

costs, (e.g., fuel and redemption) are involved with each relocation.

Moreover, as stated before, relocations are not popular among the

ambulance personnel. This type of restriction is also present in the

models presented by Gendreau et al. [11] and Van Barneveld [30] . 

In addition to the nestedness constraints mentioned above, we

also impose bounds on the time a relocation may take in the com-

pliance table. Without these restrictions, it is possible that a long

trip of an ambulance is needed to attain the ambulance configu-

ration indicated by compliance table. However, another event may

occur during this relocation with high probability, e.g., a busy am-

bulance becomes available or another incident occurs. In case of

the latter, the system may not be able to respond to the new in-

cident timely, as the system is out of compliance due to the fact

that the relocated ambulance has not arrived at its new location.

Therefore, it is desirable that the system is in compliance, accord-

ing to the compliance table, as soon as possible. Moreover, such

bounds are desirable from the crew’s perspective since these limit

the time medical personnel spends on the road. 

To the best of our knowledge, the problem of computing com-

pliance tables for an EMS system with two types of medical re-

sponse units and the two types of constraints mentioned above

has never been studied before, making this paper a valuable con-
ribution to the literature on ambulance planning. We present an

nteger linear program for the computation of compliance tables

n such a system, extending both the MECRP model by Gendreau

t al. [11] and the MEXCLP2 model proposed by McLay [22] , of

hich we also use the modification of the Hypercube model by

arvis [12] for the estimation of the input parameters (e.g., busy

ractions). We apply the developed model to an EMS region within

he Netherlands. 

Moreover, in order to get a more realistic idea about the effect

f applying relocation policies, such as compliance tables, it is of

tmost importance to perform simulation experiments, as stated

y Van Barneveld et al. [32] . Although objective values in a mathe-

atical model serve as an approximation of the performance of the

MS system, ambulance service providers are far more interested

n the relocation policy itself rather than in theoretically computed

umbers. It is not impossible that policies yielding good theoretical

esults perform worse in practice compared to ones with inferior

heoretical results, and vice versa. Therefore, simulation is a neces-

ary tool in the design and evaluation of relocation policies. Ana-

yzing the simulation results of these two-dimensional compliance

ables, we obtain several interesting insights. 

. Problem description 

In this section, we describe the EMS process studied in this pa-

er. When idle, both RRA and RTA crews spend their shift at base

tations: structures set aside for parking idle ambulances with a

rew room and other facilities for the ambulance personnel. In our

etting it is assumed that there are more medical units than base

tations, resulting in multiple occupancy of one or more base sta-

ions. This is common in the Netherlands and this assumption dif-

ers from the one done in the compliance table model by Sudtachat

t al. [29] in which each base station can be occupied by at most

ne vehicle. If the situation requires, medical units may be asked

o relocate to other base stations. These decisions are made when

he number of available ambulances changes, e.g., when an am-

ulance is instructed to respond to a call or when a unit finishes

ervice. 

In case of the first event type, a medical unit needs to be dis-

atched to the patient. As we do not distinguish between ALS and

LS type of care, we assume a single type of call: a patient al-

ays needs ALS care as soon as possible. We assume that the dis-

atch policy is as follows: if there is at least one RRA available

hat can reach the patient within the time threshold T , the closest

RA is dispatched. Otherwise, an available RTA present within the

ime threshold is selected to respond to this call. In the situation

n which neither an RRA nor an RTA can respond to the patient

imely, the nearest medical unit is assigned, regardless of the type.

uch a response counts as a late arrival . If no unit at all is available

or the response, the call enters a first-come first-served queue:

he first unit that becomes available is dispatched. Fig. 1 shows a

raphical representation regarding the first response dispatch pol-

cy. 

We assume that it is not known beforehand whether the pa-

ient needs transportation to a hospital. This information becomes

vailable at the control center when a unit arrives at the emer-

ency scene. After all, it is typically difficult to determine the

everity of the incident based on the descriptions of the caller:

e/she is usually upset and may give an inadequate description

f the status of the patient. If an RRA responds to the incident

nd the patient needs transportation, the closest RTA is sent to the

mergency scene as well. If no RTA is available, this call enters an-

ther first-come first-served queue with less priority than the one

entioned above. Meanwhile, the RRA paramedic provides care to

he patient. This on scene care can take either longer or shorter

han the response time of the RTA. In the first case, the RTA leaves
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Fig. 1. Dispatch policy of first response. 

Fig. 2. Dispatch policy of second response. 
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ith this patient for the hospital as soon as the on scene treat-

ent finishes. If the response time of the RTA exceeds the time of

he care needed on scene, the RRA waits until the RTA arrives. In

ither case, the RRA paramedic does not accompany the patient to

he hospital but he/she becomes available when the RTA leaves the

mergency scene. We assume that a patient is always transported

o the closest hospital. Having arrived there, it takes some time for

he RTA to drop off the patient. When this is finished, the ambu-

ance becomes idle again. If an RRA responds to a patient not re-

uiring transportation, no subsequent dispatch of a transport unit

akes place (see Fig. 2 ). 

The above described dispatch process is assumed to be fixed.

oments at which the number of available units changes are the

ispatch of a response unit (either the first or the second re-

ponse), the service completion of a patient who does not re-

uire transportation, the departure time of the transport ambu-

ance from the emergency scene and the transfer completion at a

ospital. At these events relocation decisions are taken, according

o a two-dimensional compliance table. Our goal is to compute a

wo-dimensional compliance table that minimizes the fraction of

alls for which the response time exceeds the time threshold: the

raction of late arrivals. 

. Mathematical model 

In this section we formulate the abovementioned problem as

n Integer Linear Program. First, we introduce the framework and

ome notation. We define V as the set of locations at which de-

and for care can occur. Calls arrive according to a Poisson pro-

ess with rate λ and d i denotes the fraction of demand occuring at

emand node i ∈ V . We denote the set of base stations by W . We

ssume that both RRAs and RTAs use the same base stations, al-

hough this is not a limiting assumption in general. The total num-

er of RRAs and RTAs is denoted by N R and N T , respectively. The

n-scene treatment rate is denoted by μ1 . We assume this time is

ndependent of the type of unit that responds. Moreover, we de-

ote the hospital drop-off rate by μ2 . For both quantities we make

he assumption that these are exponentially distributed. 
Deterministic driving times are given: τ R ( i, j ) and τ T ( i, j ) de-

ote the driving time between nodes i and j, i, j ∈ V ∪ W of an

RA and an RTA, respectively. As RRAs are faster, we assume τ R ( i,

 ) < τ T ( i, j ). The abovementioned driving times are based on the

mergency speeds, which are used when an ambulance is carrying

ut patient-related tasks, e.g., response or transport. An ambulance

erforming a relocation is not allowed to turn on optical and sound

ignals, and so these driving times are longer. We denote these re-

ocation driving times by τ 2 ( i, j ) for i, j ∈ V ∪ W and both vehicle

ypes. 

The time threshold is denoted by T . We define J R 
i 

as the subset

f base stations from which an RRA can respond to an incident at

ode i ∈ V within the time threshold, according to τ R : 

 

R 
i = { j ∈ W : τ R ( j, i ) ≤ T } . 
he RTA counterpart J T 

i 
is defined similarly. Note that J T 

i 
⊆ J R 

i 
⊆ W 

ue to the fact that RRAs are faster than RTAs. 

We denote the busy fractions of RRAs and RTAs by p R and p T .

hese fractions correspond to the probability that a unit is un-

vailable due to the service of a patient. Note that these fractions

eavily rely on λ, μ1 and μ2 , but also on the response time and

he transportation time of a patient to a hospital. The state of our

ystem is described by the number of available vehicles of both

ypes. We denote the state space by S and a state s ∈ S is given by

 = (s R , s T ) with 0 ≤ s R ≤ N R and 0 ≤ s T ≤ N T . In the remainder,

e denote the number of available RRAs and RTAs in state s by K 

R 
s 

nd K 

T 
s , respectively. For each state, except the state (0, 0), a de-

ired configuration of available ambulances is computed in order

o produce a two-dimensional compliance table. Table 2 provides

n overview of the introduced notation. 

The first step in the formulation of our model is to extend the

EXCLP2 model by McLay [22] to fit into the compliance table

ramework. The objective of MEXCLP2 is to optimally deploy two

ypes of vehicles in a geographic area; optimally in the sense that

he expected number of highest urgency calls that are responded

o within T is maximized. That is, it computes the optimal config-

ration for the state ( N R , N T ). We extend this model to compute

hese configuration for any state, resulting in a two-dimensional

ompliance table. 
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Table 2 

Notation. 

λ Call arrival rate. 

μ1 On-scene treatment rate. 

μ2 Hospital transfer rate. 

τ R ( i, j ) ( τ T ( i, j )) Emergency driving time from i to j for an RRA (RTA), i, j ∈ 
V ∪ W . 

τ 2 ( i, j ) Relocation time between i and j, i, j ∈ V ∪ W . 

T Time threshold on the response time. 

V Set of demand nodes. 

W Set of waiting sites. 

N R ( N T ) Total number of RRAs (RTAs). 

S State space. 

d i Fraction of demand occuring at node i ∈ V . 
p R ( p T ) Busy fraction RRA (RTA). 

J R 
i 

(J T 
i 
) Subset of base stations from which an RRA (RTA) can 

respond to node i ∈ V within time threshold T . 

K R s (K T s ) Number of available RRAs (RTAs) in state s ∈ S . 
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3.1. Hypercube model 

An important model used to obtain input parameters for the

MEXCLP2 is the Hypercube model proposed by Larson [16] and its

approximation by the same author [17] . This model was extended

by Jarvis [12] to include multiple customer types and two types

of servers. This extension considers a loss system with distinguish-

able servers and multiple customer types, each arriving according

to a Poisson process with a customer-type dependent arrival rate.

Exactly one server is assigned to each customer. If no servers are

available, the customer is lost. Moreover, servers are assigned to

customers according to a fixed preference assignment rule for that

customer type. If all servers of the most preferred type are busy,

the customer is assigned to a server of the less preferred type. The

assignment is made at the moment of arrival of the customer. The

expected service times for each server-customer pair are known in

advance. 

The approach taken by McLay [22] is similar to the one by

Jarvis [12] , except for the fact that an infinite queue system is

used instead of the loss system. The underlying reason is that pa-

tients generally wait for a medical unit to become available. More-

over, the Hypercube model by Jarvis [12] assumes that exactly one

unit is assigned to each call, which does not hold in the MEXCLP2

model. Therefore, McLay [22] considers calls existing of multiple

customers. In our model, this translates to the arrival of one cus-

tomer when the emergency call is made and the arrival of one cus-

tomer when the RRA informs the emergency control center about

the necessity of an RTA. Note that in our model the preference as-

signment rule is to first assign an RRA and if none of these are

available within range, an RTA is dispatched. 

An approximation procedure to estimate performance measures

for the Hypercube model assuming exponential service times is

presented by Jarvis [12] , based on the one given by Larson [17] .

This procedure was used by McLay [22] to estimate busy fractions

for the MEXCLP2 model. In our framework, we need the following

ingredients for this approximation procedure. 

We denote by P ∗
0 

the steady-state probability that all units of

type ∗, ∗ ∈ { R, T } 1 are busy, which corresponds to the fraction of

time none of the ambulances of type ∗ is available. This quantity is

computed by 

P ∗0 = 

(
N 

N ∗∗ p N ∗∗
N ∗!(1 − p ∗) 

+ 

N ∗−1 ∑ 

j=0 

N 

j 
∗ p j ∗
j! 

)−1 

, (1)

as in an M / M / N 

∗ -queue. Moreover, we define ‘correction factors’

Q 

∗ ( N 

∗ , p ∗ , j ). These factors correct for computing the probability
1 In the remainder, we replace the R of RRA and the T of RTA by ∗ ∈ { R, T } if 

statements hold for both vehicle types. 

g  

c  

s  

b

hat the ( j + 1) st selected ambulance of type ∗ is the first avail-

ble one, assuming that ambulances operate independently, given

 total of N 

∗ servers and a busy fraction p ∗ . The correction factors

re computed by Larson [17] via 

 ∗(N ∗, p ∗, j) = 

N ∗−1 ∑ 

k = j 

(N ∗ − j − 1)!(N ∗ − k ) N 

k 
∗ p k − j 

∗ P ∗0 
(k − j)! N ∗!(1 − p ∗) 

, (2)

here j = 1 , 2 , . . . , N ∗ − 1 , and with Q ∗(N ∗, p ∗, 0) = 1 . We define

ustomer type 1 to correspond to the emergency call and customer

ype 2 to the request for an RTA by an RRA, as explained above. We

enote the corresponding arrival rates by λ1 and λ2 , and the ser-

ice rates by μR 
1 
, μT 

1 
and μT 

2 
. Note that μR 

2 
is not defined since a

ustomer of type 2 is solely served by an RTA. Recall that all type

 customers prefer to be served by an RRA. We denote the fraction

f type 1 customers responded to by an RRA by f . We can compute

 by 

f = 

N R −1 ∑ 

j=0 

Q R (N R , p R , j)(1 − p R ) p 
j 
R 
. (3)

n update on the approximated busy fractions p R and p T can now

e computed by 

p R = 

fλ1 

μ1 N R 

, (4)

nd 

p T = 

1 

N T 

(
λ2 

μ2 

+ (1 − f ) 
λ1 

μ1 

)
. (5)

he procedure used to estimate busy fractions is to initialize p R =
λ1 

μ1 N R 
and p T = 

λ2 
μ2 N T 

and then to iteratively compute Eqs. (1) –(5)

ntil a certain stopping criterion is met, e.g., when the differ-

nces in busy fractions between subsequent iterations have be-

ome small enough. This procedure is similar to the ones by Jarvis

12] and McLay [22] . 

Note that the approximations of the busy fractions computed

y the above procedure are a rough estimate on the true values.

his has several causes. First, the Hypercube model assumes that

ervers operate independently. However, this is not the case as an

RA periodically summons an RTA. Therefore, the call arrival pro-

ess for RTAs depends on that for RRAs. The reason that we make

his assumption is for tractability reasons. Moreover, the Hyper-

ube model does not capture the actual locations of the ambu-

ances. As a consequence, the Hypercube model assumes that an

RA is dispatched to each customer of type 1, regardless of the

ocation of the incident. However, if the ambulance configuration

s such that no RRA is present within range while an RTA is, this

s not the case. Therefore, the Hypercube model overestimates p R 
hile p T is underestimated, especially if the number of RRAs is

mall compared to the number of RTAs. Besides, the busy fractions

epend on the response and transportation time as well, since re-

ponse and transportation is part of the busy time of an ambu-

ance. The mean transportation time can be estimated rather accu-

ately since the location of hospitals and the demand of each node

re known, so this can be taken into account in the computation of

2 . However, it is not possible to estimate the mean response time

s we need the locations of the ambulances as well. Therefore, we

ssume that the response times in the Hypercube model are 0,

hich underestimates the busy fractions. In addition, the Hyper-

ube model assumes exponentially distributed busy times, which

s generally not true in practice. At last, by using the Hypercube

odel we make the assumption that an RTA arrives at the emer-

ency scene before the on-scene treatment time has finished, in

ase of an RRA response to a patient requiring transportation. In

hort, the computed approximations of the busy fractions should

e viewed with some caution. 
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Table 3 

Decision variables. 

x ∗
s, j 

Number of units of type ∗ placed at waiting site j ∈ W in state 

s ∈ S, ∗ ∈ { R, T }. 

y R 
s,i,k R 

Equals 1 if in state s ∈ S, demand point i ∈ V is covered by at 

least k R RRAs, and 0 otherwise. 

y T 
s,i,k T ,k R 

Equals 1 if in state s ∈ S, demand point i ∈ V is covered by at 

least k T RTAs and exactly k R RRAs, and 0 otherwise. 
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.2. MEXCLP2 for compliance tables 

In this section we explain the Integer Linear Program used to

ompute compliance tables for an EMS system with multiple ve-

icle types. That is, for each state this ILP computes the desired

aiting sites for the available RRAs and RTAs. Although we focus

n RRAs and RTAs, this ILP can be applied to any type of vehicle

ix with predescribed dispatch process and preference assignment

ists. 

To define the objective function, we need some additional defi-

itions. We denote the approximated fraction of time the system is

n state s = (s R , s T ) by π s . These steady-state probabilities can be

stimated using the steady-state probabilities of an M / M / N 

∗ -queue

ith a load equal to the busy fraction p ∗ , ∗ ∈ { R, T }, as done by

arson [17] . Let π ∗
s ∗ denote the steady-state probability that exactly

 

∗ units of type ∗ ∈ { R, T } are available. We know that π ∗
N ∗ = P ∗

0 
,

efined in Eq. (1) . We compute 

∗
s ∗ = 

N 

N ∗−s ∗∗ p N ∗−s ∗∗ π ∗
N ∗

(N ∗ − s ∗)! 
, (6) 

or s ∗ = 1 , 2 , . . . , N ∗ − 1 , ∗ ∈ { R, T }. Moreover, 

∗
0 = 

N 

N ∗∗ p N ∗∗ π ∗
N ∗

(1 − p ∗) N ∗! 
, (7) 

nd assuming that RRAs and RTAs operate independently (which

e assume for tractability reasons), we compute 

s = πR 
s R 
π T 

s T 
. (8) 

e also define πR 
0 { k R } to represent the probability that no RRAs

re available in an M / M / k R -queue. This quantity can be estimated

y replacing N R by k R in Eqs. (1) and (7) . 

Now, we have all ingredients to formulate the ILP model. The

LP is based on the decision variables listed in Table 3 . The ob-

ective of this ILP, as the one by McLay [22] , is to maximize the

emand covered within time threshold T . A call is covered if either

n RRA or an RTA responds timely, but an RRA is preferred. An RTA

s only dispatched if none of the RRAs can arrive at the emergency

cene within the specified amount of time. The objective function

s given by 

ax 
∑ 

s ∈S 

∑ 

i ∈ V 
πs d i 

( K R s ∑ 

k R =1 

Q(K 

R 
s , p R , k R − 1)(1 − p R ) p 

k R −1 
R 

y R s,i,k R 
+ 

K T s ∑ 

k T =1 

K R s ∑ 

k R =0 

Q(K 

T 
s , p T , k T − 1)(1 − p T ) p 

k T −1 
T 

πR 
0 { k R } y T s,i,k T ,k R 

)
. 

(9) 

iven a state s ∈ S and a node i ∈ V , the expected coverage con-

ists of two parts: the first part (the upper line in Eq. (9) ) cor-

esponds to the expected coverage induced by RRAs. This term is

imilar to the objective function in the AMEXCLP model by Batta

t al. [2] . In the second part (the lower line in Eq. (9) ) the expected

overage induced by RTAs is added, weighted by a factor πR 
0 
{ k R }

orresponding to the approximated probability of having no avail-

ble RRA within range, assuming that demand node i is covered

y exactly k R RRAs. Both parts are concave in k R and k T , respec-

ively, for each state s ∈ S and each demand node i ∈ V . This is

ue to the same reason as the objective function of the MEXCLP
odel is concave, and implies that both sequences (y R 
s,i,k R 

) 
K R s 

k R =1 
and

(y T 
s,i,k R ,k T 

) 
K T s 

k T =1 
are non-increasing in an optimal solution. 

As in the original MEXCLP and MEXCLP2 model of Daskin

9] and McLay [22] , respectively, we need to limit the number of

nits to be placed. In state s , we are allowed to locate no more

han K 

∗
s vehicles of type ∗: ∑ 

j∈ W 

x ∗s, j ≤ K 

∗
s , s ∈ S, ∗ ∈ { R, T } . (10)

n addition, we need constraints that link the x - and y -variables.

or RRAs, these constraints are given by 

K R s ∑ 

 r =1 

y R s,i,k R 
≤

∑ 

j∈ J R 
i 

x R s, j , s ∈ S, i ∈ V. (11)

hese constraints force that a demand point i ∈ V is only covered

y at least k R vehicles if the base stations within range of i contain

t least k R vehicles together. Connecting the x T - and y T -variables is

arder as indices belonging to the number of RRAs are involved as

ell in y T 
s,i,k T ,k R 

. To ensure the above condition for RTAs, we include

he constraint 

K T s ∑ 

 T =1 

K R s ∑ 

k R =0 

y T s,i,k T ,k R ≤
∑ 

j∈ J T 
i 

x T s, j , s ∈ S, i ∈ V (12)

n our model. Note that if for s ∈ S, i ∈ V , k T = 1 , . . . , K 

T 
s and k R =

 , . . . , K 

R 
s it holds that y T 

s,i,k T ,k R 
= 1 , then y T 

s,i,k T ,k 
′ 
R 

= 0 for k ′ R � = k R ,

hich makes constraint (12) similar to constraint (11) . To link the

 

R 
s,i,k R 

and y T 
s,i,k R ,k T 

we introduce variables z s,i,k T , similar to McLay

22] , as follows: 

 s,i,k T = 

{ 

1 if y T 
s,i,k T ,k R 

= 0 , s ∈ S, i ∈ V, k T = 1 , . . . , K 

T 
s , 

k R = 1 , . . . , K 

R 
s 

0 otherwise. 

oreover, the following constraints are introduced: 

K R s ∑ 

 R =1 

(k R y 
T 
s,i,k T ,k R 

) + K 

R 
s z s,i,k T ≥

∑ 

j∈ J R 
i 

x R s, j , s ∈ S, i ∈ V, k T = 1 , . . . , K 

T 
s ,

(13) 

K R s ∑ 

 R =0 

(y T s,i,k T ,k R ) + z s,i,k T ≤ 1 , s ∈ S, i ∈ V, k T = 1 , . . . , K 

T 
s . (14) 

f demand node i is covered by exactly k R RRAs and at least k T 
TAs in state s ∈ S, then constraint (14) forces z s,i,k T to be 0, i ∈
 , k T = 1 , . . . , K 

T 
s . In addition, constraint (13) , which will be satis-

ed at equality if z s,i,k T = 0 , has a similar interpretation as con-

traints (11) and (12) . However, if 
∑ K R s 

k R =0 
y T 

s,i,k T ,k R 
= 0 , it can still be

he case that demand node i is covered by exactly k R RRAs in state

 , but not by at least k T RTAs. In order to maintain proper linking,

 s,i,k T 
must be 1, which is assured by constraint (13) . 

Now, the ILP is given by the objective function of Eq. (9) sub-

ect to constraints (10) –(14) and the following integer and binary

onstraints: 

 

∗
s, j ∈ { 0 , 1 , . . . , K 

∗
s } , s ∈ S, j ∈ W, (15) 

 

R 
s,i,k R 

∈ { 0 , 1 } , s ∈ S, i ∈ V, k R = 1 , . . . , K 

R 
s , (16) 

 

T 
s,i,k T ,k R 

∈ { 0 , 1 } , s ∈ S, i ∈ V, k T = 1 , . . . , K 

T 
s , k R = 0 , 1 , . . . , K 

R 
s , 

(17) 
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z s,i,k T ∈ { 0 , 1 } , s ∈ S, i ∈ V, k T = 1 , . . . , K 

T 
s . (18)

Note that there is no cohesion between the configurations in dif-

ferent states. That is, if steady-state probabilities π s were to be re-

moved from the objective function, the same solution would be

computed. In the next two subsections, we incorporate depen-

dence between desired configurations in different states. 

3.3. Nestedness 

A first way to incorporate cohesion between different compli-

ance table levels is the introduction of nestedness constraints as

done in the MECRP model by Gendreau et al. [11] and its exten-

sion by Van Barneveld [30] . These constraints limit the number of

units instructed to relocate if a state transition occurs. In a nested

compliance table, the set of desired locations of a lower state is

a subset of each higher state, where lower and higher correspond

to the number of units available and a station at which multiple

units are positioned counts as multiple elements. By using nested

compliance tables, at most one ambulance is instructed to move at

each decision moment, which avoids unnecessary moving of other

ambulances, as stated by Sudtachat et al. [29] . 

As we consider two-dimensional compliance tables, we can

have nestedness in both the RRA- and RTA-direction. In addition

to the above described condition for a compliance table to be

nested, we require that the desired configurations are the same if

the number of available units does not change. For instance, the

two-dimensional compliance table displayed in Table 1 is nested in

the RRA-direction: the configuration belonging to each state with

one available RRA (base station 1) is a subset of each state with

two available RRAs (base stations 1 and 2). As a consequence, if

in a state with two RRAs available the one from station 1 is dis-

patched, the other RRA travels from station 2 to 1. If the one from

2 is dispatched, no relocation is necessary. Moreover, if an RTA is

dispatched, no relocation of an RRA is required. 

However, in the RTA-direction the two-dimensional compliance

table of Table 1 is not nested as the set of desired locations for

the RTAs in state (0, 1) is not a subset of the one of state (0, 2).

Moreover, the RTA-configurations of states (1, 2) and state (0, 2) do

not coincide. We define 

S ∗0 = { s ′ ∈ S : K 

∗
s ′ = 0 } 

as the state without an available unit of type ∗ ∈ { R, T }. Moreover,

we define 

S R s = { s ′ ∈ S : K 

R 
s ′ = K 

R 
s − 1 , K 

T 
s ′ = K 

T 
s } 

as the set with one RRA fewer available and the same number of

RTAs available, s ∈ S \S R 0 . The set S T s is defined similar. Note that

both sets contain precisely one element. We define a ∗
s,s ′ , j 

as the

number of units that is added to base station j ∈ W if a transition

from state s ∈ S \S ∗
0 

to state s ′ ∈ S R s ∪ S T s occurs, i.e., at the dispatch

of either an RRA or an RTA. It is this number that we want to re-

strict. We do this by defining α∗
s,s ′ as the bound on base station

changes for a vehicle of type ∗ if an state transition from s to s ′ 
takes place. We introduce the constraints 

x ∗s ′ , j − x ∗s, j ≤ a ∗s,s ′ , j , s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , j ∈ W, ∗ ∈ { R, T } 
(19)

∑ 

j∈ W 

a ∗s,s ′ , j ≤ α∗
s,s ′ , s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , j ∈ W, ∗ ∈ { R, T } . (20)

Constraint (19) ensures that a ∗
s,s ′ , j 

takes a non-negative value if

more ambulances of type ∗ are located at base station j ∈ W in

state s ∈ S \S ∗0 compared to state s ′ ∈ S R s ∪ S T s . Note that if this

number is non-negative, the compliance table in this direction is
ot nested: in a state with fewer available units, a certain base

tation contains more ambulances than in the higher state. This

mplies that at least one ambulance needs to relocate. 

In constraint (20) we bound the number of these base station

hanges. Note that if we set α∗
s,s ′ ≡ 0 for each ( s, s ′ )-pair with s ∈

 \S ∗0 , s ′ ∈ S R s ∪ S T s , and 

∗ ∈ { R, T }, a nested compliance table in

oth directions is obtained. The other extreme value is α∗
s,s ′ ≡ K 

∗
s .

f this value is implemented, no nestedness restrictions are present.

t last, we include the integer constraints 

 

∗
s,s ′ , j ∈ { 0 , 1 , . . . , K 

∗
s } , s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , j ∈ W, ∗ ∈ { R, T } 

(21)

n our ILP formulation. 

.4. Bounds on relocation times 

In practice, it may take a while before the desired configuration

ccording to the two-dimensional compliance table is attained,

ince the new destinations of relocated ambulances may not be

lose to their origins. For the preparedness of the EMS system this

ay be disadvantageous. After all, the model assumes that each

mbulance is at its new location just after the state transition and

t bases its decision on that assumption. However, in practice this

s far from reality. There may be much to be gained if relocation

imes are kept short. In addition, from a crew-perspective this is

lso desirable as they do not have to spend that much time on the

oad. 

We extend the ILP formulation of Section 3.2 to take into ac-

ount bounds on relocation times. Therefore, we introduce binary

ariables v ∗
s, j 

, s ∈ S, j ∈ W , ∗ ∈ { R, T }: 

 

∗
s, j ∈ { 0 , 1 } , s ∈ S, j ∈ W. (22)

 variable v ∗
s, j 

equals 1 if base station j is occupied by at least one

mbulance of type ∗ in state s , and zero otherwise. This can be

asily ensured by incorporation of the following two constraints: 

 

∗
s, j ≤ x ∗s, j , s ∈ S, j ∈ W, ∗ ∈ { R, T } (23)

 

∗
s, j − K 

∗
s v s, j ≤ 0 , s ∈ S, j ∈ W, ∗ ∈ { R, T } (24)

hese constraints force that v ∗
s, j 

= 1 if and only if x ∗
s, j 

> 0 . A re-

ocation between base stations j and j ′ if a state transition from

 ∈ S \S ∗0 to state s ′ ∈ S R s ∪ S T s can be prevented by forbidding that

oth v ∗
s, j 

and v ∗
s ′ , j ′ equal 1 in a solution. Let M 

∗
s,s ′ be a bound on

he time any relocation may take if a transition from state s to

tate s ′ occurs. To model this restriction in our ILP, we include the

onstraint 

 

∗
s, j + v ∗s ′ , j ′ ≤ 1 , s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , j, j ′ ∈ W, ∗ ∈ { R, T } , 

(25)

or the base station pairs ( j, j ′ ) for which it holds that τ 2 ( j, j ′ ) >
 

∗
s,s ′ . Note that this constraint also bounds the relocation time of

dle ambulances if a state transition in the other direction occurs,

.e., when an ambulance becomes available. This bound is only im-

osed on idle ambulances and not on a unit that just finished

ervice. After all, it is very uncertain where this vehicle becomes

vailable. Therefore, it might still happen that this unit performs

n overly long relocation. 

The Integer Linear Program formulation to compute a two-

imensional compliance table with nestedness constraints and

ounds on the relocation time is now given by objective func-

ion (9) subject to constraints (10) –(25) . 
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Fig. 3. EMS region of Flevoland. 
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. Computational study 

In this section, we compute two-dimensional compliance tables

or Flevoland, a rural region in the Netherlands. This region is ex-

loring the use of RRAs since some outskirts of the region can not

e reached by an RTA, departing from a base station, within the

ime threshold. In addition to the computation of the compliance

ables, we provide a sensitivity analysis, and we generate results by

 discrete-event simulation of the obtained two-dimensional com-

liance tables based on the description of the process described in

ection 2 . 

.1. Experimental setup 

The EMS region of Flevoland covers approximately 1,400 km 

2 

nd is home to around 40 0,0 0 0 people. Being raised from the sea

n the 20 th century, it is a very young region. With 285 inhab-

tants per squared kilometer, this region is quite rural for Dutch

tandards, although the number of inhabitants grows very rapidly.

e refer to Fig. 3 for a graphical representation. 

Six base stations are present in this region. These are indicated

y the red dots in Fig. 3 b. Moreover, two hospitals are located in

he two largest cities, marked by the crosses. We aggregate this

egion into 93 demand points based on 4-digit postal codes. Note

hat base station 2 and one of the hospitals are in the same postal

ode. For each postal code-pair deterministic emergency driving

imes for RTAs are estimated by and provided by the RIVM. 2 We

efer to [15] for a more detailed description on the travel time

odel used for the estimation of these travel times. 

In our study, we consider three different fleet mixes; we as-

ume that always 10 units are on duty. The number of ambulances,
2 Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public 

ealth and the Environment). 

q  

t  

p  

d  
s well as the vehicle mix, is kept constant throughout the day; we

o not model ambulance shifts. We base our computations on fleet

ixes (N R , N T ) = (2 , 8) , (5, 5) and (8, 2). This results in 26, 35, and

6 states, respectively. Note that the ‘state’ (0, 0) is not classified as

uch as no computation of an ambulance configuration is required

or (0, 0). The response time threshold T is 12 min, although the

tatutory threshold time is 15 min in the Netherlands. However,

e do not take into account answering the emergency call and

re-trip delay, which together last for 3 min on average. 

.2. Application of the hypercube model 

In order to apply both the Hypercube model as described in

ection 3.1 and the ILP of Sections 3.2 –3.4 , we need to estimate the

nput parameters regarding the demand probabilities, the arrival

nd service rates, and the hospital probabilities. To this end, the

mbulance service provider of Flevoland, GGD Flevoland, provided

s historical data on emergency requests occurred in the year 2011.

his data includes the time and location of occurrence, as well as

he on-scene treatment time and hospital drop-off time. We fo-

used on the time interval 7AM to 6PM, which are the hours with

he highest intensity. 

In the year 2011, 7632 emergency requests were reported in the

onsidered time interval, which corresponds to an hourly arrival

ate of 1.97 incidents. This corresponds to λ = 0 . 0328 incidents

er minute. Note that in order to apply the described Hypercube

odel, we need to distinguish two different arrival rates: λ1 = λ
orresponds to the request for an ambulance for first response, and

2 is the arrival rate of the request for an RTA by an RRA. This

uantity is computed by multiplication of the probability that a pa-

ient needs transportation to a hospital and λ. Around 87% of the

atients require transportation in our data set, so λ2 = 0 . 0286 . The

emand probabilities d , i ∈ V = { 1 , . . . , 93 } are easily estimated by
i 
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Table 4 

Busy fractions estimated by the Hypercube 

model for different fleet mixes. 

( N R , N T ): (2 ,8) (5 ,5) (8 ,2) 

p R 0 .4123 0 .2158 0 .1356 

p T 0 .2005 0 .2699 0 .6719 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Objective function values for R1 as a function of the relocation time bound. 
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division of the number of occurred incidents in node i by the total

number of incidents. 

The estimation of the quantities μR 
1 
, μT 

1 
and μT 

2 
requires more

work. These factors correspond to the on-scene treatment rate of

an RRA and RTA, and to the hospital transfer rate, obviously by

an RTA, respectively. However, we have no information on μR 
1 in

our data set, as this system was not implemented in the year

2011. Therefore, we assume μR 
1 

= μT 
1 
, i.e., the on scene treatment

is independent of the type of first response unit. We compute a

mean on scene treatment time of 17.7 min, which corresponds to

μR 
1 

= μT 
1 

= 0 . 0567 . 

To obtain accurate estimates of the busy time of an RTA trans-

porting a patient, we also consider the expected transportation

time, in addition to the actual drop-off time at the hospital. This

expected transportation time is computed, under the assumption

that each patient is transported to the closest hospital, as follows:

for each postal code i the travel time to the closest hospital is con-

sidered, based on the driving times provided. Then, we weight this

time by d i for postal code i , and add the results to obtain an es-

timate on the mean transportation time. This results in an aver-

age transportation time of 8.55 min. Based on the historical data,

we estimate an actual mean drop-off time of 16.5 min. Hence,

μT 
2 

= 0 . 0400 . 

Now, the Hypercube model can be applied in order to esti-

mate the busy fraction p R and p T , and consequently, all factors

that depend on these: the correction factors and steady-state prob-

abilities. Busy fractions generated by the procedure explained in

Section 3.1 for the three fleet mixes of consideration are listed in

Table 4 . 

4.3. Two-dimensional compliance tables 

In this section, we solve the ILP given by objective func-

tion (9) and subject to constraints (10) –(25) . Therefore, we need

both emergency driving times of RRAs ( τ R ) and relocation times

for both types of vehicles ( τ 2 ). These were computed by division

and multiplication of the driving times τ T (provided by the RIVM)

by a factor 10 
9 , respectively. This value was chosen in consultation

with a practitioner. 

Based on τ R and τ T , the sets J R 
i 

and J T 
i 

can be computed for

demand node i ∈ V . These are the subsets of base stations from

which an RRA and RTA, respectively, can respond to node i within

12 min. Without loss of generality, we can further aggregate the

demand nodes in the region, as follows: if for two demand nodes u

and v it holds that J R u = J R v and J T u = J T v , then we replace these nodes

by a new node w with d w 

= d u + d v . This results in 20 demand

nodes in our region, which we again will denote by V for the sake

of simplicity. This reduces the number of variables in the ILP. For

each fleet mix, we consider four regimes related to nestedness. We

refer to these by R1–R4. 

R1. α∗
s,s ′ ≡ 0 for each s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , 

∗ ∈ { R, T }. 

R2. αR 
s,s ′ ≡ K 

R 
s for each s ∈ S \S R 0 , s 

′ ∈ S R s ∪ S T s . 

αT 
s,s ′ ≡ 0 for each s ∈ S \S T 

0 
, s ′ ∈ S R s ∪ S T s . 

R3. αR 
s,s ′ ≡ 0 for each s ∈ S \S R 

0 
, s ′ ∈ S R s ∪ S T s . 

αT 
s,s ′ ≡ K 

T 
s for each s ∈ S \S T 

0 
, s ′ ∈ S R s ∪ S T s . 

∗ ∗ ∗ ′ R T ∗
R4. α
s,s ′ ≡ K s for each s ∈ S \S 

0 
, s ∈ S s ∪ S s , ∈ { R, T }. o  
Note that R1 forces the compliance table to be nested in both

irections, while no nestedness conditions are present in R4. More-

ver, we study five different bounds on the relocation time: M 

∗
s,s ′ ≡

1 
2 λ

, 3 
4 λ

, 1 
λ
, 5 

4 λ
, 3 

2 λ
for each s ∈ S \S ∗0 , s ′ ∈ S R s ∪ S T s , 

∗ ∈ { R, T }. We let

he bounds depend on λ because the expected time until the next

ncident occurs is 1 
λ
, assuming Poisson arrivals. After all, we aim to

e well positioned before the next incident happens. Incorporating

he bound 

3 
2 λ

is equivalent to the unbounded program, as there is

o relocation time between any pair of base stations that exceeds
3 

2 λ
. 

We solve the 3 × 4 × 5 = 60 instances of the ILP using CPLEX

2.6 on a 2.2 GHz Intel(R) Core(TM) i7-3632QM laptop with 8GB

f RAM. The optimal solution for each instance was found in ap-

roximately 1 second for fleet mixes (2, 8) and (8, 2), and within

0 s for fleet mix (5, 5). Note that this last one has substantially

ore variables due to the larger number of states. However, the

omputation time is not an issue as compliance tables are usually

omputed offline. 

The objective values for R1 are displayed in Fig. 4 . The values

or R2–R4 are within the 1% range, and therefore we do not show

hem in this figure. As the compliance table of R1 are fully nested,

hey can be represented efficiently. We represent such compliance

ables by two one-dimensional vectors of length N R and length

 T , respectively. The desired ambulance configuration belonging to

tate s is then given by the first K 

R 
s entries of the first, and the

rst K 

T 
s entries of the second vector. The computed compliance ta-

les are displayed in Table 5 , based on the enumeration of the base

tations of Fig. 3 b. The numbers before the compliance tables cor-

espond to the numbers displayed in Fig. 4 . 

Fig. 4 and Table 5 lead to several interesting observations. One

ould expect that fleet mix (5, 5) would have its objective values

etween those of (2, 8) and (8, 2), but for bounds up to 1 
λ

this

s not the case. This is probably caused by the fact that there are

any possibilities for positioning of the units if (N R , N T ) = (5 , 5) .

his is reflected in, for instance, solutions 2, 7 and 12 in Table 5 .

n all these two-dimensional compliance tables there is a clear di-

ision visible: all vehicles of one specific type are located in the

orthern part of the region, while all units of the other type are

ositioned in the south, which is given priority due to the large

ities located there. As a consequence, only two units are placed

n the north in solutions 2 and 12, while there is overcapacity in

he southern part because the relocation time bound does not al-

ow relocations from north to south or vice versa. In solution 7

ne also observes a north-south division, but now 5 ambulances
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Table 5 

Nested compliance tables computed by the ILP. 

Solution Bound Compliance tables 

RRAs RTAs 

1 1 
2 λ

(2, 2) (1, 1, 1, 1, 1, 1, 1, 1) 

2 3 
4 λ

(6, 4) (1, 2, 1, 2, 1, 2, 1, 2) 

3 1 
λ

(6, 4) (1, 2, 1, 2, 3, 1, 2, 3) 

4 3 
2 λ

(4, 3) (1, 2, 6, 1, 4, 2, 6, 1) 

5 5 
4 λ

(4, 6) (1, 2, 6, 1, 2, 3, 4, 6) 

6 1 
2 λ

(1, 1, 1, 1, 1) (2, 2, 2, 2, 2) 

7 3 
4 λ

(2, 5, 4, 2, 5) (1, 1, 3, 1, 1) 

8 1 
λ

(2, 6, 4, 2, 6) (1, 1, 3, 1, 2) 

9 5 
4 λ

(1, 4, 2, 3, 1) (6, 1, 2, 6, 1) 

10 3 
2 λ

(1, 4, 2, 6, 1) (1, 2, 6, 3, 1) 

11 1 
2 λ

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2) 

12 3 
4 λ

(1, 2, 1, 2, 1, 2, 1, 2) (6, 4) 

13 1 
λ

(1, 2, 1, 3, 2, 1, 3, 2) (6, 4) 

14 5 
4 λ

(1, 2, 6, 4, 1, 2, 6, 4) (3, 3) 

15 3 
2 λ

(1, 2, 6, 4, 1, 3, 2, 6) (2, 1) 

Table 6 

Nested compliance tables computed by the ILP for different treatment rates. 

γ p R p T Compliance tables 

RRAs RTAs 

0 .50 0 .2451 0 .1193 (4, 6) (1, 2, 6, 1, 3, 2, 4, 6) 

0 .75 0 .3377 0 .1576 (4, 6) (1, 2, 6, 1, 3, 2, 4, 6) 

1 .00 0 .4123 0 .2005 (4, 6) (1, 2, 6, 1, 2, 3, 4, 6) 

1 .25 0 .4729 0 .2469 (4, 1) (1, 2, 6, 1, 2, 3, 4, 6) 

1 .50 0 .5226 0 .2960 (4, 1) (1, 2, 6, 1, 2, 3, 4, 6) 

0 .50 0 .1085 0 .1804 (4, 1, 6, 2, 1) (2, 3, 1, 6, 2) 

0 .75 0 .1625 0 .2248 (1, 4, 6, 2, 1) (2, 1, 3, 6, 2) 

1 .00 0 .2159 0 .2698 (1, 4, 2, 6, 1) (1, 2, 6, 3, 1) 

1 .25 0 .2678 0 .3164 (1, 4, 2, 6, 1) (1, 2, 6, 3, 1) 

1 .50 0 .3174 0 .3652 (1, 2, 4, 6, 1) (1, 6, 2, 1, 3) 

0 .50 0 .0678 0 .4509 (1, 2, 6, 4, 3, 1, 2, 6) (6, 4) 

0 .75 0 .1017 0 .5614 (1, 2, 6, 4, 3, 1, 2, 6) (6, 1) 

1 .00 0 .1356 0 .6719 (1, 2, 6, 4, 1, 3, 2, 6) (2, 1) 

1 .25 0 .1695 0 .7824 (1, 2, 6, 4, 1, 3, 2, 6) (2, 1) 

1 .50 0 .2034 0 .8930 (1, 2, 6, 4, 1, 2, 3, 6) (1, 6) 

a  
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Table 7 

Nested compliance tables computed by the ILP for different demand arrival rates. 

Interval p R p T Compliance tables 

RRAs RTAs 

7AM–8AM 0 .2327 0 .0847 (4, 6) (1, 2, 6, 3, 1, 2, 4, 6) 

1PM–2PM 0 .4389 0 .2262 (4, 1) (1, 2, 6, 1, 2, 3, 4, 6) 

7AM–8AM 0 .1021 0 .1265 (1, 4, 6, 2, 1) (2, 3, 1, 6, 4) 

1PM–2PM 0 .2382 0 .2992 (1, 4, 2, 6, 1) (1, 2, 6, 3, 1) 

7AM–8AM 0 .0638 0 .3162 (1, 2, 4, 6, 3, 1, 2, 4) (6, 1) 

1PM–2PM 0 .1500 0 .7434 (1, 2, 6, 4, 1, 3, 2, 6) (2, 1) 
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o  
re positioned in both parts. Hence, the objective function value is

igher. 

The intersection of the line corresponding to fleet mix (8, 2)

ith the other two is also an observation that requires discussion.

t is closely related to the above explanation. For relocation time

ounds up to 1 
λ

the northern part is covered very sparsely. How-

ver, in solution 14, another partition of the region is induced: the

own near base station 3 is isolated from the rest as relocations

rom base stations 6 to 1 are now allowed, while relocations from

 to 3 are not. Therefore, a very large part of the region is cov-

red by RRAs. Together with the very small busy fraction p R , this

xplains the large improvement of the objective function for fleet

ix (8, 2) between bounds 1 
λ

and 

5 
4 λ

. 

.4. Sensitivity analysis 

This section studies the sensitivity of the computed compliance

ables with respect to the estimated inputs. To this end, we con-

ider a variation in treatment rates ( μR 
1 
, μT 

1 
, and μT 

2 
), and we

ultiply the mean treatment times by a factor γ , for different

alues of γ . Based on these modified treatment rates, we com-

ute new busy fractions p R and p T . Then, we compute nested two-

imensional compliance tables under regime R1. We do not im-

ose a bound on the relocation time. Table 6 displays the com-

uted compliance tables and busy fractions for different values of

. 

We observe small changes if treatment rates are larger or

maller. For fleet mixes (2, 8) and (8, 2) the eight RTAs and eight
RAs, respectively, occupy the same base stations if they are all

vailable, for each value of γ . However, there are some minor

hanges in the order. For instance, for fleet mix (2, 8), base sta-

ion 2 and 3 are switched between γ = 0 . 75 and γ = 1 . As the

oad of the system gets heavier, it is more important to have an

TA positioned in the city where base station 2 is located. This

ehavior is also reflected in fleet mix (8, 2): as the load gets heav-

er, base stations 1 (in the largest city) and 2 are preferred over

ase station 3. Moreover, base station 1 also appears in the RRA-

nd RTA-part of the compliance tables for (2, 8) and (8, 2), respec-

ively, if the busy fractions become high enough. The fact that the

usier base stations are occupied longer in the states with fewer

nits is also reflected in the compliance tables for fleet mix (5, 5):

oth station 3 and 4 move further to the right if γ increases in

he RTA- and RRA-part, respectively. Especially base station 1 is an

mportant one, as a second occurrence replaces station 2 between

= 0 . 75 and γ = 1 . Besides, the first occurrence of station 2 shifts

o the right in favor of station 1. Station 2 shifts to the left in the

RA-part in order to compensate for this. 

We also study the impact of the demand variation throughout

he considered time interval (7AM – 6PM). To this end, we divide

he mentioned interval into eleven time blocks of one hour, and

e consider the arrival rate per block. We select the minimum

nd maximum hourly arrival rate: 0.93 incidents (7AM – 8AM)

nd 2.34 incidents (1PM – 2PM), respectively. These correspond

o λ = 0 . 0154 and λ = 0 . 0390 incidents per minute. We compute

usy fractions and nested compliance tables based on these values

or λ. All the other inputs in the Hypercube model are held con-

tant. No relocation time bound is imposed. Table 7 displays the

esults. 

As in the case of larger mean treatment times, we observe that

t becomes more important to occupy the base stations located in

he largest cities (1 and 2) in states with a few number of units

vailable. This is not surprising since longer treatments and an in-

reased arrival intensity both have the same consequence: larger

usy fractions. 

Another interesting question is whether the proposed ILP for

he computation of two-dimensional compliance tables scales to

ity-sized networks. To this end, we have run a variety of experi-

ents based on the urban EMS region of Amsterdam and its sur-

oundings (we refer to [30] for a detailed description and graphical

epresentation of this region). We tested a variety of fleet mixes to

ssess the computation times. The results showed that the compu-

ation times are short for small- and medium-sized cities (up to,

ay, 18–20 ambulances), but tend to become significant for larger

ities. 

.5. Simulation 

To obtain more realistic estimates of the system performance

e simulate the process described in Section 2 according to the

arameters estimated in Section 4.2 with one exception: by per-

orming a data analysis on the historical data provided, it turned

ut that the treatment and transfer times are not exponentially



78 T.C. van Barneveld et al. / Computers and Operations Research 80 (2017) 68–81 

Fig. 5. Histograms of the on-scene treatment times if transportation is required (a), and of the hospital transfer time (b), and the fitted probability distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulated fractions on time for R1 as function of the relocation time bound. 
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distributed, as assumed by the Hypercube model. We fitted several

distributions and the Generalized Extreme Value distribution was

the best, according to the Bayesian Information Criterion (c.f. [26] ).

The probability density function of this distribution is given by 

f (x ) = 

1 

a 

(
1 − b 

a 
(x − c) 

) 1 −b 
b exp 

(
− 1 

(
1 − b 

a 
(x − c) 

)) 1 
b 

, 

where a > 0 and c are the scale and location parameter, and b is

the shape parameter. We refer to [27] for an extensive description

of this probability distribution. See Fig. 5 a and b for a graphical il-

lustration of GEV( a, b, c ). We simulate the on scene treatment time

and hospital transfer time according to this distribution to stay as

close to reality as possible. For the same reason, we use the ac-

tual postal codes as the demand points, and not the aggregated

version. In estimating the on-scene treatment time, we distinguish

between patients that need transportation and those who do not,

since the on scene treatment time for the last category is substan-

tially longer: 25.7 min vs. 16.5 min. Note that if one weights these

numbers with the probability that transportation is required, one

obtains the mean treatment time of 17.7 min mentioned before. 

Our simulation length is 10 years for each of the 60 compliance

tables computed in Section 4.3 . That is, we consider the system to

be in continuous operation with the fleet size fixed, deterministic

driving times τ R , τ T and τ 2 and the estimated parameters. This

avoids that the system becomes empty over night, and thereby

our approach allows us to obtain measurements that are close to

‘steady-state’. We test the performance through simulation on the

following performance measures: 

1. Percentage on time: the fraction of requests responded to

within T = 12 min, as well as 95%-confidence intervals. We

compute these intervals using the batch-means method with 25

batches. 

2. Mean response time of first response unit, in seconds. 

3. Number of relocations. 

4. Total relocation time, in hours. 

Results on these performance indicators are displayed in

Tables 8–10 and Fig. 6 . 

Note that for fleet mix (8, 2) the shape of the simulated per-

formance is similar to the corresponding objective values in Fig. 4 .

Surprisingly, this is not the case for the other two fleet mixes as

one would expect on basis of the objective values, underlining the

necessity of performing simulations. The maximum for both is at-
ained at 1 
λ
, which is the expected time until the next incident

ccurs. 

If one compares the fully nested two-dimensional compliance

ables of fleet mix (2, 8) for 1 
λ

and 

3 
2 λ

, (Solutions 3 and 5 in

able 5 ) one observes that in both solutions the RRAs are located

n the north of the region, which is a sparsely populated area. The

ifference in both solutions is that in solution 3 RTAs are posi-

ioned only in the south. As a consequence, there are relatively

any late arrivals in the north of the region in the simulation. In

olution 5 RTAs are located across the whole region, which causes

any late arrivals in the south: the city in which base station 1 is

ocated and the town near base station 3 in particular. As the call

rrival rate in the south is larger, solution 3 outperforms solution

. Moreover, the results on number of relocations and total reloca-

ion time indicate that the system corresponding to solution 3 is

n compliance faster than the one of solution 5, which also has an

ffect on the patient-based performance. The non-nested cases are

xplained by a similar reasoning. 

Whereas the gap in the percentage on time performance indica-

or between 

1 
λ

and 

3 
2 λ

for fleet mix (2, 8) is relatively small (within

% point), it is much larger for fleet mix (5, 5). Even compliance

ables with a bound of 3 
4 λ

outperform the unrestricted version



T.C. van Barneveld et al. / Computers and Operations Research 80 (2017) 68–81 79 

Table 8 

Simulation results for fleet mix (2, 8). The numbers in brackets denote the one-sided width of the 

95% confidence interval. 

1 
2 λ

3 
4 λ

1 
λ

5 
4 λ

3 
2 λ

R1 Percentage on time 71 .5 (0.3) 92 .6 (0.3) 95 .7 (0.2) 95 .3 (0.2) 95 .1 (0.2) 

Mean response time 520 s 323 s 303 s 340 s 307 s 

Number of relocations 0 33 ,968 43 ,166 45 ,336 48 ,972 

Total relocation time 0 h 10 ,087 h 13 ,701 h 19 ,128 h 19 ,066 h 

R2 Percentage on time 71 .5 (0.3) 92 .3 (0.2) 95 .7 (0.2) 95 .4 (0.2) 94 .8 (0.2) 

Mean response time 519 s 325 s 302 s 340 s 331 s 

Number of relocations 0 34 ,419 43 ,473 39 ,060 58 ,664 

Total relocation time 0 h 10 ,169 h 13 ,791 h 20 ,892 h 25 ,765 h 

R3 Percentage on time 71 .8 (0.8) 92 .8 (0.4) 95 .9 (0.3) 96 .0 (0.4) 95 .8 (0.3) 

Mean response time 519 s 322 s 302 s 339 s 304 s 

Number of relocations 0 33 ,823 42 ,753 52 ,888 55 ,430 

Total relocation time 0 h 10 ,045 h 13 ,551 h 21 ,516 h 20 ,603 h 

R4 Percentage on time 71 .3 (0.3) 92 .4 (0.2) 95 .8 (0.2) 95 .2 (0.2) 95 .1 (0.2) 

Mean response time 519 s 324 s 302 s 342 s 327 s 

Number of relocations 0 34 ,301 42 ,911 57 ,152 64 ,882 

Total relocation time 0 h 10 ,137 h 13 ,611 h 23 ,841 h 27 ,525 h 

Table 9 

Simulation results for fleet mix (5, 5). The numbers in brackets denote the one-sided width of the 

95% confidence interval. 

1 
2 λ

3 
4 λ

1 
λ

5 
4 λ

3 
2 λ

R1 Percentage on time 71 .8 (0.5) 93 .2 (0.3) 95 .3 (0.2) 93 .1 (0.3) 92 .6 (0.2) 

Mean response time 503 s 335 s 310 s 316 s 318 s 

Number of relocations 0 27 ,609 31 ,788 50 ,697 57 ,393 

Total relocation time 0 h 8018 h 10 ,123 h 19 ,791 h 22 ,928 h 

R2 Percentage on time 72 .0 (0.4) 93 .1 (0.3) 95 .1 (0.2) 93 .1 (0.2) 93 .0 (0.3) 

Mean response time 503 s 337 s 312 s 322 s 323 s 

Number of relocations 0 27 ,440 44 ,539 58 ,445 81 ,327 

Total relocation time 0 h 7975 h 14 ,370 h 23 ,595 h 31 ,199 h 

R3 Percentage on time 72 .0 (0.4) 93 .4 (0.2) 95 .0 (0.2) 93 .3 (0.2) 92 .5 (0.3) 

Mean response time 503 s 335 s 312 s 316 s 318 s 

Number of relocations 0 28 ,014 39 ,120 59 ,692 71 ,237 

Total relocation time 0 h 8142 h 12 ,821 h 24 ,292 h 30 ,340 h 

R4 Percentage on time 71 .8 (0.4) 93 .2 (0.2) 95 .1 (0.2) 93 .1 (0.3) 92 .5 (0.3) 

Mean response time 503 s 337 s 312 s 319 s 319 s 

Number of relocations 0 30 ,813 42 ,897 76 ,110 74 ,926 

Total relocation time 0 h 9034 h 14 ,220 h 30 ,160 h 31 ,681 h 

Table 10 

Simulation results for fleet mix (8, 2). The numbers in brackets denote the one-sided width of the 

95% confidence interval. 

1 
2 λ

3 
4 λ

1 
λ

5 
4 λ

3 
2 λ

R1 Percentage on time 63 .4 (0.4) 78 .6 (0.4) 81 .6 (0.5) 92 .7 (0.5) 94 .6 (0.2) 

Mean response time 629 s 418 s 414 s 323 s 298 s 

Number of relocations 0 17 ,844 26 ,937 28 ,638 37 ,603 

Total relocation time 0 h 5480 h 8440 h 12 ,380 h 14 ,094 h 

R2 Percentage on time 63 .7 (0.4) 78 .2 (0.6) 81 .7 (0.5) 93 .1 (0.2) 94 .3 (0.5) 

Mean response time 622 s 431 s 404 s 307 s 308 s 

Number of relocations 0 15 ,847 26 ,387 29 ,281 35 ,252 

Total relocation time 0 h 4826 h 8294 h 12 ,602 h 13 ,370 h 

R3 Percentage on time 63 .3 (0.4) 78 .5 (0.5) 81 .6 (0.4) 92 .6 (0.5) 94 .6 (0.3) 

Mean response time 630 s 435 s 399 s 319 s 302 s 

Number of relocations 0 17 ,210 27 ,103 29 ,067 52 ,800 

Total relocation time 0 h 5284 h 8507 h 12 ,504 h 21 ,133 h 

R4 Percentage on time 63 .0 (0.6) 78 .4 (0.4) 81 .7 (0.3) 92 .8 (0.4) 94 .7 (0.4) 

Mean response time 655 s 421 s 406 s 314 s 302 s 

Number of relocations 0 17 ,089 27 ,204 29 ,348 52 ,282 

Total relocation time 0 h 5246 h 8554 h 12 ,619 h 20 ,889 h 
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c  
solutions 7 and 10 in Table 5 ), as observed in Fig. 6 and Table 9 ,

lthough no unit is assigned to the strategic base station 6 at all.

imulation of the compliance table of solution 7 results in a huge

umber of late arrivals in the far north and northeast of the re-

ion, as no unit is able to respond to some postal codes timely if

ase station 6 is not occupied. However, this reduction is offset by

he performance improvement in the rest of the region due to the

eduction in time before the system is in compliance again, com-
ared to solution 10, as indicated by the crew-based performance

ndicators. The performance gap in simulated on time percentage

etween solutions 7 and 8 is explained by the fact that base sta-

ion 6 is selected instead of 5, resulting in a large performance im-

rovement due to the abovementioned postal codes that now can

e reached within 12 min. 

The performance of fleet mix (8, 2) behaves more as expected

ompared to the other mixes: it is increasing if the relocation time
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Table 11 

Performance for different distributions of treatment times. 

(EXP,EXP) (EXP,GEV) (GEV,EXP) (GEV,GEV) 

(2, 8) 95 .55% 95 .58% 95 .74% 95 .72% 

(5, 5) 95 .13% 95 .04% 95 .31% 95 .32% 

(8, 2) 81 .15% 81 .23% 81 .69% 81 .60% 
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bound is relaxed, as observed in Fig. 6 . This is due to the decreased

ambulance availability: in the compliance table belonging to solu-

tion 13, for instance, the RRAs are located in the south as this is

the most populous part of the region and hence multiple coverage

is necessary here. As a consequence, the RTAs are positioned in the

north in order to cover this part of the region as well. Since the ar-

rival rate in the south is much larger than in the north, the RTAs

are instructed very often to head to the south for the transporta-

tion of a patient there. Hence, they are barely available for first

response in the north. Moreover, this influences the availability of

the RRAs as they need to wait until an RTA arrives at the emer-

gency scene for transportation, which takes a relatively long time

as in the majority of the cases the closest RTA is far away. This is

the reason behind the increase in performance between relocation

time bound 

5 
4 λ

and 

3 
2 λ

: in the compliance table of solution 15, the

RTAs are located far more strategically. 

Another interesting observation is the strange behavior of the

response time as function of the relocation time bound for fleet

mix (2, 8), especially the relatively long mean response time of the

bound 

5 
4 λ

compared to 1 
λ

and 

3 
2 λ

. This phenomenon is explained

by the fact that in the fully nested two-dimensional compliance

table corresponding to bound 

5 
4 λ

(solution 4 in Table 5 ) no RRA is

present at base station 6. As one can observe in Fig. 3 , there are

many small villages around base station 6. Therefore, the response

time from station 6 to one of these villages is quite long. The fact

that in solution 9 the first response unit to an incident occuring

in one of these villages is always a, relatively slow, RTA, results in

a longer mean response time for this relocation bound. The same

explanation holds for the non-nested cases, the compliance tables

with bound 

3 
2 λ

in R2 and R4 in particular. 

Regarding the nestedness, it is worth noting that fully nested

compliance tables (R1) are not significantly performing worse on

the patient-based performance indicators than non-nested ones

(R2, R3 and R4). However, the gaps between the fully nested and

non-nested regimes in the number of relocations and total reloca-

tion time are large if one compares these quantities in Tables 8–10 ,

especially for the larger relocation time bounds. 

4.6. Exponentially distributed treatment times 

We end this section with a study on the impact of the assump-

tion of exponentially distributed treatment times instead of using

the GEV distributions displayed in Fig. 5 . After all, in doing this we

follow the assumptions on exponential treatment times as made

by the ILP and we investigate whether using this distribution influ-

ences the performance. For that purpose, we simulate the nested

compliance tables with a relocation time bound of 1/ λ (solutions 3,

8, and 13 in Table 5 ). Only the treatment times are changed with

respect to the simulations in Section 4.5 ; the time and place of

demand requests are maintained, as well as whether transporta-

tion is required. We consider four settings: (1) both the on-scene

treatment time and the hospital transfer time are exponentially

distributed, (2) only the on-scene treatment time follows an ex-

ponential distribution, (3) only the hospital transfer time is expo-

nentially distributed, and (4) both follow the GEV distribution as

in Section 4.5 . The used exponential distributions have the same

means as their GEV distributed counterparts, but a larger variance.

Results on the percentage on time criterion are listed in Table 11 .

In this table we observe that the choice of either the GEV or the

exponential distribution hardly influences the performance. 

This table consistently shows that especially the use of the ex-

ponential distribution instead of the GEV distribution for the on-

scene treatment time results in a performance decrease, albeit a

small one. This behavior is explained as follows: due to the rela-

tive large variance of the exponential distribution, there are many

short treatment times, but also many long ones. The short treat-
ent times do not influence the performance much as the RRA

as to wait for an arriving RTA anyway (if transportation is re-

uired). However, if the on-scene treatment time takes long, the

nit availability decreases as both the RRA and the RTA are busy

or a long time. Hence, the performance decreases if a distribution

ith large variance (e.g., the exponential distribution) is used for

he on-scene treatment time. A highly varying distribution for the

ospital transfer time does not have such a large effect since only

TAs are involved in the drop-off process. 

. Concluding remarks 

In this paper, we studied an EMS system with two types of

edical response units: RRAs and RTAs, and we proposed a math-

matical model for the computation of compliance tables in such

 system. To this end, we extended the MECRP model by Gendreau

t al. [11] and the MEXCLP2 model by McLay [22] , and formulated

ur problem as an ILP. In order to estimate the input parameters

eeded in this ILP, we used the Hypercube model and iterative

rocedure described in McLay [22] , which are closely related to

he work done by Jarvis [12] . We forced cohesion between the de-

ired configurations in the two-dimensional compliance tables in

wo ways: we included nestedness constraints and we set bounds

n the time a relocation may take. The resulting ILP was applied to

he EMS region of Flevoland, for different nestedness regimes, re-

ocation time bounds and fleet mixes. We simulated the obtained

wo-dimensional compliance tables in a discrete-event simulation

o obtain practically relevant results and insights. 

Including the two mentioned types of constraints in the model

ields some interesting results, most notable the performance im-

rovement if one imposes bounds on the time a relocation may

ake for fleet mixes with several RRAs. Based on the corresponding

bjective values, this was not expected. The relocation time bound
1 
λ

plays here an important role, because imposing this bound in-

uces the best patient-based performance for the mentioned fleet

ixes. Hence, it seems that relating the relocation time bound to

he call arrival rate is a good idea. After all, one aims to be in com-

liance before the next incident occurs, which is expected to hap-

en in 

1 
λ

time, assuming Poisson arrivals. 

In addition, nestedness constraints are a valuable contribution

o the two-dimensional compliance table model as well. Simula-

ion shows that no significant performance gain is obtained on

he patient-based performance measures if these constraints are

ropped. However, the number of relocations and total relocation

ime are greatly reduced if these constraints are included. This re-

uction on the crew-based performance measures is beneficial for

oth ambulance crews and managers, as the same patient-based

erformance can be realized with less driving, and hence, less

oney. 

There are several directions for further research that can be

aken. In this paper, we considered offline policies (compliance ta-

les), but it is also interesting to consider online relocation policies

n the system considered in this paper. In this kind of policies, re-

ocation decisions are computed in real-time, following an event.

his allows a more detailed state description of the EMS system.

owever, computation times are an issue in the use of online poli-

ies. After all, solutions need to be obtained very fast, opposed to

ompliance tables which can be computed in advance. 
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In Section 4.4 we stated that at some point computability of the

wo-dimensional compliance tables becomes an issue, based on a

tudy of the urban EMS region of Amsterdam and its surroundings.

t is an interesting question how one could circumvent this issue

or urban EMS regions with a large number of ambulances, base

tations, and demand points. In those cases, heuristics need to be

eveloped. The results presented in this paper provide a good basis

or doing so. 

Another interesting research topic is the performance measure

f coverage. As stated by Erkut et al. [10] , the 0-1-nature of the

overage concept is a an important limitation that requires dis-

ussion. After all, there is only very little discrimination between

ifferent response times as an ambulance is either on time or

oo late. Possibly, it is better to use ‘survival’ as measure for the

MS system performance, as done by Knight et al. [14] , Mayorga

t al. [21] and Van Barneveld [30] . However, it is difficult to quan-

ify ‘survival’, as it depends on more factors than the response

ime solely. Incorporation of a different measure, like survival, adds

ore complexity to the model proposed in this paper since then

or each ambulance the distance to a particular demand node

eeds to be taken into account, rather than just whether the am-

ulance is within range or not. Nonetheless, the model presented

n this paper forms a good basis for this extension. 
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