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a b s t r a c t 

Dynamic Ambulance Management (DAM) is generally believed to provide means to enhance the 

response-time performance of emergency medical service providers. The implementation of DAM algo- 

rithms leads to additional movements of ambulance vehicles compared to the reactive paradigm, where 

ambulances depart from the base station when an incident is reported. In practice, proactive relocations 

are only acceptable when the number of additional movements is limited. Motivated by this trade-off, we 

study the effect of the number of relocations on the response-time performance. We formulate the re- 

locations from one configuration to a target configuration by the Linear Bottleneck Assignment Problem, 

so as to provide the quickest way to transition to the target configuration. Moreover, the performance 

is measured by a general penalty function, assigning to each possible response time a certain penalty. 

We extensively validate the effectiveness of relocations for a wide variety of realistic scenarios, includ- 

ing a day and night scenario in a critically and realistically loaded system. The results consistently show 

that already a small number of relocations lead to near-optimal performance, which is important for the 

implementation of DAM algorithms in practice. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

In emergency situations, the location of ambulances has a huge

mpact on the response time to an incident, i.e., the total time be-

ween an incoming emergency call and the moment that an am-

ulance arrives at the emergency scene. The evaluation of ambu-

ance services providers, judged by the authorities, heavily relies

n their performance regarding these response times. For instance,

n The Netherlands, the response time of an ambulance may not

xceed 15 minutes in 95 percent of the highest priority emer-

ency cases. To realize short response times, it is crucial to plan

mbulance services well. This encompasses a variety of planning

roblems at the strategic, tactical, and operational level. At the

trategic level, the locations of the ambulance base stations are de-

ermined. Then, at the tactical level, the number of ambulances

nd thus crews per base station is specified. At the operational

evel, real-time dispatching of ambulances to incidents and real-

ime relocation of ambulances is considered. 

In this paper, we focus on the last part of the operational level:
he relocation of ambulances. Ambulance vehicles are relocated in 
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eal-time, using dynamic and proactive relocation strategies, in or-

er to achieve shorter response times to incidents. These relocation

ecisions are typically made when an event happens, e.g., when an

mbulance is dispatched or when an ambulance is newly free af-

er the service of a patient. However, whether relocations are al-

owed, and if so, to which locations, depend on regulatory rules.

or instance, in Vienna, Austria, moving around ambulances unoc-

upied by a patient is not allowed, cf. Schmid (2012) as opposed to

dmonton, Canada, cf. Alanis, Ingolfsson, and Kolfal (2013) . More-

ver, the number of locations at which an ambulance is allowed to

ark up differs per country. This number can exceed the number

f ambulances, as in Montreal, Canada, cf. Gendreau, Laporte, and

emet (2006) . Many of these waiting sites are just street corners

r different hot spots. In contrast, in The Netherlands, ambulances

lways must return to a base station, cf. Jagtenberg, Bhulai, and

an der Mei (2015) . This is a building with several facilities where

he ambulance crew can spend its shift when idle. Another dif-

erence between countries is the average hospital transfer time. In

orth America this time can be very large, cf. Carter et al. (2015) ,

s opposed to The Netherlands where the transfer time is usually

hort. 

We consider the Dutch setting in this paper: short transfer

imes and the dispatcher is allowed to relocate ambulances un-

ccupied from base station to another one, but the number of

http://dx.doi.org/10.1016/j.ejor.2015.12.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.022&domain=pdf
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locations on which an ambulance can idle, i.e., base stations, is

rather small. 

Ambulance relocations are not popular among ambulance

crews, especially when the crew is idle at a base station and it

is relocated to a different one. Instead, they prefer to spend their

shift at a base station and not on the road. To keep the personnel

motivated, the number of relocations they have to perform is not

allowed to increase excessively. If the ambulance crews spend too

much time on the road, the ambulance service provider probably

will be condemned by an Occupational Safety and Health organi-

zation. Furthermore, costs for the ambulance service provider are

associated with each relocation. Some ambulance service providers

namely have the policy, especially at night, that the salary of the

ambulance crew partly depends on their busy time in which their

relocation time is included. Therefore, decision makers must make

a consideration between the number of ambulance relocations and

the effect of these relocations on the performance of the ambu-

lance service provider. 

As an alternative, one could also consider the relocation times.

Especially if the above-mentioned payment structure is used, it can

be cheaper to minimize these relocation times. However, in this

paper, we treat the crew’s perspective as our major critical success

factor, instead of the financial aspect related to relocations. The

number of relocations is a good measure for the crew’s perspec-

tive, since crews in general prefer to perform one long relocation

rather than several short ones. Of course, there is also a trade-off

between number of relocations and relocation times. We will pay

attention to this trade-off as well. 

The relationship between performance and the number of am-

bulance relocations is complex. The consequences of moving an

ambulance to a different base station are not known a priori, due

to uncertainty that plays an important role in the process. It is usu-

ally not the case that ‘more’ is ‘better’, i.e., the more relocations

are made, the better the performance of the ambulance service

provider. But even if this was the case, there is still a trade-off:

would one carry out extra ambulance relocations for only a small

gain in performance? Opinions of different ambulance providers

differ on this question and it is hard to set a standard concerning

the execution of relocations. Therefore, useful insights about the

relationship between performance and the number of ambulance

relocations are desirable. 

1.1. Related work 

As stated before, the planning of ambulance services falls apart

in three levels. Comprehensive studies of ambulance location and

relocation models are done by Brotcorne, Laporte, and Semet

(2003) and Li, Zhao, Zhu, and Wyatt (2011) . In these papers several

deterministic, probabilistic, and dynamic models and their solu-

tion procedures are reviewed. Another study on ambulance facility

location problems is performed by Owen and Daskin (1998) . The

operational level falls apart in dispatching and relocation of am-

bulances. A dispatching algorithm based on the preparedness con-

cept explained by Andersson and Värbrand (2007) , is proposed by

Lee (2011) . Another dispatch method, based on the maximal cov-

ering location problem developed by Church and ReVelle (1974) , is

presented by Lim, Mamat, and Bräunl (2011) and it is shown by

simulation that response times to urgent calls can be reduced. 

A common way to solve the dynamic ambulance relocation

problem is the offline approach: redeployment decisions are pre-

computed for different states of the system. For instance, compli-

ance tables are computed, which prescribe desired locations for

idle ambulances by Gendreau et al. (2006) . With this purpose, the

Maximal Expected Coverage Relocation Problem (MECRP) is pro-

posed and solved, by formulating this problem as an integer linear

program. It is stated by Maleki, Majlesinasab, and Sepehri (2014) ,
hat computing compliance tables is just the first part of the com-

utation of relocation decisions. The second part involves the ac-

ual assignment of ambulances to base stations. Therefore, the

eneralized Ambulance Assignment Problem (GAAP) and General-

zed Ambulance Bottleneck Assignment Problem (GABAP) are pro-

osed. Compliance tables are the subject of Alanis et al. (2013) as

ell: a two-dimensional Markov chain is proposed and analyzed to

btain optimal compliance tables. A two-stage stochastic optimiza-

ion model for the ambulance redeployment problem that mini-

izes the number of relocations while maintaining an acceptable

ervice level is presented by Naoum-Sawaya and Elhedhli (2013) . 

In addition to the offline approach, a large part of the ambu-

ance literature focuses on the online computation of relocation

ecisions. Whenever an event occurs, e.g., an ambulance becomes

vailable again, the dispatcher has the opportunity to control

he system. Based on the information of the state of the sys-

em, one computes a relocation decision. Such a relocation deci-

ion needs to be obtained in a very short time, and thus is the

ain focus of this literature on heuristics. For instance, a heuristic

alled the Dynamic Maximum Expected Coverage Location Prob-

em (DMEXCLP) is proposed by Jagtenberg et al. (2015) . This prob-

em, based on the MEXCLP presented by Daskin (1983) , computes

 new location for an ambulance that just finished service of a

atient. Moreover, a parallel tabu search heuristic is used for the

eal-time redeployment of ambulances by Gendreau, Laporte, and

emet (2001) . Andersson and Värbrand (2007) use the notion of

reparedness. This preparedness is a measure for the ability to

erve potential patients now and in the future. Moreover, a dy-

amic relocation model named DYNAROC and a heuristic to solve

his model is presented. In addition, some papers use approxi-

ate dynamic programming for determining relocation strategies,

or instance, Maxwell, Restrepo, Henderson, and Topaloglu (2010) ;

axwell, Henderson, and Topaloglu (2013) and Schmid (2012) . Re-

ocation decisions are made at the time of call arrivals and when

n ambulance becomes available again by Maxwell (2011) . In this

ork, it is shown that making relocation decisions at such times is

quivalent to the usage of a nested compliance table policy. At last,

 comprehensive study on both online and offline redeployment is

xecuted by Zhang (2012) . 

.2. Our contribution 

In this paper, we study the relationship between number of

mbulance relocations and the performance of the ambulance ser-

ice provider. Theretofore, we present an ambulance redeployment

odel, in which we are able to incorporate different performance

riteria. We use a heuristic method that computes an action con-

erning the relocation of ambulances in such a way that the ex-

ected performance is maximized. This computation is done at de-

ision moments: the time of occurrence of a new incident or the

ime of the idle report of an ambulance. We use a heuristic pol-

cy instead of the optimal one because computation of the optimal

olicy is very complex, if not impossible. Besides, even if it was

ossible to compute, the optimal policy is probably a complex one:

t is not easy to understand and to execute by the dispatcher. In-

tead, we use a heuristic method that is not too far-fetched, while

t is highly likely that this heuristic policy contains the same char-

cteristics as the optimal one. 

This paper differs from the mainstream literature in two

espects 

1. Most of the papers in the literature, e.g., Jagtenberg et al.

(2015) , assume that the computed action is always carried

out. However, it may be the case that the expected gain in

performance by taking this action is very small and that this

benefit does not outweigh the disadvantages regarding the
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time table R . 

1 By ‘closest’, we mean closest in time, here and in the remainder. Note that this 

ambulance is not necessarily the closest one in space as well. 
number of additional ambulance relocations to achieve this

gain. Therefore, we use the heuristic method to determine

whether the redeployment action is really necessary, and we

show results on several quantifications of ‘really necessary’. 

2. Another important difference between the mainstream liter-

ature and this paper is the way in which a redeployment ac-

tion is carried out. We compute, using the heuristic method,

a location that serves as origin, from which an ambulance

needs to depart, and a base station serving as destination.

However, it is not necessarily one particular ambulance that

has to move from origin to destination, as assumed in most

papers. Instead, we can use other idle ambulances, either

driving or at a base station, in this relocation process in

order to decrease the time required to attain the new am-

bulance configuration. However, this comes at the expense

of extra relocations. We put restrictions on the number of

other ambulances that may be relocated, and we show con-

sequences on the resulting performance to obtain useful in-

sights in the relationship between number of relocations

and performance. 

. Model description 

To investigate the above-mentioned relationship, we introduce

he ambulance redeployment model described in this section. We

onsider the Dutch setting as explained in Section 1 and we model

he region of interest as a directed graph. Geographical regions,

.g., neighborhoods, postal codes or streets, are represented by

odes. Moreover, arcs in this graph are weighted and the length of

n arc represents the driving time (in seconds) between the nodes.

hese driving times are derived from a driving time table R , esti-

ated beforehand and thus assumed to be given. Hospitals with

n emergency department, to which patients can be transported

re present in some nodes, i.e., geographical regions. A certain de-

and probability is associated with each node as well. This demand

robability is defined as the probability that an incoming incident

ill occur in that specific node. We denote these demand probabili-

ies by p = 

(
p(1) , p(2) , . . . , p(N) 

)
, where N is the number of nodes.

.1. System dynamics 

The dynamics of our system closely mimic realistic situa-

ions. Incidents occur according to a Poisson point process, as by

atteson, McLean, Woodard, and Henderson (2011) and Maxwell

t al. (2010) . We assume that all incoming incidents are of the

ighest urgency. As a consequence, there is one universal max-

mum allowed response time . This assumption is justified by the

act that ambulance service providers are mostly judged on their

erformance regarding the highest priority incidents. This maxi-

um allowed response time is set by the government or by the

mbulance provider itself. Many ambulance service providers use

he percentage of highest urgency incidents reached by an ambu-

ance within this maximum allowed response time as their per-

ormance criterion. However, by doing this, there is no difference

etween a response time that is slightly below the maximum al-

owed one, and one that is really short. Something similar holds for

he opposite case: a response time that is slightly above the maxi-

um allowed response time and one that is really long are equally

udged. However, it does matter for the patient. It is stated by

rkut, Ingolfsson, and Erdogan (2008) , that the black-and-white na-

ure of the coverage concept is an important limitation, and stan-

ard coverage models should not be used. Therefore, other per-

ormance measures, based on survival probabilities, are considered

y Erkut et al. (2008) . In this paper, we use penalty functions to

odel general performance measures regarding response times. It
s possible to differentiate between different response times by

sing these penalty functions. 

A penalty function f is a function of the response time solely,

ith domain R ≥0 . It can be used to incorporate different per-

ormance measures, such as minimizing the number of incidents

or which the maximum allowed response time is exceeded, min-

mizing the average response time or measures related to sur-

ival probabilities, as studied by Erkut et al. (2008) . Note that

ome performance measures, especially those related to average

esponse times, do not use the maximum allowed response time.

he amount of penalty generated by an incident solely depends

n the response time to this incident. Hence, penalty functions

re non-decreasing functions. An example of a penalty function is

iven in Section 4.1 . 

Note that the response time actually consists of the time be-

ween the emergency request comes in and the arrival of the am-

ulance at the emergency scene. We refer to Schmid (2012) for a

raphical representation of this process. However, only the travel

ime of the ambulance to the incident is of interest to this paper.

ence, we assume both that the dispatch and turnout time, which

s the time between the mission is received by the crew and the

rew leaves the base station, are deterministic. We subtract these

wo times from the maximum allowed response time to obtain a

aximum allowed travel time . However, turnout times are typically

maller when ambulances are already on the road. Therefore, the

se of a maximum allowed travel time is a simplification of reality.

Since all the incidents are of the highest urgency, the closest 1 

ne is dispatched. This could be an idle ambulance at a base sta-

ion or a driving idle ambulance. If none of the idle ambulances

an reach the incident within the maximum allowed travel time,

e have the possibility to interrupt an ambulance transferring a

atient at a hospital. This may benefit the performance, as we

an send an idle ambulance in the neighborhood away. This move-

way-from-hospital avoids overlapping coverage around the hospi-

al, cf. Zhang (2012) . 

However, we only preempt if this ambulance is already more

han a target time T busy with the transfer of a patient. That is,

 can be interpreted as the minimum time that an ambulance can

e busy at the hospital without the possibility that it is preempted.

he reason why this preemption is allowed is twofold. First, it of-

en occurs that the ambulance crew already finished transferring

he patient, but has not informed the dispatcher yet. Second, even

f it may take longer than the target time for transferring the pa-

ient for whatever reason, there is enough personnel at the hos-

ital that can take care of the patient, e.g., for the transport of

he patient to the right room within the hospital. This kind of

asks does not necessarily have to be done by the ambulance crew.

ence, we consider an ambulance employable for a new incident,

f it is already more than this target time busy with the transfer

f a patient. Whether this interruption is allowed may differ per

mbulance service provider, but this is the case for the considered

ervice provider in the numerical study in Section 4 . 

Once an ambulance is dispatched to an incident, we assume

hat it immediately starts driving, since the turn-out time is part

f the pre-travel time we subtracted. We distinguish the following

ve ambulance phases: 

0. Phase 0-ambulances are the ambulances not currently in-

volved in the service of a patient. They are either at a base

station or executing a relocation. 

1. An ambulance traveling to the emergency scene is in

phase 1. Its travel time to the incident is given by the driving
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Fig. 1. Illustration of the usage of multiple ambulances per motion. The motion is 

(1, 5), and full arcs denote the way in which ambulances are relocated. The numbers 

next to the arcs are the driving times in seconds. 
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2. Ambulances busy at the emergency scene. The ambulance

crew executes the treatment of the patient, which may

consist of different kinds of medical assistance. During this

treatment, the ambulance crew decides whether the patient

needs to be transported to a hospital. If a patient does not

need transportation, the ambulance becomes idle. Then, the

dispatcher has to make a decision to which base location

that ambulance should be send. 

3. If transportation is needed, the ambulance enters phase 3

and the transportation of the patient is started. We assume

that a patient is always transported to the closest hospital.

This transportation time is given by the driving time table. 

4. At the hospital, the ambulance is busy for a while transfer-

ring the patient. After that, the ambulance becomes idle at

the hospital and a decision on where to send it to needs to

be made. 

2.2. Control of the system 

The above-mentioned decisions on dispatching are assumed to

be fixed, i.e., they serve as a rule to the dispatcher. However, the

dispatcher has some freedom in the way he/she can control the

system by making relocation decisions. We allow the dispatcher to

make these decisions at the following moments: 

1. when an ambulance is dispatched to an incoming incident,

and 

2. when an ambulance enters phase 0 again, either from phase

2 or phase 4. 

We refer to these moments as decision moments of the first

and second type, respectively. At both types of decision moments,

the dispatcher is allowed to perform a so-called ambulance motion :

a change in ambulance configuration in which at most one pair of

base stations is affected. An ambulance motion has an origin and a

destination . In the ambulance configuration the number of ambu-

lances at the origin and destination is decreased and increased by

1, respectively. At a decision moment of the second type, the ori-

gin is given: this is the location of the ambulance that just finished

service. In contrast, each base station with at least one ambulance

in the ambulance configuration can serve as origin at decision mo-

ments of the first type. 

The obvious way to execute an ambulance motion is to select

an ambulance from the origin and to relocate it to the destination

of the ambulance motion. However, the origin and destination are

not necessarily close to each other and thus the travel time be-

tween them may be long. Such long trips are not desirable, since

the new ambulance configuration must be attained as soon as

possible. 

A possibility to avoid long trips is the usage of multiple

phase 0-ambulances, either driving or at a base location, in a mo-

tion. Instead of moving just one ambulance, it could be beneficial

to break up the ambulance motion in two or more separate ambu-

lance relocations to ensure that the new ambulance configuration

is attained earlier. We refer to Fig. 1 for an example. 

Example 1. In this small illustration, the ambulance motion is (1,

5) and there are ambulances in 1 and 2. In addition, one ambu-

lance is traveling from 4 to 3, and it is currently in node 6. The

obvious way would be to relocate the ambulance from 1 to 5.

However, it takes 1,548 seconds before the motion is completely

performed ( Fig. 1 a). If one uses the ambulance at 2, this time can

be reduced to 1,402 seconds, at the expense of one extra reloca-

tion ( Fig. 1 b). In addition, if redirection is allowed, which we as-

sume, one can use the driving ambulance to decrease the time in

which the new ambulance configuration is attained to 975 seconds

( Fig. 1 c). 
We assume that the turnout time of a relocated ambulance is

ero, and the decision is made instantaneously after the decision

oment. At a decision moment of the second type, the ambulance

hat just finished service needs to be relocated to a base station.

f it is relocated to the closest one, this does not count as a relo-

ation. After all, this does not inconvenience the ambulance per-

onnel as they can idle as quickly as possible to recover from the

atient-related work they just carried out. Moreover, an ambulance

edirection, as in Fig. 1 c, does not count as a relocation, as the crew

s already en route. As Fig. 1 shows, there is a trade-off between

he number of relocated ambulances and the time it takes to at-

ain the new ambulance configuration. 

.3. Problem description 

At decision moments the dispatcher usually faces three prob-

ems: 

1. Is an ambulance motion necessary? At decision moments

of the first type, it may be the case that the resulting
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configuration after the dispatch is still satisfactory, in terms

of expected response times to future incidents. That is, it

may not be beneficial to execute a motion by reasons men-

tioned in Section 1 . This question does not arise at decision

moments of the second type, since the dispatcher is always

required to perform an ambulance motion for the ambulance

that just became idle. 

2. Which ambulance motion should be executed? The dis-

patcher must select two base locations: one serving as ori-

gin, one as destination. A heuristic method for calculating

the best ambulance motion is described in Section 3 . 

3. How to execute this ambulance motion? As stated in the

previous section, the dispatcher has multiple options to en-

sure that the new configuration is attained by performing a

sequence of ambulance relocations. 

In the next section, we will present a heuristic method concern-

ng these three problems. 

. Heuristic method 

For the evaluation of the usefulness of ambulance motions and

elocations, we present a heuristic that can easily handle several

ypes of restrictions on the decisions of the dispatcher. First, we

escribe the heuristic method. Then, we will provide a more de-

ailed explanation regarding the incorporation of these constraints.

The key idea of this method is as follows: at a decision mo-

ent, the dispatcher observes the current state of the system.

iven this information, the dispatcher executes the motion that

inimizes the unpreparedness . This is a measure regarding the con-

guration of ambulances. We explain this concept extensively in

he next section. 

.1. Unpreparedness 

The concept of unpreparedness plays an important role in the

euristic method. This term can have several interpretations, de-

ending on the use of penalty function. For instance, if a linear

enalty function is used, one focuses on minimization of the aver-

ge response time. Penalty and response time are equivalent then

nd the unpreparedness has the interpretation of being an ap-

roximation of the expected time required to respond to the next

mergency request, for a given ambulance configuration. That is,

he heuristic method tries to minimize the expected response time

o the next call. However, if one uses a general penalty function,

his interpretation generalizes to being an approximation of the ex-

ected penalty the next emergency request generates, for a given

onfiguration. We proceed with a formal definition of unprepared-

ess of an ambulance configuration. 

Let s be the current state of the system: the current location or

estination of ambulances and the phases they are in. We define

he set of ambulances by A , where A := |A| . Moreover, we define

 

k (s ) as the set of ambulances in phase k if the state of the system

s s . 

To define unpreparedness formally, we need some additional

efinitions. Consider node i , 1 ≤ i ≤ N . Let des ( j , s ) denote the des-

ination of ambulance j if the state of the system is s , and R is the

riving time matrix. We define 

 

0 
i (s ) = min 

j∈A 0 (s ) 
R 

(
des ( j, s ) , i 

)
, 

s the driving time between the destination of the closest phase 0-

mbulance and node i . The destination equals the current location

f the ambulance if the ambulance is not on the road. The rea-

on that we use the destination instead of the current location, is

wofold 
1. If we had used the actual location of the driving phase 0-

ambulances, one might think that one can quickly respond

to an incident in the area in which the ambulance is cur-

rently driving. However, we are uncertain about the time of

the next incident. If the next incident happens in that par-

ticular area after some time, it may take long to respond to

this incident, since the ambulance has left that area. 

2. In addition, a relocated ambulance may still be far away

from its destination. Hence, the area around this destina-

tion will be classified as vulnerable if one uses the current

location of the ambulance. As a consequence, the method

may decide to send another ambulance to that area. This is

probably useless, since an ambulance is moving towards that

area already. 

As explained in Section 2.1 , phase 4-ambulances can respond to

ncoming incidents if their service has already lasted for at least T

econds. Similar to r 0 
i 
(s ) , we define r 4 

i 
(s ) to be the expected time

ntil the closest phase 4-ambulance is able to be present at i : 

 

4 
i (s ) = min 

j∈A 4 (s ) 

{[
T − τ ( j, s ) 

]+ + R 

(
loc( j, s ) , i 

)}
, 

here τ ( j , s ) is the service time that has past already, [ ·] + denotes

he positive part and loc ( j , s ) denotes the location of ambulance j

f the state of the system is s . 

Let p ( i ) denote the demand probability: the probability that an

ncoming incident will occur in node i . Now we have all the ingre-

ients to define the unpreparedness of the configuration of ambu-

ances, denoted by U ( s ) if the current state of the system is s : 

(s ) := 

N ∑ 

i =1 

f 
(

min 

{
r 0 i (s ) , r 4 i (s ) 

})
p(i ) , 

here f is the penalty function. 

xample 2. Consider the system in Fig. 1 a. Assume each node

as the same demand probability: p(i ) = 

1 
5 , i = 1 , . . . , 5 . Moreover,

uppose we use the penalty function corresponding to the mini-

ization of the average response time: f (t) = t, t ≥ 0 . That is, the

euristic method tries to minimize the expected response time

o the next call. Note that there are no phase 4-ambulances, so

 

4 
i 
(s ) = 0 , i = 1 , . . . , 5 . We compute r 0 

1 
(s ) = r 0 

2 
(s ) = 0 , since ambu-

ances are present at nodes 1 and 2. Moreover, r 0 
3 
(s ) = 0 as well,

ecause node 3 is the destination of a driving ambulance. The clos-

st ambulance to node 4 is in node 2, since the ambulance trav-

ling from 4 to 3 is assumed to be at its destination. Therefore,

 

0 
4 

= 1073 , and r 0 
5 
(s ) = 1323 . At last, the computed unpreparedness

s 3 
5 × 0 + 

1 
5 × 1073 + 

1 
5 × 1323 = 479 . 2 . This is the expected time

equired to respond to the next incident for the configuration 1,2,3.

We did not consider the ambulances in phase 1, 2 or 3, for

pecific reasons. The expected remaining busy time of phase 1-

mbulances and phase 3-ambulances is probably too large, and

hus they are not considered. Although phase 3-ambulances are

ispatchable to an incident after their remaining transportation

ime plus T seconds, we assume that T is set in such a way that it

s never beneficial to wait for an ambulance that is still in phase 3

or the response to an incident. Expected remaining busy times for

hase 2-ambulance are shorter, but highly uncertain since it is not

nown whether a patient needs transportation in advance. 

Note that there are several differences between the unprepared-

ess defined here and the preparedness introduced by Andersson

nd Värbrand (2007) . First, ambulances that are busy at a hospital

re not included in the definition of preparedness. Moreover, un-

reparedness has the nice physical interpretation of the expected

enalty to the next incident. After all, no artificial contribution fac-

or is incorporated in the computation. Besides, the definition of
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preparedness is based on travel times solely, while in the unpre-

paredness definition a general penalty function is incorporated. 

3.2. Evaluation of the ambulance motions 

At a decision moment of the first type, determining the unpre-

paredness of the state of the system is the first step in the heuris-

tic. That is, the motion in which none of the ambulances move

except for the ones on the road. We refer to this motion as the

static motion , denoted by m 0 . For the remainder, we denote the un-

preparedness if m 0 is carried out by U ( s 0 ). Subsequently, we evalu-

ate ambulance motions. Denote the remaining possible ambulances

motions by m 1 , m 2 , . . . , m K , enumerated by 1 , . . . , K. Moreover, let

s k denote the state of the system as if m k was carried out instan-

taneously and all driving phase 0-ambulances would be at their

destinations. Then, we compute U ( s k ) for 1 ≤ k ≤ K to obtain a

classification of the ambulance motions. The best motion is the

ambulance motion that minimizes the unpreparedness. That is, we

select the motion m l for which 

s l = arg min 

k =0 , ... ,K 

U(s k ) . 

For decision moments of the second type, we do something

similar. However, the ambulance that just finished service of a pa-

tient, either at scene or at a hospital, has to be relocated anyway.

This is a consequence of the restriction that each ambulance has

to return to a base location. Therefore, we cannot define the static

motion as before, in which this ambulance would keep its posi-

tion. Alternatively, we define our static motion to be equal to the

motion in which the just finished ambulance is relocated to the

nearest base station. We denote this static motion by m 0 . 

Note that the number of possible motions is O(AB ) , where A

and B are the number of ambulances and base locations, respec-

tively. For decision moments of the second type, the number of

ambulance motions is O(B ) , since the dispatcher has to decide

on a new location only for the ambulance that just finished ser-

vice. Note that the computation of the unpreparedness can be

done in O(NA ) time, since for N demand points we have to de-

termine which of the A ambulances is the closest phase 0- and

phase 4-ambulance. Therefore, the total complexity of the algo-

rithm is O(NA 

2 B ) , which is polynomial in the number of demand

points, fleet size and number of base locations. 

3.3. From motions to relocations 

Let m l be the best ambulance motion, and assume m l = (b l 
1 
, b l 

2 
)

is the pair of base stations, where b l 
1 

is the origin and b l 
2 

the desti-

nation. Once the ambulance motion is determined, the dispatcher

needs to make a decision concerning the exact execution of this

motion. To be more specific, the number of additional ambulances

and which ones involved in carrying out this motion need to be

determined. We do this by solving a Linear Bottleneck Assignment

Problem (LBAP). The formal definition of the LBAP is: given two

sets V and W , together with a weight function c : V × W → R . Find

a bijection g : V → W such that the cost function max v ∈ V c 
(
v , g(v ) 

)
is minimized. The LBAP can be solved to optimality in polynomial

time, for instance by methods presented by Burkhard, Dell’Amico,

and Martello (2009) . 

In our setting, this is equivalent to the computation of an as-

signment of phase 0-ambulances to the base locations that have

to be occupied by an ambulance in the new configuration, in

such a way that the maximum driving time of an ambulance is

minimized. To be more specific, if we denote the set of desti-

nations for phase 0-ambulances by D 0 , we define the set W ={
D 0 ∪ { b l 

2 
} }\{ b l 

1 
} . The set V consists of the current locations of the

phase 0-ambulances. When there are multiple ambulances per lo-

cation, we specify the elements corresponding to this location with
ubindices in either V or W . Therefore, | V | = | W | . Let c be the

unction describing the driving time between elements of V and

lements of W , obtained from the driving time matrix R . 

We can interpret the solution to the LBAP in our setting as fol-

ows: it is the minimal time required to perform the ambulance

otion. Since we base the ambulance motion on the state of the

ystem as it is at the decision moment, apart from the fact that we

ssume driving phase 0-ambulances to be at their destination, it is

esirable that the new ambulance configuration is attained quickly.

here is an obvious relationship between the number of additional

mbulances participating in an ambulance motion, and the com-

letion time of the ambulance motion: the more ambulances are

llowed to be relocated, the faster the new ambulance configura-

ion may be attained. However, it may occur that the number of

xtra ambulance relocations only has a small impact on the per-

ormance, since the gain of participation of additional ambulances

n a motion may be limited. Therefore, in the next section we will

estrict the dispatcher to relocate a limited number of additional

mbulances. Moreover, we compare the performance and the num-

er of ambulance relocations to the case in which all ambulances

re allowed to take part in the motion. 

.4. Constraints on decisions 

We restrict the dispatcher in two ways 

1. The dispatcher is only allowed to perform the best motion if

the gain in unpreparedness with respect to the static motion

is substantial. 

2. The dispatcher is not allowed to relocate more than M

phase 0-ambulances in a motion. 

In order to get a feeling about the necessity of the best motion,

 l , we compare it to the static motion m 0 , defined as above. To be

ore specific, we compute 

 := 

U(s 0 ) − U(s l ) 

U(s 0 ) 
, 

here U ( s 0 ) and U ( s l ) denote the unpreparedness of the state of

he system when, respectively, the static and best motion are per-

ormed. Note that U ( s l ) ≤ U ( s 0 ), since the best motion may equal

he static motion. We define Q to be the motion threshold : the dis-

atcher may carry out the best motion only if q > Q . Note that 0

q ≤ 1. If we set Q = 1 , the dispatcher is restricted to the exe-

ution of the static motion solely. In contrast, if Q = 0 , he/she is

lways allowed to perform the best motion, even if it results in

ust a small gain in unpreparedness. Note that we prefer to assess

he performance using a relative metric as opposed to an absolute

etric. The latter makes sense when a strict 0–1 penalty function

s used, however, since we allow for general penalty functions the

ormer is preferable. 

The second type of restriction is closely connected to the third

uestion at the end of Section 2.3 : the way in which an ambu-

ance motion is carried out, i.e., the number of ambulances used to

erform an ambulance motion. The above-mentioned M is a hard

onstraint that holds for both types of decision moments and 1 ≤
 ≤ A . Remember that a dispatcher may at any time redirect an

mbulance if it is already on the road, since this does not count as

n extra relocation. Thus, the number of redirected ambulances is

ot restricted by M . 

In short, the restrictions are given by ( Q , M ). A summarizing di-

gram with the different steps of the method is displayed in Fig. 2 .

n the next section, we show some results regarding the perfor-

ance of the system and the number of relocations as function of

 and M . 

Remember that we only consider the closest ambulance. If each

ase location is the destination of at least one phase 0-ambulance
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1. Consider the system as if each ambulance is at its destination.

2. For each combination of origin and destination:

(a) Remove one ambulance from the origin.
(b) Add one ambulance to the destination.
(c) Compute the unpreparedness of the resulting configuration.

3. Select the best motion and compare it to the static motion.

4. If q > Q: Solve LBAP with at most M ambulances.

Fig. 2. Summary of the approach. 

Fig. 3. Flevoland. 
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2 Rijksinstituut Volksgezondheid en Milieu (National Institute for Public Health 

and the Environment. 
t a decision moment of the second type, all motions are evaluated

s equally good. Similarly, for decision moments of the first type,

t could occur that the best motion is not unique as well in such

 situation. If this is the case, we create scarceness in the num-

er of phase 0-ambulances by ignoring exactly one ambulance of

ach base station, and we compute the best motion based on this

onfiguration. If each base location is occupied twice, that is, each

ase location is the destination of at least two ambulances, then

e always carry out the static motion. However, for the regions

nd situations we studied, this was hardly the case. 

. Numerical case study 

.1. Experimental setup 

In this section, we show results for Flevoland, displayed in

ig. 3 . Flevoland is a region in the Netherlands and covers approx-

mately 2,500 km 

2 . The number of inhabitants is nearly 40 0,0 0 0

f which 49 percent lives in the largest city: Almere. The remain-

ng percentage of the population is mainly concentrated in one of

he other five major towns, while only approximately 15,0 0 0 peo-

le live outside these six towns. All of these cities have exactly one

ase location at the dots in Fig. 3 . Moreover, hospitals are present

n Almere and Lelystad, displayed by diamonds. 
Flevoland is divided in 93 different postal codes, for which be-

ween any pair of postal codes the driving time is given in a driv-

ng time table R . These driving times were estimated by the RIVM. 2 

his driving time table was constructed in two steps. First, ambu-

ance emergency speeds were estimated from a large amount of

ata, for 22 different road types. These average speeds were en-

ered in a routeplanner, computing an estimate of the driving time

or each pair of postal codes. We refer to Kommer and Zwakhals

2008) for a more detailed description of the computation of the

riving time table. 

We model Flevoland as a directed complete graph with 93

odes, in which each arc is weighted according to R . To keep track

f the actual locations for the driving ambulances, we need the

oute between each pair of postal codes. Theretofore, we define

 postal code-incidence graph in which nodes are only connected

y an arc if the corresponding postal codes are adjacent. In this

ncidence graph, the present arcs are weighted according to the

riving time table. We use a shortest-path algorithm to compute

ll shortest paths, and we obtain both a sequence of lengths and

he actual paths. Note that the computed shortest path length be-

ween the start- and endpoint is not necessarily equal to the driv-

ng time obtained from the driving time table R , as a consequence

f the triangle-inequality. Therefore, we scale the whole sequence

f times according to the driving time in the driving time table.

ow, we obtain an estimate on the arrival time of the ambulance

t a certain intermediate node on the route between start- and

ndpoint. In the determination of the actual location of an am-

ulance, we consider the driving time already past, and round it

o the nearest number in the scaled sequence of times to estimate

he actual location. 

As objective, we use a compromise between minimizing the av-

rage response time and the number of incidents for which the

esponse time exceeds the maximum allowed one. In The Nether-

ands, this maximum allowed response time is 15 minutes, but as

entioned before, this time includes dispatch and turn-out time.

e assume that this dispatch and turn-out time is 3 minutes,

hich induces 12 minutes (720 seconds) as maximum allowed

ravel time. The penalty function we use is 

f (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 

5 e −0 . 008(t−720) + 5 

0 ≤ t ≤ 720 , 

4 

5 

+ 

1 

5 e −0 . 008(t−720) + 5 

t > 720 . 

(1) 

his function is displayed in Fig. 4 , and was composed in consul-

ation with a policy officer of the ambulance service provider of

levoland. Note that the focus in this penalty function is on mini-

izing the number of late arrivals rather than on minimizing the

verage response time. After all, an incident reached within the

aximum allowed response time induces a penalty between 0 and

.1, while an incident for which the maximum response time is ex-

eeded, induces a penalty between 0.9 and 1. 
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Fig. 4. Graphical representation of the penalty function of (1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Columns I and II represent the gain in performance and the in- 

crease in number of relocations for Q min compared to M = 1 , re- 

spectively, where Q min is the value at which the minimum of the 

graphs in Figs. 5 a and 6 a is attained. Column III represents the 

gain in performance for Q min with respect to Q = 1 . 

Critical night situation Realistic night situation 

I II III I II III 

M = 1 – – 27 .1% – – 33 .6% 

M = 2 11 .3% 32 .5% 35 .6% 6 .2% 32 .9% 37 .7% 

M = A 11 .3% 37 .5% 35 .6% 8 .0% 41 .2% 38 .9% 
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The ambulance service provider of Flevoland uses a target of

10 minutes for the hospital transfer time. After these 10 minutes,

the ambulance is considered as idle by the dispatchers and it may

be dispatched to another call. Therefore, we set T = 600 . 

We generate results by a discrete-event simulation using his-

torical data. We have access to the following information of inci-

dents: time and place (based on postal-code level) of occurrence,

the on-scene time of the ambulance, whether the patient needed

transportation to a hospital and the hospital time of the ambu-

lance. At night, the mean on-scene time and mean hospital time

are 1,170 seconds and 938 seconds, with standard deviations of

756 seconds and 661 seconds, respectively. Moreover, 71 percent of

the patients needs to be transported to a hospital. During day time,

the means are 1,090 seconds and 1,536 seconds, with standard de-

viations of 680 seconds and 631 seconds. In addition, 75 percent

needs transportation to a hospital. We also use the historical data

for the computation of the demand probabilities p(i ) , i = 1 , . . . , N,

by dividing the number of requests at i by the total number of re-

quests, for day and night separately. 

No randomness is involved, since we use the actual historical

data (trace-driven). The simulation evolves according to the sys-

tem dynamics described in Section 2.1 . When an ambulance just

got freed from service and there are still requests waiting because

no ambulances were available, the ambulance will immediately re-

spond to the one that is longest in the system. 

We consider two different situations 

1. a critical situation, in which available ambulances are scarce,

and 

2. a realistic situation. 

As mentioned before, the redeployment of ambulances may be

beneficial if there is scarceness in the number of available ambu-

lances. If we apply the heuristic method described in Section 3 ,

we implicitly assume available ambulances are scarce. After all,

the contribution of each node to the unpreparedness depends on

one ambulance solely, namely the closest one. Therefore, in one of

the situations that we consider, we assume that there is scarce-

ness, i.e., the probability that there are no available ambulances

for an incoming incident, is around 1 percent. To achieve this, we

decrease the number of ambulances. We do this in such a way

that the blocking probability (using the Erlang blocking formula)

is around 1 percent. We call the outcome the critical situation. 

In addition to the critical situation, we consider a realistic sit-

uation in which we use a more realistic number of ambulances.

We adjust the actual number of ambulances on duty, since many

of them are busy with ordered transport as well. 
We simulate our system according to the historical data, which

uns between January 2008 and September 2012. We make a dis-

inction between day (07:30–17:00) and night (0 0:0 0–07:30). We

o not consider the evening (17:0 0–0 0:0 0), since the extremes

day and night) are more interesting to serve as illustration. The to-

al number of incidents during day and night in the data is 37,844

nd 11,579, respectively. There are 1,704 natural days in our data-

et, so on average there are approximately 22 and 6 incidents per

ay and night, respectively. When a day (night) is over, we re-

et our system to the initial state and proceed with the next day

night). 

.2. Critical night situation 

In the critical night situation, we assume there are A = 4 am-

ulances. Moreover, during night time, 71 percent of the patients

eeds to be transported to a hospital. In Fig. 5 a, we display the

enalty per night as function of the motion-threshold Q , for M =
 , 2 , A . However, since our system only contains four ambulances,

he graphs for M = 1 and M = A hardly differ. Note that the largest

ap between M = 1 and M = A is at Q = 0 , i.e., the dispatcher is

lways allowed to perform the motion. This gap is approximately

1.3 percent, as observed in Table 1 . Thus, there is a significant

ain in performance if more than one ambulance is used in per-

orming a motion. However, this performance gain comes at the

rice of extra ambulance relocations. This number, as function of

 for M = 1 , 2 , A is displayed in Fig. 5 b. We observe approximately

ix additional ambulance relocations per night. 

If we compare the cases Q = 1 and Q = 0 , that is, always the

tatic motion and always the best motion is performed, respec-

ively, we see a gain in performance as well, as observed in col-

mn III of Table 1 . However, additional ambulance relocations were

eeded to achieve this gain, as observed in Fig. 5 b. Furthermore, it

s worth noting that although the graphs for M = 2 and M = A co-

ncide in Fig. 5 a, this is not the case for the number of relocations.

he participation of more than two ambulances in a motion has no

ffect on the performance here. 

The increase just before Q = 0 . 5 in Fig. 5 a and the correspond-

ng downfall in Fig. 5 b is explained by a geographical reason-

ng. Remember that there are two hospitals in the two largest

ities: Almere and Lelystad. These two cities together are inhab-

ted by 68 percent of the total population of Flevoland. From

he base locations in these cities, none of the other four major

owns can be reached within 720 seconds. From the base location

n Emmeloord, 16 percent of the demand can be reached within

20 seconds though. However, for Q ≥ 0.5, the gain related to per-

orming the best motion, which sends an ambulance to Emmelo-

rd, is too small and thus the static motion is always performed.

ince the majority (71 percent) of the ambulances finishes the

reatment of a patient at a hospital, it hardly occurs that an ambu-

ance becomes deployable again at one of the four other towns.

herefore, it often occurs that an ambulance entering phase 0
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Fig. 5. The mean penalty ( Fig. 5 a) and number of relocations per night ( Fig. 5 b) as function of the motion-threshold Q for the critical night situation with A = 4 . The accuracy, 

based on 95 percent-confidence intervals, is approximately 0.08 for Fig. 5 a and 0.2 for Fig. 5 b. Fig. 5 c displays the relation between penalty and number of relocations per 

night. 

Fig. 6. The mean penalty ( Fig. 6 a) and number of relocations per night ( Fig. 6 b) as function of the motion-threshold Q for the realistic night situation with A = 7 . The 

accuracy, based on 95 percent-confidence intervals, is approximately 0.04 for Fig. 6 a and 0.2 for Fig. 6 b. 
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gain at one of the largest two cities, is not relocated to Em-

eloord, because the static motion is performed. This results

n a decrease in both performance and number of ambulance

elocations. 

The peak at Q = 0 . 5 in Fig. 5 a can be explained by a similar

easoning. For Q > 0.5, the static motion is performed if an inci-

ent occurs in Almere and an ambulance is present in Emmeloord.
hat is, no ambulance is redeployed from Emmeloord to Almere.

owever, at Q = 0 . 5 , the best motion is performed in this situa-

ion, in which Emmeloord is the origin and Almere the destina-

ion. The time to perform this motion for a single ambulance is

2 minutes, while it takes at least 20 minutes when multiple am-

ulances participate in the motion. Since many ambulances finish

heir service in Almere, it often occurs that an ambulance finishes
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Fig. 7. The fraction of incidents for which the maximum allowed travel time of 720 seconds is exceeded, and the mean response time as function of the motion-threshold 

Q for the realistic night situation with A = 7 . The accuracy, based on 95 percent-confidence intervals, is approximately 0.04 for Fig. 7 a and 2 for Fig. 7 b. 

Fig. 8. The mean penalty ( Fig. 8 a) and number of relocations per day ( Fig. 8 b) as function of the motion-threshold Q for the critical day situation with A = 6 . The accuracy, 

based on 95 percent-confidence intervals, is approximately 0.2 for Fig. 8 a and 0.3 for Fig. 8 b. 
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service before a relocated ambulance arrives there. For Almere, this

is beneficial and a better performance can be observed there. How-

ever, this gain in performance does not outweigh the loss in Em-

meloord. After all, there is no ambulance in the neighborhood for

a possible large amount of time in a relatively large part of the re-

gion. This effect vanishes for Q < 0.5 by the reasoning described

above. Concluding, in general, performing the best motion does

not always result in a better performance compared to the static

motion. 

We also observe a small decrease in the number of relocations

between Q = 0 and Q = 0 . 05 in Fig. 5 b, although this is not re-

flected in the performance in Fig. 5 a. If we consider the values of

the two objectives intertwined in the penalty function, separately,

we observe that at Q = 0 the fraction of late arrivals is 0.225 for

M = 1 and 0.197 for M = A . The mean travel times to an incident

are 450 seconds and 433 seconds, respectively. 

4.3. Realistic night situation 

In the realistic night situation, seven ambulances are on

duty. In the initial state, each base location is occupied by one

ambulance. The remaining ambulance is located at the base loca-

tion in Almere. The graphs for the mean penalty and the number

of relocations as function of Q are displayed in Fig. 6 . In Fig. 6 a,
he confidence intervals overlap, but we are more interested in the

atterns and the relation between the different lines. Note that a

ap exists between the graphs for M = 2 and M = A . At Q = 0 . 2 ,

his gap is approximately 6.2 percent and 8.0 percent for M = 2

nd M = A with respect to M = 1 , as in column I of Table 1 . Thus,

y allowing the dispatcher to use more than two ambulances in

erforming a motion, the performance improves. However, this im-

rovement is small compared to the performance gain if one al-

ows two ambulances to participate in the motion instead of one.

n the last column of Table 1 , results on the comparison between

 = 0 . 2 and Q = 1 are displayed. 

If we compare Q = 0 and Q = 0 . 1 , we observe a tremendous

ecrease in number of relocations in Fig. 6 , and the penalty de-

reases as well, albeit to a lesser extent. This behavior is explained

y the choice of the penalty function. Results for the two objec-

ive functions compromised in the penalty function separately are

isplayed in Fig. 7 . Usually, these two objectives are not really con-

icting. However, a decrease in the fraction of late arrivals can be

bserved between Q = 0 and Q = 0 . 1 , while the mean response

ime increases. This is due to one particular motion. Urk can be

eached within 720 seconds from Emmeloord only. For Q = 0 . 1 ,

he gain in unpreparedness is too small if the best motion is

erformed, so we do not send an ambulance to Urk. For Q = 0 , al-

ays the best motion is performed, which sends an ambulance to
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Fig. 9. The mean penalty ( Fig. 9 a) and number of relocations per day ( Fig. 9 b) as function of the motion-threshold Q for the realistic day situation with A = 12 . The accuracy, 

based on 95 percent-confidence intervals, is approximately 0.07 for Fig. 9 a and 0.4 for Fig. 9 b. 

Fig. 10. The mean penalty ( Fig. 10 a) and number of relocations per night ( Fig. 10 b) as function of the motion-threshold Q for the realistic night situation with A = 15 . The 

accuracy, based on 95 percent-confidence intervals, is approximately 0.12 for Fig. 10 a and 1.5 for Fig. 10 b. 
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Table 2 

Columns I and II represent the gain in performance and the in- 

crease in number of relocations for Q min compared to M = 1 , re- 

spectively, where Q min is the value at which the minimum of the 

graphs in Figs. 8 a and 9 a is attained. Column III represents the 

gain in performance for Q min with respect to Q = 1 . 

Critical day situation Realistic day situation 

I II III I II III 

M = 1 – – 37 .5% – – 50 .5% 

M = 2 6 .7% 32 .0% 41 .7% 4 .2% 37 .3% 52 .6% 

M = A 7 .3% 37 .7% 42 .1% 5 .2% 49 .3% 53 .1% 

u  

M  

w  

s  

a  

n  

c

4

 

t  

T  
rk. However, performing this motion is of influence on the mean

esponse time only and not on the late arrivals. The performance

oss can be explained by the fact that one ambulance is send to

rk, where it is actually not really needed. This underlines the

tatement that always performing the best motion does not nec-

ssarily result in a better performance. 

A similar reasoning holds for the peak around Q = 0 . 85 in

ig. 7 , especially for M = 1 . It takes much time to perform the best

otion, as an ambulance has to move from Urk to Almere. 

If we compare the critical and realistic situation in Table 1 , we

bserve that the benefit of using more than one ambulance in a

otion is larger for the critical situation than for the realistic set-

ing. However, the benefit of doing relocations at all is larger in the

ealistic situation, as column III indicates. 

.4. Critical day situation 

During daytime, the maximum number of ambulances needed

o ensure that we are always in the critical situation is six. We

ocate an ambulance at each base station in the initial state.

ompared to the night situation, slightly more patients need

ransportation to a hospital: this percentage is 75 percent. Results

or this situation are displayed in Fig. 8 and Table 2 . 

We observe clear similarities between the night and day situa-

ion. For instance, the peak at Q = 0 . 5 is still present, although we
se different demand probabilities for the night and day situation.

oreover, we again observe the drop between Q = 0 and Q = 0 . 1 ,

hich is explained by the same reasoning as in the realistic night

ituation. We conclude from Table 2 that the benefit of using more

mbulances in a motion has decreased, compared to the critical

ight situation. However, the gain in performance compared to the

ase in which no relocations are performed, is larger. 

.5. Realistic day situation 

In the realistic day situation, 12 ambulances are present in

he system. Results for this case are listed in Table 2 and Fig. 9 .

here are some differences compared to the situations before. For
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Fig. 11. The mean penalty ( Fig. 11 a) and number of relocations per night ( Fig. 11 b) as function of the motion-threshold Q for the realistic day situation with A = 24 . The 

accuracy, based on 95 percent-confidence intervals, is approximately 0.15 for Fig. 11 a and 2.3 for Fig. 11 b. 

Table 3 

Columns I and II represent the gain in performance and the in- 

crease in number of relocations for Q min compared to M = 1 , re- 

spectively, where Q min is the value at which the minimum of the 

(M = 1) -graphs in Figs. 10 a and 11 a is attained. Column III rep- 

resents the gain in performance for Q min with respect to Q = 1 . 

Realistic night situation Realistic day situation 

I II III I II III 

M = 1 – – 56 .0% – – 55 .2% 

M = 2 11 .1% 51 .2% 60 .5% 4 .5% 40 .8% 57 .2% 

M = A 11 .5% 71 .6% 60 .7% 5 .7% 57 .4% 57 .6% 
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instance, there is now an increase in penalty between Q = 0 and

Q = 0 . 1 , as observed in Fig. 9 a. This is explained by the fact that

the number of ambulance in the rest of the region is enough, and

we can send an ambulance to Urk. This benefits the average re-

sponse time, while the fraction of late arrivals is not influenced

by this. Moreover, the gap between M = 1 and M = 2 has further

narrowed. 

4.6. Amsterdam 

In addition to the results on the relatively rural region of

Flevoland, we provide a short numerical study on one of the most

crowded regions in the Netherlands: Amsterdam and its surround-

ings. This region covers approximately 630 km 

2 and is home to

1.2 million inhabitants, of which 68 percent lives in Amsterdam

itself. There are 162 postal codes, and the 162 × 162 table of driv-

ing times was provided by the RIVM, cf. Kommer and Zwakhals

(2008) . Moreover, there are eight base locations in this region, and

the number of hospitals equals eight as well. We again use (1) as

the penalty function and we retain the parameters corresponding

to the maximum allowed response time and the dispatch and turn-

out time as in the Flevoland case. Moreover, historical data of the

year 2011 serves as the basis for our computations, and we distin-

guish a day and a night situation. The total number of incidents

in 2011 was 12,362 and 38,784 during night and day, respectively.

This results in 34 and 106 incidents on average per night and day. 

We consider both the realistic night and day situation with 15

and 24 ambulances, respectively. Results are displayed in Figs. 10

and 11 , and Table 3 . Since Amsterdam is a smaller region than

Flevoland and there are more base locations in Amsterdam, the

driving times between base locations are smaller. Moreover, a lot

more incidents occur in Amsterdam. However, these differences are
ot reflected in the results: many of the results carry over to Am-

terdam. We highlight one difference: 

In the Flevoland cases, M = 2 results in a higher penalty than

 = A in general. However, for Amsterdam, these two graphs are

ntertwined, as can be observed in Figs. 10 and 11 . For some

−values, the usage of only two ambulances in a motion results

n a better performance than the unlimited case. This can be ex-

lained by both the difference in area of the two regions, and the

ifference in number of base locations. As a consequence, the driv-

ng times between base locations in Amsterdam are shorter com-

ared to Flevoland. Therefore, it makes less sense to break up an

mbulance motion in multiple parts to reduce the time required to

erform the motion. 

. Summary and conclusion 

In this paper, we analyzed the effect of ambulance relocations

n the performance of the ambulance service provider. Thereto-

ore, we described an ambulance redeployment model, in which

 performance measure related to the response time can be cho-

en by the ambulance service provider by defining a correspond-

ng penalty function. Moreover, we presented a heuristic for com-

uting ambulance motions and relocations at decision moments. In

his heuristic, we restricted the number of ambulance relocations

n two ways: the first one is related to the necessity of the am-

ulance motion, and for the second we set bounds on the number

f ambulance relocations within a motion. We used historical data

f two regions in the Netherlands to simulate the system, and we

howed results for one particular penalty function suggested by an

mbulance service provider for both regions. We distinguished a

ay and night scenario, and we made a distinction between a re-

listic situation and a critical situation, in which there is always

ndercapacity in the number of idle ambulances. 

The presented results all imply that there is a significant im-

rovement if ambulances are relocated, compared to the static pol-

cy in which always the static motion is performed ( Q = 1 ). More-

ver, this decrease in penalty is largest if only a few ambulance

elocations are allowed instead of zero. However, this behavior

evels off: it gets harder and harder to increase the performance

y executing additional ambulance relocations. Even allowing too

any relocations may result in a worse performance. We observed

hat this could also be a consequence of the chosen penalty func-

ion: performance measures that seem to be strongly related to

ach other, can be conflicting. The graphs presented in this pa-

er can be very useful for ambulance service providers to gain
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nsights in the relationship between performance and number of

elocations. 

We end this paper with a short note on further research. In this

aper, we restricted the dispatcher at a decision moment of the

rst type to change the ambulance configuration at at most two

oints: the origin and the destination. However, it could be bene-

cial for the performance if this restriction would be relaxed, but

his probably comes at the expense of more relocations. Moreover,

he relation between performance or number of relocations and

umber of decision moments is interesting as well: what would

appen if one decreases (e.g., only when an ambulance is newly

ree) or increases (e.g., every minute) the number of decision mo-

ents? One could also impose a bound on the relocation time of

n ambulance per relocation. This will influence the performance

nd number of relocations as well. In addition, the balance of num-

er of relocations per ambulance vehicle is an interesting topic, es-

ecially from the crew’s perspective. A policy in which only a few

mbulances need to relocate several times while others do never,

s probably not desirable. This paper can be used as a basis for

hese interesting research topics. At last, the method presented in

his paper will be tested in a real-life pilot in the emergency con-

rol room of Flevoland to support the dispatchers in their decisions

egarding ambulance relocations. 
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