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Abstract We study the Dynamic Ambulance Management
(DAM) problem in which one tries to retain the ability to
respond to possible future requests quickly when ambu-
lances become busy. To this end, we need models for
relocation actions for idle ambulances that incorporate dif-
ferent performance measures related to response times. We
focus on rural regions with a limited number of ambulances.
We model the region of interest as an equidistant graph and
we take into account the current status of both the system
and the ambulances in a state. We do not require ambu-
lances to return to a base station: they are allowed to idle at
any node. This brings forth a high degree of complexity of
the state space. Therefore, we present a heuristic approach
to compute redeployment actions. We construct several sce-
narios that may occur one time-step later and combine these
scenarios with each feasible action to obtain a classification
of actions. We show that on most performance indicators,
the heuristic policy significantly outperforms the classical
compliance table policy often used in practice.
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1 Introduction

In life-threatening emergency situations where every sec-
ond counts, the ability of ambulance service providers to
arrive at the emergency location within a few minutes to
provide medical aid can make the difference between sur-
vival or death. Therefore, ambulance service providers must
meet strict requirements in terms of response times, i.e.,
the total time elapsed between an incoming emergency call
and the moment that an ambulance arrives at the emer-
gency scene. Most governments use the percentage of high
priority requests, for which a maximum allowed response
is exceeded, as performance measure. For instance, in the
Netherlands, the response time of an ambulance may not
exceed 15 minutes in 95 % of the emergency cases. In
addition, other performance indicators such as the mean
response time or the number of ambulance relocations, may
play a role as well. However, the budget an ambulance ser-
vice provider may spend is limited. This puts pressure on
providers, so good location and relocation strategies for
ambulances are needed.

In this paper, we focus on Dynamic Ambulance Man-
agement (DAM). In contrast to static location strategies in
which an ambulance has a dedicated base location, we con-
sider dynamic relocation strategies in which ambulances
can be proactively redeployed throughout the region. This
brings forth extra complexity since dynamic relocation rules
depend on the state of the system, e.g., the location of
the ambulances and of emergency requests. Therefore, the
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main challenge in DAM is to develop a tractable method to
obtain good relocation strategies in real time such that short
response times to emergency requests are achieved.

1.1 Related work

The literature on ambulance planning can be classified into
two main categories: static location models and dynamic
relocation models. In the first category, both the location
of ambulance bases and the number of ambulances per
base is considered with a related performance criterion. A
comprehensive survey on models of this category is given
in [4]. Most of these models require solving integer pro-
grams. Early static models are deterministic such as the
Location Set Covering Model (LSCM) presented in [20],
which aims at minimizing the number of ambulance bases
needed to cover a region. Related to this problem is the
Maximal Covering Location Problem (MCLP) by [6]. Here
the number of ambulances is fixed and one aims to find
the optimal locations of these ambulances, such that the
fraction of demand that can be responded to within a cer-
tain time threshold is maximized. Akin to MCLP is the
p-median problem, formulated in [16], where the sum of the
shortest demand-weighted distance between demand points
and ambulance bases is minimized. Extended static models
have also incorporated stochasticity: ambulance unavailabil-
ity is taken into account. For instance, in [7] the Maximum
Expected Covering Location Problem (MEXCLP) is con-
sidered. This model uses a busy fraction: the probability
that there are no idle ambulances available at a base. Exten-
sions of MEXCLP, such as given by [3], use the Hypercube
Model presented in [12] to compute these busy fractions.
In [8] a survival function is used in existing covering
models to differentiate between consequences of different
response times.

Dynamic relocation models typically operate in real time.
Therefore, a relocation strategy needs to be obtained in
a very short time. As a consequence, most literature on
dynamic relocation models focus on heuristics. An early
dynamic relocation model was proposed by [11], in the con-
text of management of urban fire departments. In [9] the
total demand covered by at least two ambulances is max-
imized by solving an integer program and applying tabu
search. Compliance tables, which prescribe desired loca-
tions for the idle ambulances, are computed in [10] using an
integer program called Maximum Expected Coverage Relo-
cation Problem (MECRP). Optimizing compliance tables is
also the subject in [2] where a two-dimensional Markov
chain model is proposed and analyzed. This model is com-
bined with heuristic search methods in [1]. Some literature
also focuses on computing redeployment strategies using
Approximate Dynamic Programming, cf. [13] and [18].
In [14], a two-stage stochastic programming formulation

to minimize the number of relocations while meeting a
minimum performance level is presented.

1.2 Our contribution

The DAM-model studied in this paper differs from the main
stream literature in two respects:

1. we focus on rural regions with a limited number of
ambulances, and

2. we consider a general cost function to measure the
performance of DAM policies.

The focus on rural areas has several important impli-
cations. In most papers on DAM, the numerical results
section, in which the performance of the proposed meth-
ods is validated, is based on ambulance service providers
of a large city. However, there are substantial differences
between urban and rural regions. For instance, in rural
regions, the number of ambulances is small compared
to urban regions. Therefore, the effect of one ambulance
fewer available, for instance, if this ambulance is busy, is
more noticeable in rural regions with a limited number
of ambulances. In contrast, in urban regions one available
ambulance fewer only has a small effect. Thus, in rural
regions, one has to be more careful about how to (re)deploy
ambulances.

Besides, in rural regions, the fluctuation in demand per
area is much higher. There are areas with practically no
demand, while in other areas, especially in cities or towns,
the demand is high. As a consequence, an ambulance driv-
ing from a high-demand area to another high-demand area,
usually traverses an area of low demand, providing only
very marginal coverage when it is en route. This is typically
not the case in urban areas, in which an ambulance is always
supplying coverage, wherever it is. Relocating ambulances
between areas of high demand involves more risks in that
sense.

Another difference between rural and urban regions is the
number of events. In most papers, e.g., in [10, 13] and [18],
relocation decisions are only assumed to be taken at the
time of events. This may work well for urban areas: after
all, there are a lot of events and thus decision moments in
which one has the possibility to control the system. In con-
trast, the number of events in rural regions is low, resulting
in fewer opportunities to do this. Summarizing, urban and
rural regions differ much from each other, and thus, they
should be approached differently.

The second difference to the models considered in litera-
ture is related to the performance measure. In practice, dif-
ferent governments enforce different performance measures
for the evaluation of an ambulance service provider. Even
ambulance service providers within a country, although
they are judged by the performance measure their gov-
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ernment sets, can have their own additional criteria for
specific reasons. In other words, since these ambulance ser-
vice providers can be very different compared to each other,
there is no universal DAM-policy for the preferences of each
of them. With this in mind, each ambulance service provider
would like to have its own method to compute relocation
strategies meeting its performance criteria. In our model,
we can incorporate different performance criteria related
to response times, as required by an ambulance service
provider.

The main focus of this paper is on practicality: the
development of an easy to understand method that can
compute relocation decisions specifically for rural regions.
This method is a one-step look-ahead heuristic for making
proactive ambulance redeployments in real-time, in which
different performance measures can be incorporated. In the
proposed model, rerouting of ambulances is possible. More-
over, relocation decisions can be made at discrete times, in
order to overcome the problem of too few events in rural
regions. We present a method for the computation of ambu-
lance redeployment actions in which several response time
related performance measures can be incorporated, with an
emphasis on the practical usefullness of the results.

1.3 Overview

We end this section with a description of the general idea
of the problem and the proposed approach. In this problem,
ambulances can be present at designated locations in the
region: nodes in the graph representing the region of inter-
est. The objective is to find a good ambulance configuration:
a distribution of ambulances throughout the region in such
a way that one is able to respond to an incoming request
quickly. This ambulance configuration can be achieved by
moving ambulances over the graph, as will be described in
Section 2.2. We decide on how we should move these ambu-
lances, given the state of the system, which is the topic of
Section 2.1. Moreover, a certain penalty is associated with
each possible response time. This penalty is defined using
penalty functions, which are described in Section 2.4. The
proposed MDP-formulation is not tractable for large prob-
lem instances, so we resort to a heuristic. This proposed
method is explained in detail in Section 3.

The general idea is to consider scenarios that may occur,
as described by the evolution of the system in Section 2.3.
We combine these scenarios with each possible change in
ambulance configuration to obtain a new possible state. In
this state, we consider the minimal expected penalty related
to the response to additional requests (Section 3.2) and
classify the movement, based on these expectations and
the probability that this particular scenario occurs, as will
be explained in Section 3.1. We conclude the paper by a
numerical study in Section 4, based on simulation results

for an ambulance service provider in a rural region in The
Netherlands.

2 Model description

We model the region of interest as a graph, with N as its
node set. These nodes serve as demand locations. There are
two types of nodes: nodes with and without a hospital. Let
these disjoint sets be denoted by H and H̄, respectively,
whereN = H∪ H̄. For simplicity, we enumerate the nodes
in such a way that there is a hospital at the first |H| nodes in
the enumeration, so

N = {
1, 2, . . . , |H|, |H| + 1, . . . , |H| + |H̄|} .

The road network is modelled by edges, that can be either
one- or bidirectional, depending on whether a U-turn is
allowed on the specific road. This is typically not the case
on highways. We assume that the length of each edge equals
1, so it takes one time step to traverse an edge. Therefore,
time is discretized in time steps of Δt . As a consequence, it
takes an ambulance �t time units (e.g., 5 minutes) to cross
an edge. In realistic situations, the graph is constructed in a
way that Δt is fine enough to model ambulance movements.
To model more realistic situations, one could decrease Δt ,
but then the graph should contain more nodes and edges.
Therefore, for Δt → 0, this model becomes continuous in
both time and space.

The level of priority of requests for an ambulance is equal
for each request. The number of incoming demand requests
at each demand location per unit of time is Poisson dis-
tributed with parameter pi(Δt) for node i, i ∈ N . These
parameters can be estimated using historical data. In real-
ity, these parameters vary over time, but here we assume
that these are fixed for the sake of simplicity. Moreover,
this is not really a limitation, since one can use different
parameter values for different times of the day. For mod-
elling issues, we assume that no external requests arrive at
hospitals, so ph(Δt) = 0 for h ∈ H. The total number of
ambulances in the system is A and all ambulances are of
same type. The fleet-size is constant and does not vary over
time. Although p(Δt) = (pi(Δt))i∈N depends on the cho-
sen time step size Δt , we will omit this dependence in the
remainder.

Each incoming request of a patient needs an ambulance
to attend to. Upon arrival at the emergency scene, the ambu-
lance crew decides whether the patient needs transportation
to a hospital. This decision can be made quickly after arrival
at the emergency scene, since the crew is already informed
of the severity of the request by the call center agent: a
quick first impression is satisfactory. With probability r , a
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patient needs transportation. If so, the ambulance crew treats
the patient for a random number of time units at the emer-
gency scene: the treatment time on scene. Then, he/she is
transported to the nearest hospital. There, the ambulance
transfers the patient for some random time, which we will
call treatment at hospital. We assume no queueing takes
place at the hospital: emergency departments have infinite
capacity. This assumption is justified by the fact that we
focus on rural regions with a small number of incoming
requests per hour.

Summarizing, when the ambulance arrives at the emer-
gency scene, the remaining time the ambulance is busy
serving the patient consists of a stochastic treatment time
on scene, a deterministic transportation time, and a stochas-
tic treatment time at the hospital. We refer to these stages
as phase 1 to phase 4, see Fig. 1. Notice that we do not
include a phase for ambulances that are on their way to
respond to a request. The reason for this is that such an
ambulance, although initially assigned, may not be the one
to provide service. This kind of behaviour occurs if a sec-
ond ambulance, located closer to the request, becomes idle
when the first one is en route. Therefore, as long as an ambu-
lance is on its way to a request, it is treated as if it is idle.
We assume that each hospital is identical. If a patient does
not need transportation to a hospital, the busy time of the
ambulance only consists of the stochastic treatment time on
scene. Some notation that is extensively used throughout
this paper, is summarized in Table 1.

2.1 State space

In short, there are four major sources of randomness in the
model: the arrival of requests, the possible need for trans-
portation to a hospital, the service time on scene, and the
time an ambulance spends at the hospital, see Fig. 2. The
state of our system is given by five components. For an
overview of the notation of the state space variables, we
refer to Table 2.

The number of patients per demand location This is
denoted by a vector x = (x1, x2, . . . , xN) of length N =
|N |, where xi ∈ N0 for 1 ≤ i ≤ N . We assume that each
patient needs an ambulance and an ambulance cannot serve
more than one patient at a time.

The number of ambulances either in phase 1, 2 or 4 per
demand location This is similarly denoted as the number
of patients by y = (y1, y2, . . . , yN) of N , where yi ∈ N0,
1 ≤ i ≤ N . Moreover,

∑N
i=1 yi ≤ A, since the total fleet-

size cannot be exceeded. If there is a patient at a location
and there is also an idle ambulance there, we will assume
that this ambulance is treating this patient. Thus, the vec-
tor b = (b1, b2, . . . , bN) of busy ambulances (ambulances
either in phase 2 or phase 4) is given by b = min(x, y). In
addition, f = y − b denotes the vector of idle ambulances:
the ambulances in phase 1.

The number of ambulances per demand location
required to transport patients That is, the number of
phase 2 ambulances that after treatment on scene make
a transition to phase 3. We denote this by a vector z =
(z1, z2, . . . , zN), where zi ≤ bi for each node i. More-
over, an ambulance at a hospital does not have to transport
a patient, so zh = 0 for h ∈ H.

The elapsed service time of ambulances in phase 2 and 4
We denote this by a matrix Z with |N | rows and A columns,
where Z(k, j1) denotes the elapsed service time of ambu-
lance j1 at node k, where j1 ≤ bk . Moreover, Z(k, j2) =
−1 for bk < j2 ≤ A. Hence,

∑A
j=1 1{Z(k,j)≥0} =

bk . We assume that each row of Z is sorted in non-
increasing order, in order to simplify the description of
the computations in Sections 2.3 and 3.1. Rows k ≤
|H| and the remaining rows correspond to ambulances
treating at hospitals and ambulances treating on scene,
respectively.

Destinations and remaining driving times of ambulances
in phase 3 We denote this by a matrix D. Let D(h, t)

describe the number of phase 3 ambulances that will arrive
in t ≥ 1 time units at hospital h ∈ H. Note that∑

h∈H
∑L

t=1 D(h, t) + ∑N
i=1 yi = A, where L denotes the

length of the longest path that any ambulance might take.
A state s is now defined by the tuple

s = (x, (b, f ), z, Z, D),

or equivalently: s = (x, y, z, Z, D), where y = b + f .

Fig. 1 Different stages of
ambulances
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Table 1 Notation
N Node set

N Number of nodes

A Number of ambulances

L Length of longest path that any ambulance might take

H Subset of nodes with a hospital

pi Parameter of Poisson distribution that models the arrival of requests at node i

r Probability that a patient needs transportation to a hospital

B
j
k Treatment time of ambulance j at node k, k ∈ N

ρ
j
h Probability that ambulance j at node k finishes its treatment one time step later, k ∈ N

as
i Change in number of ambulances at location i, induced by action as

di Number of ambulances that start treatment of new patient at location i

F(s) Set of feasible actions in state s

F Number of idle ambulances

X Number of requests not served by an ambulance yet

2.2 Actions

We will now describe the control process. To each state s

belongs an action set. Actions describe the change in con-
figuration of idle ambulances: we can either dispatch an idle
ambulance to one of its neighbouring nodes, or we can let it
hold its current position. An action belonging to the action
set of state s is denoted by

as = (
as
1, a

s
2, . . . , a

s
N

)
,

where as
i ∈ Z denotes the change in yi at location i. It

is possible that as
i = 0, while ambulances are moving

from/to node i. This occurs when the number of incom-
ing ambulances equals the number of outgoing ambulances
at location i. To keep track of the exact movement of
ambulances, we can decompose as into an (as)−- and an
(as)+-part, where (as)− and (as)+ denote the number of
outgoing and incoming ambulances per node. Naturally,
(as

i )
−, (as

i )
+ ∈ N0 for i ∈ N and as = (as)+ − (as)−.

Action as satisfies the condition −as
i ≤ fi , since no more

than fi ambulances can be removed from node i. Similarly,
no more than the total number of idle ambulances can be
sent to location i, so (as

i )
+ ≤ ∑

j �=i fj . All edges have

length 1, so it takes exactly one time step to carry out an
action. Therefore, it holds that

N∑

i=1

((
as
i

)+ − (
as
i

)−)
=

N∑

i=1

as
i = 0,

since the number of departing idle ambulances equals the
number of arriving idle ambulances. Furthermore, since the
actions are configuration-based rather than based on each
ambulance separately, idle ambulances are indistinguish-
able.

Note that actions are only defined for idle ambulances.
Busy ambulances, which are ambulances either treating a
patient at an emergency scene or at a hospital, continue their
service. There are more actions that are not reasonable to
take, but still allowed: actions in which the response time to
a request is unnecessarily delayed. We want to exclude these
actions since these are suboptimal in the model and in reality
they are not even considered. We call these actions infeasi-
ble. The question arises on how to define the set of feasible
actions, which we denote by F(s) for state s. It seems obvi-
ous to always dispatch the nearest ambulance to a request.
However, this action can be suboptimal here, because it pos-
sibly delays the response time to a different request. We
assume that the total response time to all requests that are
not served yet should be minimized. If there is only one such

Fig. 2 Life cycle of a request arriving at location i
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Table 2 State space variables
xi Number of patients at location i

yi Number of ambulances at location i

bi Number of busy ambulances at location i

fi Number of idle ambulances at location i

zi Number of ambulances at location i that need to transport a patient

Z(k, j) Elapsed treatment time of ambulance j at node k, k ∈ N
D(h, t) Number of occupied ambulances that will arrive at hospital h in t time units

request, this assumption is equivalent to the policy in which
the nearest ambulance is assigned to a request.

To compute F(s) in state s, i.e., actions that minimize
the total response time to all patients waiting, we solve
an assignment problem. We do this in the following way.
Assume s = (x, (b, f ), z, Z, D). Let F = ∑N

i=1 fi and
X = ∑N

i=1(xi −yi)
+ denote the number of idle ambulances

and the number of requests that are not served by an ambu-
lance yet, respectively. We introduce a weighted complete
bipartite graph KF,X = (V1 ∪ V2, E, l), where V1, V2 are
the two node sets, E the edge set and l a function assign-
ing weights to edges. The node set V1 corresponds to the
locations of the F idle ambulances: for each ambulance we
introduce a node indexed by its location. In a similar way,
we define the node set V2, but these nodes correspond to the
location of patients waiting. If there are more ambulances
or patients waiting at a particular location, then we specify
the nodes belonging to this location with a subindex. Let
v1 ∈ V1, v2 ∈ V2. The weight l((v1, v2)) of edge (v1, v2)

equals the length of the shortest path between v1 and v2.
This corresponds to the required number of time units to
travel from the corresponding locations of v1 and v2 in the
original graph representing the region of interest. Therefore,
l : E → N0. A matching is a set of edges without com-
mon nodes. A node is matched if it is an endpoint of one of
the edges in the matching. A Minimum Weighted Bipartite
Matching is defined as a maximal matching M where the
sum of the weights of the edges in M has a minimal value.
That is, our objective criterion is

min
M∈M

l(M) = min
M∈M

∑

e∈M

l(e)

and M is the set of all maximal matchings. The condition
that M is maximal means that a maximum number of nodes
is matched. That is, if |V | = min{|V1|, |V2|}, then all nodes
of Vi are matched with |V | nodes in V3−i by the complete-
ness of the bipartite graph, where i = 1, 2. The assignment
problem is solved by the Hungarian Algorithm, which runs
inO((|V1| + |V2|)2|E|) time, [19]. Note that finding a Min-
imum Weighted Bipartite Matching in KF,X is equivalent
to finding an assignment of ambulances to requests such
that the total response time to requests is minimized. If
the number of patients waiting exceeds the number of idle

ambulances, we can not respond to all requests. Then, we
have only one possible action, because we aim to minimize
the total response time. This is the action that sends each
ambulance over the shortest path from its current location
to the request which it is assigned to. This is also the case
when we have an equal number of idle ambulances and
patients waiting. However, if the number of patients wait-
ing is smaller than the number of idle ambulances, there
are ambulances that are not assigned to requests. For these
ambulances, we have a choice where to send them to. For
these states, the set of feasible actions contains more than
one action: if X < F in state s, we have to decide for F −X

ambulances how to relocate them, where ambulances that
are not assigned to a request can either be relocated to one
of the neighbouring nodes or they can keep their position.

The objective of minimizing the total response time to
all requests waiting seems reasonable. However, one can
argue about it. It is possible that the majority of these
patients has a short response time, while one has a very
long response time. Possibly, it is fair to divide the total
response time equally over all requests waiting. A way
to achieve this, is to use the Linear Bottleneck Assign-
ment Problem, instead of the Minimum Weighted Bipar-
tite Matching. Instead of minimizing the total sum of the
edges in the matching, we aim to find a maximal match-
ing with the property that the maximum weight of the
edges in the matching is minimized. That is, the objective
criterion is

min
M∈M

l(M) = min
M∈M

max
e∈M

l(e),

and M is the set of all maximal matchings. This prob-
lem and several of its solution methods are treated in
detail in [5], in which a polynomial-time algorithm is pro-
posed. Moreover, if the set of such matchings contains more
than one such matching, this algorithm finds the match-
ing with minimal total weight in this set. In the context of
dynamic ambulance management, this translates to obtain-
ing an assignment of idle ambulances to patients waiting,
such that the maximum response time is minimized and
given this maximum response time, the total response time
is minimized. However, in our computational experiments,
we did not use the response times itself in computing the
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assignments, but certain penalties related to response times,
as described in Section 2.4.

2.3 Evolution

If our current state is s = (x, y, z, Z, D) and action as ∈
F(s) is taken, the system evolves according to random vari-
ables related to number of arriving requests (ω1), number of
treatment completions (ω2 and ω3), number of ambulances
departing to a hospital (ω4) and the number of patients for
which it is decided that they need transportation (ω5). These
random variables are summarized in Table 3. This evolution
is as follows. Let s′ = (x′, y′, z′, Z′, D′) denote the next
state.

The number of patients per demand location We dis-
tinguish between nodes with and nodes without a hospital.
Consider node h ∈ H. The number of requests at hospital
h in the next state, x′

h, depends on two processes: arrival of
occupied ambulances at h and the completion of treatments
by an ambulance at hospital h. Remember that ph = 0 for
h ∈ H, so there are no new arrivals. The number of arriving
ambulances at location h ∈ H in the next time step equals
D(h, 1). For the number of completions, we use the Pois-
son binomial distribution, which is the discrete probability
distribution of a sum of independent Bernoulli trials that are
not identically distributed. The probability of having κ suc-
cessful trials out of a total of n can be written as the sum

P{K = κ} =
∑

U∈Uκ (n)

∏

i∈U

ρi
∏

j∈Ū

(1 − ρj ), (1)

where ρ1, ρ2, . . . , ρn denote the success probabilities,
Uκ(n) is the set of all subsets of κ integers selected from
{1, 2, . . . , n}, i.e., Uκ(n) = {U ∈ {1, . . . , n} : |U | = κ}. Let
Ū be the complement of U in Uk(n), cf. [21]. The ordinary
binomial distribution is a special case where all the success
probabilities are equal. The number of completions, denoted
by ω3

h(s), is a Poisson binomially distributed number on bh

trials. The success probability ρ
j
h , which is the probability

that ambulance j at h will have finished its treatment at the
next step, depends on the elapsed service time of ambulance
j , which is Z(h, j). That is,

ρ
j
h = P

{
B

j
h = Z(h, j) + 1|Bj

h > Z(h, j)
}

, (2)

where B
j
h is the treatment time of ambulance j at hospital h.

Then, the bh probabilities needed for the Poisson binomial

distribution are given by
(
ρ1

h, ρ2
h, . . . , ρ

bh

h

)
. Now,

x′
h = xh + D(h, 1) − ω3

h(s), h ∈ H.

If i ∈ H̄, x′
i is defined differently, since it depends on

two other processes: the arriving requests at location i and
the number of treatment completions on scene at location
i. These numbers are denoted by ω1

i and ω2
i (s). Note that

ω1
i does not depend on s and is Poisson distributed with

parameter pi . In contrast, ω2
i (s) depends on s: this number

is Poisson binomially distributed with success probability
(ρ1

i , ρ2
i , . . . , ρ

bi

i ).

The number of ambulances either in phase 1, 2 or 4 per
demand location For the evolution of y = f + b, we also
distinguish between hospital locations and other locations.
First, the case that i ∈ H̄: the number of ambulances y′

i in
the next state at location i depends on the current number of
ambulances yi , the action as

i and the number of ambulances
that completes service on scene and departs for a hospital.
Let this random number, which depends on the number of
completions on scene, be denoted by ω4

i (s, ω
2
i (s)). Then,

we find that

y′
i = yi + as

i − ω4
i

(
s, ω2

i (s)
)

, i ∈ H̄.

The quantity ω4
i (s, ω

2
i (s)) is determined as follows. We

have bi ambulances that are serving a patient on scene. Of
these bi ambulances, zi ambulances need to go to a hospital
and ω2

i (s) ambulances complete their service on scene now.
Therefore, ω4

i (s, ω
2
i (s)) is hypergeometrically distributed

on a population size of bi of which zi are of one type, and
bi − zi of the other type. Moreover, the number of draws is
ω2

i (s).
If h ∈ H, y′

h depends on the current number of ambu-
lances at location h, the action as , and the number of
occupied ambulances that arrive at hospital h. Thus,

y′
h = yh + as

h + D(h, 1), h ∈ H.

The number of busy ambulances per demand loca-
tion required to transport patients When considering the
number of busy ambulances at hospitals required to trans-
port patients, it is clear that zh = 0 for h ∈ H. If i does

Table 3 Types of randomness in evolution of the system

ω1
i Number of arriving requests at location i

ω2
i (s) Number of treatment completions on scene in state s at location i

ω3
h(s) Number of treatment completions at hospital h in state s

ω4
i (s, ω

2
i (s)) Number of ambulances departing for a hospital from location i in state s

ω5
i (s, ω

1
i , ω

4
i (s, ω

2
i (s))) Number of patients at location i decided to be transported
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not correspond to a hospital location, z′
i is obtained as fol-

lows. This quantity represents the number of ambulances
required to transport a patient from location i to a hospital.
It depends on ω4

i (s, ω
2
i (s)) defined before and the num-

ber of new patients for which it is decided that they need
transportation. Let this last random quantity be denoted
by ω5

i (s, ω
1
i , ω

4
i (s, ω

2
i (s))). Note that this number depends

on the number of arriving and completed requests ω1
i and

ω2
i (s). Then,

z′
i = zi − ω4

i

(
s, ω2

i (s)
)

+ ω5
i

(
s, ω1

i , ω
4
i

(
s, ω2

i (s)
))

.

Note that this number is bounded by the number of ambu-
lances that start a treatment of a new patient at location i,
denoted by di . Then,

di =min
{
ω2

i (s) − ω4
i

(
s, ω2

i (s)
)
+fi +as

i , ω1
i +xi − bi

}
,

(3)

where ω2
i (s) − ω4

i (s, ω
2
i (s)) + fi + as

i equals the num-
ber of ambulances that start a new treatment: there were
already fi idle ambulances and we add to that the ω2

i (s)

ambulances that complete service. However, ω4
i (s, ω

2
i (s))

of these ambulances leave for a hospital and cannot start a
new treatment. If as

i > 0, we have arrivals of ambulances,
which can all start a new service, so we add that number as
well. If as

i < 0, some of these idle ambulances leave for a
different location and these ones cannot start a treatment at
location i. Note that

ω2
i (s) − ω4

i (s, ω
2
i (s)) + fi + as

i ≥ 0,

since ω2
i (s) − ω4

i (s, ω
2
i (s)) ≥ 0 and fi + as

i ≥ 0. However,
not all these ω2

i (s) − ω4
i (s, ω

2
i (s)) + fi + as

i ambulances
can start a new service if there are not that many requests
waiting at i. The number of patients waiting at i is given by
ω1

i + xi − bi : there were xi − bi ≥ 0 patients without an
ambulance treating them, and ω1

i additional requests arrive.
Then, ω5

i (s, ω
1
i , ω

4
i (s, ω

2
i (s))) is binomially distributed on

di ambulances that start a new treatment, each with proba-
bility r required to transport.

The elapsed service time of ambulances in phases 2 and
4 Let h ∈ H and let Z(h) denote the h-th row of Z. The
evolution ofZ(h) depends on two processes: the completion
of the service time of patients and the arrival of occupied
ambulances. The number of completions at hospital h is
ω3

h(s). Each busy ambulance j completes its service with

probability ρ
j
h defined in Eq. 2, where j ≤ bh.

Thus, in total there are I =
(

bh

ω3
h(s)

)
options, which

we enumerate by the variable i, for the new configuration
of busy ambulances at h. Each of these options has positive
probability. To calculate these probabilities, we need to enu-
merate all options. Define Ubh

(ω3
h(s)) as the set of subsets

of ω3
h(s) integers that can be selected from {1, 2, . . . , bh}.

Moreover, let Ui ∈ Ubh
(ω3

h(s)) be the set of ambulances
that remain busy in the i-th option, where |Ui | = bh−ω3

h(s)

and 1 ≤ i ≤ I . Then we define π(Ui) as the probability that
only the ambulances in Ui remain busy. These probabilities
are calculated by

π(Ui) =
∏

j1∈Ui

(
1 − ρ

j1
h

) ∏

j2∈Ū i

ρ
j2
h ,

where Ū i = {1, 2, . . . , bh}\Ui . This equals the proba-
bility mass function of the Poisson binomial distribution
given in Eq. 1, but here we condition on ω3

h(s). Therefore,∑I
i=1 π(Ui) < 1, so we need to normalize. Let π ′(Ui)

denote the normalized probabilities. That is,

π ′(Ui) = π(Ui)
∑I

i=1 π(Ui)
(4)

for each outcome i, 1 ≤ i ≤ I . Now, we obtain a probability
distribution on the set of outcomes and we sample an option
from this distribution. Assume the sampled outcome is i.
Then we define Z∗(h) as follows:

Z∗(h, j) =
{ −1 if j ∈ Ū i or bh < j,

Z(h, j) + 1 if j ∈ Ui.
(5)

If j ≤ bh and j ∈ Ū i , the j -th ambulance completes its
service and is no longer busy; its elapsed service time is
discarded. In the second case in Eq. 5, the j -th ambulance
does not finish its treatment and thus its elapsed service time
is increased by 1 time unit. Then, we sort Z∗(h) in non-
increasing order to make sure that there are no −1’s in the
first bh − ω3

h(s) entries.
Up to now, we only considered the completions of busy

ambulances. However, occupied ambulances can arrive at
hospital h as well. Note that during the transition from s to
s′, D(h, 1) ambulances arrive at h. Then, b′

h = bh−ω3
h(s)+

D(h, 1) and

Z′(h, j) =
⎧
⎨

⎩

Z∗(h, j) if j ≤ bh − ω3
h(s),

0 if bh − ω3
h(s) < j ≤ b′

h,−1 b′
h < j.

Remark 1 Note that we conditioned on ω3
h(s). Alternatively,

we could have chosen to consider all 2bh options. That is,
we do not condition on ω3

h(s). If we define a probability
distribution on all these 2bh options, the probabilities sum
up to 1. Sampling from this distribution, we immediately
obtain a new configuration and the number of completions
defined as ω3

h(s).

For i ∈ H̄, the evolution is similar, with ω2
i (s) instead of

ω3
i (s) and no D(h, 1)-term.
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Destinations and remaining driving times of ambulances
in phase 3 Let H(h) describe the set of demand loca-
tions for which hospital h is nearest among all hospitals.
Formally,

H(h) = {i ∈ N | l(i, h) ≤ l(i, h′) ∀h′ ∈ H, h �= h},
where l(i, h) denotes the required number of time units to
travel from i to h. Remember that we assume that a patient,
who needs transportation, is always transported to the near-
est hospital. However, it is possible that there exist two
hospitals h1 and h2 for which H(h1) ∩ H(h2) �= ∅, i.e.,
there is a demand location for which these two hospitals are
both closest. We aim to send all occupied ambulances from
this location to only one hospital, so we create a partition of
the node set by using the recursion

H ∗(h) = H(h)\
h−1⋃

j=1

H ∗(j).

That is, if multiple hospitals are nearest, we send all
occupied ambulances to the first hospital according to the
enumeration of the nodes. Then, D(h, t) evolves as follows:

D′(h, t) =
D(h, t + 1) +

∑

i∈H̄
ω4

i

(
s, ω2 (s)

)
1{i∈H ∗(h)}1{l(i,h)=t},

where ω4
i

(
s, ω2 (s)

)
denotes the number of occupied ambu-

lances departing for a hospital from location i. The term
1{i∈H ∗(h)}1{l(i,h)=t} equals 1 if and only if h is the nearest
hospital to location i and the travel time from i to h is t .

2.4 Objectives

In practice, each country, possibly even each ambulance ser-
vice provider within a country, uses its own performance
measure. In this section we demonstrate how to incorporate
different objectives in this model. We do this by introducing
a non-negative continuous penalty or cost functionΦ, which
is a function of the response time solely, with domain R≥0.
Several examples of cost functions are displayed in Fig. 3.

Denote the cost in state s = (x, y, z, Z, D) by c(s). Let
F = ∑N

i=1 fi and X = ∑N
i=1(xi − yi)

+ denote the number
of idle ambulances and the number of requests that are not
served by an ambulance yet, respectively. We solve a Lin-
ear Bottleneck Assignment Problem as described above to
obtain an assignment of idle ambulances to the X waiting
patients. Unless F < X, each waiting request is assigned
and a certain (remaining) response time to each of these
requests is obtained. Denote these (remaining) response
times by Rs

1, R
s
2, . . . , R

s
X for an enumeration of waiting

requests. Note that Rs
i > 0, i = 1, . . . , X. Now we define

c(s) =
X∑

i=1

(Φ(Rs
i ) − Φ(Rs

i − 1)). (6)

Note that the penalty request i generates in total equals
∑R̂s

i

t=1(Φ(t) − Φ(t − 1)) = Φ(R̂s
i ). This is the case if the

ambulance assigned to it is not reassigned to a different
request, where R̂s

i denotes the total response time to request
i. If the ambulance is reassigned, the penalty is slightly dif-
ferent. However, this hardly occurs in practice. If F < X,
that is, there are not enough idle ambulances to respond to
each of the waiting patients, we set the response time to
an unassigned request equal to a large number. After some
time-steps this request will get assigned, but before that it
generates costs as well. The objective is to minimize average
costs over an infinite horizon.

An obvious performance measure is the average response
time to a request. The objective of minimizing the average
response time corresponds to a linear cost function:

Φ(t) = t, t ≥ 0, (7)

which is displayed in Fig. 3a. Each additional time unit of
delay generates the same penalty, since the derivative of this
function is constant. Using this cost function results in a
small average response time, but the variance may be large.
Another commonly used type of performance measure is the
percentage for which a certain maximum allowed response
time Tmax is achieved, given by

Φ(t) =
{
0 t ≤ Tmax,

1 t > Tmax.
(8)

Fig. 3 Examples of penalty functions Φ(t)
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The penalty function corresponding to this performance
measure is displayed in Fig. 3b. However, in using this
penalty function, there is no difference in penalty between
a really short response time and a response time that is
slightly below the maximum allowed one. To overcome this
problem, one could use the penalty function

Φ(t) = 1

1 + e−β(t−Tmax−0.5)
, t ≥ 0, (9)

where β ≥ 0 is a scaling parameter. This function is dis-
played in Fig. 3c. This function is a smooth version of the
function of Eq. 8. The penalty function in Fig. 3d has the
interpretation of minimizing average lateness, and is given
by

Φ(t) =
{
0 t ≤ Tmax,

t − Tmax t > Tmax.
(10)

The function in Fig. 3e, which is suggested by a practi-
tioner in the field, combines the cost functions in Figs. 3a–d
and is given by

Φ(t) =
{

1
γ
(et − 1) 0 ≤ t ≤ Tmax,

t − (Tmax − 1) t > Tmax,
(11)

where γ ≥ 0 is a scaling parameter. At Tmax , the func-
tion makes a jump to ensure that not meeting the maximum
allowed response time is much worse than a response
time that does. For t > Tmax , we use the performance
measure of minimizing average lateness. To differentiate
between response times before Tmax , we use an exponen-
tial cost function. Moreover, other penalty functions, for
instance, penalty functions related to survival of a patient as
considered in [8], can be incorporated.

The state space is high-dimensional; in theory, we have
infinitely many states, since there is no upper bound on the
number of requests per location. However, we can introduce
such an upper bound to obtain a finite number of states,
but even for small-size instances solving the problem, i.e.,
finding the optimal policy, becomes intractable. This is not
only a consequence of the high-dimensional state space. The
large number of actions also plays a role. This number can
be very large for states with few requests, since we allow
ambulances to move to each neighbouring node, not only to
designated nodes. As a consequence, solving this problem
by modelling it as an MDP and applying methods men-
tioned in [15], is not tractable for realistic settings, although
we were able to compute the optimal policy for a simplified
example, c.f. Section 4.2. Therefore, we resort to a heuristic
solution, which is the topic of Section 3.

3 Heuristic solution

In this section we propose a heuristic that computes an
action, given the state of the system. The general idea of
this heuristic is taking the feasible action that minimizes the
expected penalty generated by an arriving request during the
next time step, given the current state of the system. It is a
one step look-ahead method that generates several scenar-
ios that may occur one step later. All of these scenarios are
possible outcomes of the evolution of the system, described
in Section 2, with the action in which each idle ambulance
keeps its position. However, we only generate scenarios in
which at most one request arrives. The reason behind this
is twofold. First, we aim to bound the number of possible
scenarios, since this facilitates the computations. Second, if
Δt is small, it is not very likely that two or more requests
arrive at the same time. The probability that such a scenario
in rural regions occurs is relatively small, and we do not
consider this.

Consider state s = (x, b, f, z, Z, D). We generate all
possible outcomes of the evolutionary process described in
Section 2.3, with the restrictions that

∑
i∈H̄ ω1

i ≤ 1 and
as
i = 0, i ∈ N . Let this set of possible scenarios when

sampling from state s be denoted by S(s) and

sn = (xn, bn, f n, zn, Zn, Dn) ∈ S(s)

denote the n-th scenario, where 1 ≤ n ≤ |S(s)|. Moreover,
P{s′ = sn|s} denotes the probability that scenario n occurs.
Due to the restriction on the number of requests that can
happen at the same time, it holds that

|S(s)|∑

n=1

P{s′ = sn|s} < 1.

For the calculation of P{s′ = sn|s}, we use a slightly
different arrival process of requests, since we know that at
most one request arrives. Before, at demand location i one
request occurred with probability pie

−pi , due to the fact that
the number of arriving requests is Poisson distributed. How-
ever, for the calculation of the scenario probabilities, we use
that at location i exactly one request occurs with probabil-
ity 1 − e−pi . So we add the probability of more than one
incoming request to the probability of exactly one incoming
request.

We will step by step calculate the probability that sce-
nario n occurs for each component of s. Since the processes
that take place are node-wise independent, all these proba-
bilities are given in product-form.

3.1 Scenario probabilities

The number of patients per demand location We first
consider P{x ′ = xn|s} for scenario n. Since the arrival and
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completion process of requests is node-wise independent,
we have

P
{
x′ = xn|s} =

N∏

i=1

P
{
x′
i = xn

i |s} .

As in Section 2.3, we distinguish between h ∈ H and
i ∈ H̄. First, consider h ∈ H. The arrival process is defined
by the occupied ambulances arriving to h. This is deter-
ministically given by D(h, 1). The number of patients in
scenario n for which the treatment is not completed, denoted
by Gn

h at h, is Poisson binomially distributed. That is,

P{Gn
h = gn

h|s} =
∑

U∈Ubh
(gn

h)

∏

j1∈U

(1 − ρ
j1
h )

∏

j2∈Ū

ρ
j2
h ,

where Ubh
(gn

h) is the set of subsets of {1, 2, . . . , bh} with
exactly gn

h elements. Moreover, Ū is the complement of

Ui in {1, 2, . . . , bh} and ρ
j
h is the probability that the j -th

patient at hwill have been treated at the next time step. Now,
we find

P
{
x′
h = xn

h |s} =
A∑

j=0
1{D(h,1)=j}1{j≤xn

h≤xh+j}P
{
Gn

h = xn
h − j |s} .

If D(h, 1) = j patients arrive in one time step at h, then
the total number of patients at h in scenario n is in {j, j +
1, . . . , j + xh}. Moreover, given that j patients arrive and
in scenario n we have xn

h patients at h, we observe that for
xn
h − j patients treatment is not completed.
For i ∈ H̄, the arrival process of requests is not determin-

istic: a request arrives with probability 1 − e−pi . The total
number of patients for which the service on scene is finished
at i is again Poisson binomially distributed. Therefore,

P{x′
i = xn

i |s} =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − e−pi )× if xi − bi ≤ xn
i ,

P
{
Gn

i = bi − (xi − xn
i + 1)|s} + xn

i ≤ xi + 1,
e−piP

{
Gn

i = bi − (xi − xn
i )|s}

e−piP{Gn
i = 0|s} if xn

i = xi − bi,

(1 − e−pi )P
{
Gn

i = bi |s
}

if xn
i = xi + 1,

0 else,

where bi denotes the number of ambulances that are busy
serving a patient, i.e., the number of patients that are treated
by an ambulance. The first part of the sum above considers
the situation in which a request arrives at i, with probability
1 − e−pi . Mind that this arriving request cannot be served
immediately.

The number of ambulances either in phase 1, 2, or 4 per
demand location Now, we consider

P{y′ = yn|s, xn} =
N∏

i=1

P{y′
i = yn

i |s, xn
i }

for scenario n. Note that yn
i depends on xn

i . If in scenario n,
xi − xn

i treatments on scene at location i are finished, and
these ambulances all leave for a hospital, we find that yn

i =
yi − (xi − xn

i ). Moreover, there can be multiple possibilities
for yn

i that correspond to xn
i . This is the case if for a partic-

ular location i ∈ H̄, we have multiple busy ambulances and
at least one but not all of these need to go to a hospital. If,
in scenario n, no requests arrive at i and 0 < xi − xn

i < xi

ambulances finish service on scene, we do not know how
many of these xi−xn

i ambulances need to transport a patient.
Thus,

yi−min{zi, xi−xn
i }≤yn

i ≤ yi−max{0, (xi−xn
i )−(bi−zi)}.

Assume that xn
i is given, i ∈ H̄. We make a distinc-

tion whether no or one extra request is considered at i

in scenario n. If no extra request is considered, then for
xi − xn

i patients the treatment on scene ends. If an addi-
tional request is considered, then xi − xn

i + 1 ambulances
finish their service at location i. Let P{0|s, xn

i } denote the
probability that xn

i does not include an extra request and
let P{1|s, xn

i } denote the probability that it does. Note that
P{0|s, xn

i } + P{1|s, xn
i } = 1.

We distinguish three cases:

1. If xn
i = xi − bi , all busy ambulances complete their

treatment on scene and no request arrives. Hence,
P{0|s, xn

i } = 1.
2. If xn

i = xi + 1, no ambulance completes its treat-
ment on scene and one request arrives. Therefore,
P{1|s, xn

i } = 1.
3. If xi − bi < xn

i < xi + 1, either no or one addi-
tional request is considered. Thus, P{0|s, xn

i } = e−pi

and P{1|s, xn
i } = 1 − e−pi .

Let P{y′
i = yn

i |s, xn
i , 0} and P{y′

i = yn
i |s, xn

i , 1}
denote the probability that no and one extra request
at i is considered in scenario n, respectively.
Then,

P{y′
i = yn

i |s, xn
i } = P{y′

i = yn
i |s, xn

i , 0}P{0|s, xn
i } +

P{y′
i = yn

i |s, xn
i , 1}P{1|s, xn

i }. (12)

First, we will determine P{y′
i = yn

i |s, xn
i , 0}. Of the bi

busy ambulances at location i, xi − xn
i finish their service

on scene. If yn
i ambulances remain at i, then yi − yn

i of the
zi ambulances that have to transport a patient to a hospital
leave location i. The remainder of the xi − xn

i ambulances
that complete their treatment on scene, that is, (xi − xn

i ) −
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(yi − yn
i ) ambulances, finished serving patients that do not

need transportation, of which there are bi − zi . Hence,

P
{
y′
i = yn

i |s, xn
i , 0

} =

(
bi − zi

(xi − xn
i ) − (yi − yn

i )

)(
zi

yi − yn
i

)

(
bi

xi − xn
i

) ,

where we define

(
K

κ

)
= 0 if κ < 0 or κ > K . Note that

xi − xn
i ≤ bi , so the denominator is always positive. If we

consider one extra request, xi − xn
i + 1 ambulances finish

their service on scene. Then, if xi − xn
i + 1 ≤ bi ,

P
{
y′
i = yn

i |s, xn
i , 1

} =

(
bi − zi

(xi − xn
i + 1) − (yi − yn

i )

)(
zi

yi − yn
i

)

(
bi

xi − xn
i + 1

) .

If xi − xn
i + 1 > bi , we define P{y′

i = yn
i |s, xn

i , 1} to be
0. However, if this is the case, P{1|s, xn

i } = 0, so the second
term in Eq. 12 vanishes.

Note that for h ∈ H, yn
h ≥ yh, since we restricted our-

selves to the action in which none of the idle ambulances
leave for a neighbour. However, D(h, 1) occupied ambu-
lances arrive at h in the next time step. Therefore, yn

h =
yh + D(h, 1) for each scenario sn ∈ S(s). Hence,

P{y′
h = yn

h |s} =
{
1 if yn

h = yh + D(h, 1),
0 else.

The number of busy ambulances per demand location
required to transport patients We now compute

P{z′ = zn|s, xn, yn} =
N∏

i=1

P{z′
i = zn|s, xn

i , yn
i }.

We know that P{z′
h = 0|s, xn, yn} = 1. Therefore, let

i ∈ H̄. Consider dn
i defined as before as the number of

ambulances that start a new treatment on scene at i in sce-
nario n. We make a distinction whether no or one extra
request is considered at i in scenario n. Let dn

i (u), u = 0, 1,
denote the same quantity, but conditioned on the number of
additional requests considered. Then, similar to what was
done in the previous section, we find that

dn
i (0) = min{(xi − xn

i ) − (yi − yn
i ) + fi, xi − bi},

using Eq. 3. The first part corresponds to the number of
ambulances that possibly can start a new treatment, while
the second part equals the number of requests not treated by
an ambulance at the moment. The number of ambulances
that complete their treatment on scene is xi − xn

i , of which
yi − yn

i leave for a hospital, occupied by a patient. Also,
all idle ambulances at i can start a new service. Moreover,
there are no incoming requests, so the treatment of xi − bi

patients could be started if there were enough ambulances.

These dn
i (0) ambulances all make a diagnosis whether the

patients they are serving need transportation. Therefore,

zi − (yi − yn
i ) ≤ zn

i ≤ zi − (yi − yn
i ) + dn

i .

The number of patients for which it is decided that they
need transportation is binomially distributed on dn

i (0) trials.
Remember that the probability of transportation is r . Note
that

dn
i (1) = min{(xi − xn

i + 1) − (yi − yn
i ) + fi, 1 + xi − bi}

= dn
i (0) + 1,

again by using Eq. 3. Then, for u = 0, 1:

P{z′
i = zn

i |s, xn
i , yn

i , u} =
⎧
⎪⎪⎨

⎪⎪⎩

(
dn
i (u)

j

)
rj (1 − r)d

n
i (u)−j if zn

i = zi − (yi − yn
i )+j,

0 ≤ j ≤ dn
i (u),

0 else,

and

P
{
z′
i =zn

i |s, xn
i , yn

i

}=
1∑

u=0

P
{
z′
i =zn

i |s, xn
i , yn

i , u
}
P{u|s, xn

i }.

The elapsed service time of ambulances in phases 2 and 4
Computing P{Z′ = Zn|s, xn, yn} requires more work. Let
h ∈ H and denote the h-th row of Z by Z(h). Then

P
{
Z′ =Zn|s, xn, yn

}=
∏

h∈H
P

{
Z′(h) = Zn(h)|s, xn

h, yn
h

}
.

We assume that Z(h) is always sorted in non-increasing
order. That is, the first bh entries of Z(h) denote the elapsed
service times at h, and the rest of the row is −1. However,
if an ambulance ends the treatment of a patient, its past
service time is excluded from Z(h). In other words, there
is an extra −1. But since we assume Z′ is sorted in non-
increasing order, this −1 is placed among the last entries of
Z′(h). Thus, Z′(h, j) does possibly not correspond to the
same ambulance to which Z(h, j) corresponds.

Let Ẑ(h) ∼ Z′(h), where ‘∼’ means that if we sort Ẑ(h)

in non-increasing order, it equals Z′(h). One can check that
‘∼’ indeed defines an equivalence relation. Moreover, if
Ẑ(h) ∼ Z′(h), it holds that

P{Ẑ(h) = Zn(h)|s, xn
h, yn

h} = P{Z′(h) = Zn(h)|s, xn
h, yn

h}.
We divide Zn(h) in three parts. The first part consists of

the first bh entries corresponding to the ambulances that are
treating a patient at h in s. The probability that ambulance j

finishes its treatment is ρ
j
h defined in Eq. 2, where 1 ≤ j ≤

bh. Then, we find that

P{Ẑ(h, j) = Zn(h, j)|s} =
⎧
⎨

⎩

ρ
j
h if Zn(h, j) = −1,

1 − ρ
j
h if Zn(h, j) = Z(h, j) + 1,

0 else.
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Note that we do not condition on xn and yn here since
these determine how many ambulances end their treatments.
Moreover, yn

h − yh occupied ambulances arrive at h. Hence,
xn
h − (yn

h − yh) of the bh ambulances remain busy, while the
rest finishes its treatment. Let (Z(h, j))j≤bh

denote the first
bh entries of Z(h). We denote the number of patients at h

for which the treatment is not completed in scenario n by
Gn

h. If
∑bh

j=1 1{Zn(h,j)>0} = xn
h − (yn

h − yh), then

P{
(
Ẑ (h, j)

)

j≤bh

= (
Zn (h, j)

)
j≤bh

|s, xn
h, yn

h}

=
∏bh

j=1 P

{
Ẑ(h, j) = Zn(h, j)|s

}

P
{
Gn

h = xn
h − (yn

h − yh)
} , (13)

and 0 if this is not the case. The second part corresponds to
the D(h, 1) arriving ambulances at h. Therefore, Ẑ(h, j) =
0 for bh + 1 ≤ j ≤ bh + D(h, 1). Hence,

P

{
Ẑ(h, j) = Zn(h, j)|s, xn

h, yn
h

}
=

{
1 if Zn(h, j) = 0,
0 else.

(14)

In the last part, bh + D(h, 1) + 1 ≤ j ≤ A, and thus
Ẑ(h, j) = −1. Therefore,

P{Ẑ(h, j)=Zn(h, j)|s, xn
h, yn

h}=
{
1 if Zn(h, j) = −1,
0 else.

(15)

For i ∈ H̄, computing P
{
Ẑ(i, j) = Zn(i, j)|s, xn

i , yn
i

}
dif-

fers slightly. The first part, for j ≤ bi , is similar. For the
second part, Eq. 14 holds for bi + 1 ≤ j ≤ bi + dn

i , since
dn
i ambulances start a new treatment. Consequently, Eq. 15

holds for bi + dn
i + 1 ≤ j ≤ A.

Destinations and remaining driving times of ambulances
in phase 3 To compute P{D′ = Dn|s, xn, yn} we again
consider h ∈ H. Then,

P{D′(h) = Dn(h)|s, xn
h, yn

h}

=
∏

h∈H

L∏

t=1

P{D′(h, t) = Dn(h, t)|s, xn
h, yn

h}. (16)

All ambulances that were already driving to h have pro-
gressed one unit distance at the next time, which is the
length of one edge. Remember that for i ∈ H̄, yi − yn

i

ambulances leave for a hospital, all to hospital h for which
i ∈ H ∗(h). Hence, if

Dn(h, t) = D(h, t + 1)+
∑

i∈H̄
(yi − yn

i )1{i∈H ∗(h)}1{l(i,h)=t},

then

P{D′(h, t) = Dn(h, t)|s, xn
h, yn

h} = 1,

and 0 if this is not the case.

Now, we have described all ingredients to compute
P{s′ = sn|s}, the probability that scenario sn =
(xn, yn, zn, Zn, Dn) occurs.

3.2 Response time expectations

Now, we drop the assumption that the action we take is the
action in which none of the ambulances move, except for
those transporting a patient to a hospital. We will combine
each scenario with each feasible action, which will result in
a potential new state. However, we are not really interested
in this potential state obtained from the old state, the sce-
nario and the action. We are more interested in the expected
response time to the additional request in this potential state.
It might be that the response time for the patient belong-
ing to the additional request is zero. This is the case if our
action was such that an ambulance is available at the loca-
tion of this patient. However, if not, this patient is waiting.
Possibly, it is not the only patient waiting. In this situa-
tion, there was already at least one patient waiting, and this
patient is still waiting after performing the action. Although
this patient is still waiting, we assume that an ambulance is
already assigned to it, otherwise, the action is not feasible.
However, this only holds if our state is such that the number
of patients waiting is smaller than or equal to the number of
idle ambulances. We assume that this is the case, because
otherwise the set of feasible actions consists of only one
action and the problem would be trivial.

We aim to compute the minimum expected response time
for the patient belonging to the additional request in the sce-
nario. We consider the following ambulances eligible for
responding to this patient:

(I) The nearest idle unassigned ambulance,
(II) The nearest busy ambulance(s) treating at hospital,
(III) The nearest busy ambulance(s) treating on scene, not

required to transport a patient.

That is, we do not consider ambulances that are transport-
ing patients. These ambulances will be busy for a determin-
istic remaining driving time and a stochastic treatment time
at the hospital. Therefore, they are probably not employ-
able for treating a different request for a long time. For the
same reason, we assume ambulances treating on scene that
know that they have to transport the patient they are serv-
ing, are not eligible. Moreover, we do not consider assigned
ambulances that are driving to a patient. Since we are
uncertain whether they will go to a hospital after the treat-
ment on scene, we do not know how much time they will
be busy.

Formally, let s = (x, y, z, Z, D) be our current state,
where y = f + b, and let as ∈ F(s) be the action we take.
Consider scenario sn. Define

s̃(sn, as) = (x̃(sn, as), ỹ(sn, as), z̃(sn, as), Z̃(sn, as), D̃(sn, as)),
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where we omit the dependence on sn and as in the remain-
der, as follows:

x̃i = bn
i + 1{xn

i =xi+1}, i ∈ N ,

i.e., in x̃ only the patients that are being treated on scene and
the additional waiting patient are considered. That is, we do
not consider the waiting patients that were already present
in s. Moreover,

ỹi = yn
i + as

i − max

{
0, min

αs∈F(s)
αs

i

}
, i ∈ N ,

in other words, only the eligible ambulances mentioned are
considered. Note that if minαs∈F(s) αs

i > 0, each feasi-
ble action dispatches at least one ambulance to location i.
Hence, location i is on the shortest path to a node with a
patient waiting. As mentioned before, we do not consider
ambulances traveling to waiting patients as eligible ones
and therefore exclude them from ỹ. Furthermore, z̃ = zn,
Z̃ = Zn, and D̃ = Dn.

We now compute the expected response time for the
additional patient in s̃ from the eligible ambulances. All eli-
gible ambulances are observed in ỹ. Denote these response
times from the ambulances defined in (I), (II), and (III) by
R(ι)(s̃), where ι ∈ {I,II,III}. We compute E{R(ι)(s̃)} for the
additional patient in s̃.

(I) Computing E{R(I)(s̃)} is easy, since there is no ran-
domness involved. The response time for the patient
waiting from the nearest idle unassigned ambulance
is just the travel time from the current location of
the ambulance to the waiting patient. Assume that the
additional patient in scenario n is at location i. Then,

E

{
R(I) (s̃)

}
= min

j :ỹj >x̃j

l(j, i),

using that if for location j it holds that ỹj > x̃j , we
have an idle unassigned ambulance at j .

(II) Now we will compute E
{
R(II)(s̃)

}
. Of all hospi-

tals, we consider the nearest hospital with at least
one busy ambulance. Possibly, there are more busy
ambulances at this hospital. The expected response
time from one of these ambulances consists of two
parts: the expected time until at least one ambulance
finishes its treatment and a deterministic travel time
from the hospital to the additional patient.

Assume that the patient waiting in s̃ is at location
i. Moreover, suppose that hospital h is the nearest
hospital with at least one busy ambulance. Assume
that b̃h ambulances are busy at h. The elapsed service
time of ambulance j at hospital h is given by Z̃(h, j).
For each of these b̃h ambulances, we can compute the

probabilities that they finish their treatment in exactly
t time units from now. That is, we compute

ρ
j
h(t) = P

{
B

j
h = Z̃(h, j) + t |Bj

h > Z̃(h, j)
}

, t ≥ 1.

Now, define T (h) to be the number of time steps it
takes for at least one busy ambulance at h to complete
its service. Then,

P{T (h) = 1|Z̃(h)} = 1 −
bh∏

j=1

(
1 − ρ

j
h (1)

)
,

which is the probability that at least one ambulance
ends its treatment after exactly one time unit from
now. We can generalize this to t time units as follows:

P{T (h) = t |Z̃(h)}

=
⎛

⎝1 −
bh∏

j=1

(
1 − ρ

j
h (t)

)
⎞

⎠ ×
(

1 −
t−1∑

τ=1

P{T (h) = τ |Z̃(h)}
)

,

t ≥ 1, (17)

where the last part corresponds to the probability
that none of the busy ambulances at h finished its
treatment before time t . Now, we compute

E{T (h)|Z̃(h)} =
∞∑

t=1

t P{T (h) = t |Z̃(h)}, (18)

which is the expected time until an ambulance at
h ends its service if the system is in state s̃. The
expected response time to the additional patient from
ambulance(s) at the nearest hospital with at least one
busy ambulance is given by

E{R(II)(s̃)} = E{T (h)|Z̃(h)} + l(h, i), (19)

where we assume that the additional patient in sce-
nario n is at location i and h = argmin{l(i, h) :
b̃h > 0, h ∈ H}, i.e., the nearest hospital with at least
one busy ambulance. If no such h exists, we define
E{R(II)(s̃)} = ∞.

(III) Also E{R(III)(s̃)} consists of two parts: the expected
time until an ambulance finishes its treatment and
a deterministic travel time. The computation of
E{R(III)(s̃)} is similar to E{R(II)(s̃)}, and we
assume E{R(III)(s̃)} = ∞ if there is no ambulance
not required to transport, while treating a patient on
scene.

Given s̃, we compute the shortest expected response time
to the additional patient in sn that is possible from the eli-
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gible ambulances. Let this quantity be defined by E{R(s̃)}.
Then,

E{R(s̃)} = min
ι∈{I,II,III}E

{
R(ι)(s̃)

}
.

This quantity equals zero if and only if at the location of the
additional patient there is an idle unassigned ambulance as
well. If this is not the case, E{R(s̃)} > 0.

3.3 Action selection

Consider state s and F(s), which is the set of feasi-
ble actions computed by one of the two methods treated
in Section 2.2. For each feasible action, we compute the
penalty of the weighted average shortest expected response
time to an arriving request, using the penalty function Φ

introduced in Section 2.4. For action as , denote this quantity
by V (as). We find

V (as) =
|S(s)|∑

n=1

Φ(E{R(s̃(sn, as))})P{s′ = sn|s}, (20)

where E{R(s̃)} and P{s′ = sn|s} are described in
Sections 3.2 and 3.1, respectively. Note that E{R(s̃)} is not
necessarily integer, so for this reason Φ needs to be contin-
uous. We compute Eq. 20 for each action in F(s). Then, we
select the action as ∈ F(s) for which

as = argmin
αs∈F(s)

V (αs).

3.4 Complexity

Now, we will briefly discuss the complexity of computing
V (αs) for each αs ∈ F(s). Equation 20 states that the num-
ber of computation steps equals |S(s)|×|F(s)|. The number
of feasible actions is inversely proportional to the number
of scenarios. Many scenarios can occur only if many ambu-
lances are busy. Then, we have few feasible actions since
we force these busy ambulances to continue their service.
However, if we have no patients at all, there are very few
scenarios, but a lot of feasible actions.

Assume that the system is in state s. Let F denote the
number of idle ambulances in state s and X the number of
requests that are not served by an ambulance yet in state
s. Remember that we only generate scenarios with exactly
one additional request. This request can occur at each node
i ∈ H̄. Each of the A − F busy ambulances can finish its
service, so we find

|S(s)| = 2A−F |H̄|.
The number of feasible actions is harder to compute, due
to the indistinguishability of ambulances and the differ-
ent outdegrees of nodes. Therefore, we will give a lower
bound. Note that (F − X)+ ambulances are not assigned to

a request. These ambulances can go to a neighbouring node
or they can hold their positions. Hence,

|F(s)| ≥
(
min
i∈N

deg−(i) + 1

)(F−X)+

,

where deg−(i) denotes the outdegree of node i. We observe
that both quantities S(s) and F(s) are exponential in the
number of busy and the number of idle unassigned ambu-
lances, respectively. Calculation of the shortest expected
response times and the scenario probabilities, as described
in Sections 3.2 and 3.1, respectively, can be done in polyno-
mial time.

We end this section with the discussion of two theoretical
weaknesses of the heuristic described above: situations in
which the heuristic might perform poorly. A first limitation
of the method is that it considers only the nearest of the eli-
gible ambulances: an ambulance driving from one town to
another is not observed by the heuristic if in both towns an
ambulance is present. A solution in which this ambulance is
observed might result in a better policy. However, this only
plays a role if the probability of having more busy ambu-
lances per town is large, which is typically not the case in
the rural regions we observe.

Moreover, another possible weakness of this heuristic is
that only an ambulance configuration in the ‘neighborhood’
of the current configuration can be attained in the next time
step. This is a consequence of the fact that ambulances can-
not traverse more than one edge per time unit. Therefore,
the best action selected might not lead closer to the global
optimal ambulance configuration. This is illustrated in the
following small example.

Consider a chain with five equidistant nodes, where
nodes 1 and 5 represent points of relatively high demand.
The demand in the middle nodes 2, 3 and 4 is very low, as is
typically the case in rural regions. Moreover, assume that the
demand in node 5 is significantly higher than the demand
in node 1. We use the the penalty function of Fig. 3a, with
Tmax = 1 and assume we have only one ambulance. The
global optimal solution is to locate the ambulance at node
4, since it covers nodes 3, 4 and the high demand of node
5. However, if the ambulance is at node 1, the ambulance
ends up in node 2. This is a consequence of the fact that the
action of traversing the edge between nodes 2 and 3 is clas-
sified as a bad action, because if the ambulance is in node 3,
then neither node 1 nor node 5 is covered. That is, instead of
the global optimal configuration, a local optimal configura-
tion is attained. However, instead of a weakness one can also
interpret this as a strength, because attaining a local optimal
configuration involves less driving. In order to investigate
this, we compare the heuristic to a policy that focuses on
attaining the global optimal configuration: the compliance
table policy.
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Two other assumptions that could impact the perfor-
mance of the algorithm are the limitation of the scenarios
with only one additional incident and the one-step looka-
head. Relaxing these assumptions seriously increases the
computation time and the question arises whether this is
beneficial. This is probably not the case, since we focus
on rural regions and as a consequence, the probability that
two consecutive requests arrive in a short period of time,
is relatively small. Results in Section 4.2, in which we
compare the heuristic with the optimal policy for a small
example, show that the heuristic performs near-optimal for
the performance indicator related to the chosen penalty
function.

4 Numerical results

The heuristic described in the previous section computes
for each state an action in which the expected penalty is
minimized. We call the policy obtained by performing the
heuristic the heuristic policy. We compare it to a different
policy: the compliance table policy, which we will explain
in the next subsection.

4.1 Compliance tables

Compliance table policies are commonly used in practice
for dynamic ambulance management (see [2, 10]). Each row
in a compliance table shows, for a given number of idle
ambulances, the desired locations for these ambulances. If
these ambulances are at their desired location, the system
is in compliance. The number of idle ambulances changes
when a request arrives or when an ambulance becomes idle
again. Then, each idle ambulance gets assigned to a possible
new location. This assignment problem is solved by meth-
ods explained in Section 2.2. That is, in state s we first solve
an assignment problem to assign ambulances to requests.
After that, we solve a second assignment problem for the
unassigned ambulances and desired locations. In our com-
putations, we used LBAP for both assignment problems.
Moreover, we assume that each ambulance immediately
starts driving to its desired location.

We want to compare the heuristic described in Section 3
to a good compliance table with respect to the chosen
penalty function. After all, for different penalty functions,
compliance tables may differ. We assume that no more than
one ambulance is allocated to a single location, because
our setting is a rural region with a small number of ambu-
lances. The arrival rate of incidents is low, and thus it is very
unlikely that a second incident occurs just after the first in
a certain area. With this assumption, we can generate com-
pliance tables by solving a static optimization problem for
each level independently: the p-median problem.

Note that there is no cohesion between the compliance
table levels, since the problem is solved for each level
independently. Therefore, compliance table k aims for the
optimal global configuration with k available ambulances,
not a near-optimal one that can be attained faster in order to
be in compliance earlier. However, by the same reasoning as
before, the time between consecutive incidents is large. As
a consequence, it is justified to assume that there is enough
time to attain the optimal configuration for this number
of available ambulances before a next incident occurs. In
short, given that no more than one ambulance is placed at
a single location and each level is computed independent of
each other, this procedure computes the optimal compliance
table.

In the p-median problem, which was formulated as an
integer linear program in [16], one aims to find the loca-
tion of a fixed number of facilities so as to minimize the
weighted average distance. In the context of dynamic ambu-
lance management, this translates to finding the location of
the idle ambulances in such a way that the weighted sum
over each node of the distance from the node to the near-
est ambulance is minimized. Remember that l(i, j) is the
length of the shortest path between nodes i and j , and p

is the parameter of the Poisson distribution that models the
number of arriving requests. However, we do not use the
shortest-path lengths itself, but the penalties corresponding
to these to incorporate the penalty function of interest. We
minimize

min
∑

i∈N

∑

j∈N
piΦ(l(i, j))Yij , (21)

where Yij is a binary decision variable: Yij = 1 if and only if
a request at node i is served by an ambulance at node j , i.e.,
if the ambulance at j is the closest ambulance to node i. In
addition, we introduce a binary decision variable Xj which
equals one if an ambulance is placed at location j . Assume
that there are F idle ambulances. Thus, we compute the F -
th row of the compliance table. We minimize Eq. 21 under
the following constraints:

∑

j∈N
Yij = 1, i ∈ N

∑

j∈N
Xj = F,

Yij ≤ Xj , i, j ∈ N
Yij , Xj ∈ {0, 1}.

The first constraint states that each request has exactly one
ambulance that is nearest. We need to find the desired
locations of F ambulances, which is given by the second
constraint. The third constraint induces that an ambulance at
j can serve a request at node i only if j is a desired location.
For each value of F , 1 ≤ F ≤ A, we solve this p-median
problem.
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Fig. 4 a Spatial distribution of requests. b Simplified graph. c Graph model of Flevoland

4.2 Optimal solution

To gain insights in the performance of both the heuristic and
the compliance table policy, we first compare them to the
optimal policy in a simplified instance. We apply these three
policies to an EMS system belonging to a small rural region
in The Netherlands: Flevoland. A map of this region, as well
as the spatial distribution of requests, is displayed in Fig. 4a.
We set Δt equal to 15 minutes and model the region by the
graph in Fig. 4b with 11 nodes and 15 edges. On average,
there are 28.6 requests per day. There are six nodes with a
non-zero arrival parameter, which varies between 1.2 and
15.1 requests per day. We consider an instance with four
ambulances.

We assume that none of the patients has to be transported
to a hospital. The treatment time on scene follows a geomet-
ric distribution with parameter 0.3. This results in a mean
treatment time on scene of 50 minutes. These two simplifi-
cations greatly reduce the size of the state space, as now a
state is described by the first two components only: (x, y).
In order to compute the optimal policy, we truncate the state
space by assuming that

∑N
i=1 xi ≤ X̄ = 5. This results in a

state space of 630,630 18-dimensional states. This number
is computed by

X̄∑

i=0

(
N ′ + i − 1

N ′ − 1

)(
A + N − 1

N − 1

)
,

in which there are N ′ ≤ N nodes with a non-zero arrival
parameter, A ambulances and N nodes in total. Here, X̄ =
5, N ′ = 6, A = 4 and N = 12.

We model the problem as an MDP for the linear penalty
function Φ(t) = t , and solve it using Value Iteration,
cf. [15]. We use LBAP to compute the set of feasible actions.

The average size of the set of feasible actions is 1.9 actions.
There are many states in which we only allow one action,
namely the states with 4 or 5 requests in total. The maximum
number of feasible actions in a state is 321, which obviously
was a state without any request. The computed compliance
table is displayed in Table 4.

We simulate one million time steps. Results on late
arrivals, response times and driving ambulances, as well as
their 95 % confidence bounds, are displayed in Table 5. The
fraction of late arrivals represents the fraction of requests
for which a maximum allowed response time of 15 min-
utes (1 time unit) is exceeded. In the computation of the
mean number of driving ambulances, ambulances traveling
to a call, transporting a patient to a hospital and ambulances
relocating themselves are included.

As expected, the optimal policy outperforms the other
two policies on the performance measure related to the
penalty function, although the differences between the mean
response time induced by the optimal and heuristic policy
are really close and their 95 % confidence bounds over-
lap almost entirely. As a consequence, on this performance
criterion the heuristic policy is a near-optimal policy. This
shows that the two main assumptions stated at the end of
Section 3.4, namely the limitation to scenarios with only
one additional request and the one-step lookahead, have a

Table 4 Compliance table simplified example

Level Compliance table

1 1

2 1-2

3 1-2-9

4 1-2-4-6
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Table 5 Results simplified example

Performance statistics Optimal Heuristic Compliance table

Mean 95% Bound Mean 95 % Bound Mean 95 % Bound

Fraction late arrivals 1.68 % [1.55 %,1.65 %] 1.95 % [1.90 %,2.00 %] 2.22 % [2.16 %,2.27 %]

Response time 0.0587 [0.0568,0.0607] 0.0590 [0.0571,0.0609] 0.0630 [0.0611,0.0649]

Driving ambulances 0.6280 [0.6259,0.6301] 0.7232 [0.7213,0.7251] 0.9305 [0.9281,0.9328]

very small impact on the performance only. Relaxing these
assumptions will seriously increase the computation time
while there is little room for improvement.

The optimal policy performs better on the two other indi-
cators as well. It is also worth noting that the performance
gap between the optimal and heuristic policy is smaller
than the gap between the heuristic and the compliance table
policy for all performance measures.

If we compare the results of the heuristic and the com-
pliance table policy in Table 5, we observe that the heuristic
policy outperforms the compliance table on any of the
three performance criteria. The difference on mean num-
ber of driving ambulances is explained by the fact that
there is a drift to node 1 in the compliance table, because
node 1 has the highest call arrival rate. Together with the
fact that in this node a hospital is present, many ambu-
lances become free from service here. The heuristic takes
this into account by considering ambulances transferring
a patient at a hospital as eligible ones as well. In con-
trast, the compliance table of Table 4 sends an ambulance
from elsewhere to node 1 each time the ambulance present
in node 1 is dispatched, which happens relatively much
due to the high arrival rate. This results in a large amount
of driving.

4.3 Experimental setup

We apply both the heuristic policy and the compliance table
policy to a more realistic setting of Flevoland. We set Δt

equal to 5 minutes, and we model the region by the graph in
Fig. 4c, with 57 nodes and 74 edges. This time of 5 minutes
corresponds to a road distance of 5 kilometers in the towns
and to 8 kilometers in the rural areas. There are two hospi-
tals in the region, one in the city in the south-west and one
in the western city in the middle.

We use historical data to estimate the several distributions
needed. The node-dependent arrival parameter of requests
varies between 0.12 and 4.3 requests per day. On aver-
age, there are 24.2 requests per day. For the on-scene time
we estimate a geometric distribution with a mean on scene
time of approximately 10 minutes, and a standard devia-
tion of 7 minutes. The treatment time in hospital follows a
Discrete Weibull distribution. The mass-function of the Dis-

crete Weibull distribution with parameters μ and k is given
by

P{X = x} = (1 − μ)x
k − (1 − μ)(x+1)k , x = 0, 1, 2, . . . ,

Table 6 Compliance tables

Penalty function Level Compliance table

Equation 7 1 29
2 1-42
3 1-11-22
4 1-2-14-22
5 1-2-12-14-22
6 1-2-12-14-17-22
7 1-2-12-13-14-17-22

Equation 8 1 51
2 28-51
3 16-22-28
4 2-16-21-28
5 1-2-12-16-21
6 1-2-4-12-18-24
7 1-2-4-7-12-18-24

Equation 9 1 51
2 28-51
3 22-28-43
4 1-22-31-43
5 1-12-14-22-43
6 1-2-12-13-22-26
7 1-2-12-13-18-45-49

Equation 10 1 29
2 28-51
3 16-21-28
4 2-22-28-51
5 1-2-12-16-22
6 1-2-6-12-22-37
7 1-2-6-7-12-16-22

Equation 11 1 29

2 28-51
3 22-28-43
4 1-12-22-43
5 1-2-12-14-22
6 1-2-12-14-17-22
7 1-2-12-13-14-17-22
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Table 7 Main results for 4 ambulances

Penalty function Performance statistics Heuristic Compliance table

Mean 95% Confidence bound Mean 95% Confidence bound

Equation 7 Fraction late arrivals 12.44 % [12.19 %,12.70 %] 14.08 % [13.82 %,14.33 %]

Response time (in minutes) 7.7265 [7.6525,7.8005] 7.8325 [7.7610,7.9040]

Driving ambulances 0.5309 [0.5273,0.5345] 0.8260 [0.8213,0.8307]

Penalty 1.5453 [1.5305,1.5601] 1.5665 [1.5522,1.5808]

Encountered unique states 94,924

Equation 8 Fraction late arrivals 10.64 % [10.47 %,10.81 %] 7.78 % [7.52 %,7.98 %]

Response time (in minutes) 8.0350 [7.9780,8.0920] 10.707 [10.643,10.772]

Driving ambulances 0.5851 [0.5806,0.5896] 0.9132 [0.9073,0.9190]

Penalty 0.1064 [0.1047,0.1081] 0.0775 [0.0752,0.0797]

Encountered unique states 104,865

Equation 9 Fraction late arrivals 8.24 % [8.04 %,8.45 %] 8.73 % [8.54 %,8.92 %]

Response time (in minutes) 9.1170 [9.0525,9.1815] 10.062 [9.9920,10.132]

Driving ambulances 0.6537 [0.6495,0.6578] 0.9521 [0.9461,0.9581]

Penalty 0.0831 [0.0811,0.0852] 0.0881 [0.0862,0.0900]

Encountered unique states 111,002

Equation 10 Fraction late arrivals 7.59 % [7.35 %,7.82 %] 8.61 % [8.13 %,8.69 %]

Response time (in minutes) 8.8175 [8.7430,8.8925] 10.875 [10.816,10.934]

Driving ambulances 0.7098 [0.7039,0.7157] 0.9848 [0.9779,0.9918]

Penalty 0.1659 [0.1589,0.1729] 0.1948 [0.1877,0.2018]

Encountered unique states 177,961

Equation 11 Fraction late arrivals 7.70 % [7.55 %,7.84 %] 8.67 % [8.49 %,8.85 %]

Response time (in minutes) 8.8350 [8.7760,8.8945] 9.2115 [9.1615,9.2650]

Driving ambulances 0.7106 [0.7054,0.7158] 0.9710 [0.9649,0.9772]

Penalty 0.2758 [0.2690,0.2825] 0.2908 [0.2838,0.2978]

Encountered unique states 104,398

and is treated in detail in [17]. Here, μ = 0.1 and k = 2,
which results in a mean treatment time at the hospital of
approximately 16 minutes and a standard deviation of 7.3
minutes. Moreover, 75 % of the patients needs to visit a hos-
pital, so r = 0.75. We consider cases with four ambulances
and with seven ambulances, the latter being realistic for this
region.

4.4 Main results

We compute compliance tables for the five different penalty
functions considered in Eqs. 7–11 in Section 2.4, where
we take β = 10, γ = 200 and Tmax = 3 time
units (15 minutes). These functions are displayed in Fig. 3
as well. The computed compliance tables are displayed
in Table 6. Note that for Eq. 7 and 8, computing the

compliance tables is equivalent to solving A classical p-
median problems, proposed in [6], and A MCLP-problems,
respectively.

We again simulate one million of time steps and observe
from the simulations values for four different performance
indicators, and their 95 % confidence bounds. We use LBAP
to compute the set of feasible actions. As was stated at
the end of Section 2.2, we incorporate the penalty func-
tion in this assignment problem. Results are displayed in
Tables 7 and 8. In these tables we also include the number
of encountered c

4.5 Discussion

By observing Tables 7 and 8, several interesting observa-
tions can be done. In terms of penalty, the penalty function
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minimizing the number of late arrivals of Eq. 8 combined
withA = 4 is the only penalty function for which the heuris-
tic policy performs worse than the compliance table policy.
This is probably due to the fact that the heuristic policy only
considers ambulance configurations that can be attained in
one time step. As a consequence of the small differentia-
tion in penalty for several response times, many actions are
classified as equally good. This is also reflected in the fact
that although Eq. 8 focuses on minimizing the fraction of
late arrivals, it is dominated on this criterion by three out
of the four other penalty functions in the case with four
ambulances. Specifically, the penalty function of Eq. 9, that
hardly differs from the one in Eq. 8, performs much better
on the fraction of late arrivals for the heuristic policy. These
phenomena do not occur in the case with seven ambulances.
After all, the action set is much larger in this case. Besides,
with seven ambulances there are more opportunities to cover

low demand points as well. Hence, there is more diversity
in the classification of actions.

In general, the heuristic policy performs better than the
compliance table policies on the mean response time for
each of the considered penalty functions and cases, although
the difference is not significant for the penalty function of
Eq. 7. This is explained by the fact that the heuristic focuses
on the shortest expected response time from the eligible
ambulances. In contrast to minimizing the fraction of late
arrivals, the penalty function that focuses on minimizing the
average response time, performs best on that criterion for
both policies. The largest gap in terms of response times
between the two policies is observed for the penalty function
of Eq. 8, in favour of the heuristic policy.

Comparing the fraction of late arrivals and the mean
response times for each penalty function in the heuristic pol-
icy in Table 7, one might note that in the majority of the

Table 8 Main results for 7 ambulances

Penalty function Performance statistics Heuristic Compliance table

Mean 95% Confidence bound Mean 95 % Confidence bound

Equation 7 Fraction late arrivals 1.96 % [1.46 %,2.46 %] 2.51 % [2.05 %,2.96 %]

Response time (in minutes) 3.5960 [3.3989,3.7931] 3.7236 [3.5734,3.8737]

Driving ambulances 0.3944 [0.3749,0.4140] 0.8564 [0.8313,0.8815]

Penalty 0.7192 [0.6798,0.7586] 0.7447 [0.7147,0.7747]

Encountered unique states 138,109

Equation 8 Fraction late arrivals 1.18 % [0.82 %,1.55 %] 1.91 % [1.65 %,2.18 %]

Response time (in minutes) 3.6884 [3.5160,3.8608] 6.642 [6.5310,6.7530]

Driving ambulances 0.4147 [0.4012,0.4283] 0.9325 [0.9093,0.9557]

Penalty 0.0118 [0.0082,0.0155] 0.0192 [0.0165,0.0218]

Encountered unique states 162,703

Equation 9 Fraction late arrivals 1.21 % [0.93 %,1.49 %] 1.82 % [1.55 %,2.09 %]

Response time (in minutes) 3.7744 [3.6364,3.9125] 5.6210 [5.5400,5.7020]

Driving ambulances 0.4508 [0.4373,0.4644] 1.5192 [1.4949,1.5436]

Penalty 0.0122 [0.0094,0.0150] 0.0184 [0.0157,0.0211]

Encountered unique states 252,091

Equation 10 Fraction late arrivals 1.14 % [0.86 %,1.41 %] 1.95 % [1.59 %,2.31 %]

Response time (in minutes) 3.5967 [3.4657,3.7278] 5.7025 [5.5840,5.8210]

Driving ambulances 0.4259 [0.4140,0.4378] 1.1518 [1.1294,1.1741]

Penalty 0.0183 [0.0124,0.0243] 0.0296 [0.0238,0.0354]

Encountered unique states 241,431

EEquation 11 Fraction late arrivals 1.15 % [0.86 %,1.44 %] 1.93 % [1.68 %,2.19 %]

Response time (in minutes) 3.6441 [3.5264,3.7617] 3.7811 [3.6812,3.8811]

Driving ambulances 0.4348 [0.4213,0.4482] 0.8972 [0.8777,0.9167]

Penalty 0.0384 [0.0303,0.0465] 0.0576 [0.0513,0.0640]

Encountered unique states 245,671
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cases a shorter mean response time leads to an increase of
the fraction of late arrivals. This is also the case for the
compliance table policy both in Tables 7 and 8. This nega-
tive correlation is in contrast to what one intuitively might
expect. Note that this phenomenon is most clearly in Table 7
in the compliance table policies for penalty functions (7)
and (8). This is explained by the following reason. Equa-
tion (7) locates the ambulances close to the city centers of
the two largest towns. As a consequence, some minor towns
can not be reached within 15 minutes. Since approximately
56 % of the incidents occurs in the two largest towns, espe-
cially in the city centers, this results in small response times
to the areas of high demand. However, the response times
to the areas of low demand are much larger, but this is only
marginally noted in the mean. In contrast, in the compliance
table corresponding to penalty function (8) places ambu-
lances in such a way that the demand that be reached within
15 minutes is maximized. Therefore, ambulances are fur-
ther away from the areas of high demand, yielding a larger
mean response time. Exception on this phenomenon is the
heuristic policy in the case with seven ambulances. How-
ever, even in this case, the penalty function of Eq. 7 induces
the smallest response time, but the largest fraction of late
arrivals.

Another interesting point is the number of driving ambu-
lances. For each penalty function and case, the heuristic
policy greatly outperforms the compliance table policy on
this performance indicator. This is caused by the fact that
using compliance tables, one aims to attain a ambulance
configuration only taking the number of available ambu-
lances into account. In contrast, since ambulances can only
traverse at most one edge per time unit, the heuristic com-
putes a good local configuration. As a consequence, less
driving is involved in using the heuristic policy. Moreover,
comparing Tables 7 and 8, an increase in number of ambu-
lances gives rise to a decrease of driving ambulances for
the heuristic policy. In contrast, in the compliance table pol-
icy, more ambulances induce more driving in general, the
penalty function of Eq. 11 being the only exception.

If we compare Tables 7 and 8, we observe larger dif-
ferences in patient-based results in the case with four
ambulances. For instance, the fractions of late arrivals for
the penalty functions of Eqs. 8–11 in the case with seven
ambulances are very close to each other. In contrast, these
differences in the case with four ambulances are much
larger. Hence, a small change in setting, (e.g., penalty func-
tion), may result in a large change in performance in such a
case. This underlines what was stated in Section 1.2: if one
has access to only a small number of ambulances, one has
to be more careful about where to relocate ambulances to.

Apart from the first penalty function in the case with four
ambulances, the heuristic outperforms the compliance table
policy on each of the performance indicators. Therefore, it

seems that attaining a good local ambulance configuration
that can be reached quickly, performs better than attain-
ing the desired configuration of ambulances supplied by the
compliance table, which serves as a global configuration for
this number of available ambulances.

5 Summary and conclusion

In this paper, we proposed a Dynamic Ambulance Man-
agement model for rural regions with a limited number of
ambulances, formulated as a discrete-time Markov decision
process. At each time step, a relocation policy specifies,
for each ambulance that is not busy, whether to move the
ambulance to an adjacent node. A policy is sought that
minimizes a general penalty function which is nondecreas-
ing in the response time to a request. The function can
be constructed to match the performance objectives of the
system being studied. Computation of the optimal pol-
icy in realistic settings is impractical, because the MDP
has a high-dimensional state space. To address this, we
developed a one-step look-ahead heuristic that, at each
time step, relocates ambulances in order to minimize the
expected response time for a possible call arriving in the
next time step. We ended with a numerical comparison
of the performance of the heuristic policy to the compli-
ance table policy. We observed that for the majority of
the studied penalty functions, the heuristic policy outper-
formed the compliance table policy on most performance
indicators.

5.1 Further research

As was pointed out in Section 3.4, the number of scenarios
is exponential in the number of busy ambulances. This could
be addressed by sampling a number of scenarios, instead
of generating a set of possible scenarios. In addition, this
would allow us to consider scenarios in which more than one
request occurs within a single time step. It would be interest-
ing to investigate how different sample sizes influence both
the performance and the computation time.

A possible way to restrict the number of feasible actions,
which is exponential in the number of idle unassigned
ambulances, is to restrict the number of relocations. An
investigation on the impact of the maximum number of
relocations would be an interesting research topic. How-
ever, this is of more importance in a more heavily loaded
region than the one we studied in this paper. After all, if
the number of ambulances is large, it probably makes no
sense to relocate each ambulance to a neighbouring node,
since the performance gain is probably very small. More-
over, many ambulance relocations possibly have an impact
on the ambulance crew’s motivation. Related to this topic
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is a possible distinction between nodes that correspond to
base locations and other nodes, where only at base locations
ambulances have the option to hold their position.

The number of extensions that can be made to improve
the realism of this model is large. We list some of these
possible extensions. In further research we could incorpo-
rate stochastic travel times, multiple levels of priority of
requests, multiple ambulance types, parameters that vary
over time or a penalty on redeployment actions. The heuris-
tic presented in this paper forms a good basis for these
extensions as they add more complexity to the model.
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