
Health Care Manag Sci
DOI 10.1007/s10729-016-9368-0

Dynamic ambulance dispatching: is the closest-idle policy
always optimal?

C. J. Jagtenberg1 · S. Bhulai1,2 ·R. D. van der Mei1,2

Received: 11 October 2015 / Accepted: 3 May 2016
© Springer Science+Business Media New York 2016

Abstract We address the problem of ambulance dispatch-
ing, in which we must decide which ambulance to send to
an incident in real time. In practice, it is commonly believed
that the ‘closest idle ambulance’ rule is near-optimal and
it is used throughout most literature. In this paper, we
present alternatives to the classical closest idle ambulance
rule. Most ambulance providers as well as researchers focus
on minimizing the fraction of arrivals later than a certain
threshold time, and we show that significant improvements
can be obtained by our alternative policies. The first alter-
native is based on a Markov decision problem (MDP),
that models more than just the number of idle vehicles,
while remaining computationally tractable for reasonably-
sized ambulance fleets. Second, we propose a heuristic for
ambulance dispatching that can handle regions with large
numbers of ambulances. Our main focus is on minimizing
the fraction of arrivals later than a certain threshold time,
but we show that with a small adaptation our MDP can also
be used to minimize the average response time. We evaluate
our policies by simulating a large emergency medical ser-
vices region in the Netherlands. For this region, we show
that our heuristic reduces the fraction of late arrivals by 18
% compared to the ‘closest idle’ benchmark policy. A draw-
back is that this heuristic increases the average response
time (for this problem instance with 37 %). Therefore, we
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do not claim that our heuristic is practically preferable over
the closest-idle method. However, our result sheds new light
on the popular belief that the closest idle dispatch policy is
near-optimal when minimizing the fraction of late arrivals.
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1 Introduction

Recently, Emergency Medical Services (EMS) providers
have been under pressure to improve their performance.
This development has led to a wide interest in ambulance
planning and logistics. One issue that plays a central role
is to maximize the fraction of incidents that are reached
within a certain threshold time. To reach this goal without
increasing the budget, solutions can be offered by operations
research.

1.1 Previous work

A large number of models are available for ambulance plan-
ning. First of all, there are models that deal with planning
on a strategic level. Typically, such models determine the
best locations for ambulance bases [7], and they sometimes
also determine the number of vehicles that should be posi-
tioned at each base [9, 11]. The majority of these solutions
use mixed integer linear programming models to solve the
problem. Second, there is previous work on operational
ambulance planning. This seems to attract a wider range of
solution methods, such as Markov chains [1], simulation-
based optimization [5] and approximate dynamic program-
ming [16].
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The variety of solution methods for operational ambu-
lance planning might be due to the difficulty of the problem.
In dynamic ambulance management, the point of issue is
to make decisions based on real-time information on the
state of all vehicles and incidents. This makes for a com-
plex issue, and systems quickly become intractable when
the number of vehicles grows. Especially in urban areas, the
situation can be considered extremely difficult because mul-
tiple vehicles operate closely to one another and therefore
cannot be treated independently.

The vast majority of the papers on dynamic ambulance
management have focused on how to redeploy idle vehicles,
(e.g., [1, 16, 23]). Perhaps in order not to overcomplicate
things, they assume a basic dispatch rule: whenever an
incident occurs, they decide to send the ambulance that is
closest to the incident (in time). Although this is a common
dispatch policy, it was already shown to be suboptimal in
1972 [6]. Regardless, most authors make this assumption
without much discussion or justification; for example, the
authors of [16] claim that it is an accurate enough represen-
tation of reality; however, they do not address the question
of whether it is an optimal choice with respect to the objec-
tive (which is the fraction of incidents that is reached within
the threshold time). The authors of [1] do not address the
assumption at all.

The ‘closest idle ambulance’ dispatch policy appears to
be so natural that justification is unnecessary, but one should
not overlook the possibility to change the dispatch policy
in order to improve the objective. The authors of [23] rec-
ognize that this is a possibility. Nevertheless, they focus on
relocating the vehicles when they become idle, instead of
when they are dispatched. It should be clear that an EMS
system can benefit from an improved dispatch policy, but
since the topic has been underexposed in current literature, it
is still unknown howmuch benefit can be expected. Further-
more, a dispatch policy can be combined with a relocation
rule to realize even larger improvements in the objective
value.

Few papers have discussed dispatch rules other than
sending the closest idle ambulance. One exception is the
paper of [5], in which the authors divide the region into sep-
arate sub-regions, and each sub-region has a list of stations
from which a vehicle should preferably depart. Another
example is [21], which compares two different dispatch
rules; the so-called ‘closest-ambulance response’ versus
‘regionalized response’. Under regionalized response, each
ambulance serves its own region first, even if it is temporar-
ily outside its region. Only if it is unavailable, the closest
idle ambulance is sent. However, note that both examples
still ignore important information: the outcome does not
depend on whether some regions remain uncovered after
the dispatch is performed. Alternatively, a choice could
be made such that the remaining idle vehicles are in a

good position with respect to expected incidents in the near
future. This ensures that future incidents get a larger likeli-
hood of being reached in time, thereby increasing the total
expected fraction of incidents that can be reached within the
time threshold.

There are a few authors who have usedMDPs to solve the
dispatch problem. In [13] the authors define costs in their
MDP, but they do not discuss the meaning or interpretation
of this. In their numerical work, they use randomly drawn
instances – and although it is not mentioned explicitly, it
appears also these costs are drawn at random. Furthermore,
they do not compare their solution with the closest-idle
method. The authors of [2] maximize patient survivability.
We conclude that neither [13] nor [2] analyzes the fraction
of late arrivals.

Building on [2], there is a series of papers that consid-
ers a dispatch problem with prioritized patients [17, 18].
The main idea is to allow increased response times for the
non-urgent patients, such that shorter response times can
be realized for the urgent patients. Although this approach
makes sense from a practical point of view, it is not the
goal of our paper. Instead, we assume that all patients have
high priority, and ask the question how to dispatch vehicles
such that the fraction of late arrivals is maximized. Fur-
thermore, [17] and [18] do not discuss the scalability of
their approach, and include numerical work for just 4 vehi-
cles and 4 demand locations. Note that this is significantly
smaller than the regions we have in mind: the Netherlands
is divided into 24 EMS regions, varying in size between 40
and 456 postal codes.

One paper explicitly opposes the idea of dispatching an
ambulance other than the closest idle one [10]. However, the
authors do not show that the closest idle method is optimal;
in fact, they only show that the dispatch rule used in prac-
tice performs worse than the ‘closest idle ambulance rule’
would. Based on their description, the reason for the poor
performance in practice seems to be a computer-aided dis-
patch system that is not accurate enough to determine the
true positions of the vehicles. We emphasize that accurate
location information is crucial in order to determine the best
ambulance to send to an incident. Throughout this paper,
we will assume that such information is present. In many
regions, such as Utrecht in the Netherlands, a monitoring
tool is available that refreshes the exact GPS coordinates of
each vehicle every 30 seconds. This seems accurate enough
for our purposes.

1.2 Our contribution

The main goal of this paper is to better understand the
ambulance dispatch process. In particular, we question the
often-made assumption that one cannot do much better than
the ‘closest idle’ dispatch method. Thereto, we search for
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sensible dispatch rules other than the classical closest idle
ambulance policy. We present different dispatch rules that
outperform the closest idle policy for different objectives.

First, we propose a Markov Decision Problem (MDP) for
ambulance dispatching, where the state space is described
by an optional incident location and the availability of the
ambulances. We mainly focus on minimizing the fraction
of arrivals later than a target time – a typical objective in
ambulance planning. However, we show that with a small
change, our model can also minimize the average response
time.

Second, we propose a heuristic for ambulance dispatch-
ing that behaves similar to the policy obtained from the
MDP. However, it is able to determine more accurately what
the response time would be when dispatching a driving
ambulance. Furthermore, the heuristic can be computed in
polynomial time, which allows us to apply it to regions with
a large number of vehicles.

We validate our policies by a discrete-event simulation
model of an urban EMS region. These simulations indicate
that our proposed dispatch heuristic can decrease the frac-
tion of late arrivals by as much as 18 % relatively compared
to the closest idle ambulance dispatch method. Our result
sheds new light on the popular belief that deviating from
the closest idle policy cannot greatly improve the objective.
In the field of ambulance management, an improvement
of 18 % is considered large; however, it should be noted
that there is a tradeoff: our policy significantly increases
the average response time. Although we do not advise all
EMS managers to immediately discard the closest idle dis-
patch method, we do show that the typical argument – that it
would not lead to large improvements in the fraction of late
arrivals – should be changed.

The rest of this paper is structured as follows. In
Section 2, we give a formal problem definition. In Section 3,
we present our proposed solution using Markov Decision
Processes (MDPs), followed by a solution based on a scal-
able heuristic in Section 4. We show our results for a small,
intuitive region in Section 6 and in a realistic case study for
the area of Utrecht in Sections 7 and 8. We end with our
conclusions in Section 9.

2 Problem formulation

Define the set V as the set of locations at which incidents
can occur. Note that these demand locations are modeled
as a set of discrete points. Incidents at locations in V occur
according to a Poisson process with rate λ.1 Let di be the
fraction of the demand rate λ that occurs at node i, i ∈ V .

1We will discretize the arrival process in the next section.

Then, on a smaller scale, incidents occur at node i with rate
λdi .

Let A be the set of ambulances, and Aidle ⊆ A the set of
currently idle ambulances. When an incident has occurred,
we require an idle ambulance to immediately drive to the
scene of the incident. The decision which ambulance to send
has to be made at the moment we learn about the incident,
and is the main question of interest in this paper. When
an incident occurs and there are no idle ambulances, the
call goes to a first-come first-serve queue. Note that when
an incident occurs and an ambulance is available, it is not
allowed to postpone the dispatch. Although in some prac-
tical situations dispatchers may queue a low priority call
when the number of idle servers is small, in this paper
we will focus on the most urgent incidents, which require
service immediately.

Our objectives are formulated in terms of response times:
the time between an incident and the arrival of an ambu-
lance. In practice, incidents have the requirement that an
ambulance must be present within T time units. Therefore,
we want to minimize the fraction of incidents for which
the response time is larger than T . Another observation
is that we want response times to be short, regardless of
whether they are smaller or greater than T . We translate this
into a separate objective, which is to minimize the average
response time. We assume that the travel time τi,j between
two nodes i, j ∈ V is deterministic, and known in advance.

Sending an ambulance to an incident is followed by a
chain of events, most of which are random. When an ambu-
lance arrives at the incident scene, it provides service for a
certain random time τon scene. Then it is decided whether the
patient needs transport to a hospital. If not, the ambulance
immediately becomes idle. Otherwise, the ambulance drives
to the nearest hospital in the set H ⊆ V . Upon arrival, the
patient is transferred to the emergency department, taking a
random time τhospital , after which the ambulance becomes
idle.

An ambulance that becomes idle may be dispatched to
another incident immediately. Alternatively, it may return to
its base location. Throughout this paper, we will assume that
we are dealing with a static ambulance system, i.e., each
ambulance has a fixed, given base and may not drive to a dif-
ferent base. However, it is possible that multiple ambulances
have the same base location. We denote the base location of
ambulance a by Wa , for a ∈ A.

An overview of the notation can be found in Table 1.

3 Solution method: Markov decision process

We model the ambulance dispatch problem as a discrete-
time Markov Decision Process (MDP). In each state s

(further defined in Section 3.1), we must choose an action
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Table 1 Notation

V The set of demand locations.

H The set of hospital locations, H ⊆ V .

A The set of ambulances.

Aidle The set of idle ambulances.

Wa The base location for ambulance a, a ∈ A, Wa ∈ V .

T The time threshold.

λ incident rate.

di The fraction of demand in i, i ∈ V .

τi,j The driving time between i and j

with siren turned on, i, j ∈ V .

from the set of allowed actions:As ⊆ A, which we describe
in Section 3.2. The process evolves in time according to
transition probabilities that depend on the chosen actions,
as described in Section 3.4. We are dealing with an infinite
planning horizon, and our goal is to maximize the average
reward. We eventually find our solution by performing value
iteration [20]. Our choice to use value iteration was moti-
vated by it being simple in implementation, and sufficient
to answer our central question on the closest idle policy.

In our model, we assume that at most one incident occurs
within a time step. Therefore, the smaller the time steps,
the more accurate the model will be. However, there is a
tradeoff, as small time steps will increase the computation
time. Throughout this paper, we take time steps to be one
minute, which balances the accuracy and the computation
time.

3.1 State space

When designing a state space, it is important to store the
most crucial information from the system in the states.
However, when dealing with complex problems – such as
real-time ambulance planning – it is tempting to store so
much information, that the state space becomes intractable.
This would lead to the so-called curse of dimensional-
ity [3], which makes it impossible to solve the problem with
well-known Markov Decision Problem (MDP) approaches.

As discussed before, there is little previous work on how
to choose a good dispatch policy, but to some extent we
can draw parallels with work on dynamic ambulance rede-
ployment (which relocates idle vehicles): some researchers
overcome the problem of an intractable state space by turn-
ing to Approximate Dynamic Programming, which allows
for an elaborate state space to be solved approximately [16].
Alternatively, some researchers choose a rather limited state
space, for example, by describing a state merely by the
number of idle vehicles [1].

For our purpose, i.e., to determine which ambulance to
send, it is important to know whether the ambulance we
might send will arrive within T time units. Therefore, it is
crucial to know where the incident took place. Furthermore,
we require some knowledge of where the idle ambulances
are. Clearly, storing only the number of idle vehicles would
be insufficient. However, storing the location of each idle
ambulance would already lead to an intractable state space
for practical purposes. Instead, we can benefit from the fact
that we are trying to improve a static solution. In a static
solution, the home base for any ambulance is known in
advance. Note that an idle ambulance must be either residing
at its base location, or travelling towards the base. Hence,
if we allow for an inaccuracy in the location of idle ambu-
lances, in the sense that we use their destination rather than
their actual location, their location does not need to be part
of the state. Merely keeping track of a simple status for
each ambulance (idle or not), now suffices. Thereto, let stati
denote this status for ambulance i:

stati ∈ {idle, busy}, ∀i ∈ A.

This leads us to a state s, defined as follows.

(Locacc, stat1, stat2, . . . , stat|A|), (1)

where Locacc denotes the location of the incident that has
just occurred in the last time step. In case no incident
occurred in the last time step, we denote this by a dummy
location, hence

Locacc ∈ V ∪ {0}.
This leads to a state space of size (|V | + 1)2|A|.
For future reference, let Locacc(s) denote the location of

the incidents that have occurred in the previous time step
when the system is in state s. For ease of notation, we
introduce boolean variables idlei(s) and busyi(s) to denote
whether stati is idle or busy in state s, ∀i ∈ A, ∀s ∈ S.

3.2 Policy definition

In general, a policy � can be defined as a mapping from the
set of states to a set of actions: S → A. In our specific case,
we defineA = A∪{0}; that is if �(s) = a, for a ∈ A, ambu-
lance a should be sent to the incident that has just occurred
at Locacc(s). Action 0 may be interpreted as sending no
ambulance at all (this is typically the choice when no inci-
dent occurred in the last time step, or when no ambulance is
available).

In a certain state, not all actions are necessarily allowed.
Denote the set of feasible actions in state s as

As ⊆ A, ∀s ∈ S.
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For example, it is not possible to send an ambulance that is
already busy with another incident. This implies

busya(s) → a /∈ As , ∀a ∈ A, ∀s ∈ S. (2)

Furthermore, let us require that when an incident has taken
place, we must always send an ambulance – if any are idle.

∃a ∈ A : idlea(s) ∧ Locacc(s) 	= 0 → 0 /∈ As , ∀s ∈ S.

(3)

Moreover, if no incident has occurred, we may simplify our
MDP by requiring that we do not send an ambulance:

Locacc(s) = 0 → As = {0}, ∀s ∈ S. (4)

All other actions from A that are not restricted by
Eqs. 2–4 are feasible. This completely defines the allowed
action space for each state.

3.3 Rewards

In ambulance planning practice, a typical goal is to mini-
mize the fraction of late arrivals. Since our decisions have
no influence on the number of incidents, this is equivalent to
minimizing the number of late arrivals. An alternative goal
might be to minimize average response times. Our MDP
approach may serve either of these objectives, simply by
changing the reward function.

Define R(s, a) as the reward received when choosing
action a in state s, ∀s ∈ S, ∀a ∈ As . Note that in this def-
inition, the reward does not depend on the next state. Keep
in mind that our goal is to maximize the average rewards.

3.3.1 Fraction of late arrivals

To minimize the fraction of late arrivals, i.e., the fraction of
incidents for which the response time is greater than T , we
define the following rewards:

R(s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if Locacc(s) = 0;
−N if Locacc(s) 	= 0 ∧ a = 0,

i.e., no idle ambulances;
0 if Locacc(s) 	= 0 ∧ a ∈ A

∧τWa, Locacc(s) ≤ T ;
−1 otherwise.

Here N is a number that is typically greater than 1. We
discuss the choice of this parameter further in Section 3.6

3.3.2 Average response time

To minimize the average response time, one may use the
same MDP model, except with a different reward function.

Let M be a large enough number, typically such that M >

τi,j , ∀i, j ∈ V . Then we can define the rewards as follows.

R(s, a) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Locacc(s) = 0;
−M if Locacc(s) 	= 0 ∧ a = 0, ;

i.e., no idle ambulances;
−τWa, Locacc(s) if Locacc(s) 	= 0 ∧ a ∈ A.

3.4 Transition probabilities

Denote the probability of moving from state s to s′, given
that action a was chosen, as:

pa(s, s′), ∀a ∈ As , ∀s, s′ ∈ S.

To compute the transition probabilities, note that the loca-
tion of the next incident is independent of the set of idle
ambulances. Thereto, pa(s, s′) can be defined as a product
of two probabilities. We write pa(s, s′) = P1(s

′) ·P a
2 (s, s′),

which stands for the probability that an incident happened
at a specific location (P1), and the probability that specific
ambulances became available (P2), respectively.

First of all, let us define P1(s
′). Since incidents occur

according to a Poisson process, we can use the arrival rate
λ (the probability of an arrival anywhere in the region per
discrete time step) to obtain

P1(s
′) =

{
λ · dLocacc(s′) if Locacc(s

′) ∈ V ;
1 − λ else.

Note that the occurrence of incidents does not depend on the
previous state (s).

Secondly, we need to model the process of ambulances
that become busy or idle. For tractability, we will define
our transition probabilities as if ambulances become idle
according to a geometric distribution. In reality – and in
our verification of the model – this is not the case, but
since our objective is the long term average cost, this mod-
elling choice leads to the same performance. Let us define a
parameter r ∈ [0, 1], which represents the rate at which an
ambulance becomes idle. We discuss the parameter choice
for r in Section 3.6.

We include a special definition if an ambulance was just
dispatched. In such a case, the ambulance cannot be idle in
the next time step. Furthermore, ambulances do not become
busy, unless they have just been dispatched.

We now define

P a
2 (s, s′) = �

|A|
i=1P

a
change

(
stati(s), stati(s

′)
)
, ∀s, s′ ∈ S,
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where

P a
change

(
stati (s), stati (s

′)
) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a = i ∧ busyi(s
′);

0 if a = i ∧ idlei(s
′);

r if a 	= i ∧ busyi(s)

∧ idlei(s
′);

1 − r if a 	= i ∧ busyi(s)
∧ busyi(s

′);
0 if a 	= i ∧ idlei(s)

∧ busyi(s
′);

1 a 	= i ∧ idlei(s)

∧ idlei(s
′).

(5)

3.5 Value iteration

Now that we have defined the states, actions, rewards and
transition probabilities, we can perform value iteration to
solve the MDP. Value iteration, also known as backward
induction, calculates a value V (s) for each state s ∈ S. The
optimal policy, i.e., the best action to take in each state, is
the action that maximizes the expected value of the resulting
state s′.

V (s) is calculated iteratively, starting with an arbitrary
value V0(s) ∀s ∈ S. (In our case, we start with V0(s) =
0 ∀s ∈ S.) In each iteration i, one computes the values Vi(s)

given Vi−1(s) ∀s ∈ S as follows.

Vi(s) := max
a∈As

{
∑

s′
pa(s, s′)(R(s, a) + Vi−1(s

′))} (6)

This is known as the ‘Bellman equation’ [4].
When the span of Vi , i.e., maxVi(s) − minVi(s), con-

verges, the left-hand side becomes equal to the right-hand
side in Eq. 6, except for an additive constant. After this con-
vergence is reached, the value of V (s) is equal to Vi(s) ∀s ∈
S. Note that the MDP we defined is unichain. Hence, value
iteration is guaranteed to converge.

Small regions, such as the region in Section 6, allow us
to reach convergence and accurately determine the value
function V . However, for larger regions (such as Utrecht in
Section 7), value iteration simply takes too much time to
reach convergence. Instead, we use the non-converged val-
ues Vi and analyze the performance of the corresponding
policy.

3.6 Parameter choices

Recall that −N is the reward given in the situation that there
occurs an incident while all ambulances are busy, in the
MDP that attempts to minimize the fraction of late arrivals.
IfN > 1, this implies that when all ambulances are busy, the
rewards are smaller than when we send an ambulance that
takes longer than T to arrive. This is in agreement with the
general idea that having no ambulances available is a very
bad situation. One might be tempted to make the reward for

the only possible action (a = 0) in these states even smaller
than we did, in order to influence the optimal actions in
other states: the purpose would be to steer the process away
from states with no ambulances available. However, note
that this would not be useful, because our actions do not
affect how often we end up in a state where all ambulances
are busy. This is merely determined by the outcome of an
external process, i.e., an unfortunate sequence of incidents.
Therefore, an extremely small reward for action a = 0 in
states where all ambulances are busy, would only blur the
differences between rewards for actions in other states. (In
our numerical experiments, we use N = 5.)

For the MDP that minimizes the average response times,
the reward given in the situation that there occurs an inci-
dent while all ambulances are busy is given by −M . In our
numerical experiments, we useM = 15 for the small region,
and M = 30 for the region Utrecht. (In our implementation,
time steps are equal to minutes.)

Recall that r is the rate at which an ambulance becomes
idle. We should set it in such a way, that the expected dura-
tion is equal to the average in practice. So this includes an
average travel time, and an average time spent on scene. We
add an average driving time to a hospital to that, as well
as a realistic hospital drop off time – both multiplied with
the probability that a patient needs to go to the hospital.
For Dutch ambulances, this results in an average of roughly
38 mins to become available after departing to an incident.
For the geometric distribution, we know that the maximum
likelihood estimate r̂ is given by one divided by the sample
mean. In this case, r̂ = 1

38 ≈ 0.0263, which we use as the
value for r in our numerical experiments.

4 Solution method: dynamic MEXCLP heuristic
for dispatching

In this section we describe a dispatch heuristic that is easy
to implement and scales well. It can be computed in real
time, for any number of vehicles and ambulance bases that
is likely to occur in practice. The method is inspired by
dynamic MEXCLP, a.k.a. ‘DMEXCLP’ [12], a heuristic for
real-time redeployment of ambulances.

The general idea is that, at any time, we can calculate the
coverage provided by the currently idle ambulances. This
results in a number that indicates how well we can serve the
incidents that might occur in the (near) future.

More specifically, coverage is defined as in theMEXCLP
model [9], that we will describe next.

4.1 Coverage according to the MEXCLP model

In this section we briefly describe the objective of the
well-known MEXCLP model. MEXCLP was originally
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designed to optimize the distribution of a limited number,
say |A|, ambulances over a set of possible base locations W .
Each ambulance is modeled to be unavailable with a pre-
determined probability q, called the busy fraction. Consider
a node i ∈ V that is within range of k ambulances. The
travel times τi,j (i, j ∈ V ) are assumed to be deterministic,
which allow us to straightforwardly determine this number
k. If we let di be the demand at node i, the expected cov-
ered demand of this vertex is Ek = di(1−qk). Note that the
marginal contribution of the kth ambulance to this expected
value isEk−Ek−1 = di(1−q)qk−1. Furthermore, the model
uses binary variables yik that are equal to 1 if and only if
vertex i ∈ V is within range of at least k ambulances. The
objective of the MEXCLP model can now be written as:

Maximize
∑

i∈V

|A|∑

k=1

di(1 − q)qk−1yik.

In [9], the author adds several constraints to ensure that the
variables yik are set in a feasible manner. For our purpose,
we do not need these constraints, as we shall determine how
many ambulances are within reach of our demand points –
the equivalent of yik – in a different way.

4.2 Applying MEXCLP to the dispatch process

The dispatch problem requires us to decide which (idle)
ambulance to send, at the moment an incident occurs.
Thereto, we compute themarginal coverage that each ambu-
lance provides for the region. The ambulance that provides
the smallest marginal coverage, is the best choice for dis-
patch, in terms of remaining coverage for future incidents.
However, this does not incorporate the desire to reach the
current incident within target time T . We propose to com-
bine the two objectives – reaching the incident in time and
remaining a well-covered region – by always sending an
ambulance that will reach the incident in time, if possible.
This still leaves a certain amount of freedom in determining
which particular ambulance to send.

The computations require information about the location
of the (idle) ambulances. Denote this by Loc(a) for all a ∈
Aidle. We evaluate two different options for Loc(a), that we
describe next.

Using real positions of ambulances is the most accurate
information one could use. In practice, Loc(a) may be
determined by GPS signals. For simulation purposes, the
current position of the ambulance while driving may be
determined using, e.g., interpolation between the origin and
destination, taking into account the travel speed. In either
case, the location should be rounded to the nearest point in
V , because travel times τi,j are only known between any
i, j ∈ V .

Using destinations of ambulances is a far simpler, albeit
somewhat inaccurate alternative. The simplicity, however,
does make it a practical and accessible option. When deter-
mining Loc(a), simply take the destination of ambulance
a. This is a good option, e.g., when no – or not enough
– GPS information is available. Furthermore, this solution
has a certain fairness in comparison to the MDP solution in
Section 3, which is also required to make decisions based
on the destinations of ambulances.

Let A+
idle denote the set of idle ambulances that are able

to reach the incident in time, i.e., the ambulances a ∈ Aidle

for which τLoc(a),i ≤ T (where i denotes the incident
location). Note that this definition depends on how Loc(a)

was chosen: when based on the true locations of ambu-
lances, the set A+

idle can be determined correctly. When
one uses the destinations of ambulances, the decision of
which ambulances are in A+

idle may contain errors: some
ambulances may in fact be closer to the incident than they
appear (because they are driving towards a base that is fur-
ther away from the incident), or the other way around they
may in reality be further away from the incident than Loca

suggests.
Similarly, let A−

idle denote the set of idle ambulances
that cannot reach the incident in time, which implies that
A+

idle ∪ A−
idle = Aidle. Then, if A+

idle 	= ∅, we decide to
dispatch a vehicle that will arrive within the threshold time,
but chosen such that the coverage provided by the remaining
idle vehicles is as large as possible:

arg min
x∈A+

idle

∑

i∈V

di(1 − q)qk(i,Aidle)−1 · 1τLoc(x),i≤T . (7)

Otherwise, simply dispatch a vehicle such that the coverage
provided by the remaining idle vehicles is as large as possi-
ble (without requiring an arrival within the threshold time):

arg min
x∈A−

idle

∑

i∈V

di(1 − q)qk(i,Aidle)−1 · 1τLoc(x),i≤T . (8)

Note that in our notation, k is a function of i and Aidle.
k(i, Aidle) represents the number of idle ambulances that
are currently within reach of vertex i. After choosing the
locations of ambulances that one wishes to use – the real
locations or the destinations – k(i, Aidle) can be counted in
a straightforward manner.

We have seen that the way one measures the location of
ambulances – either the true location or just the destina-
tion – affects the definition of the set A+

idle (resp. A−
idle),

and thereby also the number k(i, Aidle) in Eq. 8. There
is, however, one more aspect that is affected by the loca-
tion of the ambulance: this is incorporated in 1τLoc(x),i≤T in
Eq. 8. Hence, using the destination of ambulances results
in a small error in three different places. It is reasonable
to assume that using the destinations of ambulances per-
forms worse than using the real locations, but the magnitude



C. J. Jagtenberg et al.

of the performance difference is hard to oversee before-
hand. Instead, we will show the performance difference in
retrospect in our numerical examples in Sections 6, 7 and 8.

5 Simulation model

In order to compare the results of different policies, we mea-
sure their performance using simulation. All results men-
tioned in this paper, including the fraction of late arrivals
and the average response times, are estimates based on
the observed response times in our simulation model. This
section describes the details and assumptions of the simula-
tion model, and in particular highlight how they differ from
the MDP.

The reason for using simulation is that the EMS pro-
cess is rather complex. The aforementioned MDP does not
capture all details and is therefore not able to estimate the
performance accurately. We will next describe the two main
differences between the MDP and the simulation.

One reason why the MDP is not entirely accurate, is
that incidents that occur while no vehicles are available are
‘lost’. This assumption is made to improve scalability: it
avoids the need to expand the state with a queue of calls that
are waiting for vehicles to become idle. However, counting
these calls as lost is technically incorrect for two reasons:
first of all, an ambulance might become available shortly
after, and it is – although unlikely – still possible that it
arrives within the time threshold. Second, a lost call in the
MDP is not counted in the total workload, which leads to
an overestimation in the number of idle vehicles in the time
steps shortly after the lost call. In our simulation, we place
the incidents that arrive while all vehicles are busy in a first
come first serve queue. Ambulances that become idle are
immediately dispatched to a waiting incident (if any), or else
head back to their home base.

Our simulations are also able to handle the rather com-
plex course of events that take place when an ambulance
is dispatched while on the road. Such vehicles are typically
returning to the home base, already idle and ready to serve
an incoming call. Our simulation computes the current loca-
tion of the vehicle based on an interpolation between the
origin (typically a hospital where a patient was just dropped
off) and the destination (the vehicle’s home base) of the
trip, taking into account the total time of that particular trip.
The MDP is unable to distinguish between idle vehicles on
the road and vehicles at the base. Adding on-the-road infor-
mation to the MDP would require a state definition that
includes (at least) the drop off location of the last patient.
This alone would already lead to a state space explosion
and therefore we do not recommend solving this for realistic
instances.

In our simulation, τonscene is exponentially distributed
with an expectation of 12 mins. τhospital is drawn from a
Weibull distribution with an expectation of 15 mins. More
specifically, it has shape parameter 1.5 and scale parameter
18 (in minutes). We state these distributions for complete-
ness, however, numerical experiments (done by the authors
in ongoing work) indicate that the performance of dynamic
ambulance management does not depend much on the cho-
sen distribution for τonscene or τhospital , and we conjecture
that the same holds for the dispatching problem. In our sim-
ulations, patients need hospital treatment with probability
0.8. This value was estimated from Dutch data [8]. (Similar
numbers (78 % nation-wide) can be deduced from [19].)

Note that τonscene or τhospital and the probability that a
patient needs hospital treatment are not explicitly part of our
solution methods. Instead, they subtly affect the busy frac-
tion q (for the heuristic) or the transition probabilities with
rate r (for the MDP).

6 Results: a motivating example

In this section, we consider a small region for which there
is some intuition with respect to the best dispatch policy.
We show that the intuitive dispatch policy that minimizes
the fraction of late arrivals, is in fact obtained by both
our solution methods (based on MDP and MEXCLP). We
will address the alternative objective, i.e., minimizing the
average response times, as well.

Figure 1 shows a toy example for demonstrative pur-
poses. We let calls arrive according to a Poisson process
with on average one incident per 45 mins. Furthermore,
incidents occur w.p. 0.1 in Town 1, and w.p. 0.9 in Town
2. Eighty percent of all incidents require transport to the
hospital, which is located in Town 2.

6.1 Fraction of late arrivals

This section deals with minimizing the fraction of response
times greater than 12 mins. A quick analysis of the region
in Fig. 1 leads to the observation that the ‘closest idle’ dis-
patch strategy must be suboptimal. In order to serve as many
incidents as possible within 12 mins, it is evident that the
optimal dispatch strategy should be as follows: when an

Fig. 1 A graph representation of the region. The numbers on the edges
represent the driving times in minutes with siren turned on. W1 and W2
represent the base locations of ambulance 1 and 2, respectively. Inci-
dents occur only in Town 1 and Town 2. The only hospital is located
in Town 2
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Fig. 2 Box plots showing the fraction of late arrivals as observed in a
simulation of the small region. This figure shows the performance of
the MDP solution that attempts to minimize the fraction of late arrivals
(after value iteration converged). The performance is compared with
the ‘closest idle’ dispatch policy. Each policy was evaluated with 20
runs of 5,000 simulated hours. The red plus-signs indicate outliers

incident occurs in Town 2, send ambulance 2 (if available).
When an incident occurs in Town 1, send ambulance 1 (if
available). Both the MDP solution that attempts to minimize
the fraction of late arrivals (with, e.g., N = 5), as well as the
dispatch heuristic based on MEXCLP, lead to this policy.

The response times obtained by simulating the closest-
idle policy and MDP (frac) solution are compared in Fig. 2.
This clearly shows that the MDP solution outperforms the
closest idle method, as was expected.

Note that in our model, it is mandatory to send an ambu-
lance, if at least one is idle. Furthermore, our proposed
solutions do not base their decision on the locations of idle
ambulances (instead, we pretend they are at their destina-
tion, which is fixed for each ambulance). Therefore, in this
example with 2 ambulances, one can describe a dispatch
policy completely by defining which ambulance to send
when both are idle, for each possible incident location. For
an overview of the various policies, see Table 2. As shown in
this table, the MDP solution minimizing the fraction of late
arrivals – in this particular instance – comes down to exactly

Table 2 An overview of the behaviour of various dispatch policies
when both ambulances are idle

solution method Locacc = T own1 Locacc = T own2

MEXCLP(dest) W1 W2

MDP(frac) W1 W2

MDP(avg) W1 W1

The value in the table represents the base from which an ambulance
should be dispatched

the same policy as the MEXCLP dispatch heuristic using
destinations of vehicles. Therefore, the results mentioned
for either of those two policies, also hold for the other. For
this problem instance the closest-idle dispatch method turns
out to be roughly equivalent with the MDP solution mini-
mizing the average response time (except for the fact that
the MDP can only use destinations of vehicles, whereas
closest-idle uses their true positions).

6.2 Average response time

We used the MDP method described in Section 3.3.2 to
obtain a policy that should minimize the average response
time, let us denote this policy by MDP(avg). We evaluate
the performance of the obtained policy, again by simulating
the EMS activities in the region. These simulations show
that the MDP solution indeed reduces the average response
time significantly, compared to the policy that minimizes
the fraction of late arrivals (MDP(frac)) – see Fig. 3.

7 Results: Region Utrecht with 8 vehicles

In this section, we validate our redeployment method on a
realistic problem instance.

7.1 The region

As in [12], we modeled the region of Utrecht, which is
hosted by one of the largest ambulance providers of the
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Fig. 3 Box plots showing the average response times in seconds, as
observed in simulations of the small region. This figure shows the
performance of the MDP solution that attempts to minimize the frac-
tion of late arrivals versus the MDP solution that attempts to minimize
the average response time (after value iteration has converged). Each
policy was evaluated with 20 runs of 5,000 simulated hours. The red
plus-signs indicate outliers
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Table 3 Parameter choices for our implementation of the region of
Utrecht

parameter magnitude choice

A 8 Small enough for a tractable MDP.

λ 1/15 mins A reasonable number of incidents

for 8 ambulances.

Wa (a ∈ A) Postal codes 3582, 3645, 3958, 3582,

3991, 3447, 3811, 3417.

V 217 4 digit postal codes.

H 10 The hospitals within the region in 2013,

excluding private clinics.

τi,j Driving times as estimated by the RIVM.

di Fraction of inhabitants as known in 2009.

Netherlands. Note that this is not one city, but the county
of Utrecht: an area which contains several cities, includ-
ing Amersfoort and Utrecht city. However, the whole region
may – by international standards – be considered an urban
area. For the parameters used in the implementation, see
Table 3. This is a region with multiple hospitals, and for
simplicity we assume that the patient is always transported
to the nearest hospital, if necessary.

Note that we used the fraction of inhabitants as our
choice for di . In reality, the fraction of demand could dif-
fer from the fraction of inhabitants. However, the number
of inhabitants is known with great accuracy, and this is
a straightforward way to obtain a realistic setting. Fur-
thermore, the analysis of robust optimization for uncertain
ambulance demand in [14] indicates that we are likely
to find good solutions, even if we make mistakes in our
estimates for di .

In the Netherlands, the time target for the highest prior-
ity emergency calls is 15 mins. Usually, 3 mins are reserved

for answering the call, therefore we choose to run our sim-
ulations with T = 12 mins. The driving times for EMS
vehicles between any two nodes in V were estimated by
the Dutch National Institute for Public Health and the Envi-
ronment (RIVM) in 2009. The RIVM uses measurements
of a full year of ambulance movements for this, and dif-
ferentiates between road type, region and time of day. The
driving times we use are estimates we for ambulance move-
ments with the siren turned on, at the time of day with
most traffic congestion. Therefore, they could be considered
a pessimistic or safe approximation. Note that these travel
times are deterministic. For ambulance movements with-
out siren, e.g., when repositioning, we used 0.9 times the
speed with siren. The locations we used as home bases are
depicted in Fig. 4, and correspond to actual base locations
in the EMS region.

The number of vehicles used in our implementation is
such that value iteration is still tractable. For this problem
instance, one iteration takes approximately 70 mins to cal-
culate. Although this seems to be rather long, we emphasize
these calculations take place in a preparatory phase. We per-
form 21 iterations after which the current solution is used as
policy. After these calculations, the final policy constitutes a
lookup table for which online decision making can be done
without additional computation time.

7.2 Analysis of the MDP solution

In this section, we highlight and explain some features of the
MDP solution that attempts to minimize the fraction of late
arrivals for the region Utrecht. In particular, we will focus
on the states for which the MDP solution differs from the
closest idle policy.

The output of the MDP is a table with the incident loca-
tion, the status of the different ambulances (idle or not), and
the optimal action. This output is a rather large table that

Fig. 4 The home bases for each
of the 8 ambulances in region
Utrecht. The chosen locations
currently exist as base locations
operated by the ambulance
provider for this region. Note
that in this figure, two vehicles
are stationed at the base in the
center of Utrecht
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does not easily reveal insight into the optimal policy. There-
fore, we used classification and regression trees (CART
trees) on the table to find structure in the form of a deci-
sion tree. We used random forests to create the decision tree,
since it is known that a basic CART has poor predictive
performance (see Chapter 14 of [15]). Another option is to
used bagging (i.e., bootstrap aggregation) trees. This effec-
tively generates several bootstrap samples of the original
table, trains CART trees on the sample, and finally averages
the results. While bagging trees reduces the variance in the
prediction, random forests also cancel any correlation struc-
ture in the generation of the trees that may present while
bagging.

The outcome that describes the best policy after 21 value
iterations is a decision tree that divides the state space into
five regions, see Fig. 5. If an incident occurs in the red
region, then in most cases the closest idle ambulance is dis-
patched. If the ambulance at base 4 is idle, this is even more
often the case than when it is busy. The location of the base
stations plays an essential role in the final decision tree.

For some nodes, whether or not the closest idle ambu-
lance should be dispatched depends even more heavily on
which ambulances are idle. For example, if an incident
occurs in the dark blue region while the ambulance at base
6 is idle, the MDP tells us to almost always (in more than 98
% of the states) send the closest idle ambulance. Conversely,
if the ambulance at base 6 is busy, it is better to strategically
choose a different ambulance instead of simply applying the
closest idle policy.

This may be intuitively understood as follows. Generally
speaking, the dark blue nodes can be reached within the
time threshold from base 6, and only base 6. Therefore, if
the ambulance at base 6 is busy, incidents on the dark blue
nodes will not be reached in time. For those dark blue nodes,

1

2

3

4

5

6

7

Fig. 5 Each node represents a postal code in Utrecht. Nodes with the
same colour have similar MDP solutions. The numbers indicate the
ambulance bases. (Two vehicles are stationed at base number 1.)

the next closest base is base 3. But dispatching this vehi-
cle (if it is idle) will leave the entire east side of the region
without idle ambulances. Therefore, it is in this case better
to use an ambulance from the west side of the region. The
enlarged response time is -using our objective of the frac-
tion late arrivals- not a downside, since the incident could
not be reached in time anyway.

For incidents on the purple and cyan nodes, the best deci-
sion depends mostly on the state of the ambulance at base 3
and 6. If both ambulances are simultaneously busy, then the
best ambulance to send to incidents in the purple region is
usually the closest idle one. In the same scenario, incidents
in the cyan region are typically not helped by the closest idle
one. Note that this is the scenario when the entire east side
of the region is not covered. This behaviour can be inter-
preted in a way similar to the case above (regarding dark
blue nodes). When an incident cannot be reached in time,
we might as well choose a vehicle other than the closest idle
one. This can be beneficial, because the choice can be made
such that the remaining ambulances are in a favourable posi-
tion with respect to possible future incidents. Note that this
is also the general idea that forms the basis of our MEXCLP
dispatch heuristic.

7.3 Results

In this section, we show the results from our simulations of
the EMS region of Utrecht.

We run simulations for region Utrecht, using four differ-
ent dispatch policies: the closest idle method, theMEXCLP-
based heuristic (using both destinations and real locations
of vehicles) and the MDP solution after 21 value itera-
tions. Figure 6 compares their performance in terms of the
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Fig. 6 Comparing the performance of the MDP solution after 21
value iterations, with two variants of the Dynamic MEXCLP dispatch
method (where q = 0.3). The benchmark is the ‘closest idle’ policy.
Each policy was evaluated with 20 runs of 5,000 simulated hours
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Fig. 7 The performance of the MDP solution for region Utrecht after
6, 9, 15 and 21 value iterations. Each policy was evaluated with 20
runs of 5,000 simulated hours. The ‘closest idle’ dispatch policy is the
benchmark

observed fraction of response times larger than the threshold
time.

The results show that theMDP solution that was designed
to minimize the fraction of late arrivals has approximately
the same performance as the MEXCLP-based dispatch
heuristic that uses the destinations of vehicles. Both policies
perform better (on average) than the ‘closest idle’ policy.
In addition, the MEXCLP-based dispatch heuristic that uses
the real locations of vehicles performs even better.

For the region Utrecht with 8 ambulances, value iteration
took a long time to converge. Instead of waiting for conver-
gence, we applied the policy we get after a fixed number
of value iterations. Figure 7 indicates that the performance
increases when we increase the number of value iterations.

Up until now we have focused on the fraction of late
arrivals, a key performance measure in ambulance opera-
tions. However, other aspects of the response times can also
be important. For example, it is considered a drawback if
patients have to wait an extremely long time for their ambu-
lance to arrive (i.e., the response time distribution is heavy
tailed). In this example -as well as in others- there exist trade
offs between performance indicators.

We visualize the cumulative distribution of response
times, as obtained from our simulation, in Fig. 8. Figure 8
shows – just like Fig. 6 – that the MEXCLP heuristic outper-
forms the other policies for response times within the time
threshold (720 seconds). However, it also shows significant
differences in response times for response times greater than
T . for which the MEXCLP heuristic performs worse than
the benchmark.

How much one is willing to sacrifice on one performance
indicator in order to realize an improvement in the fraction
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Fig. 8 The cumulative distribution of response times observed in
a simulation of 5,000 hours per dispatch policy, for the region
Utrecht with 8 ambulances. For the MEXCLP algorithms, a value of
q = 0.2 was used. For the Markov Decision Problems, the notation
MDP(objective)#iterations was used

of late arrivals, is typically the source of a lively discussion.
Although such choices depend on how the different aspects
of the response times are weighted, we expect that in realis-
tic cases decision makers will prefer the closest idle policy
over the MEXCLP heuristic. The reason for this is in the tail
of the response times, see Fig. 8.

When observing Fig. 8, we make two other observa-
tions. First of all, the line of the MDP(frac)21 solution is
very close to the MEXCLP(dest) line. Remember that these
two policies base their decisions on the same information
(that is, the destinations of idle vehicles and the location of
a possible incident). This observation confirms our belief
that these two policies have a similar underlying idea (they
attempt to balance the response time for a current incident
with the coverage for possible future incidents.) Secondly,
one may note that the line for the MDP(avg) solution is
remarkably similar to the line for the closest idle method.
For this, we have no clear explanation (yet).

7.4 Sensitivity to the parameter q

The dispatch heuristic based on MEXCLP has a parame-
ter q, which represents the busy fraction. In this section we
analyse the sensitivity of the performance to the value of q

that is used. Thereto, we simulated the EMS system several
times for several values of q.

In theory, q should be equal to the true busy fraction
throughout the system. However, one may observe differ-
ent behaviour for different values of q, and the true busy
fraction need not necessarily be the one with optimal per-
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Fig. 9 The performance observed for the MEXCLP dispatch heuris-
tic, for different values of parameter q. Each box consists of 10
simulations of 5,000 hours each, for the region Utrecht with 8
ambulances

formance. This may seem counter-intuitive at first; but fact
is that dynamic ambulance management is such a difficult
problem, that we cannot hope to find a model that captures
everything perfectly. Generally speaking, using MEXCLP
with q → 0 puts emphasis on covering the next incident.
Using a higher busy fraction is equivalent with creating pre-
paredness for incidents further into the future – at the cost
of performing worse with respect to incidents in the near
future. The true busy fraction could be a good starting point,
but in practice one may choose a different value based on
performance in simulations.

We simulated the EMS system of Utrecht, again with
eight ambulances and (on average) four incidents per hour.
We executed the MEXCLP dispatch heuristic for values of
q between 0.1 and 0.8. The performance is shown in Fig. 9.
We observed that the true busy fraction throughout the simu-
lations was between 37.5 % and 38.1 % (as measured when
using q = 0.2 and q = 0.8 respectively).

Firstly, analysis of Fig. 9 suggests that q = 0.2 would
be a good choice for this particular scenario: it seems to
result in the lowest fraction of late arrivals. Secondly, note
that q varies between 0.1 and 0.8 in this analysis, which are
quite extreme values. In practice, discussions will typically
be about smaller perturbations, e.g., should we use q = 0.2
or q = 0.3? Furthermore, it is also important to recognize
the scale on the vertical axis, as well as the overlap in the
boxes of the box plot. Recall that the performance of the
benchmark (the closest idle policy) is approximately 36 %,
which is significantly worse than our heuristic for any value
of q. We conclude that the MEXCLP dispatch method is
very insensitive to the value of the parameter q.
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Fig. 10 The objective (fraction of late arrivals), as observed in a sim-
ulation of 5000 hours per dispatch policy, for the region Utrecht with
19 ambulances

8 Results: region Utrecht with 19 vehicles

In the previous section, we used 8 vehicles in the region of
Utrecht, due to the scaling limitations of our MDP solution.
In this section, we analyze a more realistic representation of
Utrecht: we increase the incident frequency to one incident
per 10 mins (on average). This is quite a reasonable estimate
for this region during the summer period2. Simultaneously,
we increase the total number of ambulances to 19. For the
other simulation parameters, we use the same values as in
Section 7.

We allow ambulances to be stationed only at locations
that match the EMS base locations that exist in reality (using
data from 2013). Throughout this section, we assign ambu-
lances to the available bases according to the solution of the
static MEXCLP model, which is generally assumed to give
reasonable solutions (for a comparison of static methods,
see [22]).

Figure 10 compares the performance of the MEXCLP
dispatch heuristic with the benchmark (the closest idle pol-
icy). Note that the obtained fraction of late arrivals – roughly
5 % – is realistic for this region in practice. The MEX-
CLP dispatch heuristic reduces the fraction of late arrivals
from 0.053 to 0.043 (on average), a relative improvement of
approximately 18 %. To the best of our knowledge, no pre-
vious literature on ambulance dispatching has described a
performance improvement of this magnitude – except per-
haps for artificial problem instances that were designed for
this purpose. Moreover, it was often assumed that changing
the dispatch policy – as opposed to changing the position

2Our dataset for this region in the month of August 2008 shows 4775
urgent ambulance requests, which is on average 9.4 mins between
incidents.
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Fig. 11 The cumulative distribution of response times, as observed in
a simulation of 5000 hours per dispatch policy, for the region Utrecht
with 19 ambulances

of idle vehicles – would not lead to major improvements
(see, e.g., [23]). Our results shed new light on this belief.
Note that an improvement of 18 % is considered large, even
with respect to algorithms that are allowed to reposition idle
vehicles.

It should be clear that – when solely focusing on the
fraction of late arrivals – the MEXCLP dispatch heuristic
can offer great improvements compared to the closest idle
policy. However, decision makers are often interested in
more than just the fraction of late arrivals. They should be
warned that changing from the closest idle dispatch policy to
the MEXCLP heuristic considerably diminishes the perfor-
mance of other quality indicators, as can be seen in Fig. 11.
We highlight the difference in the average response time:
when switching from the closest idle method to our heuris-
tic, the average response time increased from 390 seconds
to 535 seconds (an increase of 37 %).

9 Conclusion

We have developed two methods to obtain ambulance dis-
patch policies.

Firstly, we modeled the ambulance dispatch problem as a
Markov Decision Problem (MDP). This is the first MDP in
ambulance literature that models more than just the number
of idle vehicles, without losing tractability for reasonably-
sized ambulance fleets. In some sense, this model balances
the amount of detail in the system representation – which
typically results in a better outcome – with the computa-
tional difficulties. The MDP can be used in two different

settings: for minimizing the fraction of late arrivals or mini-
mizing the average response time. The solution of the MDP
performs slightly better than the benchmark (the closest idle
policy).

Secondly, we approach the ambulance dispatch problem
with an easy to implement heuristic. This heuristic reduces
the expected fraction of late arrivals by 18 % relatively com-
pared to the benchmark, for a realistic EMS region. Our
heuristic scales well: it could easily be applied to all realistic
EMS regions, regardless of their size and fleet.

Limitations Although it is possible to apply our MDP in
practice for reasonably-sized ambulance fleets, we do not
recommend it: computation times are rather long and the
performance improvement is small. The MDP is – in our
opinion – mostly of theoretical interest. On the other hand,
the heuristic could very well be applied in practice, but deci-
sion makers should be aware of its side effects: the heuristic
aims to minimize the fraction of late arrivals, which does not
reduce – and can in fact increase – response times overall.3

We recognize this as an important downside and empha-
size that practitioners should carefully consider whether
the response time threshold really is the way they want to
evaluate their performance.

Main contribution This paper sheds new light on the pop-
ular belief that deviating from the closest idle dispatch
policy cannot greatly improve the objective (the expected
fraction of late arrivals). We found an improvement of 18 %,
which was unexpectedly large. We consider this the main
contribution of our work. Practitioners and researchers who
define the fraction of late arrivals as their sole objective,
should no longer claim that the closest idle method is near-
optimal. Although we did not find dispatch policies that
are practically preferable over the closest idle policy, we
have shown that the argumentation for not using alterna-
tives should be different. One should argue that they use
the closest idle policy because we do not know alternatives
that improve response times overall – and not because the
alternatives fail to improve the fraction of late arrivals.
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3Note that the same effect holds for the MDP that aims to minimize
the fraction of late arrivals.
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