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A B S T R A C T

Vehicle damages are increasingly becoming a liability for shared mobility services. The large number of
handovers between drivers demands for an accurate and fast inspection system, which locates small damages
and classifies these into the correct damage category. To address this, a damage detection model is developed
to locate vehicle damages and classify these into twelve categories. Multiple deep learning algorithms are
used, and the effect of different transfer learning and training strategies is evaluated, to optimize the detection
performance. The final model, trained on more than 10,000 damage images, is able to accurately detect small
damages under various conditions such as water and dirt. A performance evaluation with domain experts
shows, that the model achieves comparable performance. In addition, the model is evaluated in a specially
designed light street, indicating that strong reflections complicate the detection performance.
. Introduction

With vehicle sharing initiatives at the rise, the relevance of insur-
nce management increases. The growth of commercial car sharing,
eer-to-peer sharing, and home delivery results in a higher number of
rivers per vehicle. With this trend, the complexity and liability for
nsurance companies and car owners increases drastically. Therefore, a
horough inspection at each handover is preferred. To avoid delays in
he process and maintain viable car sharing, in terms of cost and ease
f usage, a more automated and efficient inspection is required.

Automatic inspection has frequently been studied in the literature.
variety of studies focuses on structural health monitoring and in-

pection for less accessible areas. Most studies in structural health
onitoring use ultrasonic waves in combination with a learning al-

orithm (Brincker et al., 1995; Lee et al., 2006; Liew & Veidt, 2009;
hardakov et al., 2017). The benefits of ultrasonic waves are especially
btained for less accessible areas such as gas and oil pipelines (Lee
t al., 2006) and oil platforms (Brincker et al., 1995). Alternatively,
iber strain sensors are applied to monitor structures continuously
Matveenko et al., 2019; Zhang et al., 2020). Other research uses
attern recognition for images to monitor the condition of structures.
uch as cloud modeling and the classification of cubemap images using
onvolutional Neural Networks (CNNs) (Isailović et al., 2020), using
dge detection filters and Kalman filtering (Cha, Chen et al., 2017),
r by applying CNNs directly on the image (Cha, Choi et al., 2017;
hihavuddin et al., 2019).

Outside structural health monitoring, extensive research is found
or damage inspection. Bodnarova et al. (2002) use 2-D Gabor filters,
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in combination with a maximizing Fisher function to detect textile
flaws. Huang et al. (2020) apply kNN, SVM, Logistic Regression, Ran-
dom Forest and a CNN for damage detection on steel wire ropes, show-
ing that CNNs largely outperform other machine learning methods.
Alternatively, Zhao et al. (2020) used bilateral filtering, in combination
with a feature gradient histogram to estimate the size and location of
damage in fishing nets.

Other ways to detect anomalies are by comparing an object of
interest with an undamaged representation. Jayawardena (2013) used a
3D Computer-Aided Design (CAD) of undamaged cars and implemented
a 3D pose estimation algorithm to align the damaged vehicle with an
undamaged CAD. Matching two visualization, using a sparse represen-
tation in combination with a classifier, has been widely applied for face
recognition (Ahmed et al., 2015; Guo et al., 2012) and object similarity
matching (Chen et al., 2015; Hsu et al., 2018).

One of the major challenges for object inspection, in contrast to
structures, is the movement of the object. Making the application of
fiber strain sensors less applicable. Another challenge in damage in-
spection is the robustness against different light conditions, where Cha,
Choi et al. (2017) show a strong benefit of CNNs to extract patterns over
edge detection and Kalman filtering (Cha, Chen et al., 2017; Cha, Choi
et al., 2017). Hsu et al. (2018) explain that varying outdoor illumina-
tion results in an in-precise representation of edge features, requiring
an appropriate feature-based presentation rather than an edge-based
presentation. Illumination changes and reflective surfaces such as vehi-
cle bodies complicate the feature extraction which increases the false
positive rate (Jayawardena, 2013).
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CNNs have largely proven its applicability to automatically extract
the most discriminating features (Shihavuddin et al., 2019; Simonyan &
Zisserman, 2014). The use of handcrafted features such as Scale Invari-
ant Feature Transformation (SIFT) (Lowe, 1999) and Histogram of Gra-
dients (HOG) (Dalal & Triggs, 2005) are largely outperformed by CNNs,
due to its robustness against scale, rotation, and illumination (Liu et al.,
2020). Automatic feature extraction received a tremendous growth by
the development of AlexNet (Krizhevsky et al., 2017), resulting in
development of real-time object detection models such as Region-based
Convolutional Neural Network (R-CNN) (Ren et al., 2017), Single Shot
multi-box Detector (SSD) (Liu et al., 2016), and You Only Look Once
(YOLO) (Redmon & Farhadi, 2018). Shihavuddin et al. (2019) show
that CNNs, in combination with Pyramid and Patching Augmentation
(PPA), are able to extract small damages on wind turbine blades from
high-resolution drone images.

So far, limited research has been conducted in the field of automatic
detection for vehicle damages. Although, Jayawardena (2013) used an
alignment approach of CAD models to detect anomalies, most research
focuses on CNNs for 2D images (De Deijn, 2018; Liu et al., 2018; Patil
et al., 2017). De Deijn (2018) and Patil et al. (2017) used approximately
1000 samples of damaged vehicles to distinguish damaged vehicles
from undamaged vehicles using a CNN. De Deijn (2018) classified the
damages into four damage categories and four damage locations and
shows that solely classification suffers from large intra-class interfer-
ence. Li et al. (2018) went beyond damage classification and added
damage localization, using YOLO (Redmon & Farhadi, 2018) object
detection. Although Li et al. (2018) used damage localization, they
made no distinction between damage categories. Previous research
shows that classification of damage on vehicles is non-trivial due to
different shapes of the vehicle and the damage (Liu et al., 2018; Patil
et al., 2017).

In this paper, we extend previous research in three ways. Firstly,
we use a significantly larger dataset by extending images available
on the internet, with data obtained from Pon.1 We apply the damage
classification and localization on twelve damage categories, to limit the
intra-class interference faced by De Deijn (2018) and Patil et al. (2017)
and extend the research of Li et al. (2018). Secondly, we evaluate
different object detection models with various backbones using transfer
learning and quantify the impact of different fine-tuning techniques.
Thirdly, we evaluate the model against domain experts and asses
the performance in a production environment under the strong light
conditions of a light street.

We use a manual annotation technique to construct the ground-
truth labels for a total of 5000 images and observe that localizing
and classifying damage categories is challenging due to the inter-class
similarity, as explained by Patil et al. (2017). Additionally, the high
reflective vehicle surface, as well as dirt on the vehicle, complicate
this process. Contrary to classical object detection tasks, the notion
of a clear boundary for damages is absent, as different annotation
granularities result in different ground truth situations.

We observe that deep learning is able to detect vehicle damages.
More precisely, this research shows that deep learning is able to achieve
performance comparable to humans. Furthermore, we observe that a
large performance difference exists between different object detection
models with different backbones. Various fine-tuning experiments indi-
cate, that a carefully selected set of trainable layers results in a major
detection improvement. Lastly, we show that more detailed object
categories result in less inter-class interference for damage detection.

2. Related work

To the best of our knowledge, only Li et al. (2018), Patil et al.
(2017), and De Deijn (2018) used a deep learning approach to iden-
tify vehicle damages from 2D images. That is, Patil et al. (2017)

1 Company website: Pon.com.
 t
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evaluated the ability of CNNs to classify vehicle damages. They used
three different approaches to classify the damage into seven damage
categories2 and one undamaged category, using a total of 1200 images
with vehicle damages and 1271 images without damage. Training from
scratch, results in a classification accuracy of 72.46 percent, whereas
the use of Convolutional AutoEncoders (CAE) improves this slightly to
an accuracy of 73.43 percent.

The third applied method of Patil et al. (2017) made use of transfer
learning, increasing the classification accuracy to 88.24 percent. They
argue that pre-trained models, trained on a broad object range, outper-
form pre-trained models trained specifically for vehicle classification.
Giving rise to the idea that vehicle damages detection might require
different features, in contrast to recognizing vehicles itself (Patil et al.,
2017). Lastly, they show that a linear ensemble method can improve
the overall accuracy to a final 89.5 percent. They point out that vehicles
with small damages often result in false negatives, as the majority of the
vehicle is undamaged. Moreover, they indicate that the classification
task is non-trivial due to the large inter-class similarity of damages.

De Deijn (2018) conducted research comparable to Patil et al.
(2017). A cascade of three CNNs has been used to conduct the damage
classification. The first classifier recognizes the presence of a vehicle,
followed by classifying if damage is present, where the last model
identifies the class, location, and size of the damage. For their research,
29,000 images without a vehicle, 16,185 images with undamaged
vehicles, and 1007 images with damaged vehicles have been used. To
increase the dataset size, they solely used horizontal flipping as image
augmentation to avoid overfitting (De Deijn, 2018).

De Deijn (2018) explains that ambiguity in labeling complicates
the classification process for location and size, being in line with the
statement of Patil et al. (2017). Moreover, De Deijn (2018) argues
that the classification of damage size suffers from large interference
between the categories small and medium, which might be biased
by the manual labeling process. In addition, vehicles with multiple
damage classes are assigned to the dominant damage class in the image,
which could increase class interference. This might result in the large
misclassification for co-occurring dents and scratches in the research
of De Deijn (2018).

Li et al. (2018) went beyond image classification and extended dam-
age classification with damage localization. They used this technique
to develop a system, which is able to identify similar damages to cope
with insurance fraud. 1790 images from the internet are extended with
98 vehicles captured from parking lots. Despite the different damage
types within their dataset, they focused on detecting damage itself and
did not apply multi-class detection. They used the one-stage object
detector: YOLO, to detect the damage and point out that localizing
vehicle damage is a challenging task. This as, unlike normal object
detection, each damage can be of different shape.

Even though Li et al. (2018) used slightly more images compared
to De Deijn (2018) and Patil et al. (2017), they still applied transfer
learning to increase the training dataset. To handle the various light
conditions, they applied Local Response Normalisation (LRN) layers to
reduce the false positives from light reflections. This approach increases
the precision from 32.75 percent to 37.96 percent and the recall from
57.58 percent to 81.75 percent. Despite this, their results show that
the accurate estimation of a bounding box can be difficult. This falls in
line with the statement of Patil et al. (2017), that localizing damage is
non-trivial due to the different shapes of the damages.

3. Data

To the best of our knowledge, there is no publicly available dataset
for vehicle damage detection. Therefore, we constructed our own
dataset and annotated each image manually. Pon provided the first

2 Categories: bumper dent, door dent, glass shatter, head-lamp broken,
ail-lamp broken, scratch, smash.

https://Pon.com
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ataset, further referenced to as Damage Dossiers. To increase the image
iversity, we extended this dataset by collecting images from the
nternet (Damage Web) and installed a demo environment with cameras
n a light street to mimic real deployment of the model (Light Street).

.1. Damage dossiers

This dataset consists of 2499 Damage Dossiers, where each dossier
ontains multiple3 images of the damaged vehicle. A diverse range of
iewpoints and zoom levels is present, as well as images of vehicles
ithout any damage. Using preprocessing of Section 3.4 we reduced

he full dataset from 19,907 images to 3513, of which an excerpt is
resented in Fig. 1(a).

The majority of images have been captured using a fixed set of mo-
ile phones, resulting in a low diversity of image dimensions: {(𝑤, ℎ) ∶

𝑤 ∈ [640, 4800];ℎ ∈ [680, 4100]}. Fig. 2(a) shows the dimension
diversity and Fig. 2(b) the object class frequency from the 7901 manual
annotated damages. The damage dimensions with respect to the image
ranges from 1 percent to 100 percent of the image in both the width
and height. Both the range and distribution of the damage sizes varies
strongly per damage type. Rust, Tire crack, and Bump covers never
more than 50 percent of the image. Whereas, the other classes range
up-till or close to 100 percent. Bending and Glass damage is normally
distributed, Hail and Cover damage are Beta distributed and all other
classes are Log-normal distributed.

3.2. Damage web

To enrich the Damage Dossiers, we constructed a dataset with images
from the internet. In addition, the external data is used to compare the
performance of a model trained on internal data with a model trained
on external data. The external data contains images of higher resolution
and vehicles are, on average, less clean, making the model potentially
more robust.

By use of web-scraping, approximately 2500 images have been
extracted from Google image search. Preprocessing, according to Sec-
tion 3.4, yields a dataset of 1338 images of which Fig. 1(b) provides
an excerpt. In contrast to the Damage Dossiers, stronger fluctuations
are present in the image dimensions: {(𝑤, ℎ) ∶ 𝑤 ∈ [150, 9216];ℎ ∈
[130, 4800]}. Fig. 3(a) visualizes the dimension diversity, whereas
Fig. 3(b) presents the object class frequency. The final dataset consists
of 3797 damage objects. The damage dimensions with respect to the
image size are in line with the findings from Section 3.1.

3 Average: 8, min: 0, and max: 89.
 s

3

3.3. Light street

To evaluate the model in a practical setup, we installed cameras in
a specially designed light street. This light street is in use for regular
damage inspections, making it ideal for practical evaluation of the
model. As proof of concept, we installed four cameras to capture the
vehicle from multiple sides. Although, not all areas of the vehicle are
captured, it enables an initial performance evaluation.

Based on preliminary research on the Damage Dossiers dataset, the
ide, front, rear, rim, and roof are most frequently damaged. To avoid
strong angle between the camera and the rim, we install a camera on
oth sides as close as possible to the vehicle. The front and rear cameras
re placed further away, as no closer mounting option is available.
he installed setup is shown in Fig. 4(a), for which the side-cameras
re installed at a height of 265 cm to capture the side and roof for
ach passenger car. The front and rear cameras are placed at a lower
eight of 200 cm, as the roof is covered by the side cameras and lower
lacement improves the coverage of the bumper. Since we were limited
y the 4 cameras, we are not able to capture the side sill, the bottom
f the front bumper, and the bottom of the rear bumper. Furthermore,
he doors restrict the cameras from being placed directly in front of the
ehicle and behind the vehicle. As such, there exists a small blind-spot
t the right front bumper and right rear bumper.

To remove the need for manual interference, a video stream is used
nstead of pictures. This creates an autonomous system and increases
he number of captured frames, giving the flexibility to select the
rames where no employees are blocking the view. The Frames Per
econd (FPS) has been reduced to the lowest supported configuration
f 2 FPS, to minimize the generated data flow. The cameras provide
resolution of 2560 × 1920 at 5 MegaPixel, well above average

resolution of the Damage Dossiers and the Damage Web dataset. Fig. 4(b)
hows an excerpt from all four cameras, according to the setup of
ig. 4(a).

.4. Preprocessing

We removed duplicate images by comparing the average image
ash, inspired by the approach of Zhang et al. (2013). Contrary to
hang et al. (2013), only exact duplicates have been removed to keep
mages of the same damage from different angles. Therefore, an average
ash distance of zero is used. The duplicate removal is followed by a
anual cleaning process, where images are removed when no vehicle is
resent or when the damage is not visible. Consecutively, we split the
ata in a train and validation set, according to Section 3.4.1. Lastly,
e manually annotate the data with polygons to avoid the exclusion of
pecific deep learning models.
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Fig. 2. Statistics of the Damage Dossiers dataset.
Fig. 3. Statistics of the Damage Web dataset.
Fig. 4. Light Street setup.
s
s

3.4.1. Train and validation split
We set the train fraction to 80 percent, slightly lower than the 90

percent proposed by Flach (2012). Preliminary results with a 10 per-
cent validation set were significantly depending on the prior selected
validation set. Increasing the validation set to 20 percent, removed the
dependency between the performance and the prior selected validation
set. The requirement for this larger validation set, compared with the
 i

4

recommendation of Flach (2012), might be due to the small dataset
size, in combination with the relatively high diversity in capture angles,
image sizes, damage types, and vehicle models.

Each image of the Damage Web dataset is assigned to the train
et with probability 80 percent. Applying the same random image
plit to the Damage Dossiers would leak information from the train set
nto the validation set, as each dossier can contain multiple images.
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Fig. 5. Excerpts from the annotations.

Therefore, the Damage Dossiers are split randomly on a dossier level,
ith probability 80 percent of ending up in the train set. An assigned
ossier to either the train or the validation set assigns all images of the
orresponding dossier to the train or validation set.

.4.2. Annotation process
Each dataset is manually annotated in a detailed manner. We make

se of a manual annotation process, since there is currently no com-
uter vision model available that can detect and classify vehicle dam-
ges in large detail. Furthermore, we aim to capture the knowledge
rom domain experts in the annotations during this manual annotation
rocess. The damage labeling Bump, Dent, Hail, and Scratch is inspired
y the internal damage evaluation system of Pon. According to domain
xperts from Pon, Cover Damage frequently turned out to be vehicle
amage. Therefore, Cover Damage should alarm the employees on po-
ential vehicle damage. Overlapping damage types, such as a Scratch
ontained within a Dent, frequently occur. As both De Deijn (2018)
nd Patil et al. (2017) show that classification suffers from large class
nterference, we assign a bounding box to each damage. With this,
Scratch can be annotated within a Dent, potentially improving the

earning process. Fig. 5 provides an excerpt of the annotated images.
he following object classes are used:

• Bend
• Bump
• Cover Damage
• Crack

• Dent
• Glass Shatter
• Hail
• Light Broken

• Missing
• Rust
• Scratch
• Tire Crack

Bounding box dimensions differ within and across classes. Especially
cratch, Dent, and Cover Damage have a diverse range of bounding
ox sizes. Crack, Tire Crack, Bump, and Rust are relatively small. Hail
amage is mostly large, as it is frequently affecting the complete
ehicle. Therefore, object size and class are expected to correlate.

. Methodology

We conduct six consecutive experiments to train and optimize the
amage detection and to evaluate its performance. The experiments are
isted below and further described in the following sections:

1. Optimize Hyperparameter.
2. Compare Transfer Learning and Fine-Tuning Methods.
3. Compare Models and Backbones.
4. Estimate Robustness and Train Data Influence.
5. Compare Performance between Model and Domain Experts.
6. Evaluate Performance in a Specially Designed Light Street.

All experiments make use of the Adam optimizer, in combination
ith an adaptive learning rate schedule, which reduces the learning

ate by a factor of 0.5 if the evaluation loss did not improve for three
5

onsecutive epochs. To limit overfitting, we set the L1 regularization to
= 1𝑒−4, following the approach of Liu et al. (2016). The threshold for

he Jaccard overlap in YOLO v3 and all SSD models is set to 0.5 and
he Non-Maximum Suppression (NMS) threshold to 0.5, as proposed
y Liu et al. (2016) and Redmon and Farhadi (2018). Lastly, we set the
aximum number of detections to 100 to restrict the computation time

f the NMS algorithm. To ensure

.1. Optimize hyperparameter

This experiment evaluates the impact of different parameters on
he performance of YOLO v3 for the Damage Web dataset. We focus
n hyperparameter optimization in particular, as previous research in
amage detection did not evaluate this effect to a large extent. Since
e use YOLO v3 for the initial parameter tuning, we make use of the
efault loss function of YOLO v3 which is developed by Redmon and
arhadi (2018).

ugmentation
We optimize cropping and padding using grid-search, recommended

y Liu et al. (2016) for SSD models, in the domain {(𝛼𝑐𝑟𝑜𝑝, 𝛼𝑝𝑎𝑑 ) ∶
𝛼𝑐𝑟𝑜𝑝 ∈ {0.1, 0.3, 0.5, 0.7} and 𝛼𝑝𝑎𝑑 ∈ {1.1, 1.3, 1.5, 1.7}}. In addition,
we implement Horizontal Flipping and evaluate the effect of: Bright-
ness Adjustment, Gaussian blur, and Rotation. This approach might
improve the robustness of the model for light fluctuation, quality
loss of low-quality cameras, and different camera angles. Furthermore,
most scratches are horizontally orientated. Therefore, rotation might
improve the detection of vertical and diagonal oriented scratches.

Input Normalization
The model performance strongly depends on the used normalization

technique. We define 𝑥𝑙𝑖𝑗𝑘 ∈ [0, 255] as the original pixel intensity in
row 𝑖, column 𝑗, and channel 𝑘 for image 𝑙. Here, we define 𝑘 ∈ 𝑅𝐺𝐵,
where 𝑅𝐺𝐵 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}. Define 𝑥𝑙𝑖𝑗𝑘, as the normalized pixel
intensity, in a similar way. Then the mean pixel intensity of image
𝑙 and channel 𝑘 is given by Eq. (1). Lastly, the channel means for a
dataset with 𝑁 instances is defined by Eq. (2). Using these definitions,
we compare the following normalization techniques:

• Dataset Mean: Scale each image channel (RGB) to have zero
mean across the entire dataset: 𝑥𝑙𝑖𝑗𝑘 = 𝑥𝑙𝑖𝑗𝑘

𝑥...𝑘
∀𝑙, 𝑖, 𝑗, 𝑘.

• Image Mean: Scale each image channel (RGB) to have zero image
mean: 𝑥𝑙𝑖𝑗𝑘 = 𝑥𝑙..𝑘

𝑥...𝑘
, ∀𝑙, 𝑖, 𝑗, 𝑘.

• [𝟎, 𝟏] Scaling: Scale each pixel to the range [0, 1]: 𝑥𝑙𝑖𝑗𝑘 = 𝑥𝑙𝑖𝑗𝑘
255 ,

∀𝑙, 𝑖, 𝑗, 𝑘.

𝑙..𝑘 = 1
𝐻𝑖𝑚𝑔𝑊𝑖𝑚𝑔

𝐻𝑖𝑚𝑔
∑

𝑖=1

𝑊𝑖𝑚𝑔
∑

𝑗=1
𝑥𝑙𝑖𝑗𝑘. (1)

𝑥...𝑘 = 1
𝑁

𝑁
∑

𝑙=1
𝑥𝑙..𝑘. (2)

Image Resize
We compare two image resize methods: resizing while preserving

the aspect ratio and resizing while ignoring the aspect ratio. When
preserving, the image is resized to have the largest dimension fit the
target size and is placed randomly in a 𝑛 × 𝑛 target canvas. We use
random placement on the canvas to make the model more robust. When
ignoring the aspect ratio, the image gets resized and stretched to fit
the target canvas. We use the inter cubic resize method, since Atwood
(2017) points out that inter cubic preserves more information com-
pared with Inter Linear and Nearest Neighbor for downsizing images.
We prefer this method, since, Section 3 shows that most images are
larger than the input size of the network.
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Batch Size and Learning Rate
Previous research on damage detection did not evaluate on the

optimal batch size and learning rate. Therefore, we optimize these
variables using a 2D grid-search to incorporate the dependence between
the learning rate and batch size. We search in the domain: {(𝐿𝑅,𝐵𝑆) ∶
𝑅 ∈ [1−3, 5−3, 1−4, 5−4, 1−5]; 𝐵𝑆 ∈ [16, 32, 64]}.

.2. Compare transfer learning and fine-tuning methods

We transfer weights from task 𝑋 into our model and use fine-tuning
to optimize the weights for our specific task 𝑌 . We prefer this method
over the use of a Support Vector Machine (SVM) on top of a feature
extraction layer, as Pu et al. (2019) explain that the latter method
requires the original task 𝑋 to be close to the new task 𝑌 .

Patil et al. (2017) explain that transfer learning for damage de-
tection works better when the initial model is trained on a broad
set of objects. Therefore, we use pre-trained models for PASCAL VOC
2012 and COCO 2014, with twenty and eighty object classes, respec-
tively. We compare both datasets as Pont-Tuset and Gool (2015) show
that COCO 2014 contains smaller objects, making the performance
potentially better for small damages. To avoid overfitting, we initially
train only the extra layers, confidence layers, and location layers. The
backbone, as well as any normalization and pyramid layers, are initially
frozen. Based on the first results, we evaluate the impact of unfreezing
more layers on the mAP, training loss, and validation loss.

Anchor Boxes
Liu et al. (2016) provide a dataset-independent calculation for the

construction of the default anchors for SSD. Therefore, the proposed de-
fault anchors from the initial authors of SSD (Liu et al., 2016), FSSD (Li
& Zhou, 2017), and RFB-SSD (Liu et al., 2018) will be used. Redmon
and Farhadi (2017) propose to use 𝐾-means clustering, to construct
9 default anchors for each dataset. Therefore, we normalize each
bounding box, according to Eq. (3), to compensate for the differences
in image size. The normalized boxes are represented by �̃�𝑏𝑏 ∈ [0, 1] and
𝑊𝑏𝑏 ∈ [0, 1], whereas the original bounding box is of size 𝐻𝑏𝑏×𝑊𝑏𝑏 and
the image of size: 𝐻𝑖𝑚𝑎𝑔𝑒 × 𝑊𝑖𝑚𝑎𝑔𝑒. Consequently, we apply 𝐾-means
clustering for each dataset with 𝑘 = 9, as proposed by Redmon and
Farhadi (2017).
(

𝑊𝑏𝑏; �̃�𝑏𝑏

)

=
(

𝑊𝑏𝑏
𝑊𝑖𝑚𝑎𝑔𝑒

;
𝐻𝑏𝑏

𝐻𝑖𝑚𝑎𝑔𝑒

)

. (3)

4.3. Compare models and backbones

Although it is explained by Liu et al. (2016) and Redmon et al.
(2015) that one-stage models largely outperform two-stage models,
we incorporate R-CNN in the comparison to serve as a benchmark
for the two-stage models. More specifically, we make use of Faster R-
CNN, proposed by Ren et al. (2017), which is an optimization of Fast
R-CNN (Girshick, 2015) in terms of speed.

To meet real-time inference, we evaluate multiple single-shot object
detection models. We include two major variants, You Only Look Once
(YOLO) proposed by Redmon et al. (2015) and Single Shot multi-
box Detector (SSD) proposed by Liu et al. (2016). We incorporate
several improvements and extensions, as Liu et al. (2016) and Redmon
et al. (2015) point out that YOLO and SSD lack detection performance
for small objects. For YOLO, we solely use the latest variant (YOLO
v3, Redmon and Farhadi (2018)), which has been iteratively improved
from YOLO and YOLO 9000 (Redmon & Farhadi, 2017) to detect
small objects using multi-scale detection and up-sampling (Redmon &
Farhadi, 2018).

To overcome the lack of detection performance for small objects
with the SSD model, we incorporate several model extensions. We use
Feature Fusion Single Shot multi-box Detector (FSSD) and Receptive
Field Block Single Shot multi-box Detector (RFB-SSD), proposed by Li
and Zhou (2017) and Liu et al. (2018), respectively. Both models aim to
provide more contextual information to the classifier, being especially
6

beneficial for small objects. We exclude Deconvolutional Single Shot
Detector (DSSD) from the comparison, which uses a deconvolutional
module to transfer contextual information with a similar goal (Fu
et al., 2017). We exclude the DSSD configuration, as Liu et al. (2018)
explain that the performance improvement of DSSD is largely due to
the ResNet-101 backbone. Furthermore, Li and Zhou (2017) describe
that FSSD reduces the incorrect detection of multi-parts of an object,
making it more beneficial over DSSD.

We compare all one stage models across four backbones: Darknet-
53 (Redmon & Farhadi, 2018), ResNet-50 (He et al., 2016), VGG-16 (Si-
monyan & Zisserman, 2014), and MobileNet v2 (Sandler et al., 2018).
The first three are selected due to proven performance. MobileNet v2 is
added to give a fair estimation of the performance when implemented
on a mobile device (Sandler et al., 2018). For R-CNN, we solely use
ResNet-50 as R-CNN serves as a benchmark and is expected to perform
worse, compared with the one-stage methods. Furthermore, the low
FPS of R-CNN makes it less applicable in practice.

Since we use different models, we train each model using the
proposed loss function from the paper where the model was originally
proposed. We therefore report the loss values of a model with respect
to its own loss function. However, when comparing different models,
we solely compare using the mAP. When different training strategies
are proposed for the same model.

4.4. Estimate robustness and train data influence

With this experiment, we identify how additional data affect the
overall model performance. We construct a cross-performance between
training a model on dataset 𝑦 and evaluating the model on dataset 𝑥,
where (𝑥, 𝑦) ∈ {Damage Web,Damage Dossiers,Damage Web+Damage
Dossiers}2. Using this unique approach, we are able to identify the ro-
bustness of the model by analyzing how a model trained on one dataset
performs on another dataset. Furthermore, the effect of adding an
external dataset (Damage Web) to an internal dataset (Damage Dossiers)
can be described.

4.5. Compare performance between model and domain experts

We compare the performance of the model with domain experts
to evaluate the practical relevance. To make the comparison, we used
100 images from the Damage Dossiers dataset, instead of the Damage
Web dataset, as the first dataset has validated ground truth labels from
the repair process. Two domain experts receive the 100 images and
are allowed to debate about each image annotation as long as needed,
to mimic insurance claim procedures. Each annotation consists of a
bounding box and a class name. The model receives the same images,
and the results are compared in an aggregated way. To ignore the
different ways of annotating damage, we count each damage class only
once in each image and assign True if the model/experts predicts the
damage class correctly. This corresponds to having a bounding box
overlap of at least 30 percent with the ground truth. We assign False
otherwise.

4.6. Evaluate performance in a specially designed light street

To evaluate the applicability of the model in a practical setting, we
designed the detection pipeline that is visualized in Fig. 6. The model
performance is evaluated in parallel with a manual inspection of 3 min,
conducted by two employees. To reduce the number of frames in this
time period, we sub-sample the video-stream by a factor 10. For each
frame, object detection is executed for vehicles and persons simultane-
ously. All frames without a vehicle are excluded, and detected persons
are blurred for privacy matters. We took images from 50 vehicles with
detected damage. Furthermore, we added 50 vehicles without detected
damage in the supply chain. To ensure this, we sampled 50 undamaged
vehicles from the vehicles which have been transported to a dealer or
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Fig. 7. mAP comparison for resize without perseverance of the aspect ratio (blue) and
with perseverance of the aspect ratio (orange). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Effect of 𝛼𝑐𝑟𝑜𝑝 and 𝛼𝑝𝑎𝑑 on the mAP for YOLO v3 with Darknet-53, learning rate 1𝑒−3,
batch size 16, 30 epochs, 0–1 scaling, and ignoring the aspect ratio.

Pad Crop

0.1 0.3 0.5 0.7

1.1 0.170 0.183 0.177 0.153
1.3 0.181 0.198 0.182 0.164
1.5 0.216 0.243 0.220 0.197
1.7 0.239 0.251 0.244 0.239

customer. By doing this, we are almost certain that all used negative
examples are indeed negative.

To avoid the blocking of the vehicle by the employees, any frame
where the employee is between the camera and vehicle is excluded.
For this, we define the bounding box of object 𝑖 as (𝑥𝑖1, 𝑥

𝑖
2, 𝑦

𝑖
1, 𝑦

𝑖
2) and

ts corresponding class as 𝑐𝑖. Using this, we exclude the frames if
ondition (4) holds for 𝑐𝑖 = Person and 𝑐𝑗 = Vehicle. Using this, frames
ill not be excluded if the driver is recognized. Lastly, the image is

ropped to the size of the vehicle, and the image is passed through the
amage detection algorithm.

min(𝑦𝑖1, 𝑦
𝑖
2) < min(𝑦𝑗1, 𝑦

𝑗
2) and (𝑥𝑗1, 𝑥

𝑗
2) < (𝑥𝑖1, 𝑥

𝑖
2) < (𝑥𝑗1, 𝑥

𝑗
2). (4)

5. Results

In this section, we describe the results for the six experiments from
Section 4.

5.1. Optimize hyperparameter

Table 1 shows the results of the grid-search, where 𝛼𝑐𝑟𝑜𝑝 = 0.3
utperforms independently of 𝛼𝑝𝑎𝑑 and 𝛼𝑝𝑎𝑑 = 1.7 outperforms inde-
endently of 𝛼𝑐𝑟𝑜𝑝. The total grid-search yields (𝛼𝑐𝑟𝑜𝑝 = 0.3, 𝛼𝑝𝑎𝑑 = 1.7).

Using these settings for the optimization of image normalization, results
in normalization by dataset mean (0.286) to outperform 0–1 scaling

(0.251) and image mean normalization (0.234). f

7

Table 2
Batch size and learning rate optimization. Using 𝛼𝑐𝑟𝑜𝑝 = 0.3 and 𝛼𝑝𝑎𝑑 = 1.7, 50 epochs,
ataset mean scaling, and ignoring the aspect ratio. Results reported in terms of the
AP.
BS LR

1𝑒−3 5𝑒−3 1𝑒−4 5𝑒−4 1𝑒−5

16 0.286 0.289 0.291 0.287 0.286
32 0.303 0.313 0.333 0.292 0.288
64 0.234 0.216 0.207 0.196 0.179

Table 3
Effect of augmentation on scratch detection, using a subset of images which contains at
least one scratch. Using hyperparameters: 𝛼𝑐𝑟𝑜𝑝 = 0.3, 𝛼𝑝𝑎𝑑 = 1.7, horizontal flipping(𝑝 =
.5), resize while ignoring the aspect ratio, 𝐿𝑅 = 1𝑒−4, and 𝐵𝑆 = 32.
Evaluation 1 2 3 4 5 6 7

Dimension 416 680 416 416 416 416 680
Rotation 10 15 30 15
Gaussian Blur � � �
Brightness � � �

mAP 0.067 0.076 0.132 0.152 0.142 0.161 0.115
Total loss 4.04 3.62 4.11 4.08 4.16 3.92 3.77
Confidence loss 2.33 2.24 2.27 2.32 2.32 2.19 2.16
Location loss 1.71 1.38 1.84 1.76 1.84 1.73 1.61

No significant improvement has been found when preserving the
aspect ratio over ignoring the aspect ratio. On a class level, preserving
the aspect ratio increases the mAP for the class Missing while ignoring
he aspect ratio seems to improve the mAP on the class Hail and the

class Scratch. Fig. 7 shows a detailed class comparison. We ignore the
aspect ratio in the further extension of this research as the majority of
damages is of class Scratch. Optimization of the BS and LR, results in
(𝐵𝑆,𝐿𝑅) = (32, 1𝑒−4). Table 2 shows that a batch size of 32 outperforms
all evaluated batch sizes, where an increased batch size of 64 demands
a higher learning rate.

Fig. 7 indicates large performance diversity between the damage
classes. Bend, Crack, Rust, and Scratch are lacking behind in perfor-

ance. Although the performance on these four classes is relatively
ow, the number of objects of class Scratch is large. Therefore, all images
ontaining at least one scratch were isolated, and a model was trained
n this dataset in isolation.

Table 3 shows the performance on the Scratch dataset for seven
ifferent evaluations, where evaluation 1 serves as a benchmark. For a
arger image size (evaluation 2), the model tends to locate the objects
ore precisely. However, the mAP does not increase to a large extent.
s the mAP takes objects into account with an IoU of at least 0.5,

t gives rise to the idea that an increased image size improves box
ocations, which already had an IoU of 0.5. Evaluation 3–6 show
hat the mAP benefits from Rotation, Gaussian Blur, and Brightness
djustment. The best mAP is achieved with evaluation 6.

.2. Transfer learning and fine-tuning

We start by describing the effect of the anchor size, in combina-
ion with the pre-trained weights and close by comparing different
ine-tuning approaches.
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Fig. 8. Influence of pre-trained weights and default anchors on the mAP, using YOLO
v3 with Darknet-53.

Anchor Size and Pre-trained Weights
Fig. 8 illustrates the mAP performance for pre-trained weights:

COCO and PASCAL VOC 2012, using different anchor sizes: COCO,
PASCAL VOC 2012, and 𝐾-means clustering as suggested in the paper
of Redmon and Farhadi (2018). Surprisingly, the anchors constructed
with 𝐾-means clustering result in a higher loss and lower mAP, com-
pared with the anchors used during training of the pre-trained weights.
This is in contradiction with the results from Redmon and Farhadi
(2018). In contrast to the COCO dataset, our dataset has smaller
objects. Using 𝐾-means clustering, the resulting default anchors are
smaller compared to coco. As a result, object classes with relatively
large objects (Hail, Glass shatter, and missing) perform worse with our
𝐾-means anchors. This might explain the decreased mAP using the
𝐾-means anchors.

Fine-Tuning
Table 4 shows the mAP after 70 epochs for two different levels of

frozen layers. The category frozen freezes all layers and solely trains the
xtra layers, the location layers, and the confidence layers. The cate-
ory free freezes the base network; all other layers.4,5,6 are trainable.

FSSD benefits largely from the additional trainable weights, increasing
the mAP by 58.57 percent, where the loss reduction is mainly due to
the location loss as shown in Fig. 9 The training loss (solid line) and
validation loss (dashed line) shows a high model bias for FSSD frozen,
as the training and validation loss are relatively close. Unfreezing the
extra layers increases the flexibility of the model, resulting in a lower
loss value for both training and evaluation.

As this preliminary research shows promising results for FSSD, we
construct a more detailed comparison for the effect of the number
of trainable layers on the loss and the mAP. Table 5 summarizes the
results of different evaluations, where we consequently increase the
number of trainable layers. The validation loss decreases, and the mAP
increases until evaluation 4, showing large overfitting when unfreezing
the backbone in evaluation 5. The best performance is obtained when
the base network is frozen during the initial 50 epochs and set trainable
during the last 20 epochs. Using this, the base network is used during
the fine-tuning process while the learning rate is already reduced.

4 FSSD: normalization, extra, transformation, pyramid, location, and
onfidence.

5 RFB-SSD: normalization, extras, location, and confidence.
6 SSD: normalization, extras, location, and confidence.
8

Fig. 9. Confidence loss with free (freezing backbone) and frozen (extra, confidence and
localization trainable).

Table 4
Influence on the mAP when unfreezing additional layers. All previously optimized
parameters are used.

Model SSD RFB-SSD FSSD

Frozen 0.273 0.268 0.211
Free 0.286 0.281 0.334

Improvement (%) 4.76 4.85 58.57

Table 5
Effect of the number of trainable layers on the loss and mAP. Trained on 70 epochs.

Evaluation 1 2 3 4 5 6

Base � >50
Normalization � � �
Transformation � � � �
Pyramids � � � �
Extras � � � � �
Location � � � � � �
Confidence � � � � � �

mAP 0.139 0.211 0.252 0.331 0.221 0.341
Training loss 4.644 3.818 3.627 3.427 2.073 2.807
Validation loss 4.764 4.281 4.122 3.988 4.315 3.883

Table 6
Cross comparison, on the mAP, between object detection algorithms and various
backbones trained with frozen base.

Model FSSD RFB-SSD SSD YOLO v3 R-CNN

Darknet-53 0.330 0.275 0.271 0.333 –
ResNet-50 0.254 0.272 0.257 0.297 0.241
VGG-16 0.278 0.298 0.234 0.257 –
MobileNet v2 0.273 0.207 0.223 0.253 –

5.3. Object detection algorithm and backbone

Table 6 summarizes the results for different object detection algo-
rithms with various backbones. The best performing configurations are
YOLO v3 with Darknet-53 and FSSD with Darknet-53. Inspired by the
results of Table 5, we add the base network to the trainable layers
and train for an additional 20 epochs. The performance of YOLO v3
improves from 0.333 to 0.413, whereas FSSD improves from 0.330 to
0.341. No significant improvement has been found for SSD and RFB-
SSD. A breakdown per object class, visualized in Fig. 10, shows that
especially the lower performing classes benefit from unfreezing the base
network.
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Fig. 10. mAP comparison per class for FSSD and YOLO v3 before unfreezing the base
network and after unfreezing the base network.

Table 7
mAP performance for the best model, trained on the dataset of axis 𝑦 and evaluated
on the dataset of axis 𝑥. Excluded Hail, Bump, Cover Damage, and Tire Crack.

Damage Damage All
Web Dossiers Data

Damage Web 0.413 0.159 0.280
Damage Dossiers 0.170 0.332 0.247
All Data 0.293 0.373 0.333

5.4. Damage Dossiers vs. Damage Web

The two best performing models on the Damage Web dataset are
used to set a benchmark on the Damage Dossiers. YOLO v3 with Darknet-
53 backbone is used, as well as FSSD with Darknet-53. We first optimize
the LR and BS in a similar way as done for the Damage Web dataset.
The best mAP (0.311) is achieved with batch size 32 and learning
rate 5𝑒−3, which slightly differs from the Damage Web dataset. All
other parameters are equivalent to the optimized parameters from the
Damage Web dataset.

The Damage Dossiers dataset is more sensitive to overfitting as
the model directly started to overfit after unfreezing the backbone
Therefore, we resumed training from epoch 50 and added heavier data
augmentation with a padding of 2.0 and cropping of 0.1. This improved
the validation loss of the FSSD model from 3.021 to 2.781 (confidence)
and from 2.391 to 1.942 (localization). The same methodology was
followed for YOLO v3. In contrast with the results of the Damage Web
dataset, FSSD outperforms YOLO v3 on all classes. Fig. 11(a) shows
excerpts from the detection result on the Damage Dossiers dataset. It
indicates the applicability of the model to locate the damage and
classify the damage into the correct category. The robustness of the
model against water, is displayed in Fig. 12.

5.5. Training data influence

Table 7 shows the used training data in the rows and the evaluation
data in the columns. To construct an unbiased comparison, we compare
all models on the same classes. Therefore, we remove the class Hail
from the Damage Web dataset and removed the classes Bump, Cover
Damage, and Tire Crack from the Damage Dossiers. Increased perfor-
mance on the Damage Dossiers is achieved when the Damage Web data
is added to the training instances. Contrary, the performance on the
Damage Web data decreased when the Damage Dossiers are added to
the training instances.
9

5.6. Compare performance between model and domain experts

The model used approximately 1 min on a CPU to process the 100
images, where the domain experts used approximately 2 h and 15 min.
The confusion matrix in Table 8 shows that both the experts and FSSD
Darknet-53 made a relatively low number of errors between the damage
classes. The last column presents the false positives, whereas the false
negatives are shown in the last row. Compared with the experts, the
model is especially better in detecting the class Bend, as well as the class
Cover Damage. Contrary, the experts seem to be better at detecting the
classes Dent and Scratch. Fig. 11(b) compares the performance of the
experts (left) with the performance of FSSD with Darknet-53 (right).
The first row shows that the experts assigned the label Scratch, instead
of Scratch and Dent. The second row shows that the model did not detect
the scratch at the rim and incorrectly detected a scratch on the tire. The
examples indicate that the model seems localizes the damages in more
detail.

5.7. Evaluate performance in a specially designed light street

Table 9 shows the confusion matrix, constructed in a similar way
as done in Section 5.6. The model shows a relatively low precision
with a moderate recall. It has a high number of false positives, ending
up in the last column of the confusion matrix. The confusion between
the different damage classes is relatively low. With this, the model
seems to have trouble identifying the difference between background
and damage. When damage is present, the model seems to accurately
predict the correct damage class.

We noticed that the environmental variables in the Light Street
are strongly influencing the detection performance. Fig. 13 (bottom
row) illustrates that the strong light influence, in combination with
the low resolution, is creating multiple false positives. Fig. 13 (middle
row) shows a vehicle at the Light Street before removal of the cover
(left) and after removal of the cover (right). The damage below the
cover is not detected (left), but the right image shows that the model
accurately detected the partly removed cover and the Dent. The top row
of Fig. 13 shows that the model accurately detects the Dent for both
vehicles.

6. Conclusion

We showed that deep learning is able to accurately detect and
classify vehicle damages. Our approach of detection and classification
showed that the damage detection results in a relatively low inter-
ference between classes. FSSD with Darknet-53 and YOLO v3 with
Darknet-53 yields the best mAP on, respectively, the Damage Dossiers
and Damage Web dataset. With this, damage detection seems to benefit
from models that focus on small objects and contextual information.
We showed that, in our case, external data for training enhances the
detection performance on the internal dataset, but not the other way
around. We quantified the effect of different strategies for freezing
and unfreezing network layers during training, achieving more than 50
percent improvement on the mAP.

Our model achieved performance comparable with domain experts
and constructs bounding boxes in more detail. Domain experts make
slightly fewer false negatives for Dents, where the model outperforms
in the classes Bend and Cover Damage. Additionally the model is less
accurate in identifying the background (no damage) from damage
within the light street, but is still able to distinguish the different
damage classes.
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Table 8
Confusion matrix with the prediction on the rows and the ground truth on the columns with confidence threshold 0.25.

Domain experts FSSD Darknet-53
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Bend 3 8
Cover Damage 5 8
Crack 2 2
Dent 35 1 5 27 3 3
Glass Shatter 8 7
Light Broken 2 3
Missing 2 2
Scratch 47 4 3 42 5
No Damage 6 4 1 2 2 1 3 – 1 1 1 7 3 6 –
Fig. 11. Excerpts from the detection results.
Fig. 12. Damage detection on surfaces with water.
10
7. Discussion

As a result of the small dataset, robustness against different light
conditions, camera angles, and zoom levels are not optimal. The Dam-
age Dossiers contain more reflections, compared with images from
the web, which might explain the lower mAP. Evaluating the model
in the light street, shows that the model got largely influenced by
strong light reflections, resulting in many false positives. Therefore,
we suggest exploring the possibilities of reflection removal, such as
polarizing filters, before applying CNNs. Additionally, the localization
of each damage is non-trivial, making the reported performance largely
influenced by the annotators’ ground truth. We recommend further re-
search to implement cross-validation between annotators and study the
effect of different annotation granularities. mAP comparison between
classes is rather ambiguous, since the non-triviality in class labeling
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Fig. 13. Excerpts from the light street detection results.

Table 9
Confusion matrix with the prediction (rows) and the ground truth (columns) with
confidence >0.25. Images without predicted or ground truth damage excluded.
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Bend 2 1
Cover Damage 9 23
Crack
Dent 14 1 43
Glass Shatter 1 18
Light Broken 3
Missing
Scratch 2 8
No Damage 4 6 1 8 –

s stronger present for class Scratch than for class Glass Shatter. To
imit the validation time, we used a relatively small dataset with few
omain experts. As a result, the sparse confusion matrix made it hard
o compare the performance in detail which can be improved by adding
ore domain experts.
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