Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 517409, 15 pages
http://dx.doi.org/10.1155/2015/517409

Hindawi

Research Article

Cost-Efficient Allocation of Additional Resources for
the Service Placement Problem in Next-Generation Internet

Ding Ma,"? M. Onderwater,”* F. Wetzels,? G. J. Hoekstra,’ R. D. van der Mei,>*
S. Bhulai," and Lei Zhuang'

!School of Information and Engineering, Zhengzhou University, Zhengzhou 450001, China

2College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
*CWI, 1098 XG Amsterdam, Netherlands

vu University Amsterdam, 1081 HV Amsterdam, Netherlands

Correspondence should be addressed to Ding Ma; dma@gs.zzu.edu.cn
Received 24 March 2015; Revised 24 June 2015; Accepted 5 July 2015
Academic Editor: Fabio Tramontana

Copyright © 2015 Ding Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

One of the major challenges in next-generation Internet is to allocate services to nodes in the network. This problem, known as
the service placement problem, can be solved by layered graph approach. However, due to the existence of resource bottleneck, the
requests are rejected from the beginning in the resource constrained network. In this paper we propose two iterative algorithms
for efficient allocation of additional resources in order to improve the ratio of accepted service placement requests. To this end, we
(1) introduce a new concept of sensitivity for each service node to locate the bottleneck node, (2) state the problem of allocating
additional resources, and (3) use sensitivity to propose a simple iterative algorithm and an utilization-based iterative algorithm
for efficient resource allocation. The performance of these two algorithms is evaluated by simulation experiments in a variety of
parameter settings. The results show that the proposed algorithms increase request acceptance ratio significantly by allocating
additional resources into the bottleneck node and links. The utilization-based iterative algorithm also decreases the long-term cost
by making efficient use of additional resources.

function is considered as service (in-network service [2]), and
the transcoding, encryption, flow control, multicast, and so
forth are examples of the service [2]. This approach provides
greater flexibility with its ability to compose the services
along the data path to satisty different communication
requirements from the end-system applications [3, 4]. In
such network architectures, a major challenge is to determine
which nodes the services are placed on along the data path
and determine the shortest path between these nodes. This
problem is known as the service placement problem which is

1. Introduction

A huge achievement has been made in the Internet technol-
ogy over the last four decades in supporting a wide array
of distributed applications and in providing fundamental
end-to-end communication connectivity. However, with the
increase of the Internets scale and scope of use, some
inherent deficiencies of the Internet architecture are gradually
exposed. Innovations are needed in the following aspects of
the current Internet architecture, namely, mobility support,

reliability and availability, and quality of service guarantees
[1]. To realize these innovations, many promising network
architectures have been designed for the next-generation
Internet.

An important approach adopted by some next-generation
Internet architectures is to move the data processing func-
tions from the end-systems to the routers inside the core of
network. In the context of such networks, the data processing

proven to be NP-hard when considering constraints of the
network resources [5].

In the service placement problem, to establish an end-to-
end connection, the sequence of services that represents the
application functionality and the required network resources
need to be specified in advance in the end user’s request.
The data from one end system to another needs to be
routed to pass through the nodes where certain services

specified in the sequence of services are available while the
network resources are sufficient on these nodes. Apparently,
the service placement problem is quite different from the
traditional routing problem in which the data always follow
the shortest path. Furthermore, in the service-centric net-
work architectures (e.g., Network Service Architecture (NSA)),
the service controller performs the mapping algorithm to
determine where to place which services [2, 3].

The layered graph algorithm, with low computational
complexity, is an efficient solution to the service placement
problem when the resource is unlimited. Yet it shows lim-
itations in finding valid end-to-end connections due to the
existence of resource bottleneck in the resource constrained
network [5]. In this paper, we focus on how to locate the bot-
tleneck based on the layered graph algorithm and to increase
the resource capacity of the bottleneck to improve the per-
formance of the resource constrained network. To this end,
we first introduce a new concept, sensitivity, to represent the
impact that a single service node can have on the performance
of the entire network in terms of average ratio of accepted
service placement requests. To compute the sensitivity of a
service node, we remove this service node from the service
network while maintaining the network working to measure
the decrease rate in average request acceptance ratio. Accord-
ing to the value of sensitivities, we locate the bottleneck node
which is corresponding to the service node with the greatest
sensitivity value. We then propose two sensitivity-based iter-
ative algorithms, called SI-AAR and UI-AAR, for solving the
problem of allocating additional resources into the bottleneck
node and its adjacent links to increase the average request
acceptance ratio. Both of them first compute the sensitivities
for each node in the network. SI-AAR then provides a
simple way to iteratively increase both the CPU capacity and
bandwidth capacity by the same increase rate. UI-AAR can
iteratively supplement additional resources selectively based
on resource utilization ratio. The results from our experi-
ments show that our sensitivity-based iterative algorithms
increase request acceptance ratio significantly by allocating
additional resources into the bottleneck node and links. UI-
AAR outperforms SI-AAR in terms of the long-term average
cost and the amount of allocated additional resources by
making more efficient use of additional resources.

The rest of the paper is organized as follows. In Section 2,
we first overview the related work briefly. Then we state
the service placement problem in Section 3. In Section 4, we
discuss the concept of the sensitivity and state the problem
of allocating additional resources. Section 5 describes the
method of computing the sensitivity and two sensitivity-
based iterative algorithms, SI-AAR and UI-AAR. Section 6
presents experimental results in a variety of parameter set-
tings. In Section 7, we conclude this paper and outline future
research directions.

2. Related Work

Some network architectures have been designed to support
in-network services and provide network functional
composition. The Service Integration Control and Optimiza-
tion (SILO) project considers building blocks of fine-grain

Mathematical Problems in Engineering

functionality as services and combines services to accomplish
highly configurable complex communication tasks [4, 6].
The NSA implements an abstraction for communication
between end-systems by providing packet processing service
inside the network [2, 3]. Recent routing architectures such as
programmable routers [7, 8] and virtualized router platforms
[9] have provided technical support for implementation of
the above network architectures.

Related service placement problems have been discussed
extensively in recent work. In programmable networks, (1)
Choi et al. [5] presented a layered graph algorithm to solve
the service placement problem. In this algorithm, a multiple-
layer graph is constructed and Dijkstrass shortest path algo-
rithm is applied on the layered graph to find the shortest
path. Then they proposed a capacity tracking approach to
prevent the overuse of resources when considering capacity
constraints. But they did not consider the impact that the
bottleneck has on the performance of entire network in
terms of request blocking rate. (2) Huang et al. [10, 11]
proposed a distributed solution to the service placement
problem in resource unconstrained network. By introducing
a service matrix, this distributed algorithm can determine
the optimal or near-optimal routes for connection requests.
The advantage of this distributed algorithm is that it is more
suitable for large-scale networks.

In service overlay network, (1) Raman and Katz [12]
also used the layered graph algorithm and focused on load
balancing without considering the capacity constraints. By
introducing a least-inverse-available-capacity (LIAC) metric
to reassign the link cost in the layered graph, it is ensured
that the links with lower load are preferred over the links with
higher load. (2) Liang and Nahrstedt [13] presented a greedy
heuristic algorithm to solve the service composition problem
to find low-cost composition solutions. (3) Qian et al. [14]
also used heuristic algorithm to establish composite services
delivery path with lowest cost. In addition, they considered
the changes of data size along the data path when choosing
services hop-by-hop.

In cloud environment, Tran et al. [15] used recurrence
method to solve the service composition problem. They dis-
cussed three exact algorithms for three different topologies:
path, star, and tree.

To the best of our knowledge, this paper is the first
proposal that studies the problem of bottleneck locating
and utilizing in the service-centric network architecture.
Here, we introduce several related research works in other
network architectures. In the Internet, Hu et al. [16] presented
a novel light-weight, single-end active probing tool (Path-
neck) which allows end users to efficiently and accurately
locate bottleneck. According to the location information of
bottlenecks, they used multihoming and overlay routing to
avoid bottlenecks. In virtualized network, (1) Butt et al. [17]
presented a topology-aware measure method to detect the
bottleneck nodes and links in the substrate network. And
then they proposed a set of algorithms for reoptimizing
and remapping initially rejected virtual network requests. (2)
Based on the analysis on resource utilization, Fajjari et al.
[18] found that the existence of bottlenecked substrate links
is the main reason of most of the request rejections. Given

Mathematical Problems in Engineering

d(0,3) =2,

S,,S d(5,d) =3, |
2 4}B(S,d) = le/s”

FIGURE I: Service Network.

that they proposed a reactive and iterative algorithm for
remapping the rejected request through migration of nodes
and its bottlenecked attached links. However, none of them
consider adding additional resources to the bottleneck node
and links to improve the performance of entire network.

3. Service Placement Problem

In the network architecture where data processing functions
can be implemented inside the network, we term this physical
network as service network, the node in this service network
as service node, and the link in this service network as service
link. Then we state the service placement problem formally as

follows.

3.1. Service Network. We model the service network as a
weighted undirected graph and denote it by G (N, L),
where N is the set of service nodes and L is the set of service
links. The number of service nodes and the number service
links are denoted by |N| and |L|, respectively. Each service
noden; € N is associated with the CPU capacity weight value
P(n;), available service set S(n;) = {S, | service S, is available
on service node 7;}, and service S.’s processing time weight
value dg (n;) on service node n; for service node resources.
Each service link I(7, j) € L between service node n; and n; is
associated with the link bandwidth weight value B(I) which
denotes the total amount of bandwidth capacity and its link
delay weight value d; = d(i, j) for service link resources.
An example of the service network topology is shown in

Figure 1.

3.2. Request. An end user’s request for end-to-end cus-
tomized composite services can be represented as a set
including six elements and denoted by R = (n,,ny,t,,t;b,
S®). Here n, is the source node, n, is the destination node, t,
is the arrival time, t; is the duration time, b is the required
bandwidth capacity, and S* is the required service set which
is composed of service number sn and an ordered list of
services sl. Each service sl; € sl, where j represents the index

of services in the ordered list, is associated with the CPU
capacity requirement weight value p(sl,). For example, a
request R = (s,d,90,1050,200 (Mb/s),{4,(S; — S, —
Ss — Sy} while p(sl;) = 5, p(sl,) = 10, p(sl;) = 10,
p(sly) = 5.

3.3. Service Path. Given the end user’s request R and the
service network G, an end-to-end service path is such a path
from the source service node n, to the destination service
node n,, and all required services in the service list sl should

be processed in sequence along this path.

3.3.1. Service-to-Node Mapping. Each service from the
ordered service list sl needs to be processed by a service node
in the end-to-end service path by a mapping # : sl — N
from services to service nodes such that, for all sl, € sl,

Mg (sl) €N,)

where (1) if %5(51]) = /%5(51]:),] #]', then 51] is not
necessarily equal to sl /, which means multiple services can
be performed on a single service node; (2) if /ﬂs(sl]) = @,
that indicates the service sl, is not performed on any service

node.

3.3.2. Service Path. Given the service-to-node mapping, the
end-to-end service path is denoted by

ele _
7% = {(m My,) (i My,) (o M)
where n; is the source node, n; = n, n; is the destination
m.

node, n; ng, n;,n; ,...,n; are the service nodes,
m PR Tm-1

I(iy, ir,,) is the service link, the hops of ** denoted by
hops(9°*) are equal to m — 1, and M; is a service-to-node

2)

mapping set on service node n; defined as

Mik = {(Sl] _)nik) l ﬂs (51]) :nik} >

where if M; = @, that indicates no service is performed on

3)

service node 7; .

4
TABLE 1: Service processing time on service nodes.

Node Service

M S, S, S,
0 ds (0)=3 ds,(0) = 4 ds, (0) ds, (0) =2
1 dg (1) =5 — dg,(1)=3 —
2 dg (2) =2 — ds,(2) =6 ds,(2) =1
3 — ds,3)=1 5, (3) = —
4 — ds,(4) =6 ds,(4) = ds, (4)
5 dg (5)=4 dg,(5)=3 — ds,(5) =

To guarantee the validity of the service path, several
requirements have to be met.

(1) All service nodes have sufficient CPU capacity for
performing the mapped services such that, for Vn; € P,

P(”ik) 2 Z p(SIJ)’ (4)
Vsl -y, €M,
wheresl, — n; € M; indicates that service sl, is performed
on service node ; .
(2) All service links have sufficient link bandwidth such
that, for VI(i, ir,,) € P,

B(l (ik’ ik+l)) > b * at, (5)

where the service link I(iy, iy, ,) appears at times in %,

Given the end user’s request R outlined above, service
network (depicted in Figure 1), and the service processing
time on service nodes (depicted in Table 1), the service paths
P = {(5,2),(0,{sl, — 0}),(2{sl, — 2}),(4{sl; —
4}),(5,4sl, — 51),(d, @)} and P¥ = {(s,2),(1,2), (2,
{Sll - 2’ Sl2 - 2})) (0’ {513 - 0})a (3> {514 - 3})’ (5) Q)a
(d, @)} are both valid for request R. In 9’?26, each service is
performed on one service node; in @;26, services S; (sl;) and
S, (sl,) are performed on service node 2, and no service is
performed on service nodes 1 and 5.

3.3.3. Objective. The delay of an end-to-end service path
D(9°*) is defined as the summation of service processing
time on service nodes and communication delay on service
links along the service path

m—1 m—1
D (g’eze) =];d(ik)ikﬂ) + Z Z dsl, (”ik)> (6)

k=2 sl, — n;, €M,

whereng = n; ,n; = n; ,andmis the number of service nodes
m

in 9°%. The objective of service placement problem in this
paper is to find a least delay service path from all valid 9.

Due to the finite nature of network resources, capacity
constraints are the crucial considerations for solving the
service placement problem. When an end-to-end connection
request arrives, the service network has to determine whether
to accept the request or not according to its specification. If
the request is accepted, the service network operator needs
to place services on service nodes, allocate the CPU capacity
on the corresponding service nodes, and link bandwidth on

Mathematical Problems in Engineering

service links to establish the least delay end-to-end service
path. Once the end user leaves, the service path is destroyed
and the allocated resources are released.

In this paper, we make several assumptions as follows:

(1) We assume that requirements of resources and ser-
vices specified in an end user’s connection request do
not change over the duration time of the connection.

(2) An end-to-end service path, which is established
according to an end user’s connection request, is fixed
during the lifetime of this connection.

4. Problem of Allocating Additional Resources
into Service Network Based on Sensitivity

The layered graph with capacity tracking algorithm is an effi-
cient approach to solve the service placement problem. How-
ever, the layered graph algorithm cannot perform well when
the capacity of network resources is limited. The main reasons
include the NP-hard nature of the problem and the existing
resource bottleneck. Therefore, a valid service path cannot
always be found even when a valid path exists, and the end-to-
end connection requests are blocked from the beginning [5].
To solve the existed resource bottleneck problem, we propose
two iterative algorithms in this paper for efficient allocation of
additional resources in order to improve the performance in
terms of average request acceptance ratio, denoted by AR. To
this end, we (1) introduce a new concept of sensitivity for each
service node to locate the bottleneck node, (2) state the prob-
lem of allocating additional resources into the service net-
work based on sensitivity, and (3) use sensitivity to propose
a simple iterative algorithm and an utilization-based iterative
algorithm for efficient allocation of additional resources.

4.1. Definition of Sensitivity. In the service network, a service
node can perform complicated data processing functions.
In addition, each service node has different resources, for
example, CPU capacity, processing power, available services,
storage, and memory. The sensitivity of a service node
represents the impact that this service node has on the perfor-
mance of entire network (e.g., the impact on average request
acceptance ratio). When the most sensitive service node
(bottleneck node) is located, the owner of the service network
(e.g., Infrastructure Provider (InP)) has an opportunity to
improve the performance of the entire network by simply
supplementing additional resource capacities into one node.

To calculate the sensitivity of a service node, we remove
or shut down one different service node n; each time from
the service network and maintain the network working to
measure the average request acceptance ratio without n;,
denoted by AR(i). If the AR (i) drops significantly, the service
node #; plays a vital role in the service network and holds high
sensitivity.

The set of sensitivities for all service nodes in the service
network (G) is a vector defined as Sen = (Seny, Sen,,...,
Sen;, ..., Sen|y_;) where the element Sen; representing the
sensitivity of service node »; is defined as

Sen; = AR-AR(i), Vn, € N. (7)

Mathematical Problems in Engineering

In the resource constrained network, the average request
acceptance ratio is a significant performance metric which
determines how many end users’ requests are accepted.

After the calculation of every service node’s sensitivity, we
identify the service node with the greatest sensitivity and term
it as the most sensitive node. We term the adjacent service link
of the most sensitive node as sensitive link. Then we focus on
increasing the CPU capacity of the most sensitive node or
the bandwidth capacity of the sensitive links to improve the
average request acceptance ratio of the entire network.

4.2. Problem Statement. The problem of allocating additional
resources based on sensitivity is stated as follows. We first
define the total amount of additional resources added into the
service network as

P(n)+B-B(L)", ®)

where the most sensitive node is represented by n, and , isa
vector representing A adjacent sensitive links of n, deﬁned
as l l - B(l) is also a vector representmg
the bandw1dti(1 of each sens1t1ve link defined as B(ZX) =
(B(lxl)’B(le)’ ... ,B(lm)). « is an integer indicating that the
CPU capacity of the most sensitive node will be increased by
o times. 3 is a vector defined as B = (B, B3> ---> B> --+5 Ba)s
where the element f3, is an integer indicating that the
bandwidth capacity of the sensitive link [, will be increased
by f3, times.

Once the most sensitive node is located, the main objec-
tive is to devise the algorithms for efficient allocation of
additional resources to improve the performance of entire
network.

Similar to the previous work in [15, 19, 20], the revenue
(i.e., economic profit) of accepting an end user’s request (R)
at time ¢ can be defined as the resources that R requires
multiplied by their prices

R (R,t) = Z p(slj) Uy

sl sl

d (Res) =

+b-(sn+1)-wy,)

where Y, represents the CPU capacity usage price per
required resource unit (e.g., $/instance-hour) and y, repre-
sents the bandwidth usage price per required resource unit
(e.g., $/Gb-hour). Given that R(R, t) represents the total price
that the end user needs to pay to the InP.

The cost of building a service path for an end user’s
request at time ¢ can be defined as the total amount of
resource capacity that the InP allocates to the service path
Z°** multiplied by their costs

Cwn= T pl) et rhops(#)
sl esl, n=M5(s1,)) (10)

(),

where c¢(n) represents the CPU capacity usage cost per used
resource unit (e.g., $/instance-hour) and c(l) represents the
link bandwidth usage cost per used resource unit (e.g.,
$/Gb-hour). The cost of serving an end user’s request mainly
depends on the hops of the chosen service path.

Accordingly, the cost per time unit caused by adding
additional resources to the service network is defined as the
total amount of additional resources multiplied by theirs costs

C(5(Res)) =a-P (nX) c (nX) +B-B (ZX)T'C (lx)' (11)

After a service path is established, the resources allocated
to it will be occupied in the whole lifetime of the correspond-
ing request. Thus the total revenue and cost of serving an end
user’s request are determined by its lifetime ¢;, denoted by
R(R,t) - t; and C(R, t) - t,, respectively.

In general, the additional resources are allocated per-
manently into the service network. Hence, the total cost is
determined by the running time T of the service network,
denoted by C(8(Res)) - T.

From InP’s point of view, an effective and eflicient
algorithm of allocating additional resources would minimize
the amount of additional resources and maximize the average
request acceptance ratio and the average revenue of the InP
in the long run. The long-term average revenue of the InP,
denoted by R(G), is defined as

SoR(R L) ta. 1)

R (G) = T1i_}mOO T

The average request acceptance ratio (AR) of the service
network is defined as

T
Yoo R

AR = lim recepted (13)
CToe R
where |R,ccepreql is the number of requests successfully

accepted by the service network and |R| is the total number
of requests.

Consider, using the sensitivity-based iterative algorithms
for allocating additional resources into the service network,
the long-term average cost of the InP which should take
the cost caused by taking additional resources into account,
denoted by C(G), is defined as

Yo C(R 1) #t;+C(8(Res)) - T
T .

(14)

C(G) = lim

We measure the efficiency of allocating additional
resources in terms of the ratio of long-term average revenue
to cost (R/C) ratio which is defined as

Yo R(R 1) * t

RG) = lim
Tooy T C(Rt) *t;+C(0(Res) - T

CG) 15)

Our objective is to minimize the amount of additional
resources (6(Res)) allocated into service network and accept
the largest possible number of end user’s requests. We also
want to increase the long-term average revenue of InP (R(G))
and decrease the long-term average cost of InP (C(G)). When
the average request acceptance ratios of proposed algorithms
are nearly the same, we prefer the one that supplements the
least amount of resources (§(Res)) and offers highest long-
term R/C ratio.

Mathematical Problems in Engineering

(2) forall n; ¢ N do

(5) Sen; «— AR — AR(Y)
(6) end for

(1) Compute and record AR, R(G), C(G), Uy, U, using LG-CT(G)

(3) G; <« Remove one different #; each time from G
(4) Compu@(i) using LG-CT(G;)

(7) Locate the most sensitive node n, which is the maximum of Sen

AvrGoriTHM I: The sensitivity computing method.

The problem of allocating additional resources stated
above is a multiobjective optimization problem with con-
flicting objectives, which is a combinatorial optimization
problem known as NP-hard [21]. As a matter of fact, we can
only achieve balance among all above objectives by designing
effective and efficient algorithms. For example, we cannot
supplement additional resources unlimitedly although the
average request acceptance ratio (AR) and long-term average
revenue (R(G)) increase sharply at the beginning. With the
increase of §(Res), (1) the corresponding cost (C(5(Res)))
which is proportional to §(Res) increases; (2) the increase
in AR and R(G) will converge eventually; (3) the increase
in C(G) will significantly exceed the increase in R(G) from
some time. Consequently, the R/C will eventually reach an
unrealistic value (e.g., R(G) < 0.5) which is unacceptable
for an InP. To achieve better performance, we devise two
iterative algorithms for allocating additional resources based
on the computation of sensitivity, denoted by SI-AAR and UI-
AAR, respectively. We will discuss these two algorithms in the
following Section 5 in detail.

4.3. Measurement of Resources. 'To allocate additional resour-
ces efficiently, some resource metrics need to be defined and
calculated in advance.

4.3.1. Resources on Service Node. The available capacity of a
service node, denoted by Ay (n;), is defined as the available
CPU capacity of the service node n; € N,

AN(ni) = P(ni) - Z p(SIJ)' (16)
Vsl — meM;

The capacity utilization ratio of a service node, denoted
by Un(n;), is defined as the total amount of CPU capacity
allocated to different services performed on the service node
n; € N divided by the CPU capacity of service node P(1;),

Uy () = Plw) ~ An i) (nl)P_(:)N (n,-). (17)

The average utilization ratio of all service nodes is defined
as the summation of utilization ratio of all service node
divided by the number of service nodes,

— Zl'l:\]()l_l UN (ni)) (18)

U
N IN|

4.3.2. Resources on Service Link. Similarly, the available
capacity of a service link, denoted by A (), is defined as the
total amount of bandwidth available on the service link [€ L,

A, () =B()-b = at. (19)

The capacity utilization ratio of a service link, denoted
by Uy(l), is defined as the total amount of link bandwidth
allocated to different links in 9°* divided by the bandwidth
of the service link B(1),

B(OH-AL()

)= ———— 2
UL = =20 (20)
The average utilization ratio of all service links is defined

as
= _ 2w U
== (21)
' L]

5. Sensitivity-Based Iterative Algorithms for
Allocating Additional Resources

5.1. The Sensitivity Computing Method. The main task of this
algorithm (Algorithm 1) is to set up the layered graph and
run the capacity tracking algorithm known as layered graph
with capacity tracking (LG-CT) to record the performance
metrics of the service network, for example, average request
acceptance ratio (AR), long-term average revenue (R(G)),
long-term average cost (C(G)), average node utilization ((_IN),
and average link utilization (U;). We then remove one
different service node »; each time from the service network
(G) and run LG-CT again to compute corresponding Sen; €
Sen. The most sensitive node n, is the greatest element in the
vector Sen.

Taking advantage of locating the most sensitive node,
then we design two iterative algorithms for allocation of
additional resources called SI-AAR and UI-AAR, both taking
the service network as input. We only consider the supple-
ment of additional resources into the most sensitive node
and sensitive links in these two algorithms in order to avoid
the rise of the average cost of the InP and the drop of the
R/C ratio of the InP in the long run. The iteration method
is used for additional resources allocation, since the exact
values of « and f are impossible to predict directly. On the
one hand, inadequate additional resources can not provide
significant improvement on performance. On the other hand,

Mathematical Problems in Engineering

(

() cpu
(3) repeat
(4) tcpu
5)

(6) Add d(Res) into G
(7) Call LG-CT(G)

1) Locate the most sensitive node using Algorithm 1
2Dty =0t,=0a=0p=(1,1,...,

=ty t+ Atcpu, o= ’
tbw = tbw + Atbw’ ﬁ = tbw : ﬁ

cpu

(8) untile (AAR < €) or (R/C < 0)
9 a= tcpu - Atcpu’ ﬁ = (tbw - Atbw)) :B’
(10) Reset G and supplement recalculated §(Res) into G

1), B=0-p

ALGORITHM 2: SI-AAR.

(2) if AU > w then
(4) else if AU < —w then
(6) else

(8) end if

(1) Locate the most sensitive node using Algorithm 1
(3) Add only CPU capacity into G using Algorithm 4
(5) Add only Bandwidth capacity into G using Algorithm 5

(7) Add both CPU and bandwidth capacity into G using Algorithm 6

ALGoriTHM 3: UI-AAR.

excessive additional resources can result in an overuse of
resources. Iteration method provides an effective way to find
proper values of « and f3 by gradually increasing the resource
capacity. Details of these two algorithms are given below.

5.2. Simple Iterative Algorithm for Allocating Additional
Resources (SI-AAR). SI-AAR (Algorithm 2) describes a sim-
ple way to iteratively increase both CPU capacity and band-
width capacity simultaneously. The algorithm begins by locat-
ing the most sensitive node n,, in service work (G). SI-AAR
then supplements - P(n,) CPU capacity into n, and S B(lX)
bandwidth capacity into /,. Next, it reruns LG-CT and calcu-

lates R/C ratio and the increment in AR denoted by AAR. For
each iteration, SIFAAR compares AAR with a small positive
fraction € and R/C with a threshold parameter ¢ which is
also a positive fraction. The algorithm terminates under two
conditions: (1) if AAR < €, AR converges; (2) if R/C < o,
the algorithm will become unacceptable from the point of
economic profit. Otherwise, SI-AAR enters the next iteration.

To adjust the increment in additional resources added
into the service network in each iteration, we introduce
two increment parameters denoted by Af,,, and Aty,,. Both
of them are integers greater than zero and indicate the
increment in the amount of CPU capacity and bandwidth
capacity, respectively, in each iteration. In realistic network
environment, the capacities of network resources (e.g., CPU,
storage, bandwidth) can be supplemented by the number of
instances which imply the times of resource capacity. For
example, we can increase CPU capacity by adding one or
multiple CPU instances, increase storage capacity by adding
one or multiple hard disks, and increase bandwidth capacity
by adding one or multiple communication links. Therefore, it

is reasonable to increase resource capacity by one or multiple
times in each iteration. B’ is a constant vector with all
elements having the same value 1 and its size is the same as
that of B. B = t,, - f indicates that the bandwidth capacity of
all sensitive links will be increased by the same times.

5.3. Utilization-Based Iterative Algorithm for Allocating Addi-
tional Resources (UI-AAR). The average utilization ratio of
service nodes and service links reflects how much capacity
of the network resources is used and which resource is insuf-
ficient. The value of the average utilization ratio is decided
by several factors, for example, the arrival rate of requests,
required resources, and available capacities. We observe the
recorded average node utilization ratio U, and average link
utilization raio U, and then compute the difference between
them, denoted by AU, defined as AU = Uy — U;. We
find that much higher increase in average request acceptance
ratio can be achieved efficiently by only adding the resource
capacity with higher average utilization ratio while reducing
the cost caused by adding additional resources. For example,
if AU = 30%, the CPU capacity is the scarce resource under
much higher stress, and we can improve average request
acceptance ratio significantly by only supplementing CPU
capacity into the most sensitive node. In this case, average
request acceptance ratio increases slightly if we only add
bandwidth capacity into sensitive links.

UI-AAR (Algorithm 3) introduces a mechanism to sup-
plement additional resources into the most sensitive node and
sensitive links separately or simultaneously as far as the incre-
ment and threshold parameters allow. To allocate additional
resources into the service network, UI-AAR has three choices:

Mathematical Problems in Engineering

(2) repeat

cpu
(4) Add d(Res) into G
(5) Call LG-CT(G)

Na=t_, —At

cpu cpu

(1) tepy = 0, =0, 8= (0,0,...,0)

() tepu = tepu + Al & = Loy,

(6) until (AAR < ¢€) or (R/C < o)

(8) Reset G and supplement recalculated §(Res) into G

ALGORITHM 4: AACC.

(8) until (AAR <) or (R/C <o)
(9) ﬁx’ = tl‘;w, = tgw, - Atbw

11) Reset G

(12) end for

(13) if all elements in ¢, , do not change then
(14) flag = false

(15) else

17) Bi=Butl, =B B =11,...,1,)

(19) endif
(20) end while

(1)ﬂag:true,a:0,ﬂ':(1,1,...,1A),ﬂ:t£w:0~ﬁ'

(2) while flag do

(3) foralll €l do

(4) repeat

(5) tow, = bow, + Dt By =t

(6) Add /3: . B(lXx) bandwidth capacity into G
(7) Call LG-CT(G)

(10) Record ﬁ(l%) which represents the AR after adding ﬁ: . B(le) bandwidth capacity into G

(16) Locate the le which has the greatest rR(le)

(18) Supplement recalculated §(Res) into G

ALGORITHM 5: AABC.

(1) adding CPU capacity to the most sensitive node;
(2) adding bandwidth capacity to sensitive links;
(3) adding both CPU capacity and bandwidth capacity.

UI-AAR makes a decision according to the value of
AU and the parameter w which is a positive fraction and
represents the threshold of AU. We compare AU with w to
determine which resource capacity should be added. We will
discuss the three scenarios as follows:

(1) If AU > w, U-AAR only supplements the CPU
capacity into the most sensitive node using Algorithm 4:
Allocating Additional CPU Capacity (AACC).

The process is the same as that in SI-AAR if Aty = 0.

(2) IfAU < —w, UI-AAR only supplements the bandwidth
capacity into sensitive links using Algorithm 5: Allocating
Additional Bandwidth Capacity (AABC).

Generally, the most sensitive node has more than one
sensitive links. We cannot increase the bandwidth capacities
of all sensitive links simultaneously by the same times t,,
since it is not cost-efficient (i.e., adding bandwidth capacity
to some sensitive link makes no contribution to the perfor-
mance in terms of acceptance ratio). AABC only selects one

sensitive link per iteration and adds bandwidth capacity into
it. Like Algorithm 4, for each sensitive link, AABC gradually
supplements its bandwidth capacity until AR converges. Then
AABC records ﬁ(lxx) which represents the average request
acceptance ratio achieved by adding #; times of bandwidth
capacity to the corresponding sensitive link. After dealing
with the last sensitive link, AABC identifies the sensitive
link which has the greatest ﬁ(lxt)’ increases its bandwidth
capacity by t, times, and writes it back to the service
network topology. This process will be repeated until all
H{(l%) converge. That is to say, adding additional bandwidth
capacity to any sensitive link can not increase AAR over ¢,.
ty,, is a vector with the same size as that of 8. Each element
tkv>w, € tp,» of which value represents the times of bandwidth
capacity added into sensitive links/, , can have different value.

(3) If -w < AU < w, UL-AAR supplements the
CPU capacity into the most sensitive node and the band-
width capacity into sensitive links simultaneously using
Algorithm 6: Allocating Additional CPU and Bandwidth
Capacity (AACBC).

Mathematical Problems in Engineering

(2) repeat

(3) Lepu = tepu + Atcpu, o=

(7) CallLG-CT(G)

- At

cpu cpu

9 a=t

(1) tepy = 0,2 =0,8=(0,0,...

(4) Adda- P(nx) CPU capacpity into G

(5) Computing 8 using Algorithm 5 where, in the first line,
(1) B do not be reset to (0,0,...,0,); (2) sett, = S.

(6) Supplement 6(Res) into G

(8) until (AAR < ¢) or (R/C < 0)

(10) Reset G and supplement recalculated §(Res) into G

,0,)

ALGorITHM 6: AACBC.

TaBLE 2: Differences in three settings.

Setting I Setting I1 Setting III
Required CPU capacity (0,50]* (0, 20]* (0,50]*
Required bandwidth (0,20]* (0, 50]* (0,50]*

*The values are real numbers uniformly distributed on the corresponding
range.

AACBC combines the method in Algorithm 4 with the
method in Algorithm 5. Like the method in Algorithm 4, for
the most sensitive node, AACBC gradually increases its CPU
capacity by « times. For each value of «, AACBC uses the
method in Algorithm 5 to compute 3 and then supplements
the corresponding resources §(Res) into service network. If
the condition is true, AACBC adds the value of Af_,, to «

cpu
and repeats the above process until AR converges.

6. Performance Evaluation

In this section, we first describe the evaluation environ-
ment and then present our main experimental results to
evaluate efficiency of the sensitivity-based iterative algo-
rithms in terms of average request acceptance ratio, allocated
additional resources, long-term average revenue, long-term
average cost, and R /C ratio. Our evaluation primarily focuses
on the performance comparison between proposed two
algorithms and the advantages of sensitivity-based bottleneck
locating.

6.1. Evaluation Environment. We have implemented a dis-
crete event simulator to evaluate our proposed algorithms.
Three different settings are chosen for the following experi-
ments. Differences among the three settings are introduced
in Section 6.1.3 and shown in Table 2.

6.1.1. Service Network Topology. In this paper, we do not
assume any specialized network topologies. We first use
the GT-ITM Tool [22] to randomly generate service net-
work topologies. Each service network is a 20-node 27-link
topology with a choice of 4 different services, a scale that
corresponds to a small-sized ISP. Specifically, the number of
services available on one single service node is an integer uni-
formly distributed between 1 and 4. The bandwidth capacity

of service links and the CPU capacity of service nodes are
real numbers uniformly distributed between 50 and 100. The
communication delay of each service link is an integer which
is proportional to its Euclidean distance and normalized
between 1 and 10. Each service’s processing time is an integer
which depends on its type and the CPU power of its corre-
sponding service node and normalized between 1 and 10.

6.1.2. Request. We assume that end user’s requests arrive in
a Poisson process with an average rate of 4 requests per
100 time units. Each end user’s request has an exponentially
distributed duration time with an average of 1000 time units.
We run our simulation for about 50,000 time units, which
corresponds to about 2,000 requests, for an instance of the
simulation. The required bandwidth for service links and
the required CPU capacity for each service are configured
according to different settings shown in Table 2. The number
of services in end user’s requests is fixed to 4. The ordered ser-
vices list consists of 4 different services randomly distributed
among S;, S,, S5, and S,.

6.1.3. Differences in Three Settings. To observe the perfor-
mance of our algorithms under different resource utiliza-
tion, three different experimental settings are configured
for our simulation. The differences among them only exist
in required CPU capacity for each service and required
bandwidth for service links. Setting I represents the sce-
nario that the service network is under more pressure from
requested CPU capacity resources than it has from requested
bandwidth resources. On the contrary, resource stress that the
service network encounters mainly stems from the requested
bandwidth in Setting II. In Setting III, with the increasing
requirements for resources, the available capacities on both
service nodes and service links become insufficient to accept
more requests. Details are shown in Table 2.

6.2. Compared Algorithms and Parameter Settings. In our
simulator, we implement our sensitivity-based iteration algo-
rithms for allocating additional resources alongside the
related strategies: (1) SI-AAR and (2) UI-AAR. We use two
specific cases of SI-AAR, denoted by SI-AAR-Least and SI-
AAR-RUB (referenced upper bound, RUB), to provide a
lowest bound and an referenced upper bound, respectively,

10

on the amount of additional resources. In SI-AAR-Least,
« is set to 1 and S is set to (1,1,...,1), which represents
the situation of adding the least amount of resources to the
service network using SI-AAR. In SI-AAR-RUB, « is set to 9
and Bissetto (9,9,...,9); that is, the amount of resources of
the most sensitive node and sensitive links is increased to 10
times which is not practical but provides a referenced upper
bound on the performance of realistic algorithms. Based on
extensive simulations, we adjust the parameters of proposed
two algorithms. We set y,,, 4y, c(n), and c(l) to 1, At,, and
Aty to 1, € to 1%, €, to 0.5%, o to 0.6, and w to 10% to achieve
greatest increase in average request acceptance ratio and to
decrease the amount of additional resources and the number
of iterations in the meantime.

6.3. Performance Metrics. In our experiments, we use several
performance metrics introduced in previous sections for
the purpose of evaluation, for example, average request
acceptance ratio (AR), the amount of allocated additional
resources (6(Res)), long-term average revenue (R(G)), long-
term average cost (C(G)), and long-term R/C ratio. We
measure the average request acceptance ratio (AR) and
average request acceptance ratio without node i (AR(®i)), to
compute the sensitivities and locate the most sensitive node
in the original service network (i.e., the service network with-
out any additional resources being added). To evaluate the
effectiveness and the efficiency of our proposed algorithms,
we also measure the average request acceptance ratio, average
revenue, average cost, and R/C ratio for end user’s requests
over time in the service network where the corresponding
additional resources have been added to. In the meantime, we
record the values of two essential parameters o and f3 to com-
pute the amount of additional resources (6(Res)) eventually
allocated into the service network for evaluated algorithms.

6.4. Evaluation Results. We present the evaluation results
to show the effectiveness and quantify the efficiency of
the proposed algorithms under three different scenarios
(depicted in Figures 2, 3, and 4).

We first plot AR and AR() against the index of service
nodes to show the computation of sensitivities (depicted in
Figures 2(a), 3(a), and 4(a)). We use a bar chart to compare the
amount of allocated additional resources (6(Res)) (depicted
in Figures 2(b), 3(b), and 4(b)). Next, we plot average request
acceptance ratio, average revenue, average cost, and R/C ratio
against time to show how each of these algorithms actually
performs in the long run (depicted in Figures 2(c)-2(f), 3(c)-
3(f) and 4(c)-4(f)). We summarize our key observations for
the three settings (Table 2) as follows.

6.4.1. Sensitivity Computing. We locate the most sensi-
tive node through computation of sensitivities and choose
the strategy of allocating additional resources for UI-AAR
according to the results of resource utilization computing
(shown in Table 3).

(1) Setting I: as shown in Figure 2(a) and Table 3, node 7
is the most sensitive node, Uy = 34.9%, U = 23.5%,

Mathematical Problems in Engineering

TABLE 3: Resource utilization in three settings.

Settingl Setting IT ~ Setting III
Average node utilization ratio 34.9% 10.4% 33.7%
Average link utilization ratio ~ 23.5% 32.5% 30.8%

AU = 11.4% > w, and the CPU capacity of node 7 is
chosen to be supplemented in UI-AAR.

(2) Setting IT: from Figure 3(a) and Table 3, node 10 is the
most sensitive node, Uy = 10.4%, U, = 32.5%, AU =
-22.1% < —w, and the bandwidth of node 10’s sensi-
tive links is chosen to be supplemented in UIT-AAR.

(3) Setting III: the configurations of required CPU
capacity and bandwidth (Table 2) show that both
CPU capacity and bandwidth capacity are under huge
pressure. That is the reason why the average request
acceptance ratio is only 64% and U is close to U;
(shown in Figure 4(a) and Table 3). Given that, node
7 is the most sensitive node, ~w < AU = 3% < w, and
the CPU capacity of node 7 and the bandwidth of
node 7’s sensitive links are chosen to be supplemented
together in UI-AAR.

6.4.2. Allocating Additional Resources into the Most Sensitive
Nodes and Sensitive Links Leads to Higher Average Request
Acceptance Ratio. In Figures 2(a), 3(a), and 4(a), we also plot
average request acceptance ratio against time to show how
the original LG-CT algorithm, denoted by Original, performs
without any additional resources being added to the service
network. It is important to note that we only present the
effectiveness of the proposed algorithms here. We will discuss
the efficiency of the proposed algorithms to see if and how
they can make efficient use of allocated additional resources
in Section 6.4.3.

From Figures 2(a), 3(a), and 4(a), it is evident that
the proposed algorithms, UI-AAR and SI-AAR, and the
two specific cases, SI-AAR-Least and SI-AAR-RUB, lead to
higher average request acceptance ratio than the Original
under three different scenarios. These three graphs show
that sensitivity-based bottleneck locating plays a vital role
in allocation of additional resources. It is an effective way
to increase the average request acceptance ratio only by
supplementing additional resources into bottleneck node (the
most sensitive node) and links (sensitive links).

In the three outlined settings, after time unit of 20,000,
the average request acceptance ratio of SI-AAR and UI-AAR
is nearly the same. In addition, the approximate increments
in average request acceptance ratio (e.g., 13.4% and 13.6% in
Setting I, 15.6% and 15.4% in Setting II, and 16% and 15.8%
in Setting III at the time unit of 50,000) show that both SI-
AAR and UI-AAR perform well. In Setting I, SI-AAR-RUB
gains much higher acceptance ratio than SI-AAR and UI-
AAR, since it supplements ten times amount of additional
resources. However, in Setting II and Setting III, the average
request acceptance ratio of SI-AAR-RUB is only 0.4% and
2.2% higher than that of SI-AAR and 0.6% and 2.6% higher

Mathematical Problems in Engineering

o
)

e
N
[

Average request acceptance ratio
14
fo)}
[]

S
wn

8 10 12 14 16
Node index

(=}
[\S]
ok
o)

—— Average request acceptance ratio
® Average request acceptance ratio
without node i

(a) Sensitivity computing

18

o o IS
N o o o o
w el w e wu

e
N

Average request acceptance ratio

0.65

Time (1000 time units)

A~ UI-AAR,a = 5,8 = (0,0,0,0)
- SI-AAR,a =5,8=(5,5,5,5)
&~ SI-AAR-least,a = 1, 3= (1,1,1,1)
-©- SI-AAR-RUB,« = 9, =1(9,9,9,9)
-~ Original, « = 0, 8 = (0,0,0,0)

(c) Comparisons of average request acceptance ratios over time

10000

2 6 10 14 18 22 26 30 34 38 42 46

50

9000

8000

7000

6000

Average cost

—— UI-AAR,a = 5, 8 = (0,0,0,0)
-8 SI-AAR,a =5,8=(5,5,5,5)
0~ SI-AAR-least,a = 1, = (1, 1,1,1)
-0~ SI-AAR-RUB,a = 9,8 = (9,9,9,9)

(e) Comparisons of long-term average costs

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

4000

3500

3000

2500

2000

S(Res)

1500

1000

500

0
SI-AAR-least

UI-AAR SI-AAR SI-AAR-RUB

(b) Additional resources allocated into the service network

5000

4500

'S
f=3
(=3
(=}

Average revenue

3000

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

—A— UI-AAR,a = 5, =(0,0,0,0)

8- SI-AAR,a =5,8=(5,5,5,5)

~— SI-AAR-least,a = 1, = (1,1,1,1)
—©- SI-AAR-RUB,a =9,5=(9,9,9,9)

(d) Comparisons of long-term average revenues

Revenue/cost ratio

4 L L L L L L L L L L L
2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

- UL-AAR,« = 5,8 = (0,0,0,0)
-8 SI-AAR,a =5, = (5,5,5,5)
60— SI-AAR-least,a = 1, 3= (1, 1,1,1)
-6~ SI-AAR-RUB,a = 9, 8 = (9,9,9,9)

(f) Comparisons of long-term R/C ratios

FIGURE 2: Comparisons between UI-AAR and SI-AAR in Setting I.

1

12

Average request acceptance ratio

Average request acceptance ratio

e
~
G

e
N

0.659

¢
=N

o
I
vl

o
wn

S
'S
[

o
0

e
N

o
o

0 2 4 6 8 10 12 14 16 18
Node index

—— Average request acceptance ratio
® Average request acceptance ratio
without node i

(a) Sensitivity computing

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

—A— UL-AAR,a =0,8=(1,1,3,1,1,2)

- SI-AAR,a =3, =(3,3,3,3,3,3)

—— SI-AAR-least,a = 1, =1(1,1,1,1,1,1)

-~ SI-AAR-RUB,a =9, =(9,9,9,9,9,9)

—>— Original, « = 0, 8 = (0,0,0,0,0,0)

(c) Comparisons of average request acceptance ratios over
time

Average cost

10000 H
8000 0
6000

4000 +

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

44— UI-AAR,a = 0,8=(1,1,3,1,1,2)

-5~ SI-AAR,a =3,8=(3,3,3,3,3,3)

~— SI-AAR-least, o = 1,8=(1,1,1,1,1,1)
-©— SI-AAR-RUB,a =9,8=(9,9,9,9,9,9)

(e) Comparisons of long-term average costs

J(Res)

Average revenue

5000

4500
4000
3500
3000 ¢
2500
2000
1500
1000
500

0
SI-AAR-least

Mathematical Problems in Engineering

UI-AAR SI-AAR SI-AAR-RUB

(b) Additional resources allocated into the service network

5000

3500

3000

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

A~ ULI-AAR,a =0,8=(1,1,3,1,1,2)

-5~ SI-AAR,a =3,8=(3,3,3,3,3,3)

~— SI-AAR-least,a = 1,8 =(1,1,1,1,1,1)
-~ SI-AAR-RUB,a = 9,8 =(9,9,9,9,9,9)

(d) Comparisons of long-term average revenues

0.8

0.7 1

Revenue/cost ratio

0.3

0.2

0.6

0.5

0.4

2 j
0

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

- ULI-AAR,a = 0,8=(1,1,3,1,1,2)
- SI-AAR,a =3,8=3,3,3,3,3,3)
~— SI-AAR-least,a = 1, 3= (1,1,1,1,1,1)
-0~ SI-AAR-RUB,a = 9,8=1(9,9,9,9,9,9)

(f) Comparisons of long-term R/C ratios

F1GURE 3: Comparisons between UI-AAR and SI-AAR in Setting II.

Mathematical Problems in Engineering

Average request acceptance ratio

S
%

e
N

Average request acceptance ratio

0.5

0 2 4 6 8 10 12 14 16 18
Node index
—— Average request acceptance ratio

® Average request acceptance ratio
without node i

(a) Sensitivity computing

S
o

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

A UI-AAR,a =4, =(2,4,3,3)

-8~ SI-AAR,a =4, = (4,4,4,4)

O~ SI-AAR-leasta = 1, 8= (1,1,1,1)

~©- SI-AAR-RUB,« = 9,8 =(9,9,9,9)
—¢~ Original, « = 0, 8 = (0,0,0,0)

(c) Comparisons of average request acceptance ratios over

time

15000+

13000

Average cost

7000

5000

11000+

o
S
S
S

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

A UI-AAR,a = 4,8 = (2,4,3,3)

- SI-AAR,a =4, = (4,4,4,4)

6~ SI-AAR-least,a = 1, 3= (1,1,1,1)

-6~ SI-AAR-RUB,a = 9,8 =(9,9,9,9)

(e) Comparisons of long-term average costs

4500

4000]
3500
3000 ¢

S(Res)

1500
1000
500

2500
2000 ¢

0
SI-AAR-least

UI-AAR SI-AAR SI-AAR-RUB

(b) Additional resources allocated into the service network

~
(=3
(=3
(=}

(o)}
(=3
(=3
(=}

Average revenue

5000

4000

2 6 10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

- UI-AAR,a =4,3=(2,4,3,3)

-3 SI-AAR, = 4,3 = (4,4,4,4)

60— SI-AAR-least, . = 1, 8 = (1, 1,1,1)

-6~ SI-AAR-RUB,« = 9,8 =(9,9,9,9)

(d) Comparisons of long-term average revenues

0.75

Revenue/cost ratio

0.45 . L . .

10 14 18 22 26 30 34 38 42 46 50
Time (1000 time units)

—A- UL-AAR,a = 4,8 = (2,4,3,3)

-5 SL-AAR,a = 4, = (4,4,4,4)

6~ SI-AAR-least,a = 1, = (1,1,1,1)

—©- SI-AAR-RUB,«a =9,3=(9,9,9,9)

(f) Comparisons of long-term R/C ratios

FIGURE 4: Comparisons between UI-AAR and SI-AAR in Setting IIIL.

13

14

than that of UI-AAR, respectively. On the contrary, SI-AAR-
Least produces the least increase in acceptance ratio among
the four algorithms. The reasons with respect to above two
situations will be analyzed in Section 6.4.3.

6.4.3. UI-AAR Can Allocate the Additional Resources More
Efficiently. It is worth noting that the evaluated algorithms
that lead to the higher acceptance ratio also produce higher
long-term average revenue (depicted in Figures 2(c), 2(d),
3(c), 3(d), 4(c), and 4(d)) and higher long-term average
cost (excluding the cost produced by additional resources).
(1) According to the definition of R(G), more requests are
accepted, while more revenue can be obtained, and (2) all
of them use the same LG-CT algorithm for solving the
service placement problem (i.e., same approaches of service
placement and resource allocation). However, the amount
of additional resources producing additional cost allocated
by the compared algorithms is different, which implies that
O(Res) and R/C ratio are two vital metrics to quantify the
efficiency of the evaluated algorithms.

From Figures 2(b), 3(b), and 4(b), as the lowest bound and
the referenced upper bound, SI-AAR-Least and SI-AAR-RUB
use the least and most amount of additional resources in SI-
AAR, respectively. The additional resources used by UI-AAR
are close to that used by SI-AAR-Least in Setting I and Setting
IT and are twice greater in Setting III. SI-AAR allocates more
additional resources compared with UI-AAR, for example, 4,
3, and 1.5 times greater in Setting I, Setting II, and Setting
II1, respectively. The reason is that UI-AAR only adds CPU
capacity or bandwidth capacity in Setting I and Setting II, and
both SI-AAR and UI-AAR add CPU capacity and bandwidth
capacity together in Setting III.

Given that, the evaluated algorithms that lead to the
higher acceptance ratio also produce higher additional cost
(C(6(Res)) and thus produce higher long-term average cost
(C(G)) (depicted in Figures 2(d), 3(d), and 4(d)).

Based on the above illustration and analysis, UI-AAR per-
forms considerably well in terms of acceptance ratio, average
revenue, and cost and uses less additional resources. Conse-
quently, UI-AAR produces the highest R/C ratio among UI-
AAR, SI-AAR, and SI-AAR-RUB (depicted in Figures 2(f),
3(f), and 4(f)). The reasons why UI-AAR can make more
efficient use of additional resources are outlined as follow.
(1) UI-AAR selectively supplements the additional resources
based on resource utilization ratio. For example, in Setting
I, UI-AAR select only CPU capacity to supplement in each
iteration (see Figure 2(f), where« = 5and 3 = (0, 0,0, 0)), the
total amount additional resources is 4 times lower than that
of SI-AAR and even less than that of SI-AAR-Least. (2) Ul-
AAR can find better combination of & and f3. For each value
of a, UI-AAR computes the optimal value of each element in
B. For example, in Setting III, for each value of o, UI-AAR
iteratively supplements only one sensitive link’s bandwidth
capacity in each iteration, and thus the bandwidth capacities
eventually added to sensitive links are different despite the
value of « being the same as that in SI-AAR (see Figure 3(f),
where « = 4 and f = (2,4,3,3)). The average request
acceptance ratio of UI-AAR and SI-AAR is nearly the same,
but the total amount of additional resources of UI-AAR is

Mathematical Problems in Engineering

1.5 times lower than that of SI-AAR. Adding more additional
resources along with no improvement on acceptance ratio
implies that part of additional resources added by SI-AAR
does not make any contribution to the performance in terms
of acceptance ratio. Likewise, SI-AAR-RUB is a suitable case
to illustrate the overuse of resources. Although the R/C ratio
and §(Res) of SI-AAR-Least are close to those of UI-AAR
(depicted in Figures 2(b), 2(f), 3(b), 3(f), 4(b), and 4(f)), UI-
AAR significantly outperform SI-AAR-Least in terms of the
average request acceptance ratio and the long-term average
revenue. The reasons are given in the following. (1) The
additional resources added by SI-AAR-Least are insufficient
to accept more requests. (2) Like SI-AAR, SI-AAR-Least does
not allocate the additional resource efficiently. For example,
compared with UI-AAR, SI-AAR-Least accepts less requests
using more additional resources in Setting I.

7. Conclusion and Future Work

The placement of services is an important problem in
any network architecture that supports the implementation
of data processing functions inside the network. In this
paper, we modeled and stated this problem. To solve the
resource bottleneck problem existing in LG-CT algorithm,
we introduced a novel concept: senmsitivity. We used the
sensitivity to locate the most sensitive node and then allo-
cated additional resources into the most sensitive node
and sensitive links to improve the performance of entire
network. After discussing and formulating the problem of
allocating additional resources, we proposed two sensitivity-
based iterative algorithms for efficient resource allocation.
The first one, SI-AAR, provides a simple way to increase both
the CPU capacity and the bandwidth capacity by the same
times. The second one, UI-AAR, can supplement additional
resources selectively based on resource utilization ratio.
Our results from the experiments showed the effectiveness
and efficiency of our proposed two algorithms under three
specific settings. The increase in average request acceptance
ratio was significant if we supplemented additional resources
to the most sensitive node and sensitive links. The utilization-
based iterative algorithm (UI-AAR) can make more efficient
use of additional resources and thus outperforms SI-AAR in
terms of the amount of allocated additional resources, long-
term average cost, and long-term R/C ratio.

In future work, we will consider the number of the
bottleneck nodes which we choose to supplement resources,
focus on medium-size or large-scale network topology, and
investigate where the sensitivity can be further applied in the
service placement problem to improve the performance in
terms of optimizing capacity allocation and balancing load.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was partially supported by the National Natural
Science Foundation of China under Grant no. 61379079 and

Mathematical Problems in Engineering

the National Basic Research Program of China (973) under
Grant no. 2012CB315900.

References

(1]

(2]

—
)

[8

(10]

(11]

(12]

[13

A. Feldmann, “Internet clean-slate design: what and why?”
ACM SIGCOMM Computer Communication Review, vol. 37, no.
3, pp. 59-64, 2007,

T. Wolf, “In-network services for customization in next-
generation networks,” IEEE Network, vol. 24, no. 4, pp. 6-12,
2010.

S. Ganapathy and T. Wolf, “Design of a network service archi-
tecture,” in Proceedings of the 16th IEEE International Conference
on Computer Communications and Networks (ICCCN ’07), pp.
754-759, August 2007.

R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson,
“The silo architecture for services integration, control, and
optimization for the future internet,” in Proceedings of the IEEE
International Conference on Communications (ICC 07), pp.
1899-1904, June 2007.

S. Choi, J. Turner, and T. Wolf, “Configuring sessions in
programmable networks,” Computer Networks, vol. 41, no. 2, pp.
269-284, 2003.

M. Vellala, A. Wang, G. N. Rouskas, R. Dutta, I. Baldine,
and D. Stevenson, “A composition algorithm for the silo
cross-layer optimization service architecture,” in Proceedings
of the Ist International Conference on Advanced Network and
Telecommunications Systems (ANTS °07), 2007.

H. H. L. Ruf, K. Farkas, and B. Plattner, “Network services
on service extensible routers,” in Active and Programmable
Networks: IFIP TC6 7th International Working Conference,
IWAN 2005, Sophia Antipolis, France, November 21-23, 2005.
Revised Papers, Lecture Notes in Computer Science, pp. 53-64,
Springer, Berlin, Germany, 2005.

T. Wolf, “Challenges and applications for network-processor-
based programmable routers,” in Proceedings of the IEEE Sarnoff
Symposium, pp. 1-4, March 2006.

T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcom-
ing the internet impasse through virtualization,” Computer, vol.
38, no. 4, pp. 34-41, 2005.

X. Huang, S. Ganapathy, and T. Wolf, “A distributed routing
algorithm for networks with data-path services,” in Proceedings
of 17th IEEE International Conference on Computer Communi-
cations and Networks (ICCCN ’08), pp. 1-7, 2008.

H. Xin, S. Ganapathy, and T. Wolf, “A scalable distributed
routing protocol for networks with data-path services,” in Pro-
ceedings of the 16th IEEE International Conference on Network

Protocols (ICNP °08), pp. 318-327, October 2008.

B. Raman and R. H. Katz, “Load balancing and stability issues
in algorithms for service composition,” in Proceedings of the
22nd Annual Joint Conference on the IEEE Computer and
Communications Societies (INFOCOM °03), vol. 2, pp. 1477-
1487, IEEE, San Francisco, Calif, USA, April 2003.

J. Liang and K. Nahrstedt, “Service composition for advanced
multimedia applications,” in Multimedia Computing and Net-
working, vol. 5680 of Proceedings of SPIE, pp. 228-240, Inter-
national Society for Optics and Photonics, San Jose, Calif, USA,
January 2005.

Z. Qian, S. Zhang, K. Yim, and S. Lu, “Service oriented
multimedia delivery system in pervasive environments,” Journal
of Universal Computer Science, vol. 17, no. 6, pp. 961-980, 2011.

(15]

(16]

(18

(19]

(20]

(21]

(22]

15

K.-T. Tran, N. Agoulmine, and Y. Iraqi, “Cost-effective complex
service mapping in cloud infrastructures,” in Proceedings of the
IEEE Network Operations and Management Symposium (NOMS
’12), pp. 1-8, IEEE, April 2012.

N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
internet bottlenecks: algorithms, measurements, and implica-
tions,” ACM SIGCOMM Computer Communication Review, vol.
34, no. 4, pp. 41-54, 2004.

N. E Butt, M. Chowdhury, and R. Boutaba, “Topology-
awareness and reoptimization mechanism for virtual network
embedding,” in NETWORKING 2010, vol. 6091 of Lecture Notes
in Computer Science, pp. 27-39, Springer, Berlin, Germany, 2010.
I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Vnr
algorithm: a greedy approach for virtual networks reconfigu-
rations,” in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM ’11), pp. 1-6, IEEE, 2011.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking vir-
tual network embedding: substrate support for path splitting
and migration,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 17-29, 2008.

M. Shen, K. Xu, K. Yang, and H.-H. Chen, “Towards efficient
virtual network embedding across multiple network domains,”
in Proceedings of the 22nd IEEE International Symposium of
Quality of Service (IWQoS ’I4), pp. 61-70, IEEE, May 2014.

M. Ehrgott and X. Gandibleux, “A survey and annotated bib-
liography of multiobjective combinatorial optimization,” OR-
Spektrum, vol. 22, no. 4, pp. 425-460, 2000.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to
model an internetwork,” in Proceedings of the IEEE Conference
on Computer Communications (INFOCOM °06), 15th Annual
Joint Conference of the IEEE Computer Societies. Networking the
Next Generation, pp. 594-602, March 1996.

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

