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a b s t r a c t

We address the problem of dynamic ambulance repositioning, in which the goal is to minimize the
expected fraction of late arrivals. The decisions on how to redeploy the vehicles have to be made in real
time, andmay take into account the status of all other vehicles and accidents. This is generally considered a
difficult problem, especially in urban areas, and exact solutionmethods quickly become intractable when
the number of vehicles grows. Therefore, there is a need for a scalable algorithm that performs well in
practice.

We propose a polynomial-time heuristic that distinguishes itself by requiring neither assumptions
on the region nor extensive state information. We evaluate its performance in a simulation model
of emergency medical services (EMS) operations. We compare the performance of our repositioning
method to so-called static solutions: a classical scenario in which an idle vehicle is always sent to its
predefined base location. We show that the heuristic performs better than the optimal static solution for
a tractable problem instance. Moreover, we perform a realistic urban case study in which we show that
the performance of our heuristic is a 16.8% relative improvement on a benchmark static solution. The
studied problem instances show that our algorithm fulfills the need for real-time, simple redeployment
policies that significantly outperform static policies.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In a world where medical resources and budgets are limited,
emergency medical services (EMS) managers are forced to re-
think the way they spend both. Medical decisions aside, mathe-
matical models can help them obtain more efficiency. They can
also be helpful in understanding the effects of a certain decision
(e.g., adding one extra vehicle, or changing the dispatch policy),
which is otherwise difficult to oversee due to the stochastic na-
ture of accidents. Typically, geographical aspects and service level
agreements need to be taken into accountwhen solving such prob-
lems.

In an EMS system, accidents occur randomly throughout the
region.1 Each accident needs to be served as soon as possible by
an ambulance. The number of vehicles is typically limited, and
vehicles are not always available due to serving other accidents.
If an ambulance is not busy serving an accident, it is either on the
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1 Throughout this paper, we will use ‘accidents’ to refer to demand for

ambulances. Accidents include medical incidents and are not limited to traffic
collisions.
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road (driving), or stationed at one of the selected base locations.
(Note that an idle ambulance can respond to an accident while still
on the road, there is no need to return to a base location first.) Since
minimizing the response time is critical in emergency situations, it
is important to place ambulances in good positions with respect
to the demand. This leads to the search for good base locations, as
well as a good distribution of vehicles over the bases.

1.1. Related work

In ambulance planning, models often use graph representa-
tions. Accidents can occur at the nodes, and there are certain dis-
tances (or driving times) between nodes. The travel times are
assumed to be known in advance, and may be deterministic or
stochastic (in which case they are only known in distribution). The
goal is usually tomaximize the fraction of accidents servedwithin a
certain (pre-determined) time. There are articles that search for the
number of vehicles needed [1], the best base locations [2], and/or
the best distribution of vehicles over the bases [3].

Static models
Mathematical models can be used at various stages of the EMS

process. First, consider the planning stage. At this point, static
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models are often used to describe the problem. Here ‘static’ means
that each ambulance is sent to its own home base whenever it
becomes idle. These models can be used to determine the optimal
locations of bases, as well as the number of vehicles needed per
base.

Early research in ambulance planning focused on deterministic
location problems [2,4]. These formulations ignore the stochastic
aspects of an EMS system, typically by assuming that one vehicle,
or a constant number of vehicles, is always sufficient to cover
the demand points. Later, research turned to probabilistic static
models. Awell-knownexample is themaximumexpected covering
location problem formulation (MEXCLP) [3]. In this formulation
there is a limited number of vehicles that need to be distributed
over a set of possible base locations. Each vehicle is modeled to be
unavailablewith a pre-determined probability. For amore detailed
description of this model, we refer the reader to Section 2.

Over the years, several variants ofMEXCLP have been published
by different authors [5,6]. These models are generally considered
to give good static solutions. (Note a static solution can be
defined by giving the location of the ‘home base’ for each vehicle.)
The downside of static policies is that they do not utilize all
possibilities, e.g., real-time information, to obtain good coverage.
Clearly, the assumption of a vehicle belonging to a specific base is
unnecessary in real life. Using themodels above, one can attempt to
find the optimal policy within the solution space of static policies.
However, in the space of all policies, this will almost always be
suboptimal.

Dynamic models
Dynamic models are used to find good (re)distributions of

vehicles when a number of ambulances are busy responding to
accidents. In other words, they look for repositioning strategies,
which stand in contrast to strategies where every ambulance
is sent back to its ‘home base’ after serving an accident. The
first of such models can be found in [7], using tabu search. This
shifted focus of research was accompanied with an increasing
number of EMS systems using a dynamic allocation of vehicles to
bases. Surveys of North American EMS operators showed that the
percentage of operators who used a dynamic strategy increased
from 23% in 2001 [8] to 37% in 2009 [9] (see also [10]). This
indicates that the EMS community is becoming more aware that
a dynamic policy can help them achieve greater service without
increasing capacity.

Dynamic models usually do not search for good base locations,
but instead consider the bases as a given, fixed set. The redeploy-
ment policies that have been published so far are roughly divid-
able in two subclasses, which we will (very generalizing) refer to
as lookup tables and real-time optimization.
Lookup tables. The models in this class are typically looking for an
optimal configuration for each number of available ambulances. A
recent example can be found in [10]. The job of steering the set
of available vehicles towards this configuration is usually left to
the dispatchers. Unfortunately, poorly executed redeployment can
devaluate even the most crafty policy. Even if the decision of how
to move the vehicles in order to obtain the required configuration
is part of the mathematical solution, this approach altogether re-
quires a lot of ambulancemovements. This increases thework load
on the ambulance crew, which is a downside in many realistic sit-
uations. Furthermore, note that in busy regions, where the number
of idle ambulances changes rapidly, the systemwill not be in com-
pliance with the lookup table for most of the time.
Real-time optimization. On the other hand, there are various papers
that model the randomness in the system explicitly, for example,
by formulating the problem as a Markov decision process. When
the model has only a few ambulances, one can solve it using exact
dynamic programming [11].
When the state space grows, for example due to the number
of vehicles considered, the problem quickly becomes intractable.
In those cases we need to turn to alternative solution methods.
Successful approaches include approximate dynamic program-
ming [12]. Here, the state space is modeled rather elaborately, and
the authors need advanced mathematical methods to solve the
problem. Furthermore, it requires a mechanism to tune parame-
ters to the use case, which is time consuming to both implement
and execute. For one large city, the tuning process can take as long
as one year. It remains possible to calculate the repositioning de-
cision in real time, because these heavy computations are done
in a preparatory phase. Furthermore, the authors try to speed up
the tuning process, for example by using the so called post deci-
sion state. (For an elaborate discussion of the post decision state,
see [13].) For the use case of the city ofMelbourne described in [14],
this reduced the computation time from approximately one year
to 12 h. Although this demonstrates the power of the post deci-
sion state, the remaining 12 h should also highlight the complexity
of the method. The heavy pre-computations and the need for an
expert to implement this, make this method inaccessible and im-
practical.

Furthermore, the performance of the approximate dynamic
programming approach is highly dependent on the choice of base
functions. The base functions as defined in [14] are elegant, but
unlikely to work well in general. That is because the underlying
idea used is the following: an accident is likely to be served late if
there are no idle vehicles present at the nearest base. For many
EMS regions, for example in the Netherlands, this is typically
far from the truth. Moreover, the policies should work well for
densely populated areas, the more difficult case of ambulance
planning, where some demand points can be reached within the
time threshold from as many as 8 different base locations. This
complexifies the construction of good base functions.

1.2. Our contribution

In practice, ambulance planners face a number of challenges.
Usually only limited and coarse-grained information about the
state of the system is available for decision making, while the
accuracy of the computations should be good, and at the same the
computation times should not be prohibitively large. Motivated
by this, the goal of this paper is to propose an algorithm that is
efficient yet easy-to-use, thereby properly balancing the trade-off
between simplicity, accuracy and scalability. Thereby, we ensure
that even EMS providers with few tools available to track real-
time information, can implement this solution. We focus on busy,
urban areas. In such a setting it is unacceptable to move every
vehicle each time an accident occurs. And although some pro-
active relocationsmay be useful, they clearly enlarge the workload
for the crew. We choose to limit our repositioning opportunities
in the following way. An ambulance is only allowed to relocate
when it becomes idle (which can be at the incident scene, or at
a hospital). Thereby, the number of trips will be the same as for a
static strategy, which will help convince EMS managers that our
proposed solution is a good alternative to a static strategy.

The ambulance redeployment algorithm we develop in this
paper, is both intuitively clear and computable in real time. The
solution does not require a preparatory learning phase and is
easy to implement. Furthermore, the algorithm requires very little
real time data, in fact, only the destinations (locations) of the
available vehicles are used. We then decide where to send the
available vehicle, based on an expression for marginal coverage
improvement.Marginal coverage is an idea that originated in static
ambulance planning [3], but this paper shows that it can be useful
in dynamic ambulance planning as well. Through this notion of
coverage we aim to reduce our KPI: the expected fraction of late
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arrivals. Our algorithm is designed particularly for busy (urban)
areas, but with some adaptations the same technique also works
for more rural regions. From a practical perspective, the solution is
easily extendable for many restrictions that may occur in real life,
e.g., a maximum capacity per base. Since the computation is not a
black box, this will help when convincing EMS managers to start
using this policy.

Throughout this paper, the key performance indicator (KPI) is
the expected fraction of late arrivals. In order to obtain this KPI, we
simulate the EMS regions and report the observed fractions of late
arrivals—an estimator for the true performance. Our results show
that we can obtain an average of 7.8% late arrivals, compared to
9.5% for a benchmark static policy under the same circumstances.
In fact, our simulations show that our policy not only performs
better for the time threshold, but shifts the entire distribution of
response times to the left.

The rest of this paper is structured as follows. In Section 2 we
formulate the problem and describe the MEXCLP model in detail.
In Section 3 we give our ambulance redeployment algorithm and
analyze its computation time. In Section 4 we describe our case
studies and measure the performance of our algorithm on these
cases.Wedo a small case study, allowingus to compute the optimal
static policy, which we compare to our dynamic policy. We also
include a realistic case study on one of the largest EMS regions in
the Netherlands. We end with our conclusions in Section 5.

2. Problem formulation

In this section, we introduce the real-time ambulance redeploy-
ment problem. To formulate the problem,wedefine the setV as the
set of locations at which demand for ambulances can occur. Note
that the demand locations are modeled as a set of discrete points.
Accidents at locations in V occur according to a Poisson process
with a rate λ. Let di be the fraction of the demand rate λ that oc-
curs at node i, i ∈ V . Then, on a smaller scale, accidents occur at
node iwith rate diλ.

Let A be the set of ambulances. When an accident has
occurred, we require the nearest (in time) available ambulance to
immediately drive to the scene of the accident. We assume that
the travel times τij between two nodes i, j ∈ V are deterministic.
Idle ambulances can only be on the road while driving to a base
location in the setW ⊆ V , or be at a base location itself waiting for
an accident to respond to. Note that idle ambulances on the road
may be dispatched immediately, and need not arrive at the base
location they were headed to. When an accidents occurs and there
are no ambulances idle, the call goes into a first-come first-serve
queue. Accidents have the requirement that an ambulance must
be present within T time units. When an ambulance arrives at the
accident scene, it provides service for a certain randomtime τonscene.
Then it is decidedwhether the patient needs transport to a hospital.
If not, the ambulance immediately becomes idle. Otherwise, the
ambulance drives to the nearest hospital in a set H ⊆ V . Upon
arrival, the patient is transferred to the emergency department,
taking a random time τhospital, after which the ambulance becomes
idle.
For an overview of notation, see Table 1.

We allow an ambulance only to relocate whenever it becomes
idle, which could be at the accident scene or at a hospital. Although
this choice may seem restrictive, it is a very reasonable choice, and
is both crew and fuel friendly. In particular, in complicated busy
regions, an ambulance becomes idle quite often. Our restriction
on relocation moments provides the system enough freedom to
keep updating and avoids getting stuck in a local optimum. In
our model, any ambulance is capable of serving any accident. An
ambulance is able to respond to an accident (queued or newly
arriving), immediatelywhen it becomes idle. Note that this implies
that the vehicle does not need to return to a base location before
being dispatched again.
Table 1
Notation.

A The set of ambulances.
V The set of demand locations.
H The set of hospital locations, H ⊆ V .
W The set of base locations,W ⊆ V .
T The time threshold.
λ Accident rate.
di The fraction of demand in i, i ∈ V .
τij The driving time between i and jwith siren turned on, i, j ∈ V .
ni The number of idle ambulances that have destination i, i ∈ W .

2.1. State space and policy definition

When defining the state space, one should consider all informa-
tion of the EMS system that the best relocation might depend on.
In a way, the state should represent a ‘snap shot’ of the system at
a decision moment. Most dynamic models (see Section 1.1) use a
rather elaborate description of the system, which results in a large
state space. In contrast,wewill define a relatively small state space,
whichwill help us obtain an intuitive policy that can be understood
and explained to EMS employees in practice.

We define the state space as the destinations of all idle ambu-
lances. (If an ambulance is waiting to be dispatched, we say its des-
tination is simply its current location.) It should be clear that this
definition of the state space ignores many details of the system,
such as information about the busy vehicles and the exact location
of ambulances that are driving. Note that ignoring this informa-
tion (which might affect the best relocation decision) implies that
we cannot possibly hope for our method to find an optimal solu-
tion. Nevertheless, we show that we can obtain a policy with good
performance using only this small state space.

Remember that idle ambulances can only be sent to the pre-
defined base locations in W . Furthermore, the vehicles are ex-
changeable or identical. It is then sufficient to model the state
as the number of idle ambulances that are headed to each base
location. Hence, define the state space S to be the set of states
s = {n1, . . . , n|W |} such that ni ∈ N for i = 1, . . . , |W | and|W |

i=1 ni ≤ |A|. Here, ni represents the number of idle ambulances
that have destination i. We also define the action space A = W ,
where the action represents the new destination for the newly
available ambulance. Now we can define a policy π , as a mapping
S → A. Let Π denote the set of all such policies.

2.2. Objective

We look for a relocation policy that minimizes the expected
fraction of accidents that are reached later than T . Recall that
accidents are generated according to the Poisson process described
above. Therefore, we can give our accidents an index i = 1, 2, . . . ,
sorted by their arrival time. Now we can express our objective as:

arg min
π∈Π

lim
I→∞

I
i=1

1[hπ (i) − t(i) > T ]

I
, (1)

where t(i) represents the time that accident i occurs, and hπ (i)
represents the time a vehicle arrives at the scene of accident i,
under policy π .

Our model uses two different travel speeds. If the ambulance
is traveling without siren, its travel speed is 0.9 times the travel
speed when it is traveling towards an accident scene.
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3. Algorithm

In this section, we develop an algorithm to solve the dynamic
ambulance relocation problem. Our goal is to minimize the ex-
pected fraction of late arrivals. In order to reach this goal, we will
use the notion of coverage. It is intuitive that a well-covered region
will result in a small expected fraction of late arrivals. Thereto, we
can benefit from a related coverage model that we will describe
next.

3.1. A related model

We highlight a related model called the maximum expected
covering location problem formulation (MEXCLP) [3]. This is a
model that searches for the best static policy using integer linear
programming. Although static models are conceptually different
from the dynamic policy that we are looking for, the underlying
idea of MEXCLP will turn out to be useful.

In this formulation there is a limited number, say |A|, ambu-
lances that need to be distributed over a set of possible base lo-
cations W . Each ambulance is modeled to be unavailable with a
pre-determined probability q, called the busy fraction. Note that it
is implicitly assumed that this probability is the same for all vehi-
cles, regardless of their position with respect to the demand and
the other vehicles. The busy fraction can be estimated by dividing
the expected load of the system by the total number of available
ambulances. Consider a node i ∈ V that is within range of k ambu-
lances. The travel times τij, i, j ∈ V are assumed to be determinis-
tic, which allow us to straightforwardly determine this number k.
If we let di be the demand at node i, the expected covered demand
of this vertex is Ek = di(1 − qk). The authors of [3] show that the
marginal contribution of the kth ambulance to this expected value
is Ek−Ek−1 = di(1−q)qk−1. We introduce a binary variable yik that
is equal to 1 if and only if vertex i ∈ V is within range of at least k
ambulances. The variables xj (for j ∈ W ) represent the number of
vehicles at each base. LetWi denote the set of bases that are within
range of demand point i, that is: Wi = {j ∈ W : τij ≤ T }, then we
can formulate the MEXCLP model as:

Maximize

i∈V

p
k=1

di(1 − q)qk−1yik

subject to
j∈Wi

xj ≥

p
k=1

yik, i ∈ V ,
j∈W

xj ≤ |A|,

xj ∈ N, j ∈ W ,

yik ∈ {0, 1}, i ∈ V , k = 1, . . . , p.

Note that there is no need to add the extra constraint yih ≤ yik
for h ≤ k. This will always hold for an optimal solution, since
Ek − Ek−1 is decreasing in k.

In Section 3.2, we reuse the MEXCLP expression for the
marginal coverage contribution (Ek − Ek−1) to obtain a dynamic
redeployment strategy.

3.2. Algorithm description

Our aim is to use as little information possible, such that it
can be applied in very general settings, and such that it is im-
plicitly insensitive to changes or estimation errors of the param-
eters. Hence, we search for a redeployment policy π , using the
state space as described in Section 2. This means that when-
ever an ambulance becomes idle, we can only use the destina-
tions of all other idle ambulances to base our decision on. This
corresponds to taking a decision in the state in which all idle
ambulances have arrived at their destination. Note, however, that
this situation may not even occur, because accidents may occur or
other vehicles may become idle in the mean time. However, it will
turn out to be a useful state description nonetheless.

Recall that we are looking for a policy that minimizes the ex-
pected fraction of late arrivals over a set of random accidents (see
Eq. (1)). At any decisionmoment, the idle ambulances at that epoch
already provide a certain coverage of the region. We then decide
where to send the vehicle that is about to become idle, by calcu-
lating the coverage improvement when it is sent to base w, for all
w ∈ W . Note that there are several definitions of ‘coverage’, which
all lead to different redeployment strategies. We find it instructive
to first address the most basic notion of coverage. This results in a
myopic redeployment policy. We discuss its behavior and short-
comings, which build up to our proposed solution that uses the
same definition of coverage as the MEXCLP model.

Myopic solution
At decisionmoments, we can straightforwardly calculatewhich

regions are not covered at all. That is, the demand nodes that are
further than T away from any idle ambulance destination. We can
then make a greedy choice by sending the newly idle ambulance
to a base that covers most of the yet uncovered demand. Note
that this is a myopic solution, it is in fact a dynamic version of
the Maximum Coverage Location Problem (MCLP) [2]. We have
implemented this policy, and found that its performance hardly
improved the static MEXCLP solution. (For some choices for the
parameters of the system, the performance was even worse than
the static solution.) The intuition is that this policy steers towards
a configuration that is optimal with respect to covering the next
emergency call, but it lacks the insight of howmuch coverage is left
after responding to the first call. This is typical for myopic policies,
and in order to overcome this, we require some quantification of
where there will be a shortage of ambulances in the future.

Dynamic MEXCLP solution
In order to obtain a good policy, we need to include some mea-

sure of how much coverage we can provide in the future. In other
words, we need to take into account that some of the currently idle
vehicles may be dispatched, and ensure the remaining coverage in
the future is still good. Therefore, we propose a policy that sends
the idle ambulance to the base that results in the largest marginal
coverage according to theMEXCLPmodel. This describes the bene-
fit of adding a kth ambulancewithin range of demand node i. Recall
that this is given by Ek − Ek−1 = di(1− q)qk−1. We choose the base
that gives the largest marginal coverage over all demand, which
implies that also the largest coverage overall is obtained. This can
be expressed as follows.

π({n1, . . . , n|W |}) = arg max
w∈W


i∈V

di(1 − q)qk(i,w,n1,...,n|W |)−1,

where k(i, w, n1, . . . , n|W |) =

|W |
j=1

nj · 1(τji ≤ T ) + 1(τwi ≤ T ).

Here, 1 denotes the indicator function. The travel times τji
are taken as estimates for movements with siren turned on. We
perform the search for the best relocation brute force, as described
in Algorithm 1.

3.3. Limitations

As described in Section 2.1, our state space definition prohibits
the ambulance relocation problem frombeing solved to optimality.
But even within our state space, the Dynamic MEXLP model
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Data: The demand di per node i ∈ V ,
base locationsW ⊆ V ,
busy fraction q ∈ [0, 1],
current destinations dest(a) for all a ∈ IdleAmbulances ⊆ A
travel times τij between any i, j ∈ V ,
time threshold T to reach an emergency call.
Result: A new destination for the ambulance that is about to

become idle
BestImprovement = 0
BestLocation = NULL
foreach j in W do

CoverageImprovement = 0
foreach i in V do

k = 0
if τji ≤ T then

k++
foreach a in IdleAmbulances do

if τdest(a)i ≤ T then
k++

end
end
CoverageImprovement + = di(1 − q)qk−1

end
end
if CoverageImprovement > BestImprovement then

BestLocation = j
BestImprovement = CoverageImprovement

end
end
return BestLocation

Algorithm 1: Dynamic MEXCLP

need not lead to optimal decisions. The definition of (marginal)
coverage as given by the MEXCLP model has some well-known
imperfections. For example, vehicles are assumed to operate
independently, and the busy fraction is assumed to be the same for
all vehicles. These limitations also transfer to the dynamic usage
of (MEXCLP) coverage. Therefore, our proposed solution must be
a heuristic one, and we do not claim to have solved the problem
in an exact manner. However, heuristic policies are common in
dynamic ambulance planning, due to the difficulty of the problem.
Furthermore, we consider the MEXCLP definition of coverage an
elegant one, and it allows for fast computations (as we will see in
Section 3.4).

3.4. Computation time

We analyze the computation time of dynamicMEXCLP, in order
to determine the scalability of our method. In Algorithm 1 it is
easy to see that we loop over all bases, demand nodes and idle
ambulances. Therefore, the dynamic MEXCLP algorithm runs in
O(|W ||V ||A|) iterations.

In practice the number of base locations is typically small,
e.g., 20 or 30. Also the number of ambulances that an EMS provider
uses, is very limited. The size of V is mostly dependent on the way
the data is aggregated, and it is the only quantity that is likely to be
large. The fact that the computation time is linear in |V |, ensures
that Algorithm 1 will remain tractable even for large regions or
regions with a high level of detail.

4. Computational results

In this section we verify our dynamic MEXCLP repositioning
policy by simulating several EMS regions. To this end, we built a
discrete event simulation model that keeps track of all accidents
Table 2
Distribution of demand in a small region.

i di

City 1 0.2
City 2 0.4
City 3 0.2
Town 1 0.07
Town 2 0.07
Town 3 0.06
A 0
B 0
C 0

and vehicles. There are events for an accident occurring, an ambu-
lance arriving at the scene of the accident, an ambulance leaving for
a hospital, an ambulance arriving at a hospital, and an ambulance
becoming idle.

When an accident occurs, the closest idle ambulance is dis-
patched. For every vehicle we keep track of the origin and desti-
nation, including the start time of its movement. This allows us to
determine where moving ambulances are while we look for the
closest available vehicle. We do this by a linear interpolation be-
tween the origin and destination, given the time since the ambu-
lance started moving and the known total driving time from the
origin to destination. We then round our result down to the near-
est point in V , since our estimates for driving times are only given
between points in V . Our experiments show that for the majority
of the accidents, approximately 77%, the corresponding ambulance
departs from a base location.

When an ambulance completes an accident, we check if there
are any unattended accidents left in the queue. If not, the ambu-
lance becomes idle, and is sent to a base location.2 In our pro-
posed solution, this base location is determined by Algorithm 1.
As benchmarks, we use so-called static solutions, in which the idle
ambulance returns to its own pre-defined home base. This is a typ-
ical benchmark in the ambulance redeployment literature (used,
e.g., in [12,15]).

We measure the fraction of ambulances arriving at the scene of
an accident with a response time larger than T .

4.1. A small region

We first start with a tractable region, which consists of a small
number of demand nodes. This is insightful as it allows for a brute
force search among all static policies. For a more realistic case
study, we refer the reader to Section 4.2.

The regionwe use is inspired by a small part of the Netherlands.
We aggregate the demand on the level of municipalities, which in
this case boils down to cities and towns. Furthermore,we add three
nodes, A, B and C, that are located at important road intersections.
These last nodes have no demand, but it is possible to strategically
station an ambulance there. For the geographical characteristics of
the region, see Fig. 1. In this region there is only one hospital, which
is located in City 2.

For illustration, we set the time threshold to T = 10 min, and
use demand as described in Table 2. Furthermore, we allow exactly
5 ambulances to serve the accidents in this region.

Static policies
Let us consider static policies first. We have 9 nodes and 5

vehicles available. If vehicles were distinguishable, this would
mean there are 95

= 59,049 different static policies. Instead,

2 Recall that the ambulance might not arrive at this base location, because it may
be dispatched before reaching its destination.
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Fig. 1. A graph representation of the region. The numbers on the edges represent the driving times in seconds with siren turned on.
(a) λ = 1/45 min. (b) λ = 1/13 min.

Fig. 2. OPC curves for static policies in the same region, for two different accident intensities.
we assume vehicles are indistinguishable, which makes the set
of truly different policies smaller. If we number the nodes 1 up
until 9, we can describe a policy by a five tuple of non-decreasing
integers, representing the home locations of the five vehicles, e.g.,
(2,2,5,8,9) denotes a policy, but (5,6,3,1,9) does not. Using this
definition, we can iterate over all static policies. This allows us to
take a closer look at the static solution space. Finding the optimal
solution for a discrete event dynamic system (DEDS) is in general
difficult due to the large search space and the simulation-based
performance evaluation. Inspired by Ordinal Optimization (see, for
example, [16] or [17]), which has become an important tool for
optimizing DEDSs, we create an Ordered Performance Curve (OPC)
as follows. For each policy, we simulate the EMS region for an
amount of time, and use the measured fraction of late arrivals as
an estimate for the true performance of the policy.3 Then, we sort
the policies by their estimated performance, giving us the desired
OPC. At first, we look into the case where there are relatively few
accidents, i.e., λ = 1/45 min. In this case, we evaluate each policy
with 10 simulated days. For the corresponding OPC, see Fig. 2a.
According to the theory of Ordinal Optimization, the shape of this
OPC indicates that there are many good solutions (policies) for this
problem.

However, it would be incorrect to conclude that this is true for
all static ambulance positioning problems. In fact, our experiments
show that changing the accident rate λ, while keeping all other
parameters the same, already affects the shape of the OPC. For
λ = 1/13 min, the OPC is shown in Fig. 2b. For this case, we
evaluate each policy with 2.9 simulated days, which boils down
to the same expected number of accidents per evaluation as in the
λ = 1/45 case. First of all, note that the best static solution for this

3 We start with an empty system, i.e., no accidents have occurred. Therefore,
we need to allow the system some time to evolve towards a more natural and
representative state. We disregard the first five simulated hours in each run, and
only consider the performance of the remaining time.
problem seems to have a performance of 17% (compared to 1% in
Fig. 2a). An increase was to be expected, because the same number
of vehicles needs to serve a higher number of accidents. Perhaps
more surprising is that also the shape of the OPC has changed. For
Fig. 2b, the OPC indicates that there exist only a few good static
policies for this problem.

In order to determine the best static policy, we perform longer
simulations to explore the region of the good solutions with more
accuracy. Note that when λ changes, the optimal static policy may
change as well. In fact, we find that for λ = 1/45 the best static
policy is (City 1, City 1, City 2, C, C), while for λ = 1/13 the best
static policy is (City 1, City 1, City 2, City 2, C).

DMEXCLP versus the best static policy
We now compare the performance of dynamic MEXCLP

(DMEXCLP) with the best static policy. We will test our method on
multiple scenarios, to show that the method gives good results for
more than just one specific problem instance. We create different
problem instances by changing the value of λ. Since we keep the
number of vehicles equal to 5, by varying λwe also vary the load of
the system. In Fig. 3, it shows that theDMEXCLPpolicy outperforms
the best static policy for every choice of λ. Whenwe let λ take even
more extreme values, we see that DMEXCLP has approximately the
same performance as the best static solution. This occurs when
λ = 1/9 min, in which case the expected fraction of late arrivals
for both the best static and the DMEXCLP solution is around 67%.
A fraction this high will never be acceptable in real life, and would
indicate that more vehicles are needed. Therefore, we should not
draw conclusions on the applicability based on this parameter
choice. Note that, even if the performance of DMEXCLP is equal to
the performance of the best static policy, DMEXCLP is still useful
in the sense that its calculations are faster than the search for the
best static policy.

In Fig. 4 we see that the relative performance improvement
for this region can be as high as 20%. In the following section we
will investigate whether this number is representative for a more
realistic region with demand aggregated on a smaller scale.
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Fig. 3. The absolute performance (expected fraction of late arrivals) of Dynamic
MEXCLP compared to the best static policy. The horizontal axis displays the average
time between accidents in minutes. Each policy was evaluated long enough such
that the tolerance interval (1.96 times the sample standard deviation) is within 2.5%
of our estimated value.

4.2. A realistic case study

In this section, we validate our redeployment method on a
realistic problem instance. We chose to model the region of
Utrecht, which is one of the largest ambulance providers of the
Netherlands. For the parameters used in the implementation, see
Table 3. This is a region with multiple hospitals, and for simplicity
we assume that the patient is always transported to the nearest
hospital, if necessary.

Note that we use the fraction of inhabitants as our choice for
di. In reality, the fraction of demand could differ from the fraction
of inhabitants. However, the number of inhabitants is known
with great accuracy, and this is a straightforward way to obtain a
realistic setting. Furthermore, the analysis of robust optimization
for uncertain ambulance demand in [18] indicates that we are
likely to find good solutions, even if we make mistakes in our
estimates for di.

In the Netherlands, the time target for the highest priority
emergency calls is 15min. Usually, 3min is reserved for answering
the call, therefore we choose to run our simulations with T = 12
min. The driving times for EMS vehicles between any two nodes
in V were estimated by the Dutch National Institute for Public
Health and the Environment (RIVM) in 2009. These are driving
timeswith the siren turned on. For ambulancemovementswithout
siren, e.g., when repositioning, we use 0.9 times the speed with
siren. The number of vehicles used in our implementation is such
that a good policy gives a performance (expected fraction of late
arrivals) of a magnitude that is realistic for practical purposes.

Results
We compare the performance of the dynamic MEXCLP solution

with a benchmark. We let the benchmark be the static MEXCLP
solution, which is generally assumed to give a good static policy
(for a comparison of static methods, see [19]). Note that the
verification of the value of one single policy is not feasible within
polynomial time. Therefore, it is not tractable to perform a brute
force search over all static policies using 19 base locations and
19 vehicles. Since there is no alternative known to compute the
optimal static solution, thismeanswe cannot use the optimal static
solution as a benchmark.

In both the static (benchmark) and the dynamic (proposed
solution) case, we initialize the locations of the ambulances
according to the static MEXCLP solution. We simulate the EMS
system 10 times per policy and compare the results in Fig. 5. We
measure the fraction of late arrivals, which decreased from on
average 9.5% to 7.9%. This is a difference of 1.6 percentage point,
and a decrease of 16.8%. This is a significant improvement that
Fig. 4. The relative improvement in performance of DynamicMEXCLP compared to the best static policy. The horizontal axis displays the average time between accidents in
minutes. Each policy was evaluated long enough such that the tolerance interval (1.96 times the sample standard deviation) of both policies is within 2.5% of the estimated
value.
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Table 3
Parameter choices for our implementation of the region of Utrecht.

Parameter Magnitude Choice

λ 1/9.5 min Realistic for urgent calls on a weekday in this region.
A 19 Realistic number to cover demand.
W 19 Base locations as existing in 2013.
V 217 4 digit postal codes.
H 10 The hospitals within the region in 2013, excluding private clinics.
τij Driving times as estimated by the RIVM.
di Fraction of inhabitants as known in 2009.
Fig. 5. Comparing the performance of dynamic MEXCLP with the static MEXCLP
solution. For both policies a value of q = 0.3 is used. Each policy was evaluated
with 10 runs of 500 simulated hours.

Fig. 6. Response times for dynamic MEXCLP and the static MEXCLP solution. For
both policies a value of q = 0.3 is used. Each policy was evaluated with 2500
simulated hours.

can be made without purchasing extra vehicles or increasing the
number of crew shifts. Furthermore, this improvement is large in
comparison to other results in the literature (e.g., an improvement
from 26.7% to 25.8% in [14], which boils down to a 3.4% gain).

We would like to emphasize that the dynamic MEXCLP policy
does not only reduce the expected fraction of late arrivals, but also
reduces the average response times overall. This can be concluded
from Fig. 6.

4.3. Sensitivity to the busy fraction

We investigate the sensitivity of Algorithm 1 to the parameter
q, the busy fraction. In order to do this, we keep the number of
Fig. 7. Comparing the performance of DMEXCLP for several values of q. The boxes
consist of ten runs, in which we simulate 1000 h, each.

vehicles equal to 19, and we also keep the average time between
accidents equal to 9.5 min. We run the DMEXCLP algorithm for
several values of q, and compare the performance in Fig. 7. We
conclude that, at least for this particular problem instance, the
quality of the solution is very insensitive to the value of parameter
q.

5. Conclusions

In this paper we have developed real-time scalable algorithms
for dynamic ambulance redeployment with a focus on minimizing
the expected fraction of late arrivals. We have introduced a
dynamic MEXCLP heuristic (see Algorithm 1) that reduces the
expected fraction of late arrivals by relatively 16.8% compared to a
good static policy. Additionally, the dynamicMEXCLP heuristic also
reduces the average response times overall. The heuristic depends
on the busy fraction, i.e., the fraction of time that an ambulance is
unavailable, that needs to be estimated. Our experiments indicate
that good performance is still obtained, even if there is an error in
the estimation of the busy fraction.

5.1. Remarks

In terms of applicability, we find it useful to consider whether
the DynamicMEXCLP heuristic is still feasible whenwe relax some
of our assumptions. We address the following cases.

Changes during the day
In practice, EMS systems may deal with characteristics that

change over the course of a day. This is reflected in changing
parameters in our model. We mention a few examples.

• Accident probabilities may shift, for example, an accident is
more likely to occur in an industrial area during office hours.

• Travel times may be longer in rush hour, or may depend on the
weather.
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Changing parameters over time, such as the examples above,
are often difficult to incorporate in a solution. However, in our case,
there is noneed to complicate the algorithm.At anydecision epoch,
use the parameters that are relevant for the upcoming period. The
choice of the period size may depend on the EMS region, but for
example 30 min would be a good starting point.

However, we want to point out that emergency services do not
always experience the impact of the time of day on their response
velocities. For example, empirical evidence shows only a minor
impact for fire fighters in New York [20] and ambulances in Cal-
gary [21]. Furthermore, even if one is certain that the time of day
is relevant for the response velocities, the task remains to estimate
the different velocities accurately. Care has to be taken as to not
make mistakes, e.g., due to the data containing only a small num-
ber of trips from i to j in each time segment. At this moment, we do
not have access to accurate time dependent travel time estimates,
and therefore we did not implement such a case study.

Stochastic travel times
One straightforward way of dealing with stochastic travel

times, is to use the expectations E[τij] in Algorithm1. Alternatively,
we did some additional simulations, in which we found good
performance when using the 0.8 quantile, i.e., the number Xij such
that P[τij ≤ Xij] = 0.8. The performance will of course depend
on the exact distribution function chosen, and we suggest some
preliminary experiments to obtain a good strategy.

Staff satisfaction
Staff members that come from a ‘static’ work environment may

be used to having their own, fixed home base. Giving up this
concept can be difficult. Although our proposed method already
limits the relocation moments, extra adjustments can be made to
accommodate the staff. For example, a good compromisewould be
the following. Each vehicle (and the corresponding crew) still has
its own, fixed home base. Preferably, we send the vehicle to this
home base, but we may choose another base if the expected gain
is large enough. One can measure this by calculating the marginal
coverage that would be obtained if we were to send the vehicle to
its own home base, and compare this with the marginal coverage
that could be obtained by a relocation. Finally, one might relocate
the vehicle if and only if the difference in marginal coverage is
greater than a certain threshold.

Rural regions
As we mentioned in Section 1.2, our algorithm is designed

particularly for busy (urban) areas. For rural regions, however,
the same technique may still be applicable, albeit with some
adaptations. A key observation is that rural regions have a lower
accident frequency—which is directly related to the frequency at
which ambulances become idle. This implies that there will be
fewer relocation moments, and therefore we expect performance
improvements to be smaller. In order to overcome this, we suggest
adding some additional relocations.4 For example, one could allow
a relocation when a new accident arrives. In addition, it is possible
to allow two vehicles to relocate upon completion of an accident.
The decision on where to send the vehicles, can still be made using
the Dynamic MEXCLP method.

Multiple targets
In some countries there exist multiple time targets, depending

on the urgency of the situation. For example, in the Netherlands,
the highest priority accidents have to be reached within 15 min,

4 This will obviously increase the workload for the crew, but we think this is
acceptable since a rural region is typically not very busy.
and the less severe (but still urgent) accidents have to be reached
within 30min.We advise to apply the DynamicMEXCLP algorithm
using the most strict time target. Our numerical experiments
regarding realistic use cases, indicate that this results in a policy
that also has a good performance for a target of 30 min.
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