
Learning Optimal Policies in Markov Decision Processes
with Value Function Discovery∗

Martijn Onderwater†‡

m.onderwater@cwi.nl
Sandjai Bhulai‡

s.bhulai@vu.nl
Rob van der Mei†‡

r.d.van.der.mei@cwi.nl

†CWI
Stochastics Group
Science Park 123

1098XG, Amsterdam
The Netherlands

‡VU University Amsterdam,
Faculty of Sciences
De Boelelaan 1081a
1081HV, Amsterdam

The Netherlands

ABSTRACT

In this paper we describe recent progress in our work on
Value Function Discovery (vfd), a novel method for discov-
ery of value functions for Markov Decision Processes (mdps).
In a previous paper we described how vfd discovers alge-
braic descriptions of value functions (and the corresponding
policies) using ideas from the Evolutionary Algorithm field.
A special feature of vfd is that the descriptions include the
model parameters of the mdp. We extend that work and
show how additional information about the structure of the
mdp can be included in vfd. This alternative use of vfd
still yields near-optimal policies, and is much faster. Be-
sides increased performance and improved run times, this
approach illustrates that vfd is not restricted to learning
value functions and can be applied more generally.

Categories and Subject Descriptors

G.3 [Probability and statistics]: Markov processes; I.2.8
[Problem Solving, Control Methods, and Search]:
Dynamic programming

General Terms

Algorithms, Performance

Keywords

Markov Decision Processes, Evolutionary Algorithms, Value
Function, Genetic Programming.

1. INTRODUCTION
In this paper we extend our work [2] on vfd, a novel

method that discovers value functions for Markov Decision
Processes (mdps). vfd is based on Genetic Programming (a
type of Evolutionary Algorithm), and has as its key feature

∗A full version of this paper is available at [2].

IFIP WG 7.3 Performance 2015, October 19-21, Sydney, Australia.
Copyright is held by author/owner(s).

that the discovered descriptions of value functions are alge-
braic in nature. In particular, these description include the
model parameters of the mdp.

We give a short description of vfd and introduce the mdp
from [2], which we reuse as an example. Contrary to [2],
in this paper we do not use vfd to discover a near-optimal
value function. Instead, we use the fact that, for our example
mdp, the optimal policy is a threshold policy, and we let vfd
learn a description of this threshold in terms of the model
parameters. The learned threshold corresponds to a policy,
which we then compare to the optimal policy.

Numerical experiments show that this alternative use of
vfd yields an expression for the threshold that captures the
threshold of the optimal policy well. The run time of vfd in
this paper is, however, several orders of magnitude shorter
compared to the application of vfd in [2]. Additionally, the
work in the current paper shows that vfd is not restricted to
learning value functions and can be applied more generally.

2. GENETIC PROGRAMMING
vfd is based on Genetic Programming (gp) and the stan-

dard application of gp is discovering algebraic descriptions
of functions from samples of this function at various points.
To be precise, suppose a function V (x) is unknown, but that
we do have samples V (si) at various points si. Applying
gp allows discovery of an approximate algebraic expression
Ṽ (x) for V (x) such that V (si) ≈ Ṽ (si) for all sample points
(si, V (si)).

gp uses trees to represent a function, and several of these
trees together form the population. Fig. 1 illustrates a tree
representation of the function V (x) = x(x+1)

2μ(1−ρ)
. The op-

erators (/, ∗,+,−) from this expression are in the internal
nodes of the tree, whereas the leafs contain the variables
(x), parameters (ρ, μ), and constants (1, 2). Here we only
use the operators (/, ∗,+,−) shown in the example, but the
representation is flexible and also allows for, e.g., exponents,
square roots, logarithms, and rounding.

By mutating single trees and combining multiple trees, gp
creates new functions based on the trees in the population.
Following the paradigm of an Evolutionary Algorithm, mu-
tating and combining ‘good’ trees will, over time, result in
even ‘better’ trees. This process is repeated until a function
is discovered that fits sufficiently well.

1

Performance Evaluation Review, Vol. 43, No. 2, September 2015 7

/

*

+

x 1

x

*

2 *

−
1 ρ

μ

Figure 1: Function V (x) = x(x+1)
2μ(1−ρ)

as a tree

Algorithm 1 Value function discovery (vfd)
1: function vfd()
2: samplePointSets ← readSamplePointSets()
3: population ← initPopulation()
4: bestTrees ← List()
5: while not isConverged() do
6: repeat
7: if apply mutation then
8: children ← mutate(selectParent());
9: else

10: children ←recombine(selectParent(),
11: selectParent());
12: end if
13: until mu children generated
14: setError(children)
15: population ← population + children
16: sort(population)
17: survivorSelection()
18: end while
19: sort(bestTrees)
20: return bestTrees[0]
21: end function

3. VALUE FUNCTION DISCOVERY
vfd applies gp to sample points of the optimal value func-

tion of an mdp, provided by, for instance, value iteration.
By including sample points obtained with different values
for the parameters of the mdp, these parameters can also be
included in the discovered expression.

A pseudo code listing of vfd is shown in Algorithm 1.
The algorithm starts at line 2 by loading the sets of sample
points of the mdp. Next, the population is initialized by fill-
ing it with lambda randomly generated trees. Lines 5–18
describe the steps taken by gp: first, mu children are gener-
ated using mutation and recombination (lines 7–12). Then,
their error is calculated, they are added to the population,
and the population is sorted from smallest error to largest
(lines 14-16). Survivor selection removes lambda trees from
the population, leaving mu individuals (line 17). This pro-
cedure is repeated until convergence (line 5). Upon conver-
gence vfd returns the best tree found during the search (line
20). A detailed description of the various functions can be
found in [2].

4. EXAMPLE MDP
We use the same mdp as in [2], and shortly repeat it here.

Fig. 2 shows a queue with Poisson arrivals (rate λ) and two
servers with exponential service rates μ1 and μ2 (μ1 > μ2).

λ
μ1

μ2

Figure 2: An M/M/2 system with control, where
jobs (arriving with rate λ) from the queue have to
be assigned to either a fast server S1 (with service
rate μ1) or to a slow server S2 (with service rate μ2)

The jobs in the queue have to be assigned non-preemptively
to either the fast server (S1) or the slower server (S2), as-
suming one is available. This decision is taken after a job
completion, as well as after a job arrival.

We model this scenario as an mdp, with state (x, i) ∈
X = N × {0, 1}. Here, x denotes the number of jobs in the
queue and S1, and i the number of jobs in S2. Our aim is to
minimize the average number of jobs in the system. From
[1] we have the optimality equation

g + V (x, i) = (x+ i) + λW (x+ 1, i)

+ μ1W ((x− 1)+, i) + μ2W (x, 0),
(1)

with

W (x, 0) = min{V (x, 0);V (x− 1, 1)} if x > 0,

W (0, i) = V (0, i),

W (x, 1) = V (x, 1).

(2)

The function W (x, i) reflects the decision to be taken after
the occurrence of an event. In particular, if S2 is empty the
decision is between leaving the job in the queue (V (x, 0)) or
moving one job from the queue to S2 (V (x−1, 1)), as shown
in Eq. (2). If the queue and S1 are empty then moving a job
is not possible and the state of the system does not change
(W (0, i) = V (0, i)). Also, if the second server is busy the
state does not change (W (x, 1) = V (x, 1)). In Eq. (1), the
second, third, and fourth term on the right-hand side corre-
spond to the decision upon a job arrival, a job completion
at S1, and a job completion at S2, respectively. Finally, the
constant g is the time-average costs of the system.

5. LEARNING THRESHOLD WITH VFD
In [2] we apply vfd to sample points of the optimal value

function, obtained via value iteration. In this paper, we
use prior knowledge that the optimal policy of Eq. (1) is
a threshold policy (see [1] for a proof). To be precise, for
given model parameters λ, μ1, μ2 the optimal policy states
that server S2 should be used whenever x > T , i.e., when
x exceeds a threshold T . By viewing this threshold as a
function of the model parameters, we can apply vfd and
discover an algebraic expression for T in terms of the model
parameters (λ, μ1, μ2).

Using this alternative approach, each sample point set
contains just one point: the threshold T . In [2], each sample
point set would contain several points (x, i) on the value
function V (x, i). Note that by making this change we only
affect the input to vfd, and not the algorithm itself.

6. NUMERICAL RESULTS
We reuse the parameters settings for vfd that we listed

2

8 Performance Evaluation Review, Vol. 43, No. 2, September 2015

Table 1: Model parameters per sample point set
Set ρ1 λ μ1 μ2

0 0.650 0.375 0.578 0.047
1 0.775 0.429 0.554 0.017
2 0.900 0.464 0.515 0.021
3 0.950 0.459 0.483 0.058

Table 2: Costs g̃ and threshold T̃ of the threshold
policy discovered by vfd, compared to costs g and
threshold T of the optimal policy

Set ρ1 T T̃ g g̃
0 0.650 5 4.254 1.771 1.790
1 0.775 10 9.195 3.338 3.340
2 0.900 6 7.044 6.914 6.923
3 0.950 3 2.874 6.094 6.133

Table 3: Costs g̃ and threshold T̃ of the policy dis-
covered by vfd, compared to costs g and threshold
T of the optimal policy. The model parameters are
different from the ones vfd was given as input

ρ1 λ μ1 μ2 T T̃ g g̃
0.600 0.364 0.606 0.030 9 6.207 1.490 1.510
0.700 0.389 0.556 0.055 4 3.643 2.083 2.117
0.825 0.443 0.537 0.021 7 7.451 4.271 4.271
0.875 0.433 0.494 0.073 3 2.559 3.679 3.699
0.925 0.473 0.511 0.016 7 9.064 9.310 9.347

in [2, Table 1]. The sample point sets, which form the in-
put to vfd, are slightly different. First, we focus on sys-
tems with a high load, since systems with a low load have
a large threshold which is unlikely to be reached. There-
fore, we keep only sample point sets 3− 6, corresponding to
loads ρ1 = 0.650, ρ1 = 0.775, ρ1 = 0.900, and ρ1 = 0.950.
We renumber them as 0 − 3. Second, we change the model
parameters λ, μ1, μ2 of each sample point set so that the re-
sulting thresholds of the optimal policy differ substantially
(in [2] the thresholds ranged from 3 to 5 and these are too
close together for the current experiment). The resulting
model parameters are shown in Table 1.

For each of these 4 parameter combinations we determine
the threshold T of the optimal policy using value iteration,
and together these thresholds form the input to vfd. Run-
ning vfd yields an algebraic description of the threshold in
terms of the model parameters:

T̃ (λ, μ1, μ2) = μ1(μ1 + μ2)
(
1 + μ1(

1

λ
+ λ+ 2(1− μ2))

+
λ

μ2
− (1 + λ)μ2 + μ2

1μ2

)
.

This expression implies a policy for which we determine
the time-average costs (denoted by g̃) with policy evalua-
tion. In Table 2 we list the costs g and threshold T of the
optimal policy, and the costs g̃ and threshold T̃ from vfd.
The table shows that our alternative application of vfd also
yields near-optimal policies, and that the discovered thresh-
olds closely resemble the optimal thresholds. Note that, be-

cause we set min_error to 0.2, the discovered thresholds
deviate at most 20% from the optimal values.

Next, we inspect the performance of the thresholds discov-
ered by vfd on model parameters that it was not trained on.
Therefore, we select five values for ρ1, different from those
in Table 2, and randomly generate new parameters λ, μ1, μ2.
The resulting values are shown in Table 3 in the first four
columns. Then, we calculate the thresholds T̃ using the
function discovered by vfd, and evaluate the corresponding
policy to find g̃. Finally, we run value iteration for each
combination of model parameters to get the optimal T and
g. Table 3 shows that the function discovered by vfd yields
thresholds that closely resemble the optimal thresholds, as
well as near-optimal policies.

Finally, we repeat the investigation of the run time of vfd
from [2, Sec. V.D]. There, we recorded a mean run time
of 2 minutes and 21 seconds over 25 runs. In the current
setup, running vfd 25 times gives a median run time of
95.6 milliseconds, several orders of magnitude faster than in
[2]. This improvement in run time is because the sample
point sets now contain just one point and are thus much
smaller than before.

7. CONCLUSIONS AND FUTURE WORK
In this paper we continued our work on vfd, a novel al-

gorithm for discovering value functions for Markov Decision
Processes. We applied vfd to the same example mdp as in
[2], but included extra knowledge that the optimal policy
of the mdp is of threshold type. Instead of discovering the
value function with vfd, we learned an algebraic expression
for the threshold in terms of the model parameters. We
numerically inspected the resulting threshold and the corre-
sponding policy to the optimal policy. The results show that
his alternative use of vfd still yields near-optimal policies
and thresholds that closely resemble the optimal value.

The work presented in this paper is currently in progress,
and we intend to include additional features in the near fu-
ture. Firstly, we can include the fact that thresholds are
integers, whereas vfd currently yields decimal values. We
expect that this increases the speed of vfd on this prob-
lem. Secondly, we plan to find more accurate thresholds by
setting parameter min_error to 0.

Acknowledgements

This work was performed within the project ‘Realisation
of Reliable and Secure Residential Sensor Platforms’ of the
Dutch program IOP Generieke Communicatie (IGC1020),
supported by the Subsidieregeling Sterktes in Innovatie We
thank surfsara [3] for use of the lisa Compute Cluster.

8. REFERENCES
[1] G. Koole. A simple proof of the optimality of a

threshold policy in a two-server queueing system.
Systems & Control Letters, 26(5):301–303, 1995.

[2] M. Onderwater, S. Bhulai, and R. D. v. d. Mei. Value
Function Discovery in MDPs with Evolutionary
Algorithms. IEEE Transactions on Systems, Man, and
Cybernetics Systems, 2014. [under review].

[3] surfsara. http://www.surfsara.nl, 2013.

3

Performance Evaluation Review, Vol. 43, No. 2, September 2015 9

