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� We investigate control of a queueing system in which a component of the state space is subject to
aging. The controller can choose to forward incoming queries to the system (where it needs time for
processing), or respond with a previously generated response (incurring a penalty for not providing
a fresh value). Hence, the controller faces a tradeoff between data freshness and response times. We
model the system as a complex Markov decision process, simplify it, and construct a control policy.
This policy shows near-optimal performance and achieves lower costs than both a myopic policy and
a threshold policy.
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1. INTRODUCTION

In this article we study the control of a queueing system in which part
of the data is subject to aging. The system contains a controller that must
provide responses to incoming queries, either using aged data or with a
newly generated value from the queueing system. Using the queueing system
ensures a fresh response to the query, whereas generating the response takes
some time, particularly if the load on the system is high. Alternatively, the
controller may use a previously generated value, which is, however, not as
fresh as a response from the queueing system. Consequently, the controller
faces a tradeoff between data freshness and query response times.
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Control of a Queueing System 589

FIGURE 1 The controller (Ctrl) assigns incoming queries to either Q1 in the queueing system, or to the
db. In the first case, the query gets a fresh response but has to wait some time before it is generated. In
the second situation, the system returns a previously generated (and thus aged) response immediately.
The db is regularly refreshed with fresh values (reports) from Q2.

We illustrate the system in Figure 1, where a controller Ctrl handles
incoming queries that require a response. The controller uses a policy to
determine whether a query receives a response with fresh data or with aged
data. In the first case, the query is forwarded to a queue Q1, where the
query is eventually serviced. In the second case, the query is immediately
answered with a known, aged response that is stored in, e.g., a database
(db). The db is regularly refreshed by reports from a queue Q2. For modeling
purposes, we assume that both queries and report requests arrive according
to a homogeneous Poisson process with rate λ1 and λ2, respectively. Also, we
assume that the processing time in the queues is exponentially distributed
with parameter μ1 (for queries) and μ2 (for report requests).

FIGURE 2 Interaction between queries (q1, . . . , q3), reports (r1, . . . , r3), and the age of the latest value
in the database. In the graph, three reports arrive (at times 1, 4, and 6) that reset the age to 0. In between
reports, the age increases linearly with time. Upon a query arrival, the controller sees the latest value in
the database at a certain age and uses that age to make its decisions. For instance, query q2 arrives at time
3, at which moment the most recent value in the database has age 2.
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590 Onderwater et al.

An illustration of the interaction between queries, reports, and the age
of the latest value in the db is shown in Figure 2. At time 1, a job is completed
at the server of Q2 (resulting in a report) and sets the age to 0. This age then
increases linearly until the next report is generated at time 4. Meanwhile, at
time 1.5 a query arrives at the controller, at which moment the age of the
latest value in the database is 0.5. Then at time 3 the second query arrives,
which sees the most recent value in the database at age 2. Query 3 arrives
after the second report is generated, at which point the value in the database
has age 1. Report 3 at time 6 refreshes the database again and sets the age to
0. Note that the graph does not show which decisions the controller makes
on arrival of a query.

The choice between using instantly available aged values and generating
fresh ones regularly occurs in practice. For instance, obtaining fresh mea-
surements from a wireless sensor network is relatively time-consuming due
to the wireless transmissions across the network. Therefore, a gateway to the
sensor network can retain previously generated values for answering queries,
and thus faces a tradeoff similar to the one we consider in this article. A sec-
ond example is a Web server responsible for retrieving a Web page. It either
instantly obtains the requested page from a local cache, or it takes some
time to regenerate a fresh version of the page. Again, the choice of the Web
server is based on a tradeoff similar to the description above.

Addressing the tradeoff is traditionally done using a threshold policy; see,
for instance, Ref.[1] and Ref.[16] in the context of the Web server example.
Namely, when the age of the database value exceeds a threshold, retrieval
of fresh data is initiated, and otherwise the cached value is used. Although
such systems are commonly used, there is room for improvement by setting a
dynamic threshold based on the expected response time in the system of the
query. In cases where the information retrieval is time-consuming, using a
database value that is slightly above the threshold value might be acceptable.
Hence, there is a tradeoff between using a database value that has an age
that is (slightly) above the threshold value and the expected response time
of query when it is handled by the system.

In this article, we formulate the scenario above as a three-dimensional
Markov decision process (mdp). The refresh of the database causes subtle
interactions between the state variables, making the problem hard to solve
analytically. Therefore, we construct an approximate model that captures
these dynamics in a simpler way, allowing for an analytical solution. The
analysis of the simpler model relies on differencing techniques to deal with
several inhomogeneous terms. After finding the analytical solution, we ap-
ply one-step policy improvement to obtain an improved policy. Finally, we
numerically compare this policy to the optimal policy, as well as to a my-
opic policy and to a traditional age-threshold policy. The improved policy
achieves near-optimal performance, and it performs better than the myopic
and the age-threshold policy.
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Control of a Queueing System 591

The scenario described above is characterized by three distinctive com-
ponents: (1) a queueing system, (2) a database that is periodically refreshed
from the queueing system, and (3) the controller assigning queries to ei-
ther of the two other components. Despite a thorough literature review,
we did not find any research with the same combination of components
(apart from Ref.[12], where we investigate the same scenario using a differ-
ent model). The caching application mentioned before is related, but it
seems to be not used together with a queueing system. From a queueing
theoretic approach, the papers by Ref.[7] and Ref.[13] are somewhat similar
to our situation. They deal with several servers for which aged information
about the loads is available, and, as in our approach, this aged information
is periodically updated by the queues via reports. Their system, however,
does not contain a database, but it has multiple queues that can serve the
incoming jobs. Therefore, the controller decides which of the queues to use
based on the aged load information, and thus addresses a problem different
from ours.

Our approach relies on the one-step policy improvement technique, in-
troduced by Ref.[14]. As a starting point we use the so-called Bernoulli policy,
because it decouples the queueing system in Figure 1 from the db and allows
for an explicit analysis. This decoupling aspect has been used in, for instance,
Ref.[15], where the authors derive state-dependent routing schemes for high-
dimensional circuit-switched telephone networks, relying on the Bernoulli
policy to allow an analysis of individual communication lines. Other appli-
cations include the control of traffic lights[8], inventory control[21], routing
of telephone calls in call centers[5], and controlled queueing models[3, 17].

Our contributions in this article are the following: first, we introduce a
control problem of a queueing system in which part of the state space is sub-
ject to aging. Then, from a methodological point of view, we provide a clever
strategy for reducing the dimensionality of a MDP. Furthermore, during our
derivation of a control policy, we present an intuitive and computationally
efficient method to determine one of the parameters. Finally, we show that
combining the latter two methodological approaches yields a near-optimal
control policy for our queueing system.

The remainder of the article is structured as follows. Section 2 introduces
the mdp used to model the scenario above, and Section 3 illustrates the
three steps of our approach to finding a near-optimal control policy. Then,
Section 4 presents the first of these steps, detailing how the approximate
model is constructed. The second step, finding a solution to the approximate
model, is in Section 5. Section 6 contains the third and final step, describing
the derivation of our near-optimal control policy. Numerical experiments
with this policy are presented in Section 7, as well as a closer look at the
optimal policy. We finish with conclusions and future research directions in
Section 8.
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592 Onderwater et al.

2. MODEL FORMULATION

The tradeoff we discuss in this article is between data freshness and
query response times. Here, we assume that the query response time is
proportional to the current workload of the system, i.e., the number of
queries plus the number of report requests in the system. The decision
(using the db or the queueing system) thus depends on the number of
queries in the system, on the number of report requests, and on the age of
the most recent value in the db. In order to analyze decision policies, we
formulate the scenario as a Markov decision process (mdp). As state space
we use X = N0 × N0 × N0, where (i, j, N ) ∈ X denotes a system containing
i queries and j report requests, and where the latest report refreshed the db
N time units ago. The controller can choose actions a from A = {Q1, db},
where Q1 indicates forwarding of the query to Q1 (see Figure 1). The cost
function c(i, j, N ; a) incorporates the costs of each action available to the
controller:

c(i, j, N ; a) =
{

γ1(i + 1) + γ2 j + γ3, ifa = Q1,

(N − T)+, ifa = db.
(1)

Here, γ1(i + 1) + γ2 j + γ3 is a weighted sum (with weights γ1, γ2, γ3 ∈ R)
of the number of queries and report requests in the system, reflecting the
workload of the system after assigning a new query to it. The term (N − T)+

in the cost function is a penalty for returning a stale value from the db instead
of a fresh value. The parameter T indicates a threshold below which the latest
value in the db is recent enough to answer the query. Note that we took
γ1(i + 1) rather than γ1i in the cost function, because we include the query
that is about to be assigned to Q1 when that action is chosen. Additionally,
the resulting expression for the improved policy closely resembles a simple
myopic policy that we investigate numerically, thereby further emphasizing
the potential of the improved policy.

The state space, the action set, the transition rates, and the cost function
define the Markov decision process. More explicitly, the optimality equation
of the mdp can be formulated as follows:

g + V (i, j, N ) = λ2V (i, j + 1, N + 1) + μ1V (i − 1, j, N + 1)1{i>0}

+ μ2V (i, j − 1, 0)1{ j>0}

+ (1 − λ1 − λ2 − μ11{i>0} − μ21{ j>0})V (i, j, N + 1)

+ λ1 min
{
γ1(i + 1) + γ2 j + γ3 + V (i + 1, j, N + 1);

(N − T)+ + V (i, j, N + 1)
}
, (2)
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Control of a Queueing System 593

FIGURE 3 Notation used in the steps (I)-(III) of finding a near-optimal policy π ′ for equation (2).

with V (i, j, N ) the relative value function and g the time-average
costs. The uniformization term (see Refs.[11, 18]) is formed by
(1 − λ1 − λ2 − μ11{i>0} − μ21{ j>0})V (i, j, N + 1), assuming that parame-
ters λ1, λ2, μ1, μ2 are normalized such that λ1 + λ2 + μ1 + μ2 = 1. Hence, we
can regard these parameters as transition probabilities and equation (2) as a
discrete-time model. Also note that N measures the number of uniformized
time steps since the generation of the last report, and not “real” time. Finally,
we assume the stability conditions ρ1 := λ1/μ1 < 1 and ρ2 := λ2/μ2 < 1 hold.

3. OBTAINING THE NEAR-OPTIMAL POLICY

Ideally, we would like to solve the optimality equation (2) analytically and
to obtain an expression for the relative value function (and, consequently, for
the optimal policy). However, the optimality equation has two complicating
aspects that prevent us from doing so. First, it contains the decision captur-
ing the tradeoff faced by the controller, which involves evaluation of a min-
imization term. Moreover, the inhomogeneous terms γ1(i + 1) + γ2 j + γ3

and (N − T)+ in this minimum add to the complexity of the model. Sec-
ond, the state space variables interact with each other, mainly through
points depending on their neighbors (i.e., in equation (2), V (i, j, N ) de-
pends on neighbors V (i, j + 1, N + 1), V (i − 1, j, N + 1), V (i, j, N + 1),
and V (i + 1, j, N + 1)). An exception to this is the term μ2V (i, j − 1, 0),
which causes a complex relation between j and N .

In this article we derive an approximate model to the original problem,
ultimately resulting in a near-optimal control policy. In the coming sections
we take the following steps (illustrated in Figure 3):

I. We start in Section 4 with a modification of the optimality equation (2),
obtained by removing the N -dimension, resulting in an mdp for an
approximation to V (i, j, N ) (denoted by Ṽ (i, j)).

II. In Section 5 we choose a policy for this new mdp and solve it analytically,
yielding a solution Ṽ α(i, j). Here, α is the parameter of a Bernoulli
routing policy.

III. Finally, in Section 6, we apply one-step policy improvement by inspecting
the minimum in equation (2), substituting Ṽ α(i, j) for V (i, j, N ). This
results in an improved policy, denoted by π ′.
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594 Onderwater et al.

4. MODEL APPROXIMATION (STEP I)

Looking at equation (2), we see that N is in the state space to accom-
modate the penalty term (N − T)+. Therefore, if we replace the (N − T)+

with a suitable constant C , the N can be removed from the state space.
Introducing the constant C in equation (2) yields

g̃ + Ṽ (i, j) = λ2Ṽ (i, j + 1)

+μ1Ṽ (i − 1, j)1{i>0} + μ2Ṽ (i, j − 1)1{ j>0}

+(1 − λ1 − λ2 − μ11{i>0} − μ21{ j>0})Ṽ (i, j) (3)

+λ1 min
{
γ1(i + 1) + γ2 j + γ3 + Ṽ (i + 1, j); C + Ṽ (i, j)

}
.

As it turns out, the constant C does not affect our near-optimal policy,
so assigning a value to it is not strictly necessary (in Section 6.1 the term
(N − T)+ is reintroduced). However, the idea of reducing the state space
in this manner might be applicable to other mdps, so for completeness we
shortly illustrate how C can be determined for equation (2). To this end,
we inspect this mdp for the policy that always uses the db to answer queries.
Replacing the minimum in equation (2) with this policy yields the equation

gDB + V DB( j, N ) = λ2V DB( j + 1, N + 1) + μ2V DB( j − 1, 0)1{ j>0}

+ (1 − λ1 − λ2 − μ21{ j>0})V DB( j, N + 1)

+ λ1
(
(N − T)+ + V DB( j, N + 1)

)
, (4)

where variable i is removed from the notation because it no longer influences
the value function. Note that at each increment of N in equation (4) costs
λ1(N − T)+ are incurred, leading to time-average costs gDB . This suggests
that C := gDB/λ1 is a suitable constant to replace the (N − T)+ term in
equation (2). In Ref. [12, Appendix B], we show that gDB = λ1

(1−λ2)T+1

λ2
(this

can also be obtained via standard queueing theory results), and thus

C = (1 − λ2)T+1

λ2
.

5. NEAR-OPTIMAL CONTROL POLICIES (STEP II)

We prepare for one-step policy improvement by fixing a policy for the
mdp in equation (3). For this policy we choose the Bernoulli policy, which
randomly assigns incoming queries to either Q1 (with probability α ∈ [0, 1])
or to the db (with probability 1 − α). Replacing the minimum in equation (3)
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Control of a Queueing System 595

by the Bernoulli policy yields the difference equation

g̃α + Ṽ α(i, j) = λ2Ṽ α(i, j + 1)

+ μ1Ṽ α(i − 1, j)1{i>0} + μ2Ṽ α(i, j − 1)1{ j>0}

+ (1 − λ1 − λ2 − μ11{i>0} − μ21{ j>0})Ṽ α(i, j)

+ λ1α · [γ1(i + 1) + γ2 j + γ3 + Ṽ α(i + 1, j)]

+ λ1(1 − α) · [C + Ṽ α(i, j)]. (5)

Note how the application of the Bernoulli policy decouples the queueing
system from the db. In the remainder of this section we derive an expression
for the relative value function Ṽ α(i, j) by solving equation (5). This result is
summarized in the following theorem:

Theorem 5.1. The solution to equation (5) is given by

Ṽ α(i, j) = γ1λ1α

μ1 − λ1α

i(i + 1)
2

+ γ2λ1α

μ2 − λ2

j( j + 1)
2

,

and

g̃α = λ1(1 − α)C + λ1α

(
γ1λ1α

μ1 − λ1α
+ γ2λ2

μ2 − λ2
+ γ1 + γ3

)
.

Substitution of these expressions for Ṽ α(i, j) and g̃α into equation (5)
shows that these, indeed, form a solution. In the following subsections we
derive the expressions in Theorem 5.1 by solving equation (5). First, we
tackle the inhomogeneous terms γ1(i + 1) + γ2 j + γ3 and C by considering
an equation for �1Ṽ α(i, j) = Ṽ α(i + 1, j) − Ṽ α(i, j). This removes the in-
homogeneous term C and transforms the other term to γ1. Then we look at
�2

1Ṽ α(i, j) = �1Ṽ α(i + 1, j) − �1Ṽ α(i, j), which eliminates the remaining
inhomogeneous term γ1. We solve this equation, and then retrace our steps
from �2

1Ṽ α(i, j) to �1Ṽ α(i, j) to Ṽ α(i, j).
During the derivation we encounter an issue concerning uniqueness

of solutions to the Poisson equation for �2
1Ṽ α(i, j). There, we postulate a

form for a solution and must show that this solution is unique. Showing
uniqueness is not trivial and involves several technical arguments that result
in additional restrictions on the form of �2

1Ṽ α(i, j). This important part of
the derivation is placed in Appendix A.
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596 Onderwater et al.

5.1. Solving the Difference Equation for Δ2
1

~
V α(i, j )

The behavior of the difference equation on the interior of the state space
differs from the behavior on the boundaries {i = 0} and { j = 0}. Therefore,
we first study the difference equation for the interior {i, j > 0}. We define
�1Ṽ α(i, j) = Ṽ α(i + 1, j) − Ṽ α(i, j). For i > 0 and j > 0 it holds that

�1Ṽ α(i, j) = λ1α[γ1 + �1Ṽ α(i + 1, j)] + λ1(1 − α)�1Ṽ α(i, j)

+ λ2�1Ṽ α(i, j + 1)

+ μ1�1Ṽ α(i − 1, j) + μ2�1Ṽ α(i, j − 1)

+ (1 − λ1 − λ2 − μ1 − μ2)�1Ṽ α(i, j). (6)

Now, define �2
1Ṽ α(i, j) = �1Ṽ α(i + 1, j) − �1Ṽ α(i, j). With this definition

we have that

�2
1Ṽ α(i, j) = λ1α�2

1Ṽ α(i + 1, j) + λ1(1 − α)�2
1Ṽ α(i, j) + λ2�

2
1Ṽ α(i, j + 1)

+ μ1�
2
1Ṽ α(i − 1, j)

+ μ2�
2
1Ṽ α(i, j − 1) + (1 − λ1 − λ2 − μ1 − μ2)�2

1Ṽ α(i, j).

We suggestively write this as

(λ1α + μ1)�2
1Ṽ α(i, j) + (λ2 + μ2)�2

1Ṽ α(i, j) = λ1α�2
1Ṽ α(i + 1, j)

+ μ1�
2
1Ṽ α(i − 1, j)

+ λ2�
2
1Ṽ α(i, j + 1) + μ2�

2
1Ṽ α(i, j − 1). (7)

The notation suggests that the solution to this equation might be split
up in a part that only depends on i and a part that only depends on j. That
is, a solution might be given by �2

1Ṽ α(i, j) = Ṽ α
1 (i) + Ṽ α

2 ( j) with Ṽ α
1 (i) and

Ṽ α
2 ( j) satisfying

{
(λ1α + μ1)Ṽ α

1 (i) = λ1αṼ α
1 (i + 1) + μ1Ṽ α

1 (i − 1),

(λ2 + μ2)Ṽ α
2 ( j) = λ2Ṽ α

2 ( j + 1) + μ2Ṽ α
2 ( j − 1).

(8)
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Control of a Queueing System 597

These equations are simple homogeneous difference equations of which the
solutions are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ṽ α
1 (i) = μ1Ṽ α

1 (0) − λ1αṼ α
1 (1)

μ1 − λ1α
+

λ1α
(
Ṽ α

1 (1) − Ṽ α
1 (0)

) (
μ1
λ1α

)i

μ1 − λ1α
,

Ṽ α
2 ( j) = μ2Ṽ α

2 (0) − λ2Ṽ α
2 (1)

μ2 − λ2
+

λ2
(
Ṽ α

2 (1) − Ṽ α
2 (0)

) (
μ2
λ2

) j

μ2 − λ2
.

(9)

Note that with these expressions for Ṽ1α(i) and Ṽ2α( j), �2
1Ṽ α(i, j) is a

solution to equation (7). It is, however, not immediately obvious that this is
also the solution. We return to this issue in Appendix A.

The values for Ṽ α
1 (0), Ṽ α

1 (1), Ṽ α
2 (0), Ṽ α

2 (1) still need to be determined
in order to make the solution consistent at the boundaries. For this purpose,
consider the boundary { j = 0}. In this case, �1Ṽ α(i, 0) becomes for i > 0

�1Ṽ α(i, 0) = λ1α
[
γ1 + �1Ṽ α(i + 1, 0)

] + λ1(1 − α)�1Ṽ α(i, 0) + λ2�1Ṽ α(i, 1)

+ μ1�1Ṽ α(i − 1, 0) + (1 − λ1 − λ2 − μ1)�1Ṽ α(i, 0). (10)

Similarly, for �2
1Ṽ α(i, 0) we have that

�2
1Ṽ α(i, 0) = λ1α�2

1Ṽ α(i + 1, 0) + λ1(1 − α)�2
1Ṽ α(i, 0) + λ2�

2
1Ṽ α(i, 1)

+ μ1�
2
1Ṽ α(i − 1, 0) + (1 − λ1 − λ2 − μ1)�2

1Ṽ α(i, 0).

Again, we can suggestively write this as

(λ1α + μ1)�2
1Ṽ α(i, 0) + λ2�

2
1Ṽ α(i, 0) = λ1α�2

1Ṽ α(i + 1, 0) + μ1�
2
1Ṽ α(i − 1, 0)

+ λ2�
2
1Ṽ α(i, 1),

leading to the following system of equations

{
(λ1α + μ1)Ṽ α

1 (i) = λ1αṼ α
1 (i + 1) + μ1Ṽ α

1 (i − 1),

λ2Ṽ α
2 (0) = λ2Ṽ α

2 (1).
(11)

From these expressions, we obtain that on the boundary { j = 0}, the mdp
behaves exactly the same as the mdp on the interior. Furthermore, it shows
that Ṽ α

2 (0) = Ṽ α
2 (1) and thus that Ṽ α

2 ( j) in equation (9) is a constant:
Ṽ α

2 ( j) = c2. Without loss of generality, we can set c2 = 0 and determine
�2

1Ṽ α(i, j) completely from Ṽ α
1 (i). Summarizing, this gives us the result that

D
ow

nl
oa

de
d 

by
 [

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
] 

at
 1

2:
54

 0
1 

Ju
ly

 2
01

6 



598 Onderwater et al.

�2
1Ṽ α(i, j) = Ṽ α

1 (i) + Ṽ α
2 ( j), where Ṽ α

2 ( j) ≡ 0 and

Ṽ α
1 (i) = μ1Ṽ α

1 (0) − λ1αṼ α
1 (1)

μ1 − λ1α
+

λ1α
(
Ṽ α

1 (1) − Ṽ α
1 (0)

) (
μ1
λ1α

)i

μ1 − λ1α
.

5.2. Analyzing Δ1
~

V α(i, j + 1) − Δ1
~

V α(i, j )

For the derivation of an expression for Ṽ α(i, j) (which we do in the next
sections), we require the following intermediate result:

Lemma 5.2.1. The relative value function Ṽ α(i, j)satisfies

�2�1Ṽ α(i, j) = 0,

where �2�1Ṽ α(i, j) := �1Ṽ α(i, j + 1) − �1Ṽ α(i, j).

In words, Lemma 5.2.1 states that first differencing Ṽ α(i, j) in i, followed
by differencing the result in j, equals 0.

Proof. We start again for the interior {i, j > 0}, where we have the following
relation for i > 0 and j > 0:

�1Ṽ α(i, j) = λ1α[γ1 + �1Ṽ α(i + 1, j)] + λ1(1 − α)�1Ṽ α(i, j)

+ λ2�1Ṽ α(i, j + 1) + μ1�1Ṽ α(i − 1, j) + μ2�1Ṽ α(i, j − 1)

+ (1 − λ1 − λ2 − μ1 − μ2)�1Ṽ α(i, j).

We find for �2�1Ṽ α(i, j)

�2�1Ṽ α(i, j) = λ1α�2�1Ṽ α(i + 1, j) + λ1(1 − α)�2�1Ṽ α(i, j)

+ λ2�2�1Ṽ α(i, j + 1) + μ1�2�1Ṽ α(i − 1, j)

+ μ2�2�1Ṽ α(i, j − 1) (12)

+ (1 − λ1 − λ2 − μ1 − μ2)�2�1Ṽ α(i, j).

By similar line of reasoning as before, we derive that �2�1Ṽ α(i, j) = V̄1(i) +
V̄2( j), with

V̄1(i) = μ1V̄1(0) − λ1αV̄1(1)
μ1 − λ1α

+
λ1α

(
V̄1(1) − V̄1(0)

) (
μ1
λ1α

)i

μ1 − λ1α
,

D
ow

nl
oa

de
d 

by
 [

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
] 

at
 1

2:
54

 0
1 

Ju
ly

 2
01

6 



Control of a Queueing System 599

V̄2( j) = μ2V̄2(0) − λ2V̄2(1)
μ2 − λ2

+
λ2

(
V̄2(1) − V̄2(0)

) (
μ2
λ2

) j

μ2 − λ2
, (13)

where V̄1(0), V̄1(1), V̄2(0), V̄2(1) are determined from �2�1Ṽ α(i, 0) and
�2�1Ṽ α(0, j). We start with the former by inspecting the term �1Ṽ α(i, 1).
From equation (6), we have that

�1Ṽ α(i, 1) = λ1α[γ1 + �1Ṽ α(i + 1, 1)] + λ1(1 − α)�1Ṽ α(i, 1)

+ λ2�1Ṽ α(i, 2) + μ1�1Ṽ α(i − 1, 1) + μ2�1Ṽ α(i, 0)

+ (1 − λ1 − λ2 − μ1 − μ2)�1Ṽ α(i, 1).

For the term �1Ṽ α(i, 0) we derive from equation (10) that

�1Ṽ α(i, 0) = λ1α
[
γ1 + �1Ṽ α(i + 1, 0)

] + λ1(1 − α)�1Ṽ α(i, 0)

+ λ2�1Ṽ α(i, 1)

+ μ1�1Ṽ α(i − 1, 0) + (1 − λ1 − λ2 − μ1)�1Ṽ α(i, 0).

Consequently,

�2�1Ṽ α(i, 0) = λ1α�2�1Ṽ α(i + 1, 0) + λ1(1 − α)�2�1Ṽ α(i, 0)

+ λ2�2�1Ṽ α(i, 1)

+ μ1�2�1Ṽ α(i − 1, 0) − μ2�2�1Ṽ α(i, 0) + (1 − λ1 − λ2

− μ1)�2�1Ṽ α(i, 0),

which reduces to

(λ2 + μ2)�2�1Ṽ α(i, 0) + (λ1α + μ1)�2�1Ṽ α(i, 0) =
λ2�2�1Ṽ α(i, 1) + λ1α�2�1Ṽ α(i + 1, 0) + μ1�2�1Ṽ α(i − 1, 0).

A solution can be obtained by splitting the equation into a solution of the
type �2�1Ṽ α(i, j) = V̄1(i) + V̄2( j), resulting in

{
(λ2 + μ2)�2�1Ṽ α(i, 0) = λ2�2�1Ṽ α(i, 1),

(λ1α + μ1)�2�1Ṽ α(i, 0) = λ1α�2�1Ṽ α(i + 1, 0) + μ1�2�1Ṽ α(i − 1, 0).
(14)

The upper equation translates to

(λ2 + μ2)
(
V̄1(i) + V̄2(0)

) = λ2
(
V̄1(i) + V̄2(1)

)
,
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600 Onderwater et al.

or

μ2V̄1(i) = λ2V̄2(1) − (λ2 + μ2)V̄2(0). (15)

So V̄1(i) is constant for i > 0, which we denote by V̄1(i) = c̄1. By repeating
the arguments above for the boundary {i = 0}, we find that V̄2( j) := c̄2 is
constant. As a consequence, equation (15) reduces to

μ2c̄1 = λ2c̄2 − (λ2 + μ2)c̄2,

or

μ2c̄1 = −μ2c̄2,

i.e., c̄1 = −c̄2 and thus �2�1Ṽ α(i, j) = 0, which concludes the proof. �
5.3. Solving the Difference Equation for Δ1

~
V α(i, j )

So far, we have found that �2
1Ṽ α(i, j) satisfies

�2
1Ṽ α(i, j) = μ1Ṽ α

1 (0) − λ1αṼ α
1 (1)

μ1 − λ1α
+

λ1α
(
Ṽ α

1 (1) − Ṽ α
1 (0)

) (
μ1
λ1α

)i

μ1 − λ1α
,

(16)
and we have proved that �2�1Ṽ α(i, j) = 0 in Lemma 5.2.1. Note that this
implies that �1Ṽ α(i, j) is independent of j for all i. We continue the proof of
Theorem. 5.1 by reverting the differencing in i used to obtain equation (16).

Recall that �2
1Ṽ α(i, j) = �1Ṽ α(i + 1, j) − �1Ṽ α(i, j). By summing over

i, and then using the right-hand side of equation (16), we can get an expres-
sion for �1Ṽ α(i, j):

�1Ṽ α(i, j) = �1Ṽ α(0, j) +
i−1∑
k=0

�2
1Ṽ α(k, j)

= �1Ṽ α(0, j) + μ1Ṽ α
1 (0) − λ1αṼ α

1 (1)
μ1 − λ1α

i

+ λ1α
(
Ṽ α

1 (1) − Ṽ α
1 (0)

)
μ1 − λ1α

1 − ( μ1
λ1α

)i

1 − μ1
λ1α

. (17)

Here, �1Ṽ α(0, j) is a constant (by Lemma 5.2.1) which we determine be-
low. Substituting the expression for �1Ṽ α(i, j) from equation (17) into
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Control of a Queueing System 601

equation (6), we find that necessarily

μ1Ṽ α
1 (0) − λ1αṼ α

1 (1) = γ1λ1α.

Solving this for Ṽ α
1 (1) and substituting the result into equation (16) yields

�2
1Ṽ α(i, j) = γ1λ1α

μ1 − λ1α
+

[
Ṽ α

1 (0) − γ1λ1α

μ1 − λ1α

] (
μ1

λ1α

)i

.

Hence, �1Ṽ α(i, j) becomes

�1Ṽ α(i, j) = �1Ṽ α(0, j) + γ1λ1α

μ1 − λ1α
i +

[
Ṽ α

1 (0) − γ1λ1α

μ1 − λ1α

] 1 − ( μ1
λ1α

)i

1 − μ1
λ1α

.

(18)
Now we turn our attention to determining the (constant) �1Ṽ α(0, j) by
inspecting the corresponding difference equation:

�1Ṽ α(0, j) = λ1α
[
γ1 + �1Ṽ α(1, j)

] + λ1(1 − α)�1Ṽ α(0, j) + λ2�1Ṽ α(0, j + 1)

+ μ2�1Ṽ α(0, j − 1) + (1 − λ1 − λ2 − μ1 − μ2)�1Ṽ α(0, j).

We can rewrite this equation as follows:

0 = λ2[�1Ṽ α(0, j + 1) − �1Ṽ α(0, j)] + λ1α[�1Ṽ α(1, j) − �1Ṽ α(0, j)]

+ γ1λ1α + μ2[�1Ṽ α(0, j − 1) − �1Ṽ α(0, j)] − μ1�1Ṽ α(0, j).

Using Lemma 5.2.1 we find

0 = λ1α[�1Ṽ α(1, j) − �1Ṽ α(0, j)] + γ1λ1α − μ1�1Ṽ α(0, j).

Equation (18) tells us that �1Ṽ α(1, j) = �1Ṽ α(0, j) + Ṽ α
1 (0), so

�1Ṽ α(0, j) = λ1α

μ1
Ṽ α

1 (0) + γ1λ1α

μ1
.

Substitution into equation (18) yields

�1Ṽ α(i, j) = λ1α

μ1
Ṽ α

1 (0) + γ1λ1α

μ1
+ γ1λ1α

μ1 − λ1α
i

+
[

Ṽ α
1 (0) − γ1λ1α

μ1 − λ1α

] 1 − ( μ1
λ1α

)i

1 − μ1
λ1α

. (19)
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602 Onderwater et al.

5.4. Deriving
~

V α(i, j )

We derive an expression for Ṽ α(i, j) by using �1Ṽ α(i, j) = Ṽ α(i +
1, j) − Ṽ α(i, j), summing over i, and then using equation (19):

Ṽ α(i, j) = Ṽ α(0, j) +
i−1∑
k=0

�1Ṽ α(k, j)

= Ṽ α(0, j) + i ·
(

λ1α

μ1
Ṽ α

1 (0) + γ1λ1α

μ1

)
+ γ1λ1α

μ1 − λ1α

i(i − 1)
2

+ 1
1 − μ1

λ1α

[
Ṽ α

1 (0) − γ1λ1α

μ1 − λ1α

][
i − 1 − ( μ1

λ1α
)i

1 − μ1
λ1α

]
. (20)

In the derivation so far we have postulated a form of a solution several times
(Eqs. (8) and (11–14)), resulting in the expression for Ṽ α(i, j) in equa-
tion (20). Here, we finally deal with the uniqueness issue. As mentioned
earlier, ensuring uniqueness of a solution Ṽ α(i, j) to equation (5) is not triv-
ial. Conventional uniqueness proofs rely on bounded cost functions, and the
cost function in equation (1) is unbounded. Addressing this point requires
several technical arguments that we, for readability, place in Appendix A.
In short, uniqueness is ensured if Ṽ α(i, j) does not grow exponentially fast.
Therefore, we choose the remaining constant Ṽ α

1 (0) in equation (20) such
that the exponential term ( μ1

λ1α
)i disappears:

Ṽ α
1 (0) = γ1λ1α

μ1 − λ1α
.

Substitution into equation (20) yields

Ṽ α(i, j) = Ṽ α(0, j) + γ1λ1α

μ1 − λ1α
i + γ1λ1α

μ1 − λ1α

i(i − 1)
2

,

or

Ṽ α(i, j) = Ṽ α(0, j) + γ1λ1α

μ1 − λ1α

i(i + 1)
2

.

Repeating the steps in Sections 5.1–5.4 for differencing in j instead of i gives

Ṽ α(i, j) = Ṽ α(i, 0) + γ2λ1α

μ2 − λ2

j( j + 1)
2

,
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Control of a Queueing System 603

so that necessarily

Ṽ α(i, j) = γ1λ1α

μ1 − λ1α

i(i + 1)
2

+ γ2λ1α

μ2 − λ2

j( j + 1)
2

. (21)

Finally, substituting this expression for Ṽ α(i, j) into equation (5) and solving
for g̃α yields

g̃α = λ1(1 − α)C + λ1α

(
γ1λ1α

μ1 − λ1α
+ γ2λ2

μ2 − λ2
+ γ1 + γ3

)
. (22)

This concludes the derivation of the expressions in Theorem 5.1.

Remark. The structure of Ṽ α(i, j) in equation (21) and g̃α in equation (22)
can be explained intuitively using known results about the M/M/1 queue.
The Bernoulli policy chooses Q1 with probability α and the db with prob-
ability 1 − α, thereby decoupling the system in three separate elements:
the db, Q1, and Q2. Choosing the db incurs a penalty C , which results in
time-average costs λ1(1 − α)C . This corresponds to the first term in equa-
tion (22). The alternative choice (assignment to the queueing system) incurs
costs γ1(i + 1) + γ2 j + γ3. Note that the two queues (the first with arrival rate
λ1α, the second with arrival rate λ2) are independent and that the i and j
terms are summed in the cost function. Consequently, the time-average costs
of assignment to the queueing system are just the summed time-average costs
of the two M/M/1 queues with holding costs γ1 and γ2, respectively (and of
fixed costs γ1 + γ3). For a M/M/1 queue we know (see, Ref.[6]) that g = ρ

1−ρ
h,

with ρ = λ/μ the system load, λ the arrival rate, μ the service rate, and hold-
ing costs h. This explains the γ1λ1α

μ1−λ1α
+ γ2λ2

μ2−λ2
+ γ1 + γ3 term (multiplied by

λ1α) in equation (22). Also, the value function Ṽ α(i, j) in equation (21) is
just the sum of the value functions of the two M/M/1 queues (multiplied by
λ1α).

6. ONE-STEP POLICY IMPROVEMENT (STEP III)

6.1. Obtaining the Improved Policy

In the previous section we approximated V (i, j, N ) by Ṽ α(i, j). Now we
apply one-step policy improvement by inspecting the minimization term in
equation (2), with V (i, j, N ) replaced by Ṽ α(i, j):

min
{
γ1(i + 1) + γ2 j + γ3 + Ṽ α(i + 1, j); (N − T)+ + Ṽ α(i, j)

}
. (23)
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604 Onderwater et al.

Hence, the improved policy assigns a query to the db if

γ1(i + 1) + γ2 j + γ3 + Ṽ α(i + 1, j) ≥ (N − T)+ + Ṽ α(i, j) ⇔

γ1(i + 1) + γ2 j + γ3 + γ1λ1α

μ1 − λ1α

(i + 1)(i + 2)
2

≥ (N − T)+

+ γ1λ1α

μ1 − λ1α

i(i + 1)
2

⇔

γ1(i + 1) + γ2 j + γ3 + γ1λ1α

μ1 − λ1α
(i + 1) ≥ (N − T)+ ⇔

γ1μ1

μ1 − λ1α
(i + 1) + γ2 j + γ3 ≥ (N − T)+ ⇔

γ1

1 − ρ1α
(i + 1) + γ2 j + γ3 ≥ (N − T)+. (24)

Note that this improved policy is independent of the constant C , as men-
tioned at the beginning of Section 5. Also, in the derivation of equation (24)
we see that by choosing γ1(i + 1) rather than γ1i in the cost function, we
obtain an expression where the α only occurs in front of the (i + 1) term.
This allows us to intuitively explain the role of α: it acts as a tuning parameter
of the improved policy, determining the influence of the number of queries
i in the system on the decisions. For α = 0 the improved policy is indepen-
dent of λ1, but as α gets closer to 1, the number of queries in the system is
weighed more heavily in the decision, and the policy becomes more biased
toward the db.

6.2. Determining α

The improved policy in equation (24) specifies a class of policies—only
after choosing α (originally the parameter of the Bernoulli policy) do we
have a concrete policy for which we can, e.g., determine average costs. How-
ever, we have no analytical relationship between V (i, j, N ) and Ṽ α(i, j), and
thus determining α analytically is not possible. The best analytical option we
have is to minimize g̃α (of the Bernoulli policy applied to the simplified
mdp) w.r.t. α, and use the resulting minimum for the improved policy. Un-
fortunately, subsequent experiments with value iteration show unsatisfactory
performance of the resulting improved policy. We observed this behavior for
various values for λ1, λ2, μ1, μ2, and T , so the unsatisfactory performance
was general. The Ṽ α(i, j) and g̃α do not approximate V (i, j, N ) and g from
equation (2) sufficiently well.

Fortunately, a simple numerical approach allows us to compute an α

that yields an improved policy with the desired near-optimal performance.
To illustrate this procedure, we start by looking at Figure 4, which shows
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Control of a Queueing System 605

FIGURE 4 Average costs g ′ of the improved policy, for various values of α. The points in the graph are
obtained with value iteration, using parameters μ1 = μ2 = 0.3, T = 2, γ1 = γ2 = γ3 = 3, ρ1 = 0.8, ρ2 =
0.1. Our fitting approach for determining the minimum α̂ yields α̂ = 0.48.

approximations of the average costs g ′ of the improved policy (obtained
with value iteration) as a function of α. The shape resembles a second-degree
polynomial, and by carefully fitting such a polynomial to the approximate
values, we can approximate g ′(α). Then, we use the minimum α̂ of the
fitted polynomial as input for the improved policy. Note that, due to this
procedure, the improved policy is not an analytical policy: every time an
improved policy is required, α̂ must be computed using the fitting procedure.

This approach for determining α̂ requires several approximate values αi
that together capture the shape of g ′(α). They should be positioned such that
the minimum of the polynomial and that of g ′(α) are at approximately the
same α-value. Strictly speaking, we need only three α-values to fit a second-
degree polynomial. However, g ′(α) is not truly a second-degree polynomial,
and using four values results in a more appropriate fit in cases where g ′(α)
resembles the polynomial shape less. So how should we position these four
points? In the next section we argue that the most interesting scenario is
one where ρ1 is large. In this scenario, the number of queries i in the
system is typically large. Recall that α̂ influences the improved policy in
equation (24) via i: as α̂ gets closer to 1, the number of queries in the system
is weighed more heavily in the decision, and the policy becomes more biased
toward the db. Hence, we should concentrate the fit of the polynomial on
the right side of the interval, near α = 1. Following this reasoning, we take
α1 = 0.25, α2 = 0.6, α3 = 0.85, and α4 = 0.95.

The value of each g ′(αi ) is obtained by running value iteration. The
time needed to execute these four runs of value iteration should be shorter
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606 Onderwater et al.

than the time needed to compute the optimal policy; otherwise, there is
no reason to use the improved policy. To this end, we do value iteration
for the g ′(αi ) on a much smaller state space than the one used for find-
ing the optimal policy. Suppose that we run value iteration for the opti-
mal policy on the truncated state space X̄ = [0, K1] × [0, K2] × [0, K3] (in
Section 7 we determine K1, K2, and K3 experimentally in such a way that
we avoid boundary effects). For the g ′(αi ), we use the further truncated
state space X̂ := [0, �K1

4 	] × [0, �K2
4 	] × [0, �K3

4 	]. This effectively reduces
the time needed to calculate α̂ (and thus also the improved policy) to a
mere fraction of the time needed to obtain an optimal policy. The number
by which the Ki are divided (4) is determined experimentally to yield both
low time-average costs and a short run time for the improved policy. Note
that the further reduction of the state space is appropriate, because we do
not require numerically accurate approximations of g ′(α1), . . . , g ′(α4). We
only need to capture the general shape illustrated in Figure 4.

The complete procedure is as follows:

1. Calculate the bounds of the further truncated state space X̂ .
2. For each of the values αi , evaluate the improved policy using X̂ as state

space, and record g ′(αi ).
3. Fit a second degree polynomial through g ′(α1), . . . , g ′(α4) using least

squares.
4. Calculate the minimum of this polynomial, and use the α-value for which

this minimum is attained as α̂.

In the example in Figure 4, this procedure yields α̂ = 0.48, which agrees
well with what the figure suggests. Figure 4 is generated with parameters
corresponding to a high load on Q1 and low load on Q2 (μ1 = μ2 = 0.3, T =
2, γ1 = γ2 = γ3 = 3, ρ1 = 0.8, ρ2 = 0.1). We expect a significant fraction of
the queries to be assigned to Q1, since a low load on Q2 results in large N ,
and thus using the db is expensive. This observation is supported by the
value α̂ = 0.48 that our procedure yields for the improved policy. Also, the
figure indicates that the sensitivity of the average costs g ′(α) to α is minor
around the minimum α̂.

7. NUMERICAL RESULTS

In this section we experimentally inspect the performance of the im-
proved policy by numerically comparing it to the optimal policy. Addition-
ally, we compare a traditional age-threshold policy and a myopic policy to
the optimal policy, allowing us to assess how the improved policy performs
in relation to these other two policies. The three policies that we compare
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Control of a Queueing System 607

to the optimal policy are given by

π thr e shold(i, j, N ) =
{

db, if N ≤ T,

Q1, otherwise,

πmyop ic (i, j, N ) =
{

db, if γ1(i + 1) + γ2 j + γ3 ≥ (N − T)+,

Q1, otherwise,

π ′(i, j, N ) =
{

db, if γ1
1−ρ1α̂

(i + 1) + γ2 j + γ3 ≥ (N − T)+,

Q1, otherwise.

Looking at the three policies, we see that the age-threshold policy ignores
the load on the queueing system, and it bases its actions solely on the age
N . The myopic policy takes the load of the system into account, by assigning
queries to the db or Q1 based on the cost function in equation (1) only,
ignoring the value function V (i, j, N ). In contrast, the improved policy is
based on an approximation of the value function, and thus does include
expectations about future query arrivals and report requests in its decisions.
These expectations are captured by the parameter α̂, which determines how
much emphasis the improved policy puts on the number of queries i in the
system. Note that for α̂ = 0, the improved and myopic policy are identical.

Looking at our scenario, we expect that as ρ2 → 1, performance should
be quite good, since the db is refreshed often and thus most queries can be
answered from the db. Additionally, in situations with small ρ1, the controller
has to deal with only a small number of queries, costs are typically low, and the
policies should show good performance. Hence, the most interesting part of
the parameter space is where ρ1 is high and ρ2 is low (we call this the critical
region). We structure our numerical analysis accordingly, by first inspecting
the performance of the policies for 0 < ρ1 ≤ 0.8, 0 < ρ2 < 1, followed by an
inspection of the critical region 0.7 < ρ1 ≤ 1, 0 < ρ2 < 0.2.

All numerical experiments below are done using the value iteration
algorithm[20], and thus require a truncation of the state space X = N0 ×
N0 × N0 to X̄ = [0, K1] × [0, K2] × [0, K3]. Choosing the Ki must be done
carefully to avoid the influence of boundary effects on the average costs. Tests
on the three policies above, and on the optimal policy, show that a truncation
to X̄ = [0, 200] × [0, 200] × [0, 200] is sufficient for 0 < ρ1 ≤ 0.8, 0 < ρ2 <

1. Increasing ρ1 beyond 0.8 quickly adds boundary effects and requires a
larger truncated state space: X̄ = [0, 300] × [0, 300] × [0, 300]. Also, for
value iteration we set the convergence criterion such that the procedure
stops when the difference of the spans of two consecutive approximations is
smaller than 0.001.

Finally, we choose the parameters of the cost function in equation (1).
We set T = 2, γ1 = γ2 = γ3 = 3 and keep these fixed during all experiments.
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608 Onderwater et al.

In the following sections we numerically investigate the performance of
our improved policy. First, we compare the three policies listed above to the
optimal policy in Sections 7.1 (for the non-critical region) and 7.2 (for the
critical region). Then we look at the computational complexity in Section 7.3
by inspecting the time needed to calculate α̂ (and thus the improved policy),
again compared to the time needed to find the optimal policy. Section 7.4
introduces a special random policy, where the controller flips a (fair) coin to
decide which of the two actions to take. A large number of such policies are
then compared to the three policies described above. Finally, in Section 7.5
we take a closer look at the optimal policy and its structure.

7.1. Analysis of Region 0 < ρ1 ≤ 0.8, 0 < ρ2 < 1

In Figures 5 A–5 C we inspect the performance of the three policies
compared to the optimal policy. We fix μ1 = μ2 = 0.3 and vary ρ1 and ρ2.
The figures contain the difference in average costs with the optimal policy
(in %), where the load ρ2 on Q2 is varied on the horizontal axis, and the
load ρ1 of Q1 is reflected by the various lines. Figures 5 A and 5 B show
that the improved and myopic policies are able to stay within 1.3% and
5.5% of optimality, respectively. In contrast, the simple age-threshold policy
differs from optimality by as much as 2,000%. Clearly, the improved and
myopic policies perform significantly better than the age-threshold policy,
so including the load of the queue system in the decision by the controller
certainly is beneficial. Further inspection of Figures 5 A and 5 B reveals that
the performance of the three policies degrades when ρ1 and ρ2 reach the
critical region. We take a detailed look at this region in the next section.

7.2. Analysis of the Critical Region 0.7 < ρ1 ≤ 1, 0 < ρ2 < 0.2

We continue with a closer look at the critical region, i.e., the left-hand
side of Figures 5 A–5 C, by repeating the corresponding numerical exper-
iments for different values of ρ1 and ρ2 (again with μ1 = μ2 = 0.3). The
results are in Figures 6 A–6 C. As in the previous section, performance of the
age-threshold policy is quite bad, with differences of up to 1,500%. Compar-
ing Figures 6 A to 6 B clearly shows that the improved policy has better overall
performance than the myopic policy, with differences from optimality of at
most 7% and 17%, respectively. The benefits of including the approximation
to the value function in the improved policy are evident here.

Finally, Figures 6 A and 6 B show that the relative differences are not
monotone. The left-most points (at ρ2 = 0.01) seem to be closer to optimality
than the points at ρ2 = 0.05. Further experiments suggest that this is not
caused by boundary effects. Also, the differences cannot be explained by the
stopping criterion of value iteration, because the differences are too large.
Since the observed feature is present in both figures, it seems likely that the
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Control of a Queueing System 609

FIGURE 5 Relative difference in average costs of the improved policy (5 A), myopic policy (5 B), and
age-threshold policy (5 C) compared to the optimal policy.

optimal policy causes it, and thus that this behavior is a feature of the system.
We return to this topic later in Section 7.5 when we talk about the optimal
policy.

7.3. Computational Complexity

As described in Section 6.2, the improved policy requires four short runs
of the value iteration algorithm to determine the parameter α̂. The total
duration of these runs should be less than the time required to find the
optimal policy. Table 1 shows the time needed to find α̂ for the improved
policy, divided by the time required to determine the optimal policy. As
parameter values, we use the same scenario as in Section 7.2, i.e., μ1 = μ2 =
0.3. The two tables clearly show that determining the improved policy is
much faster than finding the optimal policy.
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610 Onderwater et al.

FIGURE 6 Again, the relative difference in average costs of the improved policy (6 A), myopic policy (6
B), and age-threshold policy (6 C) compared to the optimal policy, but now inside the critical region.

7.4. Model Complexity

To get a feel for the complexity of the model in equation (2), we plot a so-
called ordered performance curve (OPC)[10]. Each point in this plot shows
the average costs of a policy that we generate randomly: at each state (i, j, N )
we choose action a = {Q1} with probability 0.5, or a = {DB} otherwise. By

TABLE 1 The run time for determining α̂ divided by the run time needed to obtain the optimal policy
for various parameter settings.

ρ1

0.7 0.75 0.8 0.85 0.9 0.95

0.01 0.0122 0.0061 0.0065 0.0059 0.0054 0.0054
0.05 0.0048 0.0069 0.0068 0.0076 0.0070 0.0069

ρ2 0.10 0.0060 0.0058 0.0070 0.0067 0.0078 0.0077
0.15 0.0056 0.0054 0.0067 0.0063 0.0075 0.0061
0.20 0.0064 0.0063 0.0061 0.0071 0.0070 0.0068
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Control of a Queueing System 611

FIGURE 7 Ordered Performance Curve—costs of 2,500 randomly selected policies, as well as the opti-
mal, improved, and myopic policies. The markers of the latter three policies are difficult to distinguish
in Figure 7 A, so Figure 7 B shows only the 15 best policies.

repeating this procedure, we create 2,500 such policies, evaluate them, and
plot their average costs in Figure 7 A. Additionally, this figure shows the
average costs of the optimal policy and (in our case) of the improved, the
age-threshold, and myopic policies. The parameters are μ1 = μ2 = 0.3, ρ1 =
0.8, ρ2 = 0.1, based on the critical region in the parameter space. Since the
markers of the optimal, improved, and myopic policies are indistinguishable
in Figure 7 A, the 15 best policies are plotted again in Figure 7 B. The steep
slope on the left of both figures illustrates that none of the randomly selected
policies is able to closely match the performance of the optimal policy.
Hence, the plot suggests that the near-optimal performance of the improved
policy shown in Figures 5 A–6 C is not an incidental success. Moreover, one
can also see that the traditional age-threshold policy performs badly, showing
a lot of room for improvement by using dynamic policies.

7.5. The Optimal Policy

Next, we inspect the optimal policy in Figures 8 A and 8 B. The first
shows a cross-section of the optimal policy at N = 55, the second at N = 120.
Here, for every grid point (i, j) the color gray indicates that action a = db
is taken and black that a = Q1. The figures suggest that (away from the
boundaries) the optimal policy is a hyperplane in three-dimensional space,
i.e., a switching policy. This observation is supported by intuitions about the
problem scenario: once Q1 reaches a certain load, the controller switches to
using the db and continues to do so as the load increases. Hence, an optimal
policy with a switching structure is in line with our expectations. Hence, for
N > T we expect by intuition a switching structure in the optimal policy,
which is confirmed by what we see in Figures 8 A and 8 B. We were unable
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612 Onderwater et al.

FIGURE 8 Optimal policy for N = 55 (8 A) and N = 120 (8 B). Gray indicates that action a = db is
taken, black a = Q1. In these figures, we again use parameters μ1 = μ2 = 0.3, ρ1 = 0.8, ρ2 = 0.1 from
the critical region.

to verify this last observation mathematically, but we expect that a proof is
feasible. The conjecture below formalizes the claim:

Conjecture 1 (Asymptotic switching policy). The optimal policy for the mdp in
equation (2) is a switching curve for N sufficiently large.

Looking at Figures 8 A and 8 B, we see that the optimal policy is cropped
near the boundary { j = 0}. This effect is caused by the interaction between
the number of report requests j and the costs (N − T)+ for db assignments.
They are connected via N using the term μ2V (i, j − 1, 0)1{ j>0} in equa-
tion (2), which drops out at the boundary { j = 0}. Consequently, on the
boundary the connection between j and N is severed, and changes the struc-
ture of the mdp and the optimal policy significantly. This also explains the
observation in Section 7.2 that the performance of the improved and myopic
policies changes for ρ2 ≈ 0.

Still, in situations where the boundary { j = 0} is not reached frequently,
we expect switching policies to perform well since the boundary effect is
relatively small. This is supported by the results on our improved policy and
the myopic policy (both are switching policies) in the previous sections.

8. CONCLUSIONS AND FURTHER RESEARCH

In this article we investigated the tradeoff between data freshness and
query response times. We formulated this tradeoff as a Markov decision pro-
cess with a three-dimensional state space. The resulting model contained
two complicating aspects: (1) a decision capturing the tradeoff, with several
inhomogeneous terms and (2) intricate interactions between state space vari-
ables. Due to these complications, obtaining an analytical expression for the
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Control of a Queueing System 613

optimal policy was infeasible. Instead, we introduced a three-step approach to
finding an approximate policy with near-optimal performance. The first step
showed how the original three-dimensional model can be approximated by
a simpler two-dimensional model that still captures the important dynamics.
Then, in the second step, we described how this simpler model can be solved
analytically, using differencing techniques to deal with the inhomogeneous
terms. In step three we applied one-step policy improvement to construct
our approximate policy. Finally, we numerically showed that this improved
policy has near-optimal performance and significantly outperforms both the
traditional age-threshold policy and the myopic policy. The experiments
also indicated that the policies that take the network load into account (the
myopic and improved policy) can outperform traditional threshold policies.

The research in this article reveals several interesting opportunities for
further research. We would like to modify our improved policy such that it no
longer requires short runs of value iteration for determining the parameter
α. Also, we suspect that we can prove some structural properties of the
optimal policy using coupling arguments: (1) queries are more likely to go
to db if i increases, holding j and N constant, (2) queries are more likely to
go to Q1 if N increases, holding i and j constant, and (3) for j large enough,
queries will go to db, holding i and N constant. If these structural properties
are shown to hold, they would imply our conjecture that the optimal policy
is asymptotically a switching curve. Finally, we want to take a closer look at
the critical region of the state space and attempt to mathematically analyze
what happens when the load on the report queue approaches 0.

Besides these ideas, a modification of the model where the cost of func-
tion is formulated differently (e.g., not truncated at the threshold T or
nonlinear) might be interesting. Additionally, the model could be extended
by considering multi-class queries, where the cost function is dependent on
the class of the arriving query.
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APPENDIX A: UNIQUENESS OF SOLUTIONS

In Section 5 we solved the two-dimensional difference equation (5),
known in mdp literature as the Poisson equation. For this equation we have
only one boundary condition V (0, 0) = 0, which is not enough to completely
determine the solution. Consequently, after solving the difference equation,
the constant Ṽ α

1 (0) is still to be determined in equation (20).
In order to investigate uniqueness, we repeat arguments from Chap-

ter 2 and 4 of Ref.[4]. First, note that equation (5) induces a Markov cost
chain with transition matrix P , state space X = N0 × N0, and cost func-
tion c(i, j) = λ1α [γ1(i + 1) + γ2 j + γ3] + λ1(1 − α)C . Denote with B(X )
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the Banach space of bounded real-valued functions u on X with the supre-
mum norm, i.e., the norm ||·|| defined by

||u|| = sup
(i, j)∈X

|u(i, j)| .

Conventional uniqueness proofs for Markov cost chains rely on bounded
cost functions contained in B(X ). However, our cost function c(i, j) is un-
bounded and thus not contained in B(X ). A remedy to this situation is to
consider suitable larger Banach spaces instead of B(X ). In order to construct
such a space, consider a weight function w : X → [1, ∞). The w-norm is then
defined by

||u||w = sup
(i, j)∈X

|u(i, j)|
w(i, j)

.

A function u is said to be w-bounded if ||u||w < ∞, and the space of all
w-bounded functions is denoted by Bw (X ). We also define the matrix norm
related to ||·||w as ||A||w = sup {||Au||w : ||u||w ≤ 1}. This norm can be rewrit-
ten in the following equivalent form (see equation (7.2.8) in Ref.[9]):

||A||w = sup
x∈X

∑
y∈X

∣∣Axy
∣∣ w(y)

w(x)
.

Finally, we introduce the taboo transition matrix M P aswith x, y ∈ X and in
our case M = (0, 0). We now state a property and adapted theorem from
Ref.[4] on uniqueness of solutions of equation (5).

Property 1 (page 19 of Ref.[4]). A Markov chain is called w-geometrically
recurrent with respect to M [w-GR(M)] if there exists an ε > 0 such that
||M P ||w ≤ 1 − ε.

Theorem A.1 (Lemma 2.1 combined with Theorem 2.10 of

Ref.[4]). Suppose that the Markov chain induced by a policy π is unichain, stable,
aperiodic, and w-GR(M). Let both (g, V ) and (g ′, V ′) be solutions to the Poisson
equation. Then g = g ′ and the value functions V and V ′ differ by only a constant.

In our case, the Bernoulli policy does indeed induce a Markov chain
that is unichain, stable, and aperiodic. The key to ensuring uniqueness
is choosing a suitable weight function w such that Property 1 is satisfied.
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Section 3.4 of Ref.[19] shows that a suitable weight function is of the form

w(i, j) = K
i∏

k=1

(1 + mk)
j∏

l=1

(1 + nl),

where {mk}, {ml}, and K are constants. Unfortunately, the expressions in-
volved are cumbersome and not easy to state explicitly, making it difficult
for us to illustrate the construction of the weight function. In the remainder
of this section we make an additional assumption that allows us to find a
weight function that is explicit. This assumption is only made to facilitate
explicitness, and readers interested in the case without the assumption are
referred to Ref.[19].

Following Section 4.1 of Ref.[4], we assume that ρ1α + ρ2 < 1. The non-
zero entries in the transition matrix are given by

P(i, j)(i+1, j) = λ1α,

P(i, j)(i, j+1) = λ2,

P(i, j)(i−1, j) = μ11{i>0},

P(i, j)(i, j−1) = μ21{ j>0},

P(i, j)(i, j) = 1 − P(i, j)(i+1, j) − P(i, j)(i, j+1) − P(i, j)(i−1, j) − P(i, j)(i, j−1).

Set w(i, j) = (1 + k1)i (1 + k2) j for some constants k1 and k2. Now consider

||M P ||w =
∑

(i ′, j ′)�=(0,0)

P(i, j)(i ′, j ′)w(i ′, j ′)
w(i, j)

,

which is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1α(1 + k1) + λ2(1 + k2), (i, j) = (0, 0),
λ1αk1 + λ2k2 + 1 − μ1, (i, j) = (1, 0),
λ1αk1 + λ2k2 + 1 − μ2, (i, j) = (0, 1),

λ1αk1 + λ2k2 + 1 − μ1k1

1 + k1
, i > 1, j = 0,

λ1αk1 + λ2k2 + 1 − μ2k2

1 + k2
, i = 0, j > 1,

λ1αk1 + λ2k2 + 1 − μ1k1

1 + k1
− μ2k2

1 + k2
, i > 0, j > 0.

We need to choose k1 and k2 such that all expressions are strictly less than
1. Observe that if the fourth and fifth expressions are less than 1, then all
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others are also satisfied. Hence, we can restrict our attention to the system

f1(k1, k2) = 1 + λ1αk1 + λ2k2 − μ1k1

1 + k1
,

f2(k1, k2) = 1 + λ1αk1 + λ2k2 − μ2k2

1 + k2
,

with the assumptions λ1α + λ2 + μ1 + μ2 < 1 and ρ1 + ρ2 < 1.
Observe that f1(0, 0) = f1((μ1 − λ1α)/(λ1α), 0) = 1. Thus, the points

(0, 0) and ((μ1 − λ1α)/(λ1α), 0) lie on the curve f1(k1, k2) = 1. Further-
more, k2 satisfies k2 = μ1/λ2 − μ1/(λ2(1 + k1)) − λ1α/λ2. Note that this
function has a maximum value at k1 = √

μ1/(λ1α) − 1. Hence, this descrip-
tion determines the form of f1; the curve f1(k1, k2) = 1 starts in (0, 0) and
increases to an extreme point, and then decreases to the k1-axis again. The
curve f2 has a similar form, but with the role of the k1-axis interchanged with
the k2-axis.

The curves determine an area of points (k1, k2) such that f1 and
f2 are strictly less than one if the partial derivative to k1 at (0, 0) of
the curve f1(k1, k2) = 1 is greater than the partial derivative to k2 of
the curve f2(k1, k2) = 1 at (0, 0). These partial derivatives are given by
(μ1 − λ1α)/λ2 and λ1α/(μ2 − λ2), respectively. Since ρ1α + ρ2 < 1, we
have λ1αμ2 + λ2μ1 < μ1μ2. Adding λ1αλ2 to both sides gives λ1αλ2 <

μ1μ2 − λ1αμ2 − λ2μ1 + λ1αλ2 = (μ1 − λ1α)(μ2 − λ2). Hence, the relation
λ1α/(μ2 − λ2) < (μ1 − λ1α)/λ2 holds. Thus, indeed the partial derivative
to k1 at (0, 0) of the curve f1(k1, k2) = 1 is greater than the partial deriva-
tive to k2 of the curve f2(k1, k2) = 1 at (0, 0), and there is an area of pairs
(k1, k2) such that the Markov chain is w-GR(M). For these points it holds
that (1 + kn) < 1/ρn for n = 1, 2. Observe that any sphere with radius ε > 0
around (0, 0) has a non-empty intersection with this area. Hence, the cost
function cannot contain terms in i and/or j that grow exponentially fast to
infinity, and neither can the value function. Consequently, we need to choose
Ṽ α

1 (0) in equation (20) such that the exponential term ( μ1
λ1α

)i disappears.
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