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Abstract

These lecture notes accompany the course Spectral Theory of Graphs and Hyper-
graphs, prepared for the PhD students of the BeyondTheEdge MSCA Doctoral Net-
work. The aim of the course is to introduce participants to spectral methods in discrete
mathematics, with emphasis on the normalized Laplacian of graphs and hypergraphs,
as well as on the non-backtracking Laplacian of graphs. The notes combine classical
results with more recent developments (with a focus on the author’s own research),
and include both introductory exercises and open problems.

While some parts are quite technical, different levels of depth are possible, and
students can focus on the aspects that are most relevant to their background and
interests. The course follows a flipped classroom format, and in addition to these
notes, it is accompanied by recorded video lectures. Dedicated sessions in Marseille
(October 2025) will then give students the opportunity to work in groups on the
exercises and discuss their findings.
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1 Graph normalized Laplacian

1.1 Historical note

The continuous Laplace operator was first introduced and studied by Lagrange (Giuseppe
Luigi Lagrangia, 1736 – 1813) [31] for functions on Euclidean spaces, and it is defined by

∆f :=
∂2f

∂x21
+

∂2f

∂x22
+ . . .+

∂2f

∂x2n
. (1)

But it was named after Pierre Simon Laplace (1749 – 1827), who worked on this operator
and who focused, in particular, on the Laplace equation

∆f = 0, (2)

whose solutions are called harmonic functions. Later on, this Laplacian has also been
generalized for Riemannian manifolds.

Can one determine the shape of an object by listening to its vibrations? – this ques-
tion has been first asked in 1882 by the physicist Arthur Schuster [14] and it can be
reformulated as follows: Can one reconstruct the shape of a mathematical drum form the
eigenvalues of its Laplace operator?. It became famous in 1966, when Mark Kac published
the paper Can one hear the shape of a drum? [39] and the answer has been given in
1992 by Carolyn Gordon, David L. Webb and Scott Wolper in a paper titled One cannot
hear the shape of a drum [29]. In other words, one cannot reconstruct the exact shape
of an object from the eigenvalues of the Laplacian. Nevertheless, one can infer important
information. In 1911, Weyl proved an asymptotic formula for the eigenvalues of a com-
pact Riemmanian manifold that depends on the volume of the manifold [46, 66]. In 1953,
Minakshisundaram showed that for a compact Riemmanian manifold without boundary
one can hear the dimension, the volume and the total scalar curvature [14, 46].

A discrete version of the Laplace operator in (1) has been used for the first time by
Kirchhoff in 1847, for the study of electrical networks [32, 41]. In 1992, Fan Chung [16]
introduced the first normalized version of the discrete Laplacian. As already pointed out
by Chung when she first introduced the normalized graph Laplacian, two graphs cannot
always be distinguished by their spectra (in other words, we cannot hear the isomorphism
class of a graph), but the spectrum reveals some important properties. Is the graph
bipartite? Is it complete? How many connected components does it have? – as we shall see,
these are all questions that can be answered using the spectrum of the Laplace operator, so
even if it does not distinguish the details of graphs, it does partition them into important
families. We say, in particular, that two graphs are isospectral if they have the same
spectrum. Since, furthermore, the computation of the eigenvalues can be performed with
tools from linear algebra, studying the spectrum of these Laplacians is a very common
tool in graph theory and data analytics.

1.2 Basic definitions and first properties

Fix a simple graphG = (V,E) with vertices v1, . . . , vN . We assume thatG has no self-loops
and no isolated vertices.

Definition. The adjacency matrix of G is the N ×N matrix A := A(G) with entries

Aij :=

{
1 if vi ∼ vj

0 otherwise.
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The Kirchhoff Laplacian of G is the matrix

K := K(G) := D −A,

where D := D(G) := diag(deg v1, . . . ,deg vN ) is the degree matrix of G.
The Chung Laplacian of G is the matrix

L := L(G) := Id−D−1/2AD−1/2,

where Id denotes the N ×N identity matrix.
The normalized Laplacian of G is the matrix

L := L(G) := Id−D−1A.

Clearly, there is a 1 : 1 correspondence between graphs and each of these operators,
and while exist non-isomorphic graphs with the same spectra, nevertheless such spectra
are known to detect many important geometric properties of the graph. Thus, if two
graphs are isospectral with respect to a given operator, they have similar structures.

Remark. From the spectral point of view, L and L are equivalent because L = D−1/2LD1/2,
hence the two matrices are similar.

Also, the spectra of all the above operators often encode similar information.

Remark. If G is d-regular, i.e., if deg v = d for all v ∈ V , then K = d · Id−A and
L = L = 1

d ·K. Therefore, it is easy to see that, for d-regular graphs,

λ is an eigenvalue for K ⇐⇒ d− λ is an eigenvalue for A

⇐⇒ λ

d
is an eigenvalue for L = L.

Remark. The entries of L are

Lij =


1 if i = j

− 1
deg vi

if vi ∼ vj

0 otherwise.

In particular, for vi ∼ vj , −Lij is the probability of going from vi to vj with a classical
random walk on V . This highlights the deep connections between the normalized Lapla-
cian, random walks, and diffusion processes on graphs. For further details, we refer to
Chapter 12 in [16].

Remark. Clearly, since L is an N×N matrix whose trace is N , it has N eigenvalues whose
sum is N . Also, since L is isospectral with L, which is real and symmetric, its eigenvalues
are real and their algebraic and geometric multiplicities coincide.
We denote the eigenvalues of L by

λ1 ≤ . . . ≤ λN .

Remark. Let C(V ) denote the vector space of functions f : V → R and, given f, g ∈ C(V ),
let

⟨f, g⟩ :=
∑
v∈V

deg v · f(v) · g(v).

We can see L as an operator C(V ) → C(V ) such that

Lf(v) = f(v)− 1

deg v

∑
w∼v

f(w).

Also, it is easy to check that L is self-adjoint with respect to the inner product ⟨·, ·⟩, i.e.,

⟨Lf, g⟩ = ⟨f, Lg⟩ ∀f, g ∈ C(V ).
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With the Courant-Fischer-Weyl min-max Principle below, we can characterize the
eigenvalues of L.

Theorem 1.1 (Courant-Fischer-Weyl min-max Principle). Let H be an N -dimensional
vector space with a positive definite scalar product (., .), and let A : H → H be a self-
adjoint linear operator. Let Hk be the family of all k-dimensional subspaces of H. Then
the eigenvalues λ1 ≤ . . . ≤ λN of A can be obtained by

λk = min
Hk∈Hk

max
g(̸=0)∈Hk

(Ag, g)

(g, g)
= max

HN−k+1∈HN−k+1

min
g(̸=0)∈HN−k+1

(Ag, g)

(g, g)
. (3)

The vectors gk realizing such a min-max or max-min then are corresponding eigenvectors,
and the min-max spaces Hk are spanned by the eigenvectors for the eigenvalues λ1, . . . , λk,
and analogously, the max-min spaces HN−k+1 are spanned by the eigenvectors for the
eigenvalues λk, . . . , λN .
Thus, we also have

λk = min
g( ̸=0)∈H,(g,gj)=0 for j=1,...,k−1

(Ag, g)

(g, g)
= max

g(̸=0)∈H,(g,gℓ)=0 for ℓ=k+1,...,N

(Ag, g)

(g, g)
. (4)

In particular,

λ1 = min
g(̸=0)∈H

(Ag, g)

(g, g)
, λN = max

g(̸=0)∈H

(Ag, g)

(g, g)
. (5)

Definition. (Ag,g)
(g,g) is called the Rayleigh quotient of g.

According to Theorem 1.1, the eigenvalues of L are given by minimax values of

RQ(f) :=
⟨Lf, f⟩
⟨f, f⟩

=

∑
v∼w

(
f(v)− f(w)

)2

∑
v∈V deg v · f(v)2

, for f ∈ C(V ).

In particular, let k ∈ {1, . . . , N} and let gi be an eigenfunction for λi, for each i ∈
{1, . . . , N} \ {k}. Then,

λk = min
f∈C(V )\{0}:

⟨f,g1⟩=...=⟨f,gk−1⟩=0

RQ(f) = max
f∈C(V )\{0}:

⟨f,gk+1⟩=...=⟨f,gN ⟩=0

RQ(f),

and the functions realizing such a min-max are the corresponding eigenfunctions for λk.

Proposition 1.2. The eigenvalues of L are non-negative. Moreover, the multiplicity of
0 equals the number of connected components of G, and the corresponding eigenfunctions
are constant on each connected component.

Proof. By the min-max principle,

λ1 = min
f∈C(V )\{0}

∑
v∼w

(
f(v)− f(w)

)2

∑
v∈V deg v · f(v)2

.

Clearly, the minimum of the Rayleigh quotient is 0 and it is achieved if and only if f(v) =
f(w) for each edge (v, w), that is, f is constant on each connected component of G. The
claim follows.
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Exercise 1 (Example). Let KN be the complete graph with N nodes and all N(N−1)
2

possible edges. Show that the spectrum is given by 0, with multiplicity 1, and N
N−1 , with

multiplicity N − 1.

Definition. A graph G = (V,E) is bipartite if there exists a bipartition of the vertex set
into two disjoint sets V = V1 ⊔ V2 such that each edge in E has one endpoint in V1 and
one endpoint in V2.

Theorem 1.3. The largest eigenvalue satisfies

N

N − 1
≤ λN ≤ 2.

Also, λN = N
N−1 if and only if G is the complete graph KN , while λN = 2 if and only if

at least one connected component of G is bipartite.

Proof. Observe that

λN ≥ 1

N − 1

(
N∑
i=2

λi

)
=

N

N − 1
,

with equality if and only if λi =
N

N−1 , for all i = 2, . . . , N , and we already know that this
holds for the complete graph.
Now, if G is not complete, then there exist v1, v2 ∈ V that are not connected by any edge.
Let g ∈ C(V ) be such that g(v1) ̸= 0, g(v2) ̸= 0, g = 0 otherwise and

deg v1 · g(v1) + deg v2 · g(v2) = 0.

Then, by the min-max principle,

λ2 = min
f∈C(V )\{0}:∑
v∈V deg v·f(v)=0

RQ(f) ≤ RQ(g) = 1 <
N

N − 1
.

Hence, if G is not complete, λ2 < N
N−1 , implying that λN > N

N−1 . This proves the claim
for the lower bound.

In order to prove the last claim we use the fact that, given two real numbers a and b,

(a− b)2 ≤ 2a2 + 2b2,

with equality if and only if a = −b. This implies that, given an eigenfunction f for λN ,

λN =

∑
v∼w

(
f(v)− f(w)

)2

∑
v∈V deg v · f(v)2

≤
∑

v∼w

(
2f(v)2 + 2f(w)2

)∑
v∈V deg v · f(v)2

=
2 ·
∑

v∈V deg v · f(v)2∑
v∈V deg v · f(v)2

= 2,

with equality if and only if f(v) = −f(w) for each edge (v, w). Since f ̸= 0, this is possible
if and only if at least one connected component of G is bipartite.

From Theorem 1.3 we have that λN > N
N−1 for non-complete graphs. But Das and

Sun [20] proved that for all non-complete graphs we also have

λN ≥ N + 1

N − 1
,
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with equality if and only if the complement graph (that is, the graph that connects precisely
those vertices that are not neighbors in the graph under consideration) is a single edge
or a complete bipartite graph with both parts of size N−1

2 . More precise results in this
direction can be found in [36]. As a consequence, not only we have that complete graphs
KN are completely determined by their spectrum, but additionally, we also know that
there do not even exist graphs whose spectrum is very close to that of KN .

Exercise 2 (Open problem). What is the third smallest possible value of λN , and for
which graphs is it achieved?

Exercise 3 (Open problem). What is the second largest possible value of λN , and for
which graphs is it achieved?

1.3 Cheeger-type estimates

Cheeger constants and Cheeger inequalities have a long history. The now-called Cheeger
constant of a simple graph G = (V,E) was introduced in 1951 by George Pólya and Gábor
Szegő [57], who called it the isoperimetric constant and defined it as

h(G) := min
∅≠S⊊V

|E(S, S̄)|
min{vol(S), vol(S̄)}

,

where E(S, S̄) denotes the set of edges between S and its complement S̄ := V \ S, while
the volume of S, denoted vol(S), is the sum of the vertex degrees in S. Finding a set S re-
alizing the Cheeger constant means finding a small edge cut E(S, S̄) such that, if removed
from G, it divides the graph into two disconnected components that have roughly equal
volume (Figure 1). Therefore, h measures how different G is from a disconnected graph,
and it is largest for the complete graph.

Figure 1: The Cheeger cut on a simple graph

The continuous analogue of h(G) was then defined by Jeff Cheeger [15] in 1970, in the
context of spectral geometry, as follows. Given a compact n-dimensional manifold M , let

h(M) := inf
D

voln−1(δD)

voln(D)
,

whereD ⊂ M is a smooth n-submanifold with boundary δD and 0 < voln(D) ≤ vol(M)/2.
Cheeger proved that the first nonvanishing eigenvalue λmin(M) of the Laplace-Beltrami
operator is such that

λmin(M) ≥ 1

4
h2(M)

and, as shown by Peter Buser [12] in 1978, for each compact manifold there exist Rieman-
nian metrics for which the inequality becomes sharp. In a later work in 1982, Buser [13]
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also proved that, if the Ricci curvature of a compact unbordered Riemannian n-manifold
M is bounded below by −(n− 1)a2, for some a ≥ 0, then

λmin(M) ≤ 2a(n− 1)h+ 10h2.

Therefore, h(M) can be used to estimate λmin(M) and vice versa.
In 1984-5, Jozef Dodziuk [22] and Noga Alon with Vitali Milman [2] derived analogous
estimates for the graph Cheeger constant and for the first non-vanishing eigenvalue of the
Kirchhoff Laplacian associated to a connected graph. Similarly, in 1992, Fan Chung [16]
proved the Cheeger inequalities for the normalized Laplacian of a connected graph:

Theorem 1.4. If G is a connected graph, then

1

2
h2 ≤ λ2 ≤ 2h.

Proof of the upper bound. Fix S, S̄ ⊆ V that realize the Cheeger constant and assume,

without loss of generality, that vol(S) ≤ vol(S̄), so that h = |E(S,S̄)|
vol(S) . Let α := vol(S)

vol(S̄)
∈ (0, 1]

and let f ∈ C(V ) be such that f := 1 on S and f := −α on S̄. Then,
∑

v∈V deg v ·f(v) = 0.
Therefore, by the min-max principle,

λ2 ≤ RQ(f) =

∑
v∼w

(
f(v)− f(w)

)2

∑
v∈V deg v · f(v)2

=
|E(S, S̄)| · (1 + α)2

vol(S) + α2 vol(S̄)
=

|E(S, S̄)|(1 + α)

vol(S)
≤ 2h,

where we have used the fact that α vol(S̄) = vol(S) and α ≤ 1.

In the proof of the lower bound, we will need the following observation.

Remark. Given g : V → R, let

g+(v) :=

{
g(v), if g(v) ≥ 0

0, if g(v) < 0

and let

g−(v) :=

{
|g(v)|, if g(v) ≤ 0

0, if g(v) > 0.

Then, g(v) = g+(v)− g−(v), g(v)
2 = g+(v)

2 + g−(v)
2, and

∑
v∼w

(
g(v)− g(w)

)2

≥
∑
v∼w

[(
g+(v)− g+(w)

)2

+

(
g−(v)− g−(w)

)2
]
.

Therefore,

RQ(g) =

∑
v∼w

(
g(v)− g(w)

)2

∑
v∈V deg v · g(v)2

≥

∑
v∼w

[(
g+(v)− g+(w)

)2

+

(
g−(v)− g−(w)

)2
]

∑
v∈V deg v · (g+(v)2 + g−(v)2)
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≥ min{RQ(g+),RQ(g−)},

since a+b
c+d ≥ min{a

c ,
b
d}.

Proof of the lower bound. Let ϕ : V → R≥0 be a function, and let M := maxϕ(v)2. We
put, for τ ≥ 0,

Φv(τ) :=

{
1 if ϕ(v) ≥ τ

0 else.

Let also V +
ϕ (τ) := {v ∈ V : ϕ(v) ≥ τ} = {v ∈ V : Φv(τ) = 1}. Then, for every t ≥ 0,∑

u∼v

∣∣∣Φu(
√
t)− Φv(

√
t)
∣∣∣ = ∣∣∣E (V +

ϕ (
√
t), V +

ϕ (
√
t)
)∣∣∣ .

Thus,

∫ M

0

∑
u∼v

∣∣∣Φu(
√
t)− Φv(

√
t)
∣∣∣ dt = ∫ M

0

∣∣∣E (V +
ϕ (

√
t), V +

ϕ (
√
t)
)∣∣∣ dt

≥ inf
t>0

| E
(
V +
ϕ (

√
t)
)
, V +

ϕ (
√
t)
)
|∑

v:ϕ(v)≥
√
t deg(v)

∫ M

0

∑
v:ϕ(v)≥

√
τ

deg(v)dτ

= inf
t>0

| E
(
V +
ϕ (

√
t)
)
, V +

ϕ (
√
t)
)
|∑

v:ϕ(v)≥
√
t deg(v)

∑
v

deg(v)ϕ(v)2, (6)

where the inequality follows from the fact that∫M
0

∣∣∣E (V +
ϕ (

√
t), V +

ϕ (
√
t)
)∣∣∣ dt∫M

0

∑
v:ϕ(v)≥

√
τ deg(v)dτ

≥ inf
t>0

| E
(
V +
ϕ (

√
t)
)
, V +

ϕ (
√
t)
)
|∑

v:ϕ(v)≥
√
t deg(v)

while the last equality in (6) follows from the fact that∫ ∑
v:ϕ(v)≥

√
τ

deg(v)dτ =
∑
v

deg(v)

∫
τ : 0≤τ≤ϕ(v)2

1dτ =
∑
v

deg(v)ϕ(v)2.

We now let

C(ϕ) := inf
t>0

| E
(
V +
ϕ (

√
t)
)
, V +

ϕ (
√
t)
)
|

vol(V +
ϕ (

√
t))

.

From (6), together with the fact that∑
v:ϕ(v)≥

√
t

deg(v) =
∑

v∈V +
ϕ (

√
t)

deg(v) = vol(V +
ϕ (

√
t)),

we then obtain

C(ϕ) ≤
∫M
0

∑
u∼v

∣∣Φu(
√
t)− Φv(

√
t)
∣∣ dt∑

v deg(v)ϕ(v)
2

. (7)
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Now, fix v ∼ u and assume that ϕ(v) ≤ ϕ(u). Then,
∣∣Φu(

√
t)− Φv(

√
t)
∣∣ = 1 if and

only if ϕ(v) <
√
t ≤ ϕ(u), while

∣∣Φu(
√
t)− Φv(

√
t)
∣∣ = 0 otherwise. Hence,∫ M

0

∣∣∣Φu(
√
t)− Φv(

√
t)
∣∣∣ dt = ∫

t∈[0,M ] :ϕ(v)<
√
t≤ϕ(u)

1dt

= ϕ(u)2 − ϕ(v)2

=
(
|ϕ(u)− ϕ(v)|

)(
|ϕ(u) + ϕ(v)|

)
. (8)

From (7) and (8), we obtain

C(ϕ) ≤
∑

u∼v

(
|ϕ(u)− ϕ(v)|

)(
|ϕ(u) + ϕ(v)|

)∑
v deg(v)ϕ(v)

2

≤
√∑

u∼v |ϕ(u)− ϕ(v)|2
√∑

u∼v(ϕ(u) + ϕ(v))2∑
v deg(v)ϕ(v)

2

≤
√∑

u∼v |ϕ(u)− ϕ(v)|2
√

2
∑

u deg(u)ϕ(u)
2∑

v deg(v)ϕ(v)
2

,

where the second inequality follows from the fact that, by the Cauchy–Schwarz Inequal-

ity,
∑

i |ai||bi| ≤
√∑

i a
2
i

√∑
i b

2
i , while the last inequality follows from (a+b)2 ≤ 2a2+2b2,

which implies that ∑
u∼v

(ϕ(u) + ϕ(v))2 ≤ 2
∑
u

deg(u)ϕ(u)2.

Hence, by using
√
a
a = 1√

a
, we obtain that

C(ϕ) ≤

√
2
∑

u∼v |ϕ(u)− ϕ(v)|2∑
v deg(v)ϕ(v)

2
, (9)

for all ϕ : V → R≥0.

We then consider an eigenfunction f for the eigenvalue λ2. Since f is orthogonal to
the constant functions, the eigenfunction for λ1, we have

∑
v deg(v)f(v) = 0. Thus, f

attains both positive and negative values, and the function

p(t) : =
∑
v∈V

deg v (f(v)− t)2

=
∑
v∈V

deg v
(
f(v)2 + t2 − 2tf(v)

)
=
∑
v∈V

deg vf(v)2 + t2
∑
v∈V

deg v − 2t
∑
v∈V

deg vf(v)

=
∑
v∈V

deg vf(v)2 + t2
∑
v∈V

deg v

attains its minimum at t = 0.

Now, reorder the vertices so that

f(v1) ≤ . . . ≤ f(vN ).

9



Let k be the largest integer such that
∑k

i=1 deg(vi) ≤ vol(V )/2, and let c := f(vk+1).
Then,

vol({v ∈ V : f(v) < c}) ≤
k∑

i=1

deg(vi) ≤
vol(V )

2

and, since k is the largest integer such that
∑k

i=1 deg(vi) ≤ vol(V )/2, we have that∑k+1
i=1 deg(vi) > vol(V )/2, therefore

∑N
i=k+2 deg(vi) ≤ vol(V )/2, implying that

vol({v ∈ V : f(v) > c}) ≤
N∑

i=k+2

deg(vi) ≤
vol(V )

2
.

Therefore,

max {vol({v ∈ V : f(v) > c}), vol({v ∈ V : f(v) < c})} ≤ vol(V )

2
.

Hence, by letting
g(v) := f(v)− c for v ∈ V,

we get that

max {vol({v ∈ V : g(v) > 0}), vol({v ∈ V : g(v) < 0})} ≤ vol(V )

2
. (10)

Now, since we observed that the function p(t) =
∑

v∈V deg v (f(v)− t)2 attains its mini-
mum at t = 0, we have that ∑

v∈V
deg vf(v)2 ≤

∑
v∈V

deg vg(v)2.

Moreover, it is easy to check that∑
u∼v

|f(u)− f(v)|2 =
∑
u∼v

|g(u)− g(v)|2.

This implies that

RQ(f) =

∑
u∼v |f(u)− f(v)|2∑

v deg(v)f(v)
2

≥
∑

u∼v |g(u)− g(v)|2∑
v deg(v)g(v)

2
= RQ(g).

Now, let ϕ be either g+ or g−, such that (by Remark 1.3)

RQ(g) ≥ min{RQ(g+),RQ(g−)} = RQ(ϕ).

Let S := {v ∈ V : ϕ(v) > 0} and note that, by (10), volS ≤ vol S̄.

Now, fix t > 0 that realizes the infimum in the definition of C(ϕ) (t > 0 exists because
ϕ attains finitely many values), and let T := V +

ϕ (
√
t), so that

C(ϕ) = |E(T, T )|
volT

.

Then, since

T = V +
ϕ (

√
t) = {v ∈ V : ϕ(v) ≥

√
t} ⊆ {v ∈ V : ϕ(v) > 0} = S,

10



we have that volT ≤ volS ≤ vol S̄ ≤ vol T̄ , therefore, by (9),

h ≤ |E(T, T̄ )|
volT

= C(ϕ) ≤

√
2
∑

u∼v |ϕ(u)− ϕ(v)|2∑
v deg(v)ϕ(v)

2
.

Since we chose ϕ such that RQ(ϕ) ≤ RQ(g) ≤ RQ(f), we have∑
u∼v |ϕ(u)− ϕ(v)|2∑

v deg(v)ϕ(v)
2

≤
∑

u∼v |f(u)− f(v)|2∑
v deg(v)f(v)

2
. (11)

It follows that

h ≤

√
2
∑

u∼v |f(u)− f(v)|2∑
v deg(v)f(v)

2
=
√
2λ2.

We therefore obtain the desired eigenvalue estimate

1

2
h2 ≤ λ2.

As a consequence of the latter result, λ2 can be used to approximate the Cheeger
constant. Moreover, the corresponding eigenfunctions can be used to approximate the
Cheeger cut by considering the sets {v ∈ V : f(v) ≥ 0} and {v ∈ V : f(v) < 0}.

Similarly to h, the dual Cheeger constant bounds the largest eigenvalue [5, 6]. It is
defined as

h̄ := max
partitions V=V1⊔V2⊔V3

2 · |E(V1, V2)|
vol(V1) + vol(V2)

,

and it satisfies h̄ ≤ 1, with equality if and only if G is bipartite [6]. The dual Cheeger
constant bounds the largest eigenvalue above and below, as follows:

2h̄ ≤ λN ≤ 1 +
√
1− (1− h̄)2.

Moreover, the two constants h and h̄ are also related to each other [6].

Exercise 4 (Open problem). For a bipartite graph, λ is an eigenvalue if and only if 2−λ
is an eigenvalue. In particular, λn−1 = 2 − λ2 and we can therefore bound λn−1 both
above and below in terms of the Cheeger constant. Can we generalize this to all graphs?

1.4 Petals and books

A graph is called singular if its adjacency matrix is singular, i.e., if and only if 0 is an
eigenvalue of A, hence if and only if 1 is an eigenvalue of L. A complete characterization of
singular graphs is given in [59]. For instance, graphs with duplicate vertices are singular:

Definition. Given a vertex v, we let N (v) := {w ∈ V : w ∼ v} denote the neighborhood
of v. Two vertices vi and vj are duplicates of each other if N (vi) = N (vj).

In particular, if vi and vj are duplicates, then they are not neighbors, and the corre-
sponding rows/columns of the adjacency matrix are the same, that is,

Ail = Ajl for each l = 1, . . . , N.

11



Lemma 1.5. If G has k vertices that are duplicate of each other, then 0 is an eigenvalue for
A with multiplicity at least k−1, or equivalently, 1 is an eigenvalue for L with multiplicity
at least k − 1.

Proof. Assume, without loss of generality, that v1, . . . , vk are duplicates. Then, the first
k rows/columns of the adjacency matrix are identical. Now, for i = 2, . . . , k, consider
the function fi : V → R that has value 1 on v1, −1 on vi, and 0 otherwise. Then,
Afi(vl) = Al1 − Ali = 0 for all l = 1, . . . , N , that is, Afi = 0. Hence, the fi’s are k − 1
eigenfunctions of A for the eigenvalue 0, and they are linearly independent. This proves
the claim.

Example 1.1. The star graph Sk on k+1 nodes is given by k peripheral vertices v1, . . . , vk
that are connected to one central vertex vk+1. Since the k peripheral vertices are dupli-
cates, 1 is an eigenvalue of L with multiplicity (at least) k − 1. But we also know that 0
is an eigenvalue, and 2 is also an eigenvalue since the graph is bipartite. Hence, this gives
the entire spectrum of Sk.

Example 1.2. More generally, the complete bipartite graph Kn,m is the bipartite graph
such that V = V1 ⊔ V2, |V1| = n, |V2| = m and

E = {(v, w) : v ∈ V1 and w ∈ V2}.

Clearly, 0 and 2 are eigenvalues in this case. Moreover, since the n vertices of V1 are
duplicate of each other, they produce the eigenvalue 1 with multiplicity n− 1. Similarly,
the m vertices of V2 produce the eigenvalue 1 with multiplicity m−1. This gives the entire
spectrum of Kn,m. In particular, all complete bipartite graphs on N nodes (including the
star graph) are isospectral to each other.

Definition (Petal graph, N ≥ 3 odd). Given m ≥ 1, the m–petal graph is the graph on
N = 2m+ 1 nodes such that (Figure 2):

• V = {x, v1, . . . , vm, w1, . . . , wm};

• E = {(x, vi)}mi=1 ∪ {(x,wi)}mi=1 ∪ {(vi, wi)}mi=1.

Figure 2: The petal graph

Exercise 5. For the petal graph on N = 2m+ 1 vertices, the eigenvalues are 0, 1
2 (with

multiplicity m− 1) and 3
2 (with multiplicity m+ 1).
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Petal graphs are also called Dutch windmill graphs, fan graphs or friendship graphs,
and they are well-known because of the famous Friendship Theorem of Paul Erdős, Alfréd
Rényi and Vera T. Sós from 1966.

Theorem 1.6 (Friendship Theorem). The finite graphs with the property that every two
vertices have exactly one neighbor in common are exactly the petal graphs.

Informally, the theorem states that if a group of people has the property that every
pair of people has exactly one friend in common, then there must be one person who is
friend with everyone else.

The analogue of the petal graph for N even is the book graph:

Definition (Book graph, N ≥ 4 even). Given m ≥ 1, the m–book graph is the graph on
N = 2m+ 2 nodes such that (Figure 3):

• V = {x, y, v1, . . . , vm, w1, . . . , wm};

• E = {(x, vi)}mi=1 ∪ {(y, wi)}mi=1 ∪ {(vi, wi)}mi=1.

Figure 3: The book graph

Exercise 6. For the book graph on N = 2m + 2 nodes, 0 and 2 are eigenvalues with
multiplicity 1, and λ = 1± 1

2 are eigenvalues with multiplicity m each.

We now define the spectral gap at 1 as

ε := min
i

|1− λi|.

We have

Theorem 1.7. For any connected graph G on N ≥ 3 nodes,

ε ≤ 1

2
.

Moreover, equality is achieved if and only if G is either a petal graph (for N odd) or a
book graph (for N even).

We now give a brief idea of the proof of Theorem 1.7, and we refer to [38] for a complete
proof and discussion.

The following lemma allows us to characterize ε for any graph.
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Lemma 1.8. For any graph G,

ε2 = min
f∈C(V )\{0}

∑
w∈V

1
degw

( ∑
v∈N (w)

f(v)

)2

∑
w∈V

degw · f(w)2
.

Proof. We observe that the values (1− λ1)
2, . . . , (1− λN )2 are exactly the eigenvalues of

the symmetric matrix M := (D− 1
2AD− 1

2 )2 whose entries are

Mvu =
∑

w∈N (v)∩N (u)

1

degw
√
deg u · deg v

, for v, u ∈ V,

In particular, ε2 is the smallest eigenvalue of M . Therefore, by the Courant–Fischer–Weyl
min-max principle applied to the Euclidean inner product (·, ·), we can write

ε2 = min
f∈C(V )\{0}

(Mf, f)

(f, f)

= min
f∈C(V )\{0}

∑
v∈V

Mf(v)f(v)∑
w∈V

f(w)2

= min
f∈C(V )\{0}

∑
v∈V

∑
u∈V

Mvuf(u) · f(v)∑
w∈V

f(w)2

= min
f∈C(V )\{0}

∑
v∈V

∑
u∈V

∑
w∈N (u)∩N (v)

1
degw

√
deg u·deg vf(u) · f(v)∑

w∈V
f(w)2

.

Now, observe that the numerator can be rewritten as∑
v∈V

∑
u∈V

∑
w∈N (u)∩N (v)

f(u) · f(v)
degw

√
deg u · deg v

=
∑
w∈V

1

degw

∑
v∈N (w)

∑
u∈N (w)

f(u) · f(v)√
deg u · deg v

=
∑
w∈V

1

degw

 ∑
v∈N (w)

f(v)√
deg v

2

.

It follows that

ε2 = min
f∈C(V )\{0}

∑
w∈V

1
degw

( ∑
v∈N (w)

f(v)√
deg v

)2

∑
w∈V

f(w)2

= min
f∈C(V )\{0}

∑
w∈V

1
degw

( ∑
v∈N (w)

f(v)

)2

∑
w∈V

degw · f(w)2
.
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As a consequence of Lemma 1.8, we have that a graph on N ≥ 3 nodes with ε > 1
2

would satisfy

∑
w∈V

1

degw

 ∑
v∈N (w)

f(v)

2

>
1

4

∑
w∈V

degw · f(w)2, ∀f ∈ C(V ) \ {0}. (12)

This allows us, as shown in [38], to prove several properties that such graph should satisfy,
and to arrive to a contradiction, which implies that ε ≤ 1

2 . Similarly, in order to prove
that equality is achieved if and only if G is either a petal graph or a book graph, once can
study and analyze the structural constraints that a graph with ε = 1

2 should have, again
as a consequence of the characterization in Lemma 1.8.

Examples of properties that can be inferred from (12) are given by the following lem-
mas.

Lemma 1.9. Let G be a connected graph on N ≥ 3 nodes such that ε > 1
2 . Then, for any

v ∈ V , there exists w ∈ N (v) such that degw ≤ 3.

Proof. Let f be such that f(v) := 1 and f(u) := 0 for all u ̸= v. Then, (12) implies∑
w∈N (v)

1

degw
>

1

4
deg v.

Now, if degw ≥ 4 for all w ∈ N (v), then∑
w∈N (v)

1

degw
≤

∑
w∈N (v)

1

4
=

1

4
deg v,

which is a contradiction.

Given two vertices u and v, we let

N (u)△N (v) :=
(
N (u) ∪N (v)

)
\
(
N (u) ∩N (v)

)
be the symmetric difference of N (u) and N (v).

Lemma 1.10. Let G be a connected graph on N ≥ 3 nodes such that ε > 1
2 . If N (u) ∩

N (v) ̸= ∅, then N (u)△N (v) ̸= ∅ and∑
w∈N (u)△N (v)

(
1

degw
− 1

4

)
>

1

2
.

Proof. Let f be such that f(v) := 1, f(u) := −1 and f(w) := 0 for all w ∈ V \ {u, v}.
Then, by (12), ∑

w∈N (u)△N (v)

1

degw
>

1

4
(deg v + deg u),

which also implies N (u)△N (v) ̸= ∅. Moreover, since

deg v + deg u = N (u)△N (v) + 2|N (u) ∩N (v)|,
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the above inequality can be rewritten as∑
w∈N (u)△N (v)

(
1

degw
− 1

4

)
>

1

4
· 2|N (u) ∩N (v)|.

Since N (u) ∩N (v) ̸= ∅, we have that |N (u) ∩N (v)| ≥ 1, implying that∑
w∈N (u)△N (v)

(
1

degw
− 1

4

)
>

1

2
.

It has long been an open question whether petal graphs can be characterized by the
eigenvalues of some operators. In 2015 it has been proved that, among connected graphs,
petal graphs are uniquely determined by the eigenvalues of the adjacency matrix [17]. And
as a consequence of Theorem 1.7, we can say that petal graphs are completely characterized
by the spectrum of the normalized Laplacian.

1.5 Coloring the normalized Laplacian

We start with a historical note on graph coloring taken from [50].

Historical note

While graph theory was born in 1736, when Leonard Euler solved the Königsberg Seven
Bridges Problem [25], the history of graph coloring started in 1852, when the South African
mathematician and botanist Francis Guthrie formulated the Four Color Problem [33, 44,
65, 67]. Francis Guthrie noticed that, when coloring a map of the counties of England,
one needed at least four distinct colors if two regions sharing a common border could not
have the same color. Moreover, he conjectured (and tried to prove) that four colors were
sufficient to color any map in this way. His brother, Frederick Guthrie, supported him
by sharing his work with Augustus De Morgan, of whom he was a student at the time,
and De Morgan immediately showed his interest for the problem [30]. On October 23,
1852, De Morgan presented Francis Guthrie’s conjecture in a letter to Sir William Rowan
Hamilton, in which he wrote:

The more I think of it the more evident it seems.

But Hamilton replied:

I am not likely to attempt your quaternion of color very soon.

De Morgan then tried to get other mathematicians interested in the conjecture, and it
eventually became one of the most famous open problems in graph theory and mathemat-
ics for more than a century. After several failed attempts in solving the problem, Francis
Guthrie’s conjecture was proved to be true in 1976, by Kenneth Appel and Wolfgang
Haken, with the first major computer-assisted proof in history [3].

The Four Color Theorem can be equivalently described in the language of graph theory
as follows. Let G = (V,E) be a simple graph. A k-coloring of the vertices is a function
c : V → {1, . . . , k}, and it is proper if v ∼ w implies c(v) ̸= c(w). The vertex coloring
number χ = χ(G) is the minimum k such that there exists a proper k-coloring of the
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vertices. Moreover, the graph G is called planar if it can be embedded in the plane,
that is, it can be drawn on the plane in such a way that its edges intersect only at their
endpoints.

Theorem 1.11 (Four Color Theorem, 1976). If G is a planar simple graph, then χ ≤ 4.

Despite the huge importance of this result, quoting William Thomas Tutte [64],

The Four Color Theorem is the tip of the iceberg, the thin end of the wedge
and the first cuckoo of Spring.

In fact, the study of the vertex coloring number χ has shown to be interesting also for
several other problems in graph theory, as well as for applications to partitioning prob-
lems. Moreover, other notions of coloring have been introduced, and each of them has led
to numerous challenging problems, many of which are beautifully summarized in [33, 64].

Graph coloring problems also raise important computational challenges, since deter-
mining whether a graph can be colored with k is NP-complete for every k ≥ 3. For
discussions of algorithmic and complexity aspects of graph coloring, we refer to [26, 45].

Relationship between χ and λN

Let G be a connected graph.

It is well-known (and easy to check) that χ = 2 if and only if G is bipartite, while
χ = N − 1 if and only if G is the complete graph KN . Similarly, Theorem 1.3 shows that
λN = 2 if and only if G is bipartite, while λN = N

N−1 if and only if G is the complete
graph KN . Interestingly, in both the bipartite and the complete case we have

λN =
χ

χ− 1
.

It is therefore natural to ask what happens in the general case.

The following result was first proved by Elphick and Wocjan (2015) [23] (Equation 20)
as a consequence of Theorem 1 in Nikiforov (2007) [56]. Alternative proofs and related
results were later given by Coutinho, Grandsire and Passos (2019) [18] (Lemma 6) and
by Sun and Das (2020) [61] (Theorem 3.1). We refer to [7] for a detailed discussion and
further results.

Theorem 1.12. Let G be a connected simple graph. Then,

λN ≥ χ

χ− 1
.

Exercise 7. Find a family of graphs satisfying

λN =
χ

χ− 1
.

Exercise 8 (Open problem). Determine all connected finite graphs satisfying

λN =
χ

χ− 1
.
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2 Hypergraph normalized Laplacian(s)

2.1 Introduction

Hypergraphs (Figure 6) are a generalization of graphs in which edges are sets of vertices
of any cardinality:

Definition. A hypergraph is a pair G = (V,E), where

• V := {v1, . . . , vN} is the set of vertices,

• E := {e1, . . . , eM} is the multiset of edges, and ∅ ≠ ej ⊆ V for each j.

Figure 4: Two ways of drawing the same hypergraph on six vertices and two edges.

Hypergraphs can represent communities of elements of any size. For instance, in a col-
laboration network, vertices represent authors, and an edge connects all authors of a given
paper. Such a representation naturally captures collaborations involving more than two
people, which ordinary graphs can only model indirectly by introducing multiple pairwise
connections.

Historically, while graphs were born in 1736, hypergraphs were probably born in 1931.
In fact, in a 1994 paper [24], Erdős wrote:

As far as I know, the subject of hypergraphs was first mentioned by T. Gallai
in a conversation with me in 1931. He remarked that hypergraphs should be
studied as a generalization of graphs. The subject really came to life only with
the work of Berge.

This probably happened in front of the Statue of Anonymous, at the City Park of Bu-
dapest, where some of the greatest graph theorists in history like Paul Erdős, Tibor Gallai,
Paul Turán, Vera Sós and their collaborators used to meet regularly.

In this section, we do not present proofs. The arguments are typically longer and
more technical versions of those already seen for graphs in the previous section, while the
underlying ideas remain similar. Instead, our focus is on providing an overview of the
main results.

We consider a few generalizations of classical hypergraphs, as well as their spectral
properties with respect to a specific type of generalized Laplacian matrix. We also discuss
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alternative approaches (such as the use of tensors) and one application to biology.

For the results in this section, we refer to [1, 8, 9, 34, 47–49, 52, 54].

Before proceeding, we give the following basic definitions.

Definition. The degree of a vertex v ∈ V is

deg v := |{e ∈ E : v ∈ e}|.

The cardinality of an edge e ∈ E is

|e| := |{v ∈ V : e ∋ v}|.

A hypergraph is d-regular if all vertices have the same degree d.
A hypergraph is k-uniform if all edges have the same cardinality k.

In particular, graphs are 2-regular hypergraphs.

2.2 Oriented hypergraphs

Oriented hypergraphs were introduced by Shi in [60] as a generalization of classical hy-
pergraphs in which a plus or minus sign is assigned to each vertex–edge incidence. Since
their introduction, such hypergraphs have received a lot of attention. The adjacency and
Kirchhoff Laplacian matrices of oriented hypergraphs were introduced by Reff and Rusnak
[58], while the normalized Laplacian was introduced in [34].

Definition. An oriented hypergraph (Figure 5) is a triple G = (V,E, φ), where

• (V,E) is a hypergraph, and

• φ : V × E → {−1, 0,+1} is such that

φ(v, e) ̸= 0 ⇐⇒ v ∈ e.

If φ(v, e) = 1 (resp. φ(v, e) = −1), v is said to be an output (resp. input) for e. If v ̸= v′

and
φ(v, e) = φ(v′, e) ̸= 0 (resp. φ(v, e) = −φ(v′, e) ̸= 0),

the vertices v and v′ are co-oriented (resp. anti-oriented) in e.

Figure 5: An oriented hypergraph on six vertices
and two edges. Plus signs represent inputs, and minus
signs represent outputs.

Let G = (V,E, φ) be an oriented hypergraph on N vertices and M edges, with no
vertices of degree 0.
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Definition. The degree matrix of G is the N ×N diagonal matrix

D := diag(deg v1, . . . ,deg vN ).

The incidence matrix of G is the N ×M matrix I := (φ(vi, ej))ij .
The adjacency matrix of G is he N × N matrix A := (Aij)ij , where Aii := 0 for each
i = 1, . . . , N and, for i ̸= j,

Aij := |{edges in which vi and vj are anti-oriented}|
− |{edges in which vi and vj are co-oriented}| .

The normalized Laplacian of G is the N ×N matrix

L := Id−D−1A = D−1II⊤.

Remark. A simple graph can be seen as oriented hypergraph in which E is a set (and not
a multiset), all edges have cardinality 2, and each edge has one input and one output. In
this case, independently of the choice of the edge orientations, we have that Aij = 1 for
vi ∼ vj . Hence, in particular, L coincides with the graph normalized Laplacian.

Remark. Unlike in the graph case, −Lij is not always the transition probability from vi to
vj in a random walk on V . One can define hypergraph Laplacians that do encode random
walks, but these depend on pairwise transition probabilities between vertices, which can
always be represented by an ordinary weighted graph. As discussed in [53], this may
be seen as a drawback if one wishes to capture higher-order structure that is unique to
hypergraphs.

Remark. While there is a 1 : 1 correspondence between graphs and each of their associated
N ×N matrices, this is not true for oriented hypergraphs. An alternative representation
is via tensors, which offer a 1 : 1 correspondence with the hypergraph but at the cost of a
much harder spectral theory, as the tensor eigenvalue problem is NP-hard. For a detailed
discussion of spectral hypergraph theory via tensors, see [27].

Summarizing the main spectral properties of the normalized Laplacian L for oriented
hypergraphs:

• L has N real, non-negative eigenvalues λ1 ≤ · · · ≤ λN , which sum to N and lie in
the interval [0, N ].

• In contrast to the graph case, 0 is not necessarily an eigenvalue, and if it is, the
corresponding eigenfunctions are not necessarily constant.

• The notion of bipartite graph and the bounds for λN in Theorem 1.3 have been
generalized to the case of oriented hypergraphs [48].

• Cheeger inequalities have been generalized for uniform oriented hypergraphs [47].

• Spectral bounds on the chromatic number (including a generalization of Theorem
1.12) are discussed in [1, 8].

2.3 A biology application

We conclude this section with an application of spectral hypergraph theory to biology,
taken from [51]. In this context, we consider an even more general class of hypergraphs,
namely the hypergraphs with real coefficients that were introduced in [35], in which real
coefficients can be assigned to the vertex-edge incidences (Figure 6).
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Definition. A hypergraph with real coefficients is a triple G = (V,E, φ), where

• (V,E) is a hypergraph, and

• φ : V × E → R is such that

φ(v, e) ̸= 0 ⇐⇒ v ∈ e.

Figure 6: A hypergraph with real coefficients in [0, 1].

Let G be a hypergraph with real coefficients. We define the following matrices, which
generalize those used for oriented hypergraphs.

Definition. The incidence matrix of G is the N×M matrix I with entries Iij := φ(vi, ej).
The degree matrix of G is the N ×N matrix D := diag(deg v1, . . . ,deg vN ), where

deg vi :=
M∑
j=1

φ(vi, ej)
2.

The normalized Laplacian is the N ×N matrix

L := D−1II⊤.

Remark. The square in the above definition ensures that the degree depends only on the
magnitude of the incidence coefficients, regardless of their sign, and that it generalizes the
notion of degree for oriented hypergraphs.

Given a dataset of gene expression with N cells and M genes, we model it as a hyper-
graph with real coefficients on N nodes and M edges in which each vertex v represents a
cell, each edge e represents a gene, and each coefficient φ(v, e) represents the fraction of
transcripts in cell v mapping to gene e. We assume that the coefficients are normalized
with respect to cells, so that ∑

e

φ(v, e) = 1 for each v.

Such normalization is the norm in RNA-seq analysis [21, 43, 63].

Remark. Because the edges of a hypergraph form a multiset, we can have distinct edges
that contain the same vertices. In the context of gene expression networks, this allows us
to model different genes that are expressed in exactly the same set of cells.
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In the setting described above, let λ1 ≤ . . . ≤ λN denote the eigenvalues of the normal-
ized Laplacian L of the hypergraph with real coefficients. The following result (Corollary
2.6 in [51]) characterizes the extremal cases of the largest eigenvalue.

Theorem 2.1. In the above setting, 1 ≤ λN ≤ N and, moreover,

• λN = 1 if and only if each edge has cardinality 1;

• λN = N if and only if all edges have cardinality N and, for each edge e and for all
vertices vi ̸= vj,

φ(vi, e) = φ(vj , e).

In the context of gene expression networks, Theorem 2.1 can be interpreted as fol-
lows. The largest eigenvalue λN attains its minimum value 1 precisely when each gene is
concentrated in a single cell. Conversely, λN = N exactly when each gene is uniformly
distributed among all cells, a situation corresponding to complete cellular redundancy.
In general, larger values of λN indicate greater cellular redundancy. Following [51], it is
convenient to consider the normalized quantity R = λN/N as a measure of redundancy,
making it independent of the number of cells. The interpretation of R as an estimate of
cellular redundancy is supported by analyses of both simulated and real gene expression
datasets in [51].

Exercise 9. Hypergraphs are also used in mathematical neuroscience to model neural
networks, where vertices represent neurons and edges group together neurons that fire
simultaneously. In this context, hypergraphs are often called neural codes [19]. Can you
find a way to apply spectral methods in this setting, similarly to the biology applications
above?

3 Graph non-backtracking Laplacian

“The non-backtracking operators have made their way into my dreams.”

Joe Geraci

3.1 Basic definitions

This section is mainly based on [37].
Fix now a simple graph G = (V,E) with vertices v1, . . . , vN and minimum degree ≥ 2.

Choosing an orientation for an edge means letting one of its endpoints be its input and
the other one be its output. We let e = [v, w] denote the oriented edge whose input is v
and whose output is w. In this case, we write in(e) := v and out(e) := w. Moreover, we
let e−1 := [w, v].
From now on, we fix an orientation for each edge of G. We let e1, . . . , eM denote the edges
of G with this fixed orientation and we let

eM+1 := e−1
1 , . . . , e2M := e−1

M

denote the edges with the inverse orientation.

Definition. A non-backtracking random walk on G is a discrete-time Markov process on
the oriented edges such that the probability of going from ei to ej is

P(ei → ej) =

{
1

deg(out(ei))−1 if out(ei) = in(ej) and in(ei) ̸= out(ej)

0 otherwise.
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Equivalently, a non-backtracking random walk on G = (V,E) can also be seen as a
process on V , in which the probability that a random walker goes from a vertex v to a
vertex w depends on where she was before arriving at v. However, this process is not
Markovian, which is why it is convenient to study it from the point of view of the oriented
edges.

Definition. The matrix B := B(G) is the 2M × 2M matrix with (0, 1)–entries such that

Bij = 1 ⇐⇒ out(ei) = in(ej) and in(ei) ̸= out(ej).

The non-backtracking matrix of G is B⊤, the transpose matrix of B.

From now on, we also fix a directed graph G = (V, E) on N nodes and M edges that
has no vertices of outdegree 0. If G has an edge from a vertex v to a vertex w, we write
v → w and we denote such an edge by (v → w).

Remark. Note that, although both oriented edges and directed edges are defined as ordered
pairs of vertices, these two definitions are conceptually different. In fact, while directions
are intrinsic of the chosen graph, orientations are not. This is what motivates us to use
two different notations for oriented and directed edges.

Definition. The degree of a vertex v is

deg v := degG v := |{w ∈ V : (v → w) ∈ E}|.

The degree matrix of G is the N × N diagonal matrix D := D(G) := (Dvw)v,w∈V whose
diagonal entries are

Dvv := deg v.

The adjacency matrix of G is the N ×N matrix A := A(G) := (Avw)v,w∈V defined by

Avw :=

{
1 if v → w

0 otherwise.

Remark. Note that the degree counts the number of outgoing edges from a node, and
therefore it is also often called the outdegree.

Definition. A random walk on G is a discrete-time Markov process on V such that the
probability of going from a vertex v to a vertex w is

P(v → w) =

{
1

deg v if v → w

0 otherwise.

Definition. The normalized Laplacian of G is the N ×N matrix

L(G) := Id−D−1A.

Definition. The non-backtracking graph or Hashimoto graph of G is the directed graph
NB(G) on vertices e1, . . . , e2M , that has B as adjacency matrix.

Example 3.1. If G is the cycle graph on N nodes, then NB(G) is given by two discon-
nected directed cycles on N nodes (Figure 7).
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Figure 7: The cycle graph G and its non-backtracking graph NB(G).

Clearly, a random walk on the directed graphNB(G) is equivalent to a non-backtracking
random walk on G. Moreover, for each oriented edge ei,

degG ei = degG(out(ei))− 1.

As a consequence, we have that G is k + 1–regular (meaning that all its vertices have
constant degree k + 1) if and only if NB(G) is k–regular. Similarly, G is bipartite if
and only if NB(G) is bipartite, since G has odd-length cycles if and only if NB(G) has
odd-length cycles.

Exercise 10. Let G = (V,E) be a simple graph on N nodes and M edges, and let
G = (V, E) be its non-backtracking graph. Then, G has 2M nodes and

∑
v∈V (degG v)2−2M

edges.

Definition. The non-backtracking Laplacian of G, denoted by L := L(G), is the normal-
ized Laplacian L(NB(G)) of NB(G).

3.2 First properties

In Example 3.1 we saw that, if G is a cycle graph, then its non-backtracking graph is given
by two disconnected cycles. The next theorem shows that this is the only case in which a
connected simple graph has a disconnected non-backtracking graph.

Theorem 3.1. Let G = (V,E) be a simple connected graph on N nodes and M edges,
with minimum degree ≥ 2, and let G = (V, E) be its non-backtracking graph. Then, the
following are equivalent:

1. G is not the cycle graph;

2. G has at least two cycles;

3. G is weakly connected;

4. G is strongly connected.

Proof. Clearly, since the minimum degree in G is ≥ 2, the first two conditions are equiva-
lent to each other. Moreover, 4 clearly implies 3 and, by Example 3.1, 3 implies 1. Hence,
if we prove that 1 implies 4, we are done.

Assume that G is not the cycle graph and fix two distinct elements [v, w], [x, y] ∈ V.
We want to show that there exists a directed path, in G, from [v, w] to [x, y].
Since G is connected, there exists a path, in G, of the form

(w, p1), (p1, p2), . . . , (pk−1, pk), (pk, x)
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which is non-backtracking, i.e., such that p2 ̸= w, pk−1 ̸= x and pi ̸= pi+2 for i =
1, . . . , k − 2. This gives a directed path, in G, of the form

[w, p1] → [p1, p2] → . . . → [pk−1, pk] → [pk, x].

If p1 ̸= v and pk ̸= y, then G has also the directed path

[v, w] → [w, p1] → [p1, p2] → . . . → [pk−1, pk] → [pk, x] → [x, y],

hence the claim holds in this case.
If p1 = v and pk ̸= y, then by the assumptions that G is not the cycle graph and each
vertex in G has degree ≥ 2, it follows that there exists a non-backtracking path in G of
the form (Figure 8)

(v, w), (w = q1, q2), . . . , (qr−1, qr = c1), . . . , (cs−1, cs = c1),

for some r ≥ 1 and s ≥ 3.

Figure 8: An illustration of the proof of Theorem 3.1.

In this case, there exists a directed path from [v, w] to [x, y], in G, of the form

[v, w] → [w, q2] → . . . → [qr−1, qr = c1] → . . . → [cs−1, cs = c1]

→ [c1 = qr, qr−1] → . . . → [q2, w] → [w, v]

→ [v, p2] → . . . → [pk, x] → [x, y].

If either p1 ̸= v and pk = y, or p1 ̸= v and pk ̸= y, the claim follows in a similar way. This
shows that, if G is not the cycle graph, then G is strongly connected.

We now consider a directed graph G = (V, E) on N nodes and M edges that has no
vertices of degree 0 and which is not, necessarily, the non-backtracking graph of a simple
graph. We observe that its normalized Laplacian L can be seen as an operator

L : {f : V → C} → {f : V → C}

such that, given f : V → C and ω ∈ V,

Lf(ω) = f(ω)− 1

degω

(∑
ω→τ

f(τ)

)
.

In particular, a pair (λ, f) with λ ∈ C and f : V → C is an eigenpair for L if and only if,
for each ω ∈ V,

(1− λ)f(ω) =
1

degω

(∑
ω→τ

f(τ)

)
.

The following observations have been proved by Bauer in [4].
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Remark. Clearly, for any directed graph G = (V, E) on N nodes, its normalized Laplacian
L has N eigenvalues (counted with algebraic multiplicity) that sum to N , since L is an
N ×N matrix that has trace N . Moreover, by Proposition 3.2 in [4], the spectrum of L is
contained in the complex disc D(1, 1). In particular, the real eigenvalues are contained in
[0, 2]. Also, by Proposition 3.1 in [4], 0 is an eigenvalue for L and the constant functions
f : V → C are the corresponding eigenfunctions. As a consequence, from the spectrum of
L we can derive the number of connected components of G. Notably, this does not hold
for the adjacency matrix A of G.

Now, for a simple undirected graph G, the following are equivalent [11, 16]:

1. G is bipartite;

2. The spectrum of the normalized Laplacian L(G) is symmetric with respect to the
line x = 1;

3. 2 is an eigenvalue of L(G);

4. The spectrum of the adjacency matrix A(G) is symmetric with respect to the line
x = 0.

In the next proposition we prove that, for a directed graph G, condition 1 above implies
2, 3 and 4. However, as shown in Example 3.2 below, these conditions are not equivalent.

Proposition 3.2. If G is a directed bipartite graph, then the spectra of both its normalized
Laplacian L and its adjacency matrix A are symmetric. Hence, in particular, 2 is an
eigenvalue for L.

Proof. Without loss of generality, we only prove the first claim for the normalized Lapla-
cian, the other case being similar. The proof follows the same idea as the proof for the
undirected case in [16, Lemma 1.8].
If G = (V, E) is bipartite, V1 ⊔ V2 is a corresponding bipartition and (λ, f) is an eigenpair
for L, then also (2− λ, f̃) is an eigenpair, where

f̃ :=

{
f on V1

−f on V2.

As an immediate consequence, 2 is an eigenvalue for L, since 0 is always an eigenvalue.

The next example shows a directed graph that is not bipartite but is such that 2 is an
eigenvalue for its normalized Laplacian.

Example 3.2. Consider the connected graph G in Figure 9, where the numbers on the ver-
tices indicate the values of a function f . Then, G is not bipartite, and f is an eigenfunction
for L(G) with eigenvalue 2, since it satisfies

−f(ω) =
1

degω

(∑
ω→τ

f(τ)

)
, ∀ω ∈ V.

Remark. For any directed graph G, its normalized Laplacian L and its adjacency matrix
A satisfy:

• (f, 0) is an eigenpair for A if and only if (f, 1) is an eigenpair for L;
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Figure 9: The directed graph in Example 3.2.

• If G is k–regular, then (f, λ) is an eigenpair for A if and only if (f, 1 − λ
k ) is an

eigenpair for L.

The properties of the normalized Laplacian that we investigated so far hold for any
directed graph. For the next observations and results, we focus on the case of non-
backtracking graphs. As before, we fix a simple graph G = (V,E) on N nodes and M
edges that has minimum degree ≥ 2. For simplicity, we denote its non-backtracking graph
by G = (V, E). We let A denote the adjacency matrix of G (equivalently, the transpose
of the non-backtracking matrix of G) and we let L denote the normalized Laplacian of G
(equivalently, the non-backtracking Laplacian of G). Similarly, we let A and L denote the
adjacency matrix and the normalized Laplacian of G, respectively.

Remark. We observed that G is regular if and only if G is regular. In this case, by Remark
3.2, the spectral properties of L and A are equivalent to each other, and similarly also
the spectral properties of L and A are equivalent to each other. But since it is known
that, in the regular case, the eigenvalues of A can be recovered by those of A [40, 42], it
follows that in this case also the spectral theory of L can be recovered from the one of A
or, equivalently, of L.

Before stating next theorem, we define the 2M × 2M matrix

P :=

(
0 Id
Id 0

)
(13)

and we observe that P⊤ = P , while P 2 = Id.
Moreover, given x,y ∈ C2M , we let ⟨x,y⟩ := x⊤y be the usual complex inner product,
and we define their P -product as

(x,y)P := ⟨x, Py⟩ = x⊤Py.

The next theorem also holds for the adjacency matrix of G (equivalently, the transpose
of the non-backtracking matrix of G). The proofs are analogous.

Theorem 3.3. Let L be the non-backtracking Laplacian of a graph. Then,

1. L⊤ = PLP ;

2. L is self-adjoint with respect to the P -product;

3. If (λ,x) is an eigenpair for L and λ ∈ C is not real, then

∑
[v,w]

x[v,w] · x[w,v] =

m∑
i=1

(xi · xi+M + xi+M · xi) = 0.
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Proof. 1. We have that, for i ̸= j with i, j ≤ M ,

(L⊤)ij = Lji = −P(ej → ei) = −P(e−1
i → e−1

j ) = Li+M,j+M = (PLP )ij .

This allows us to write
L⊤ = PLP.

2. Since P⊤ = P and P 2 = Id, we have that

(x,Ly)P = ⟨x, PLy⟩ = ⟨Px,Ly⟩ = ⟨L⊤Px,y⟩
= ⟨PLP 2x,y⟩ = ⟨PLx,y⟩ = ⟨Lx, Py⟩ = (Lx,y)P .

Therefore, L is self-adjoint with respect to the P -product.

3. The second claim implies that, if (λ,x) is an eigenpair for L, then

λ(x,x)P = (x, λx)P = (x,Lx)P = (Lx,x)P = (λx,x)P = λ(x,x)P .

Hence, if λ ̸= λ, i.e., λ is not real, then (x,x)P = 0, that is, x⊤Px = 0, which can
be re-written as ∑

[v,w]

x[v,w] · x[w,v] =

m∑
i=1

(xi · xi+M + xi+M · xi) = 0.

Following the terminology in [10], the first condition in Theorem 3.3 can be reformu-
lated by saying that L is PT-symmetric (where PT stands for parity-time). Moreover,
following the terminology in [28], the second condition in Theorem 3.3 can be reformulated
by saying that L is P -self adjoint.

3.3 Cospectrality and spectral gap from 1

As before, we fix a simple graph G = (V,E) that has minimum vertex degree δ ≥ 2. We
let ∆ denote the maximum vertex degree of G, and we let G denote the non-backtracking
graph of G. We also let A be the adjacency matrix of G, we let L be the normalized
Laplacian of G, we let A be the adjacency matrix of G (equivalently, the transpose of
the non-backtracking matrix of G), we let D denote the degree matrix of G, and we let
L = Id−D−1A denote the normalized Laplacian of G (equivalently, the non-backtracking
Laplacian of G).
Moreover, given any operator O, we let σ(O) denote its spectrum and we let ρ(O) denote
its spectral radius, i.e., the largest modulus of its eigenvalues.

Cospectrality

Our computations for graphs with small number of nodes suggest that the non-backtracking
Laplacian has nicer cospectrality properties than all other operators. We show the out-
come in Table 1 and Table 2 below. Interestingly, we can observe that the number of
L–cospectral graphs as a function of the number of edges M is in progression:

4, 8, 16, 24, 26, 26, 14, 16, 8, 4;
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N #graphs A L A L

≤6 76 0 2 0 0
7 510 26 4 0 0
8 7 459 744 11 2 0
9 197 867 32 713 243 6 0

10 9 808 968 1 976 884 16 114 10 130 156

total 10 014 880 2 010 367 16 374 10 138 156

Table 1: Graphs with minimum degree ≥ 2 not determined by their spectrum, by number
of nodes N .

see right-most column of Table 2. We hypothesize this is not an accident but part of a
larger pattern.

Spectral gap from 1

It is known that 0 ∈ σ(A⊤) = σ(A) if and only if G contains nodes of degree 1 [62].
Since δ ≥ 2, this implies that 1 /∈ σ(L). Hence, the spectral gap from 1 for L,

ε := min
λ∈σ(L)

|1− λ| = min
λ∈σ(D−1A)

|λ|,

is non-zero.

In Theorem 3.4 below, we give a lower bound for ε, and we prove that the bound is
sharp. We refer to [55] for a sharp upper bound.

Theorem 3.4. Let G be a simple graph with maximum vertex degree ∆. Then, the spectral
gap from 1 for the non-backtracking Laplacian L of G satisfies

ε ≥ 1

∆− 1
.

Moreover, the bound is sharp.

Proof. We follow the notations in the beginning of this section. We observe that, since
0 /∈ σ(A), the matrix A is invertible. Therefore, we can write

ε−1 = max
λ∈σ(DA−1)

|λ| = ρ(DA−1).

Further, it is known that any sub-multiplicative norm ∥ · ∥ satisfies

ρ
(
DA−1

)
≤ ∥DA−1∥ ≤ ∥D∥ · ∥A−1∥.

Take for example the spectral norm ∥ · ∥2, defined by

∥M∥2 :=
√

max
λ∈σ(M∗M)

|λ|,

and note that ∥D∥2 = ∆− 1. Also note that ∥A−1∥22 equals the largest magnitude among
the eigenvalues of

(
A−1

)∗A−1. But we have A∗ = PAP , hence (A−1)∗ = PA−1P and
thus

∥A−1∥22 = max
λ∈σ(PA−1PA−1)

|λ| = max
λ∈σ(PA−1)

|λ|2 = 1

minλ∈σ(AP ) |λ|2
= 1,
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M #graphs A L

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 1 0 0
5 2 0 0
6 6 0 0
7 10 0 0
8 25 0 0
9 68 0 0

10 182 0 0
11 532 0 0
12 1 679 0 0
13 5 218 4 0
14 15 437 14 0
15 41 126 26 0
16 96 274 62 0
17 197 433 162 0
18 355 986 364 4
19 567 827 634 8

20 807 284 983 16
21 1 029 639 1 329 24
22 1 184 688 1 492 26
23 1 235 599 1 490 26
24 1 172 658 1 333 24
25 1 015 663 989 16
26 804 863 628 8
27 584 762 368 4
28 390 136 166 0
29 239 514 60 0

30 135 636 26 0
31 71 025 8 0
32 34 559 0 0
33 15 734 0 0
34 6 745 0 0
35 2 764 0 0
36 1 101 0 0

≥37 704 0 0

total 10 014 880 10 138 156

Table 2: Graphs with minimum degree ≥ 2 and 4 ≤ N ≤ 10 not determined by their spectrum,
by number of edges M .
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where we have used that the smallest magnitude among eigenvalues of AP is 1 [37].
Therefore,

ε−1 = ρ
(
DA−1

)
≤ ∥D∥2 · ∥A−1∥2 = ∆− 1.

Thus, the spectral gap ε is at least (∆− 1)−1.
To prove that the lower bound is sharp, use the fact that ±1 ∈ σ(A) [42]. If G is ∆–regular,
this implies that 1± 1

∆−1 are eigenvalues of L. Thus, ε = 1
∆−1 in this case.

Remark. For the normalized Laplacian of simple graphs, the result in Theorem 3.4 does
not hold. In fact, as we have seen in Section 1.4, 1 can be an eigenvalue.

In the proof of Theorem 3.4 we have shown that, if G is ∆–regular, then 1 ± 1
∆−1

are two real eigenvalues of L. A natural question is whether regular graphs are the only
graphs for which ε = 1

∆−1 , but the answer is no. As shown in [37], also the presence of a

∆–regular cycle in the graph G produces the eigenvalues 1± 1
∆−1 for L.

3.4 More exercises

We conclude with a few further exercises. The open questions below are theoretical, but
exploring examples numerically could already give valuable insight and provide intuition
for possible results. These questions were formulated by Raffaella Mulas and Leo Torres in
the course of their joint work on [37] and their lecture series on Non-backtracking operators
of graphs at the Max Planck Institute for Mathematics in the Sciences.

Given two undirected graphs, they are said to be X–cospectral, X-cospectral mates or
simply X-mates if the eigenvalue spectrum of their respective matrices X is the same,
including multiplicities.

Exercise 11 (Conjecture). Almost all graphs with minimum degree ≥ 2 are determined
by the spectrum of their non-backtracking Laplacian L.

Exercise 12 (Open problem). Prove interlacing results for L, i.e., establish inequalities
that relate the eigenvalues of the non-backtracking Laplacian of a graph G to those of a
subgraph of G.

Exercise 13 (Conjecture). Prove that the number of real eigenvalues of L is at least
2M − 2N .

Exercise 14. How would you generalize the non-backtracking Laplacian to hypergraphs?
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[9] T. Böhle, C. Kuehn, R. Mulas, and J. Jost. Coupled Hypergraph Maps and Chaotic
Cluster Synchronization. EPL, 136:40005, 2021.

[10] C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of random
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