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Abstract

This contribution presents a review of results obtained from computations of ap-
proximate equations of motion for the Fermi-Pasta-Ulam lattice. These approxi-
mate equations are obtained as a finite-dimensional Birkhoff normal form. It turns
out that in many cases, the Birkhoff normal form is suitable for application of
the KAM theorem. In particular this proves Nishida’s 1971 conjecture stating
that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice
with fixed endpoints are quasi-periodic. The proof is based on the formal Birkhoff
normal form computations of Nishida, the KAM theorem and discrete symmetry
considerations.

1 Introduction

The Fermi-Pasta-Ulam (FPU) lattice is the famous discrete model for a continuous
nonlinear string, introduced by E. Fermi, J. Pasta and S. Ulam [9]. It consists
of a number of equal point masses that nonlinearly interact with their nearest
neighbors. Assuming the lattice consists of a finite number of particles N and
satisfies periodic boundary conditions, the physical variables of the FPU lattice are
the positions qj (j ∈ Z/NZ) of the particles, see Figure 1, and their conjugate
momenta pj (j ∈ Z/NZ).

q
j

Figure 1: Schematic picture of the FPU lattice.

Positions and momenta are elements of the 2N -dimensional space of qj ’s and pj ’s,
the cotangent bundle T ∗RN . Equipped with the canonical symplectic form dq ∧
dp :=

∑N
j=1 dqj ∧ dpj this is a symplectic manifold and a Hamiltonian function
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H : T ∗RN → R generates the Hamiltonian vector field XH implicitly defined by
the relation dq∧dp(XH , ·) = dH. That is the integral curves of XH are the solutions
of the system of ordinary differential equations

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, j ∈ Z/NZ .

For the FPU lattice the Hamiltonian function is the sum of the kinetic energies of
all the particles and the interparticle potential energies:

H =
∑

j∈Z/NZ

1
2
p2

j + W (qj+1 − qj) , (1.1)

in which W : R → R is traditionally a potential energy density function of the form

W (x) =
1
2!

x2 +
α

3!
x3 +

β

4!
x4 . (1.2)

The parameters α and β measure the nonlinearities in the forces between the par-
ticles in the lattice.

Fermi, Pasta and Ulam were interested in the statistical properties of the non-
linear FPU lattice. In fact, they expected that it would attain a thermal equili-
brium, as is expected in statistical mechanics. This means that the initial energy of
the lattice should be redistributed and, averaged over time, equipartitioned among
all the Fourier modes of the lattice, see [18]. They performed a numerical experi-
ment to investigate how and at what time-scale this would occur. The astonishing
result of their integrations was that there was no sign of energy equipartition at
all, see [9] and [18]: energy that was initially put in one Fourier mode, was shared
by only a few other modes. Moreover, within a rather short time nearly all the
energy in the system returned to the initial mode. This recurrent behaviour has
been observed in experiments on the FPU lattice with quite small as well as very
large numbers of particles, on short and long time-scales, and we are led to believe
that at low energy the FPU lattice behaves more or less quasi-periodically. This
observation was a big surprise. On the other hand, when the initial energy of the
lattice is larger then a certain threshold, equipartition indeed occurs.

For a theoretical understanding of the Fermi-Pasta-Ulam experiment, one has
often tried to link the FPU lattice to a completely integrable system. These are
dynamical systems possessing a complete set of integrals of motion and therefore
they display the regular type of behavior that was observed in the FPU experi-
ment. More precisely, it is well-known [2] that periodic and quasi-periodic motion
is typical in completely integrable finite-dimensional Hamiltonian systems due to
the theorem of Liouville-Arnol’d. The FPU lattice is not completely integrable, but
one can nevertheless remark the following.

Firstly, it turns out that the special FPU lattice for which

W (x) =
1
a2

eax − 1
a2

(1 + ax) =
1
2!

x2 +
a

3!
x3 +

a2

4!
x4 +

a3

5!
x5 + . . .

is in fact completely integrable. This lattice is called the Toda lattice and it pos-
sesses a Lax pair representation, as was shown by Flaschka in [10]. For the general
FPU lattice such a thing is definitely not true.

On the other hand, it is not difficult to derive integrable partial differential
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equations for the asymptotic evolution of long low-amplitude waves in FPU chains
with a large number of particles. The first theoretical understanding of the Fermi-
Pasta-Ulam experiment therefore came when Zabusky and Kruskal [30] formally
derived that the evolution of long unidirectional waves of low amplitude is at lowest
order governed by a Korteweg-de Vries (KdV) equation. For instance, one may
set ε := 1

N � 1 and assume the existence of a smooth function uL = uL(τ, ξ)
such that qj(t) = εuL(ε3t, ε(t + j)). By a simple Taylor-expansion, one now
quickly derives that this two time-scale traveling wave Ansatz leads to the iden-
tity uL

τξ = α
4 uL

ξ uL
ξξ + 1

24uL
ξξξξ + O(ε2). On setting vL = uL

ξ , this reduces to
vL
τ = α

4 vLvL
ξ + 1

24vL
ξξξ + O(ε2). This is the easiest way I know to formally ob-

tain a KdV equation for the evolution of unidirectional waves -in this case traveling
to the left.

By studying the KdV equation numerically, Kruskal and Zabusky discovered
the stability of the interaction of its solitons. It was later proved by Gardner et
al. [13] that the KdV equation has infinitely many integrals. In fact, Peter Lax
realised that KdV is a member of a hierarchy of integrable equations that have a
Lax-pair, and therefore a complete set of integrals. See [21] for a good overview of
these results. We now know that the solutions of the KdV equation (and all other
equations in the KdV hierarchy) are almost-periodic, with a dense set of quasi-
periodic solutions, see [19]. This could explain, to some extent, the observation of
quasi-periodicity in the FPU experiment, although the exact connection between
FPU and KdV is not very clear from the above formal derivation.

In order to derive the KdV equation rigorously, one may proceed as follows.
First one writes an exact evolution equation for an interpolation function u: set-
ting again ε := 1

N � 1, and assuming that qj(t) = εu(t, εj) for a smooth function
u = u(t, x), R×R/Z → R, it is clear that qj(t) satisfies the FPU equations of motion
if u satisfies the evolution equation

utt(t, x) =
1
ε
W ′ (εu(t, x + ε)− εu(t, x))− 1

ε
W ′ (εu(t, x)− εu(t, x− ε))

One should think of this equation as a second order ordinary differential equation
on a space of smooth functions of x of period 1. One now proceeds by defining the
discrete Riemann-invariants

UL(t, x) :=
1
ε

(ut(t, x) + u(t, x + ε/2)− u(t, x− ε/2))

UR(t, x) :=
1
ε

(ut(t, x)− u(t, x + ε/2) + u(t, x− ε/2))

and observing, by Taylor expanding u(t, x± ε/2) and u(t, x± ε) with respect to ε,
that the corresponding evolution equations for UL and UR can be expressed as

UL
t = εUL

x + ε3

(
α

4
(UL − UR)(UL

x − UR
x ) +

1
24

UL
xxx

)
+O(ε5)

UR
t = − εUR

x + ε3

(
α

4
(UL − UR)(UL

x − UR
x )− 1

24
UR

xxx

)
+O(ε5)

Quite remarkably, it turns out that it is possible to make a small transformation
(UL, UR) 7→ (ŨL, ŨR) = (UL, UR) + O(ε) in a suitable space of smooth periodic
functions of x that removes all coupling terms from the above evolution equations.
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In other words, the evolution equations for ŨL and ŨR can be expressed as

ŨL
t =εŨL

x + ε3

(
α

4
ŨLŨL

x +
1
24

ŨL
xxx

)
+O(ε5)

ŨR
t =− εŨR

x + ε3

(
α

4
ŨRŨR

x − 1
24

ŨR
xxx

)
+O(ε5)

This means that ũL(t, x) := ŨL(t, x− εt) and ũR(t, x) := ŨR(t, x + εt) satisfy ap-
proximate KdV equations, arising after a coordinate transformation as a “resonant
normal form”. It is not very hard to prove the long (but finite) time validity of
these KdV equations. A result of this kind was proved by Bambusi and Ponno in
[3], where the above transformation is obtained by the so-called method of avera-
ging and the above estimates are made precise. A similar result was obtained by
Wayne and Schneider in [28], although these authors use a multiple scales method.
I am at the moment not aware of any results stronger than the long time validity
of the KdV equations. It seems to be completely unknown, for example, whether
any of the quasi-periodic solutions of the KdV equations persist (as KAM tori) in
the FPU lattice.

Persistence results for quasi-periodic tori are easier to obtain in the finite di-
mensional setting. In the remainder of this paper, we shall therefore view the FPU
lattice as a finite dimensional dynamical system. As is well-known [2], periodic and
quasi-periodic motion is typical in completely integrable finite dimensional Hamil-
tonian systems. Unfortunately, apart from the Toda lattice, the FPU lattice is not
completely integrable. One possible explanation of the recurrent behaviour of the
lattice is therefore based on the famous Kolmogorov-Arnol’d-Moser (KAM) theo-
rem [2], [4]. This theorem explains that large measure Cantor sets of quasi-periodic
motions can also exist in classes of nonintegrable Hamiltonian systems, namely
those that can be viewed as small perturbations of certain integrable Hamiltonian
systems. The restrictive requirement is that the integrable system that we are per-
turbing satisfies a nondegeneracy condition, which requires that each quasi-periodic
motion of the integrable system has a different frequency. Even though various -
again heuristic- arguments advocate this approach, and I mention in particular [17],
the big problem is that it is not at all a priori clear whether the finite dimensio-
nal FPU lattice can really be viewed as a perturbation of such a nondegenerate
integrable Hamiltonian system. The only obvious integrable approximation to the
FPU lattice is its linearisation, which is highly degenerate as its frequency map is
constant. Exactly this problem was pointed out for instance in the review paper
by Ford [11] and the book by Weissert [29],

An interesting attempt to prove the applicability of the KAM theorem arises
in a paper by T. Nishida [20], who in 1971 considered the FPU lattice with a fi-
nite number of particles, fixed endpoints and symmetric potential energy density
function (the so-called β-lattice). Analogous to the normal form construction for
the derivation of the two KdV equations, Nishida computes the so-called Birkhoff
normal form for the finite dimensional FPU lattice. Assuming a rather strong non-
resonance condition on the frequencies of this lattice, he shows that this normal
form constitutes a nondegenerate integrable approximation to the original lattice
Hamiltonian. In this way, he proves the applicability of the KAM theorem and
the existence of a positive measure set of quasi-periodic motions in the nonlinear
FPU lattice. But note that all of this is under the assumption of a nonresonance
condition, which unfortunately is only satisfied in exceptional cases. The actual
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value of Nishida’s computation therefore remains unclear.
This contribution is based on reference [25], which is devoted to a full proof

of what Nishida intended to show. Let me summarize the main result of [25] as
follows:

The Fermi-Pasta-Ulam lattice with fixed endpoints and an arbitrary finite number of
moving particles possesses a completely integrable finite order Birkhoff normal form,
which constitutes an integrable appoximation to the original Hamiltonian function.
The integrals are the linear energies of the Fourier modes. When the potential
energy density function of the lattice is an even function (β-lattice), this integrable
approximation is nondegenerate in the sense of the KAM-theorem. This proves the
existence of a large-measure set of quasi-periodic motions in the low-energy domain
of the β-lattice.

The key to proving this result lies in the fact that Nishida’s nonresonance condition,
which a priori seems highly necessary for computing the Birkhoff normal form, is
actually obsolete. As in [23], [24], which treat the FPU lattice with periodic boun-
dary conditions, discrete symmetries are the key to proving Nishida’s ‘conjecture’.
The results in [25] can be considered as an extension of [23] to the lattice with fixed
endpoints.

I want to remark here that the results of this paper do not provide any explicit
bounds on the domain of validity of the normal form approximation. In particular
we have at this moment no estimates on the behaviour of this domain when n grows
to infinity. The principal interest of the result lies in the fact that, at least to my
knowledge, it is the first complete proof of the very existence of a positive measure
set of quasi-periodic motions in the FPU lattice with fixed endpoints.

2 Discrete symmetry

The Hamiltonian function (1.1) of the periodic FPU lattice has discrete symmetries
of which we shall discuss some dynamical consequences. Two important symmetries
of the periodic FPU lattice are the linear mappings R,S : T ∗RN → T ∗RN defined
by

R :(q1, q2, . . . , qN−1, qN ; p1, p2, . . . , pN−1, pN ) 7→
(q2, q3, . . . , qN , q1; p2, p3, . . . , pN , p1) ,

S :(q1, q2, . . . , qN−1, qN ; p1, p2, . . . , pN−1, pN ) 7→
− (qN−1, qN−2, . . . , q1, qN ; pN−1, pN−2, . . . , p1, pN ) .

It is easily checked that R and S are canonical transformations that leave the peri-
odic FPU Hamiltonian (1.1) invariant, i.e. R∗(dq∧dp) = S∗(dq∧dp) = dq∧dp and
R∗H(= H ◦R) = S∗H(= H ◦S) = H. We call such transformations symmetries, as
they conjugate the Hamiltonian vector field XH to itself and hence commute with
the time-t flows etXH of XH . Since the symmetries R and S satisfy the multipli-
cation relations RN = S2 = Id, SR = R−1S, they constitute a representation in
T ∗RN of the N -th dihedral group, the symmetry group of the N -gon, by symplectic
mappings.

For every group G of symmetries, we can define the fixed point set

FixG = {(q, p) ∈ T ∗RN |P (q, p) = (q, p) ∀P ∈ G} . (2.1)
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If G is a group of symmetries of a Hamiltonian function H, then Fix G is an
invariant manifold for the flow of XH . Classification of the fixed point sets of the
different subgroups of DN therefore leads to a collection of invariant manifolds,
listed for instance in [24]. Other authors, cf. [5], have baptized these invariant
manifolds bushes of normal modes. The restriction of a Hamiltonian vector field to
a fixed point set of a group is often easy to compute:

Proposition 2.1 When G is compact and consists of linear symplectic isomor-
phisms of T ∗Rn, then Fix G is a symplectic manifold with the restriction to Fix G
of dq ∧ dp as symplectic form. This implies that whenever XH is tangent to Fix G,
in particular when H is G-symmetric,

(XH)|Fix G = X(H|Fix G)

A proof of this result can be obtained by averaging over the compact group G and
is given in [25].

One particular fixed point set is of interest for this paper: let N be even, say
N = 2n + 2, then the group 〈S〉 = {Id, S} is given by:

Fix 〈S〉 = {(q, p) ∈ T ∗RN |qj = −q2n+2−j , pj = −p2n+2−j ∀j}

Clearly, in Fix 〈S〉, q0 = qn+1 = p0 = pn+1 = 0. Thus we see that Fix 〈S〉 is filled
with solutions (q1(t), . . . , qN (t); p1(t), . . . , pN (t)) for which the (q1(t), . . . , qn(t); p1(t),
. . . , pn(t)) constitute the general solution curves of the FPU lattice with fixed end-
points and n moving particles. Hence we conclude that the FPU lattice with fixed
endpoints and n particles is embedded in the periodic lattice with N = 2n + 2
particles.

3 Quasi-particles

The representation of DN on T ∗RN is the sum of irreducible representations and
it is natural to choose coordinates on T ∗RN that are adapted to these irreducible
representations. This is commonly done by making a Fourier transformation q 7→ Q
and lifting it to a symplectic “point transformation” on the cotangent bundle:

(q, p) 7→ (Q,P ) , T ∗RN → T ∗RN .

Such a transformation is explicitly given in [25]. The new coordinates (Q,P ) are
usually called quasi-particles or phonons. As the transformation (q, p) 7→ (Q,P ) is
symplectic, it is useful to express the Hamiltonian in terms of Q and P . If we write
for (1.1)

H = H2 + H3 + H4 ,

where H2 is a quadratic polynomial in (Q,P ) and H3 and H4 cubic and quartic
polynomials in Q, then we find that (see [18], [22] or [26])

H2 =
N∑

k=1

1
2
(P 2

k + ω2
kQ

2
k) . (3.1)
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in which for k = 1, . . . , N the numbers ωk are the well-known normal mode fre-
quencies of the periodic FPU lattice:

ωk := 2 sin(
kπ

N
) .

This means that written down in quasi-particles, the equations of motion of the
harmonic lattice (α = β = 0) are simply the equations for N−1 uncoupled harmonic
oscillators and, as ωN = 0, one free particle. In fact, the Hamiltonian system is
Liouville integrable in this situation. Integrals are for instance the linear energies

Ek :=
1
2
(P 2

k + ω2
kQ

2
k) . (3.2)

The FPU model is of course much more interesting when the forces between the par-
ticles are nonlinear, i.e. when α or β is nonzero. The normal modes then interact in
a complicated manner that is governed by the Hamiltonians Hr = Hr(Q) (r = 3, 4).
These Hamiltonians describe the interactions between the various Fourier modes.

It turns out that H is independent of QN = 1√
N

∑
j qj . Hence the total momen-

tum PN = 1√
N

∑
j pj is a constant of motion and the equations for the remaining

variables are completely independent of (QN , PN ). It is common to set the latter
coordinates equal to zero, thus remaining with a system on T ∗RN−1 with coordi-
nates (Q1, . . . , QN−1, P1, . . . , PN−1). As ω1, . . . , ωN−1 > 0, we can conclude that
the origin (Q,P ) = 0 is a dynamically stable equilibrium of this reduced system.

Assuming again that N = 2n+2, it follows from the definition of the quasi-particles
given in [25] and the definition of S that

Fix〈S〉 = {(Q,P ) ∈ T ∗RN−1 | Qk = Pk = 0 ∀ n + 1 ≤ k ≤ N − 1 } ∼= T ∗Rn .

The Hamiltonian of the fixed endpoint lattice is therefore

H|Fix〈S〉 =
n∑

k=1

1
2
(P 2

k +Ω2
kQ

2
k)+H3(Q1, . . . , Qn, 0, . . . , 0)+H4(Q1, . . . , Qn, 0, . . . , 0)

To distinguish we have here used the notation Ωk := ωk = 2 sin( kπ
2n+2) (1 ≤ k ≤ n)

for the linear frequencies of the fixed endpoint lattice. We will continue to use the
notation Ek = 1

2(P 2
k + Ω2

kQ
2
k) (1 ≤ k ≤ n) for the integrals of the linearisation of

the fixed endpoint lattice.

4 The Birkhoff normal form

Nishida’s idea was to study the Hamiltonian of the fixed endpoint lattice using
Birkhoff normalisation, which is a way of constructing a symplectic near-identity
transformation of the phase-space with the purpose of approximating the original
Hamiltonian system by a simpler one. The study of this ‘Birkhoff normal form’
can lead to important conclusions about the original system. For r ≥ 2, let Fr

be the finite-dimensional space of homogeneous r-th degree polynomials in (Q,P )
on T ∗RN−1 and let F :=

⊕
r≥2Fr. With the Poisson bracket {·, ·} : F × F → F

defined by

{F,G} :=
N−1∑
k=1

∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk
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F is a so-called graded Lie-algebra, which means that {Fr,Fs} ⊂ Fr+s−2. With
this definition, we have for each F ∈ F , the ‘adjoint’ linear operator

adF : F → F , G 7→ {F,G}

We recall the following result, a complete proof of which can be found for instance
in [6], [7] and [12]. It proceeds by constructing a sequence of symplectic “normal
form transformations”.

Theorem 4.1 (Birkhoff normal form theorem) Let H = H2 + H3 + . . . ∈ F
be a Hamiltonian on T ∗RN−1 such that Hr ∈ Fr for each r and

adH2 : G 7→ {H2, G} , Fr → Fr

is semi-simple (i.e. complex-diagonalizable) for every r. Then for every finite s ≥ 3
there is an open neighbourhood 0 ∈ U ⊂ T ∗RN−1 and a symplectic diffeomorphism
Φ : U → T ∗RN−1 with the properties that Φ(0) = 0, DΦ(0) = Id and

Φ∗H = H2 + H3 + . . . + Hs +O(||(Q,P )||s+1)

where
adH2(Hr) = 0

for every 3 ≤ r ≤ s. The transformed and truncated Hamiltonian H := H2 + H3 +
. . . + Hs is called a Birkhoff normal form of H of order s.

The normal form H is usually simpler than the original H because it Poisson com-
mutes with the quadratic Hamiltonian H2. This firstly means that H2 is a constant
of motion for H and secondly that the flow t 7→ etXH2 is a continuous symmetry of
H.

Also, H and H are symplectically equivalent modulo a small perturbation of
order O(||(Q,P )||s+1). Studying H instead of H thus means neglecting this per-
turbation term. So we make an approximation error, but this error is very small in
the low energy domain, that is for small ||(Q,P )||. With Gronwall’s lemma, precise
error estimates can be made.

Finally, I would like to mention the ill-known bijective correspondence between
the relative equilibria of the Birkhoff normal form and the bifurcation equations for
periodic solutions obtained by Lyapunov-Schmidt reduction, as is explained in [8].

For Hamiltonian systems with symmetry, the following elegant and well-known
result is often useful, see [6] and [12]:

Theorem 4.2 Let H = H2 + H3 + . . . ∈ F and G be a group of linear symplectic
symmetries of H. Then a normal form H = H2 + H3 + . . . + Hs for H can be
constructed such that also H is G-symmetric.

This result follows as the normal form transformation of Theorem 4.1 can be chosen
G-symmetric.

We shall also rely on the following result on normal forms of symmetric subsys-
tems, which trivially follows from Proposition 2.1 and the proof of Theorem 4.2, as
symmetric normal form transformations leave fixed point subsets invariant.
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Corollary 4.3 Let H be a Hamiltonian function with compact symmetry group
G consisting of linear symplectic mappings. Then the normal form of H|Fix G is
simply the restriction of the symmetric normal form H of H to Fix G, i.e.

H|Fix G = H|Fix G

This corollary tells us that it is sufficient to compute the normal form of the full
system to know the normal forms of its symmetric subsystems. In particular, to
find the normal form of an FPU lattice with fixed endpoints, it suffices to know the
normal form of the appropriate periodic lattice. Normal forms of periodic lattices
have been studied elaborately in [23].

5 Nishida’s conjecture

In his 1971 paper, Nishida proved the following result:

Theorem 5.1 (Proven by Nishida in [20]) Consider the FPU lattice with fixed
endpoints, α = 0, β 6= 0 and n arbitrary. Assume moreover the fourth order
nonresonance condition on the Ωk = 2 sin( kπ

2n+2) (1 ≤ k ≤ n) requiring that

n∑
k=1

(lk−mk)Ωk 6= 0 ∀ l, m ∈ {0, 1, 2, . . .}n with
n∑

k=1

|lk|+|mk| = 4 and
n∑

k=1

|lk−mk| 6= 0

Then the quartic Birkhoff normal form H = H2 + H4 of the lattice is a function
of the action variables ak := Ek/Ωk (1 ≤ k ≤ n) only and is therefore integrable.
Moreover it satisfies the Kolmogorov nondegeneracy condition

det
∂2H

∂ak∂ak′
6= 0

This implies that almost all low-energy solutions of the β-lattice with fixed endpoints
are quasi-periodic and move on invariant tori. More precisely, the relative Lebesgue
measure of all these tori lying inside the small ball {0 ≤ H ≤ ε}, goes to 1 as ε
goes to 0.

It turns out that the numbers
n∑

k=1

(lk −mk)Ωk , for
n∑

k=1

|lk|+ |mk| = 4

are simply the eigenvalues of adH2 on F4. Nishida’s requirement that they be
nonzero except in the trivial case that lk = mk for all k thus just means that the
subspace ker adH2 ∈ F4 in which H4 must lie is very low-dimensional. It must
therefore be remarked here that the integrability of the normal form follows almost
trivially from Nishida’s nonresonance assumption. Nishida’s article consists mainly
of the explicit computation of the normal form H of H under the nonresonance
assumption in order to check its nondegeneracy.

But unfortunately, resonances do occur, implying that Nishida’s nonresonance
condition is often violated. We have for instance the relations

sin(π/6) + sin(3π/14)− sin(π/14)− sin(5π/14) = 0
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sin(π/6) + sin(13π/30)− sin(7π/30)− sin(3π/10) = 0

sin(π/2) + sin(π/10)− sin(π/6)− sin(3π/10) = 0

which lead to a violation of Nishida’s nonresonance condition if n + 1 is a multiple
of 21 or 15.

Nishida refers to an unpublished result of Izumi proving a much stronger non-
resonance condition on the Ωk in special cases. The result states that no Z-linear
relations between the Ωk exist if n + 1 is a prime number or a power of 2. I was
not able to trace back Izumi’s proof of this statement, but note that a more general
result had already been obtained in 1959 by Hemmer [14], who actually derived an
expression for the total number of independent Z-linear relations between the Ωk

(1 ≤ k ≤ n) in terms of Euler’s phi-function. It turns out that no Z-linear relations
exist if and only if n + 1 is a prime number or a power of 2.

Moreover, as the above examples illustrate, resonance relations between 4 eigen-
values exist for several n and Nishida’s condition is therefore sometimes violated.
In this paper we will nevertheless sketch a proof of ‘Nishida’s conjecture’ that his
theorem holds without having to impose any nonresonance condition.

6 Near-integrability

Let us start with a review of some observation in [23] for the periodic FPU lattice.
First of all we note that, as the symmetry R is symplectic,

(R∗ ◦ adH2)(f) = R∗{H2, f} = {R∗H2, R
∗f} = {H2, R

∗f} = (adH2 ◦R∗)(f)

where we have used that H2 is R-symmetric. From this result we read off that
R∗ and adH2 commute as linear operators Fr → Fr, which means that they can
be diagonalized simultaneously. In [23] this diagonalisation is accomplished with
respect to the basis of monomials for Fr. This is made explicit by introducing
new canonical coordinates by a linear map (Q,P ) 7→ (z, ζ), T ∗CN → T ∗CN . The
coordinates (z, ζ) could be call “superphonons”. Their explicit definition is given
in [25].

One can show that indeed adH2 and R∗ act on monomials as follows: if Θ, θ ∈
{0, 1, 2, . . .}N−1 are multi-indices, then

adH2 : zΘζθ 7→ ν(Θ, θ)zΘζθ

R∗ : zΘζθ 7→ e
2πiµ(Θ,θ)

N zΘζθ

in which ν and µ are defined as

ν(Θ, θ) :=
∑

1≤k< N
2

iωk(θk − θN−k −Θk + ΘN−k) + iωN
2
(θN

2
−ΘN

2
) (6.1)

µ(Θ, θ) :=
∑

1≤k< N
2

j(Θk + ΘN−k − θk − θN−k) +
N

2
(ΘN

2
− θN

2
) mod N (6.2)

First of all, this shows that adH2 and R∗ are diagonal with respect to the basis of Fr

consisting of the monomials zΘζθ for which |Θ|+|θ| :=
∑N−1

j=1 |Θj |+|θj | = r and the
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corresponding eigenvalues are the ν(Θ, θ) and e
2πiµ(Θ,θ)

N respectively. In particular
we observe that adH2 is semi-simple on every Fr, so that Theorem 4.1 indeed
applies. A Z-linear relation in the frequencies ωk is called a resonance. For this
reason, the monomials zΘζθ for which ν(Θ, θ) = 0 are called resonant monomials.
They are important because they are exactly the ones that are not in im adH2 and
thus, as is clear from Theorem 4.1, the ones that cannot be transformed away by
Birkhoff normalisation. As Ωk = ωk(1 ≤ k ≤ n), Nishida’s nonresonance condition
would be a consequence of its analogon for periodic lattices, that can be formulated
as follows:

‘When |Θ|+ |θ| = 4 and ν(Θ, θ) = 0 then θN
2
−ΘN

2
= 0

and θk − θN−k −Θk + ΘN−k = 0 for each 1 ≤ k < N
2 .’

Of course, this condition is not valid either.

By Theorem 4.2 we now know that the normal form of the periodic FPU Hamilto-
nian must be a linear combination of monomials zΘζθ that are both resonant and
symmetric, i.e. for which ν(Θ, θ) = 0 and µ(Θ, θ) = 0 mod N . The following
theorem was proven in [23].

Theorem 6.1

i) The set of multi-indices (Θ, θ) ∈ ZN−1
≥0 for which |Θ|+|θ| = 3, µ(Θ, θ) = 0 mod N

and ν(Θ, θ) = 0 is empty.

ii) The set of multi-indices (Θ, θ) ∈ ZN−1
≥0 for which |Θ|+|θ| = 4, µ(Θ, θ) = 0 mod N

and ν(Θ, θ) = 0 is contained in the set defined by the relations θk − θN−k − Θk +
ΘN−k = θN

2
−ΘN

2
= 0.

The proof of this result relies heavily on the number theoretic properties of the
eigenvalues ωk = 2 sin(kπ/N). In fact, the proof involves a full classification of
third and fourth order resonance relations in the FPU eigenvalues, that is given in
the Appendix to [23].

We have seen that resonance relations lead to several nontrivial resonant mono-
mials. But according to Theorem 6.1 we now know that these nontrivial resonant
monomials are not R-symmetric and hence cannot occur in the normal form of the
periodic FPU lattice.

As a result, we see that there are no nonzero elements of F3 that are both reso-
nant and R-symmetric. Hence H3 = 0 automatically. Also, the space ker adH2∩F4

in which H4 has to lie, is quite low-dimensional.

7 Integrability of the normal form

In the previous section we saw, without computing H3 explicitly, that it must be
zero for the Hamiltonian of the periodic FPU lattice, irrespective of α, β and n. By
Corollary 4.3, we can therefore conclude that H3 = 0 for every FPU lattice with
fixed endpoints, despite the resonances in the eigenvalues of the fixed endpoint
chain.

Similarly, one can hope to understand the structure of H4 for the FPU lattice
with fixed endpoints by studying the H4 of the corresponding periodic FPU lattice.

11



Theorem 6.1 above told us that the latter satisfies serious restrictions. Indeed it
turns out that, despite fourth order resonances, the H4 of the fixed endpoint lattice
is very simple.

Theorem 7.1 (Conjectured by Nishida in [20]) Independent of n, α and β,
the quartic Birkhoff normal form H = H2 + H4 of the FPU lattice with fixed
endpoints (3.3) is integrable with integrals Ek (1 ≤ k ≤ n), defined in (3.2).

The details of the proof of this corollary are given in [25]. The idea of the proof is
very simple: Theorem 6.1 tells us which monomials of order 4 are invariant under
R∗ and lie in ker adH2 . The restriction of each of these monomials to Fix〈S〉 turns
out to be a function of the variables Ek (1 ≤ k ≤ n). We will not repeat the proof
here.

Note that the integrability of the normal form of the fixed endpoint lattice is
caused by a hidden symmetry, i.e. by the symmetry of the periodic lattice in which
it is embedded. It must also be remarked here that it is very exceptional for a
high-dimensional resonant Hamiltonian system to have an integrable normal form.

The dynamics of the truncated normal form H2 + H4 is very simple. In fact,
the regular level sets of the integral map E : T ∗Rn → Rn that sends (Q,P ) 7→
(E1, . . . , En) are smooth n-dimensional tori on which the flow of the normal form
can be computed by a transformation to action-angle coordinates (Q,P ) 7→ (a, ϕ).
More explicitly, let arg : R2\{(0, 0)} → R/2πZ be the argument function, arg :
(r cos Φ, r sinΦ) 7→ Φ and define

ϕk = arg(Pk,ΩkQk) , ak = Ek/Ωk =
1

2Ωk
(P 2

k + Ω2
kQ

2
k) , 1 ≤ k ≤ n

Then (ϕ, a) are canonical coordinates: dQ∧ dP = dϕ∧ da. So in these coordinates
the equations of motion read

ȧk = 0 , ϕ̇k = Ωk +
∂H4(a)

∂ak

This simply defines periodic or quasi-periodic motion. Remark: (φ, a) are some-
times called ‘symplectic polar coordinates’.

8 Nondegeneracy

To verify that the normal form H is nondegenerate in the sense of the KAM theo-
rem, we examine the frequency map Ω which assigns to each invariant torus the
frequencies of the flow on it:

Ω : a 7→
(

Ω1 +
∂H4(a)

∂a1
, . . . ,Ωn +

∂H4(a)
∂an

)
The nondegeneracy condition requires that Ω be a local diffeomorphism, which is
the case if and only if the constant derivative matrix ∂2H4

∂ak∂ak′
is invertible. To check

this, one needs to compute the Birkhoff normal form explicitly, where until now we
had been able to avoid this. In the next theorem we shall present the normal form
of the FPU Hamiltonian in the case that H3 = 0, i.e. α = 0. This lattice, that has
no cubic terms, is usually referred to as the β-lattice.
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Theorem 8.1 (Conjectured by Nishida in [20]) If α = 0, then a quartic Birk-
hoff normal form of FPU lattice with fixed endpoints is given by H = H2 + H4,
where

H4 =
β

2n + 2

 ∑
1≤k<l≤n

ΩkΩl

4
akal +

∑
1≤k≤n

3Ω2
k

32
a2

k


This simply follows from a long computation such as presented in [23], [26], [27],
[15] and [16] of the normal form of the β-lattice with periodic boundary conditions
and restricting it to Fix〈S〉. The result was also obtained directly for the fixed
endpoint lattice by Nishida in [20] under his nonresonance assumption.

It is easy to prove the invertibility of the matrix ∂2H4
∂ak∂ak′

. Its nondegeneracy was
also checked by Nishida himself by applying elementary row and column operations
to compute the determinant that turns out to be nonzero. Thus we conclude:

Corollary 8.2 (Conjectured by Nishida in [20]) If α = 0 and β 6= 0, then the
integrable quartic Birkhoff normal form H = H2 +H4 of the FPU lattice with fixed
endpoints (3.3) satisfies the Kolmogorov nondegeneracy condition. Hence almost all
low-energy solutions of the FPU lattice with fixed endpoints are quasi-periodic and
move on invariant tori. In fact, the relative measure of all these tori lying inside
the small ball {0 ≤ H ≤ ε}, goes to 1 as ε goes to 0.

Nishida, and we, chose to compute normal form H2 + H4 only for the β-lattice.
This computation is already quite long, but it becomes even harder when α 6= 0.
It should nevertheless also be possible to write down an expression for the fixed
endpoints normal form if α 6= 0. For checking Kolmogorov’s condition this will
actually be necessary. We know a priori that the resulting normal form will be
integrable and depends quadratically on the Ek. Preliminary results by Henrici
and Kappeler, partially referred to in [15] and [16] seem to prove exactly what
one expects, namely that Kolmogorov’s nondegeneracy condition is satisfied for
‘generic’ α and β.
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