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The Fermi Pasta Ulam chain with periodic boundary conditions admits discrete
and continuous symmetries. These symmetries allow one to formulate important
restrictions on the Birkhoff normal form of this Hamiltonian system. We derive
integrability properties and KAM statements. Hence the combination of symmetry
and resonance in the periodic Fermi Pasta Ulam chain explains its quasiperiodic
behaviour. This article contains a summary of the results obtained in references
11 and 12

1 Introduction

The Fermi Pasta Ulam chain with periodic boundary conditions is a model
for point masses moving on a circle with nonlinear forces acting between the
nearest neighbours. Let us set qj ∈ R to be the position of the j-th particle
(j = 1, . . . , n) with respect to a certain reference position on the circle. The
space of positions q = (q1, . . . , qn) of the particles in the chain is Rn. The
space of positions and conjugate momenta is the cotangent bundle T ∗Rn of Rn,
the elements of which are denoted (q, p) = (q1, . . . , qn, p1, . . . , pn). T ∗Rn is a
symplectic manifold, endowed with the symplectic form dq∧dp =

∑n
j=1 dqj ∧

dpj . Any smooth function H : T ∗Rn → R now induces the Hamiltonian vector
field XH given by the defining relation ιXH (dq ∧ dp) = dH. In other words,
we have the system of ordinary differential equations q̇j = ∂H

∂pj
, ṗj = − ∂H

∂qj
.

The periodic FPU chain with n particles is the special Hamiltonian system
on T ∗Rn corresponding to the real analytic Hamiltonian

H =
∑

j∈Z/nZ

1
2
p2

j + V (qj+1 − qj) , (1.1)

in which V : R→ R is a potential energy function of the form

V (x) =
1
2!

x2 +
α

3!
x3 +

β

4!
x4 + . . . . (1.2)

The α, β, . . . are real parameters measuring the nonlinearity in the forces
between the particles in the chain.

Proceedings: submitted to World Scientific on 24th October 2002 1



Numerically, the FPU system was first studied by E. Fermi, J. Pasta
and S. Ulam 5. These authors used the chain to model a nonlinear string.
They expected that in the presence of small nonlinearities, the chain would
show ergodic behaviour, meaning that almost all orbits densely fill up an
energy levelset of the Hamiltonian. Ergodicity would eventually lead to
an equal distribution of energy between the various Fourier modes of the
system, a concept called thermalisation. FPU’s nowadays famous numerical
experiment was intended to investigate at what time scale thermalisation
would take place. The result was astonishing: it turned out that there was
no sign of thermalisation at all. Putting initially all the energy in one Fourier
mode, they observed that this energy was shared by only a few other modes,
the remaining modes were hardly excited. Additionally, within a not too
long time the system returned close to its initial state.

In 1965 an article of Zabuski and Kruskal 15 appeared. These authors
considered the Korteweg-de Vries equation as a continuum limit of the FPU
chain and numerically found the first indications for the stable behaviour
of solitary waves. We now know that the Korteweg-de Vries equation is
integrable 9. This clearly suggests an explanation for FPU’s observations,
although the relation between the FPU chain and its infinite dimensional
limits has never been understood.

Another, possibly correct explanation for the quasiperiodic behaviour of
the FPU system, is based on the Kolmogorov-Arnol’d-Moser theorem. As is
well-known 2, the solutions of an n degrees of freedom Liouville integrable
Hamiltonian system are constrained to move on n-dimensional tori and are
not at all ergodic but periodic and quasiperiodic. The KAM theorem states
that most of the invariant tori of this integrable system persist under small
Hamiltonian perturbations, if the unperturbed integrable system satisfies
a certain nondegeneracy condition. This nondegeneracy condition states
that the frequency map, which assigns to each n-dimensional invariant
torus of the integrable system the n-dimensional vector of frequencies of the
(quasi)periodic motion on this torus, be a local diffeomorphism. Although
several authors, starting with Izrailev and Chirikov 7, have stated that the
KAM theorem explains the observations of the FPU experiment, it is still
completely unclear how the FPU system can be seen as a perturbation of a
nondegenerate integrable system. One could only view it as a perturbation
of a harmonic oscillator, but the frequency map of the harmonic oscillator
is constant and hence degenerate. This gap in the theory was recently
mentioned again in the review article of Ford 6 and the book of Weissert 14.

The only serious attempt to overcome this problem was made in 1971 in
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a paper by Nishida 8. Unlike us, this author considers an FPU chain with
fixed endpoints. Under a rather strong nonresonance condition on the linear
frequencies of his system, he shows that there is a nonlinear symplectic near-
identity transformation of phase space, the ‘Birkhoff transformation’, with
the following property: written out in the new coordinates, the Hamiltonian
function of the FPU chain turns out to be a perturbation of a nondegenerate
integrable system. And hence the KAM theorem can be applied. The
weakness of this argument lies of course in the fact that the linear frequencies
actually do not satisfy the imposed nonresonance condition.

Sanders 13 does a similar thing for FPU chains with periodic boundary
conditions and an odd number of particles. Assuming a nonresonance
condition, he observes that the normal form is again integrable, but he does
not verify the KAM nondegeneracy condition.

In this short paper I shall give a summary of the results that F. Verhulst
and I 11 12 obtained in trying to generalise the work of Nishida and Sanders.
In particular, we computed all the lower order resonance relations in the
eigenvalues of the linearized FPU chain. And secondly, we exploited the
discrete symmetries of the periodic FPU chain to show that its Birkhoff
normal form has some very special properties. In a lot of the cases, one can
actually prove that it is integrable or even satisfies the KAM nondegeneracy
condition. We do not impose any nonresonance condition. For more details
concerning the calculation, the reader should of course consult the original
references 11 and 12.

2 The linear system

One would like to view the solutions of the equations induced by (1.1) as a
superposition of sine and consine wave forms. Therefore, one usually applies
a Fourier transformation (q, p) 7→ (q̄, p̄). The new coordinates (q̄, p̄) are called
‘phonons’ or ‘quasi-particles’. The transformation to phonons is a linear sym-
plectic point transformation. We omit the transformation matrix here. See
11 or 12 for the exact formulas. The transformation is such that when written
out in phonon-coordinates, the FPU Hamiltonian reads

H =
n−1∑

j=1

1
2
(p̄2

j + ω2
j q̄2

j ) + H3(q̄1, . . . , q̄n−1) + H4(q̄1, . . . , q̄n−1) + . . . (2.1)
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where Hk (k = 2, 3, . . .) denotes the k-th order part of H. For j = 1, . . . ,
n−1, the numbers ωj are the eigenvalues of the linear periodic FPU problem:

ωj := 2 sin(
jπ

n
) . (2.2)

Expressions for H3 and H4 in terms of the q̄j can be found in the literature,
cf. 10. We do not repeat them.

Note that the new Hamiltonian has n − 1 degrees of freedom instead of
n, because simultaneously with introducing the phonons, we divided out the
symmetry induced by the flow of the total momentum p1 + . . . + pn, which
is a constant of motion. More details can be found in 11. The Hamiltonian
(2.1) on T ∗Rn−1 represents the periodic FPU system from which the centre
of mass motion has been eliminated.

Since ω2
j > 0 (1 ≤ j ≤ n − 1), using the Morse-Lemma 1 we conclude

that the level sets of H are 2n − 3 dimensional spheres around the origin of
T ∗Rn−1. Since H is a constant of motion for the flow of XH , the origin is a
stable stationary point for the system induced by (2.1). It corresponds to an
equidistant configuration of the particles.

3 Birkhoff normalisation

From (2.1) we see that the solutions of the linearized FPU system are simply
superpositions of pulsating wave forms. But in the full nonlinear system the
Fourier modes can exchange energy. We shall study this much harder system
using Birkhoff normalisation, hoping to be able to apply KAM theory and
bifurcation methods.

The setting of normalisation is the following. Let Pk be the space of ho-
mogeneous polynomials of degree k in the canonical variables (q̄1, . . . , q̄n−1, p̄1

, . . . , p̄n−1). The space of all convergent power series without linear part is
denoted P ⊂ ⊕

k≥2 Pk. P is a Lie-algebra under the usual Poisson bracket
{f, g} = dq ∧ dp(Xf , Xg). Finally, for each f ∈ P one defines the adjoint
operator adf : P → P which maps adf : g 7→ {f, g}. Note that when
adf (g) = {f, g} = 0, then the flows of Xf and Xg commute. The following
result is well-known:

Theorem 3.1 (Birkhoff) Let r > 2 be a given natural number. Assume
that H =

∑∞
k=2 Hk ∈ P is such that for each 3 ≤ k ≤ r, adH2 : Pk → Pk is

semisimple, i.e. complex diagonalisable. Then there is an open neighborhood
U ∈ T ∗Rn−1 of the origin and an analytic symplectic diffeomorphism Ψ :
U → Ψ(U) ⊂ T ∗Rn−1 such that Ψ(0) = 0, DΨ(0) = Id and H := H ◦ Ψ =
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∑∞
k=2 Hk ∈ P has the properties that H2 = H2 and adH2(Hk) = {H2,Hk} =

0 for all 2 ≤ k ≤ r.

The transformed Hamiltonian H is called a Birkhoff normal form for H of
order r. It can be determined following a rather explicit procedure, which the
reader can find in 3 and 11. It is usually impossible to push r to infinity.

In the case of the periodic FPU Hamiltonian (2.1), adH2 : Pk → Pk is
indeed semisimple and its eigenvalues are the numbers

n−1∑

j=1

iωj(ηj − θj) . (3.1)

where η, θ are n − 1-dimensional multi-indices with the property that
|η|+ |θ| := ∑n−1

j=1 |ηj |+ |θj | = k.
It is important to study the kernel of adH2 because this kernel contains

all possible normal forms of the FPU chain. Therefore we wonder whether
some of the eigenvalues (3.1) are zero. In this case we speak of ‘resonance’.
There are some trivial resonance relations: choose for instance ηj = θj . Note
also that from (2.2) it follows that ωj = ωn−j . This yields even more rather
trivial 1:1 resonances.

Are there more resonance relations?

Nishida 8 and Sanders 13 had to make the assumption that weren’t
any, although in fact there are. Using Galois theory, we calculated all the
resonance relations for which |η| + |θ| = 3, 4. We got substantial help from
Frits Beukers at this point. To give the reader some feeling for the type of
resonance relations we found, we give two of them here:

2 sin
π

6
− sin

3π

6
= 0 and sin

5π

30
+ sin

13π

30
− sin

7π

30
− sin

9π

30
= 0 .

The first one is rather trivial, but the second is not. Nishida 8 and Sanders 13

were worried that this type of nontrivial resonances could spoil their normal
form results. It is therefore very surprising that these resonances turn out to
be completely harmless. This is caused by discrete symmetries.

4 Discrete symmetry

Consider the following maps in the space of positions of the particles:

T : ∂qj 7→ ∂qj−1 and S : ∂qj 7→ −∂qn−j (4.1)

Proceedings: submitted to World Scientific on 24th October 2002 5



T and S represent permutations that rotate and flip the particles respectively.
They can be extended to symplectic point transformations on T ∗Rn. These
point transformations, which we shall also denote T and S, leave the Hamil-
tonian of the periodic FPU problem (1.1) invariant: T ∗H := H ◦ T = H
and S∗H := H ◦ S = H. This implies that the Hamiltonian vector field XH

induced by H is equivariant under T and S. Therefore, T and S are called
discrete symmetries of H. The group 〈T, S〉 generated by T and S is isomor-
phic to the n-th dihedral group, the symmetry group of the n-gon.

Finally, S and T project to symmetries of the reduced Hamiltonian (2.1).

5 The symmetric normal form

A crucial observation, which was brought to our attention by J.J. Duister-
maat, is that one can construct Birkhoff normal forms, that respect these
symmetries. In other words, one can choose to make normal forms that have
the same symmetries as the Hamiltonian one started out with. For a proof of
this statement, the reader can consult 3.

In the case of the FPU chain with periodic boundary conditions, this
means that the nonquadratic terms of the normal form H2 + H3 + H4 + . . .
satisfy

adH2(Hk) = 0 , (T ∗ − Id)(Hk) = 0 and (S∗ − Id)(Hk) = 0 . (5.1)

In other words, Hk is in the joint kernel of the linear operators adH2 , T
∗ − Id

and S∗ − Id and it is our task to determine this joint kernel. This is the
computation that constitutes the main part of 12. Note that we already know
what the kernel of adH2 is, as we have already calculated all the resonances.
In the computation of the joint kernel one uses the fact that adH2 and T ∗ −
Id commute to search inside the kernel of adH2 for degenerate directions of
T ∗ − Id. The invariance under S∗ is then used to refine the results. I list the
most important conclusions here:

1 The set of homogeneous third order polynomials that satisfy (5.1) is {0}.
So H3 = 0 for the periodic FPU chain, independent of the number of
particles n and the resonances in the eigenvalues.

2 If the number of particles n is odd, then the truncated normal form
H2 + H4 is Liouville integrable. The integrals are quadratic and consti-
tute global action-angle coordinates. This is true for every homogeneous
fourth order polynomial that satisfies (5.1), so we conclude it for the FPU
chain without even calculating its normal form.
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3 If the number of particles n is even, then we give a lot of integrals of the
truncated normal form H2 + H4, again without computing the normal
form. But we can not prove Liouville integrability this way.

Just like Nishida 8 and Sanders 13, we explicitly calculated the normal form
of the so-called β-chain, for which the nonlinearity-coefficient α is zero. This
yields even more information:

4 If n is odd, then the truncated normal form H2 + H4 of the β-chain
satisfies the KAM nondegeneracy condition. Since the original system can
be seen as a perturbation of this truncated normal form, the conclusions
of the KAM theorem hold. We proved that most low energy solutions of
the odd β-chain lie on tori.

5 If n is even, then the truncated normal form H2 + H4 of the β-chain
turns out to be Liouville integrable too. We have no explanation of this
in terms of symmetries. It is very difficult to check the KAM condition in
this case, since we have no expression for the action-angle coordinates. In
fact, there are strong indications that global action-angle coordinates do
not exist in this case. On the other hand, the integrability of the normal
form makes one suspect that the KAM condition should actually hold.

Although we have a lot of results, there are obviously still many open ques-
tions.

6 Conclusion

The results of this paper might not immediately apply to the experiment of
Fermi, Pasta and Ulam. First of all, these authors did not study a periodic
chain. Secondly, it is not certain that the normal form approximation is still
valid at the energy level they chose in their experiment.

But still, the special combination of the eigenvalues and discrete symme-
tries of the FPU problem might be the true reason for the observations that
Fermi, Pasta and Ulam did.
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