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The study of anharmonic lattices can be considerably simplified by imposing a
spatial periodicity condition on solutions. This reduces the infinite dimensional
lattice equations to a finite dimensional system of ordinary differential equations
for which we have at our disposal Birkhoff normal forms, invariant theory, singular
reduction and the Kolmogorov Arnol’d Moser theorem. As an example we study
the famous Fermi Pasta Ulam lattice for which we find traveling wave solutions.
These traveling waves can become unstable and reverse their directions. More-
over, although the lattice is nearly integrable, the integrable approximation has
monodromy and hence does not admit global action angle coordinates.

1. Anharmonic lattices

One-dimensional mono-atomic structures such as crystals and nonlinear
strings are often modelled as an anharmonic lattice. This lattice consists of
an infinite row of point masses that each move in their own on-site potential
field and interact with neighbouring masses. Let ¢; € R (j € Z) measure the
displacement of the j-th particle with respect to a certain reference position
and let p; be its conjugate momentum. Then, under the assumption that
all particles are equal and interact only with their nearest neighbours, the
Hamiltonian function governing the equations of motion of the anharmonic
lattice is

1
H =Y op)+Vi(g)+Wlg — 1) - (1)
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Well-known choices for V' and W are for instance

e Klein-Gordon lattice: V(z) = 322 + $a3 + ..
e Fermi Pasta Ulam lattice: V(z) =0
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One can be interested in special solutions of this infinite dimensional system
of differential equations. Traveling waves are found from the Ansatz ¢;(t) =
¢(j — ct) and solving the functional equation that results for ¢, see !.
Breathers on the other hand are spatially localized time-periodic solutions.
They can for instance be found by variational methods in spaces of time-
periodic functions. But in this paper we shall avoid functional analytic
methods by imposing a spatial periodicity condition on solutions. More
precisely, after fixing an n € N, we look for solutions that lie in the fixed
point space of the symplectic symmetry

R" :qj = Gj4n , Pj = Djgn - (2)

The fixed point space Fix R™ = {(¢,p)|R"(q,p)=(q,p)} is a 2n-dimensional
invariant manifold for the infinite dimensional flow of the lattice equations
and it consists of solutions with spatial period n. Thus we have a finite
dimensional subsystem for the variables (qi,...,qn,p1,-..,0n) € T*R™.
The Hamiltonian is (1) in which the summation over Z is replaced by a
summation over Z/,z. The subsystem is simply described by a finite set of
ordinary differential equations.

2. Normal modes

It is natural to make a symplectic Fourier transformation (g, p) — (g, p) on
T*R™ which is induced from a transformation of the positions:

q = \/g Z (cos(27;jk)q_k + Sin(%jk)qn—k> + (\/IE)J gz + %% (3)

1<k<2

In the new canonical coordinates, the Hamiltonian reads
n

H=
k=1

(P +wi@?) + H3(@) + ... = Ha(q,p) + H3(@) +...  (4)
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and it is a perturbation of n harmonic oscillators with frequencies wy. From
(3) we infer that the normal mode coordinates g, and G,—r (1 < k <n/2)
are the Fourier components of respectively a cosine-wave and a sine-wave
with wavelength n/k. Moreover, as waves of equal wavelength have of
course the same linear vibrational frequency, we note that wy = wp_k.
This means that the Hamiltonian (4) contains many 1 : 1-resonances. For
example in the Fermi Pasta Ulam lattice the frequencies are given by the
well-known formula

wi = 2sin(l%r) . (5)



3. The Birkhoff normal form

Well-known in the study of Hamiltonian perturbations of harmonic oscilla-
tors is the Birkhoff normal form:

Theorem 3.1. For every m > 3, there is an open neighbourhood 0 € U C
T*R™ and a symplectic near-identity transformation ® : U — T*R™ with
the property that

P*H=Ho ®=H+ O(|[(q,p)|")=Ha+...+Hpu—1+ O(|(g,p)|[™) (6)

where the Birkhoff normal form H is such that it admits as a symmetry the
flow of the linear vector field Xp,.

H can be computed explicitly and it is simpler than the original H as it
has at least one extra symmetry, the linear flow of Xz,. But in the absense
of resonances, that is when apart from the identities wp = w,,_j there are
not many rational relations in the eigenvalues, or if the original H has sym-
metries, the normal form H can be even more symmetric, see for instance
theorem 4.1.

Studying H of course means making a small approximation error of
order O(||(g,p)||™). But using for instance Gronwall’s lemma, the Kol-
mogorov Arnol’d Moser theorem and Melnikov functions, one can obtain
conclusions about Xy from studying X4 and thus the Birkhoff normal
form is a powerful tool for examining low energy solutions and bifurcations
of the perturbed harmonic oscillator H.

4. Example: the Fermi Pasta Ulam lattice

It was proven in 2 that apart from the standard 1 : 1-resonances, low order
resonances in the eigenvalues (5) of the Fermi Pasta Ulam lattice are not
present or at least in a certain sense harmless due to discrete symmetry.
This has many consequences, among which the following:

Theorem 4.1. Consider the Fermi Pasta Ulam lattice with even potential,
ie. V() =0, W(z) = %:172 + %774 + O(2%). Then for every n € N, the
Birkhoff normal form He + Hy4 is Liouville integrable.

This result was proved in 2. As the normal form is integrable, the flows of
the integrals are symmetries. The method of invariant theory allows for an
explicit singular reduction of some of these symmetries. The reduced phase
spaces are two-dimensional surfaces, some of which have singularities. For
example the singular reduced phase space in Figure 1 which is a surface of
revolution with the shape of a lemon.



Figure 1. A lemon-shaped singular reduced phase space with a heteroclinic connection.

Figure 1 describes in a reduced setting the interaction between the normal
modes Gk, Gn_k, qz—k, 2 +k and their momenta, which involve the cosine-
and sine-waves with wavelengths n/k and n/(% — k). Note that hence this
situation can only exist if n is even. Every point in the reduced phase space
represents a high-dimensional torus in the original phase space T*R"™ with
a dynamical meaning.

The reduced phase space is foliated in level sets of the reduced Hamil-
tonian. We see two stable relative equilibria, indicated by black dots, sur-
rounded by relative periodic orbits. The equilibria represent dynamically
stable quasiperiodic solutions. More interesting are the two cone-like sin-
gularities which represent the superposition of two traveling waves with
wavelengths n/k and n/(% — k), equal energy and equal direction. But
they are connected by a heteroclinic connection! Thus, a traveling wave
can be destabilized by superposing to it another traveling wave. It turns
out that this destabilisation occurs via a Hamiltonian Hopf bifurcation
which can be studied explicitly in the reduced context. In Figure 1, the
superposed traveling waves are connected by a heteroclinic cycle so that
they can reverse directions. This interesting phenomenon can indeed be
observed as a relaxation oscillation in numerical integrations of the original
lattice equations Xy for various n, see 3.

Moreover, the heteroclinic connection in Figure 1 is reconstructed as
a pinched torus in the original phase space. This implies that the inte-
grable Birkhoff normal form has nontrivial monodromy and can not have
global action-angle coordinates. It can be expected that this monodromy
has impact on the global geometry of the KAM tori of Xg.
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