
Using game-based learning as an approach for teaching
kids how to program

Eric Nieuwenhuijsen
Vrije Universiteit Amsterdam

+31653450662
e.c.m.nieuwenhuijsen@student.vu.nl

ABSTRACT
As computers become more and more ubiquitous the need for
programmers and the need for comprehending computers becomes
bigger. To get people acquainted with computers it is best to start
at a young age and in this paper I try to provide some best
practices for teaching children how to program and learn
computers.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Design, Human Factors, Languages

Keywords
Game based learning, Programming, CS1, Serious games,
Educational games, K-12

1. INTRODUCTION
Many researchers have proven that humans learn languages much
easier at a younger age than at an older age and this same
principle might very well also be valid for learning how to
program. Children can be motivated to study simply by providing
them with something they consider fun and this is where game-
based learning comes in. By giving children the building blocks to
create their own games they are playing while learning how to
reason in a functional way.
For many now older children, these building blocks may have
been LEGO bricks while they were growing up. By playing with
these creations you are able to gain spatial visualization ability
while simply having fun.
Programming is inherently hard to learn as it includes many
concepts people do not actively use in daily life. Some of these
concepts include looping, recursion and the use of components to
create a bigger whole. Because this is hard to learn it is hard to
keep people motivated, adding a gaming and perhaps a social
aspect as well could help people in maintaining their motivation
when learning how to program.
The main problem with teaching programming is expressed quite
clearly by Muratet et al in their 2009 paper7, they state that “To be
able to program, students need to know programming skills and
concepts, but to learn those skills and concepts they have to
practice programming”. A proposed approach by Greitzer et al8 is
to “encourage learners to work immediately on meaningful,
realistic tasks.”
As the IT industries grows and grows learning how to program or
at least grasp its basic concepts becomes more valuable than ever.

Many parents would like their kids to get this knowledge and as
the primary schools do not offer this yet they resort to trying to
teach this themselves with varying success. In my paper on this
subject I would like to discuss research done on this subject and
provide the reader with some current strategies on how to teach
this. To conclude this paper I will try and give a recommendation
on what now seems to be the general consensus on how to teach
programming at a young age.

2. EXISTING WORKS
2.1 Game based learning
Getting precollege students on their way to a computing career
has been the subject of many studies since the 90’s. The field
started out earlier but before the 80’s many research was focused
on descriptive reports rather than empirical studies.

Early research focused mainly on what students learned but not
necessarily on how to best use the media of games to prepare
students for more advanced programming and whether this is
motivating students to program. This research is mainly about
game based learning in general.

Of the earlier works two of the most cited works seem to be from
Harel1 and from Kafai2. These works are both mainly based on the
Constructionist theory3 by Papert and Harel. This theory describes
how humans learn by making which is exactly what is being done
when using games to teach how to program.

In this initial phase of researches the conclusion of many
researchers was that the computer is indeed a viable strategy for
educating students on a variety of topics. A literature review
written by Randal et al.4 in 1992 concludes that in 68 studies they
examined 32% found differences favoring games, 56% found no
differences and the other 12% was either questionable or they
found a difference favoring conventional instructions.

Of these percentages the percentage gets higher when looking at
specific fields of research. For example when looking at math the
use of games becomes more superior to traditional classroom
instruction and seven out of eight researches they examined were
positive. They state that “subject areas where very specific
content can be targeted and objectives precisely defined are more
likely to show beneficial effects for gaming”. What’s also
noteworthy is that they mention that students also reported more
interest in simulation and game activities in 12 of the 14 studies
where this was researched.

A more recent literature review by Mitchel and Savill (2004)5
which incorporates the Randal et al. study has the same
conclusions in regards to the effectiveness of game based
learning. They extended this study by including the more recent
studies as well but unfortunately the more recent studies
incorporate less empirical research.

mailto:e.c.m.nieuwenhuijsen@student.vu.nl

An interesting fact they state is that “It has been found that males
are more likely to play to impress friends and for a challenge
(Griffiths and Hunt 1995) although girls, too, have been found ‘to
perceive themselves to have peer approval for moderate amounts
of game playing’ (Cesarone 1998, page 3)”. This statement could
mean that by “exploiting” this need to impress other people could
be used as a stimulus to get students to get better results and get
better at programming than their peers.

Computer games engage their players and this causes players to
keep on playing instead of simply quitting if they fail once. Game
designers make players learn the games so well they want to keep
playing games and master them. Gee writes the following in his
2003 book6 about this: “It is argued that good computer games
are not just entertainment but incorporate as many as 36
important learning principles. Taking as long as 100 hours to
win, some are very difficult. They encourage the player to try
different ways of learning and thinking, which can be experienced
as both frustrating and life-enhancing.”

From empirical research we learn that game based learning can
have a positive influence on learning performance but what are
the key reasons to use game based learning? Why is this concept
gaining in popularity now and not earlier? Perhaps this is due to
the fact that we now are able to produce these games but this
change can also be motivated by the fact that children grow up
with computers and videogames these days.

In his 2006 book9 Marc Prensky introduces two key reasons:
- “Our learners have changed radically”
- “These learners need to be motivated in new ways.”

This confirms my earlier assumption as the first reason suggests
that “growing up with digital technology has dramatically
changed the way people raised in this time think and process
information” and the second reason suggests that “the things that
were effective in motivating learners in the past do not motivate
the learners of today.”

It seems that the change in culture and the availability of the new
technology has caused people to require different stimuli than
before.

2.2 Programming and game-based learning
Many languages have been built to allow users to experiment in a
graphical way with programming languages. The use of these
blocks allows them to not learn any syntax and to start
programming right away. I’ve listed a few examples in the
following chapters where this is used.

2.2.1 Starlogo
Starlogo is one of the oldest game based learning frameworks and
the first ideas for this are described in a paper from 1994. This is
somewhat different than the other frameworks which will follow
as it is not strictly a game but due to its age and complexity I have
decided to mention it anyway. Starlogo is a “programming
language and environment specifically designed to support
simulation design, construction and testing”. This is somewhat
different than the other examples but nonetheless interesting
because it provides education to students at a different level.
Starlogo is built on, as the name implies, the programming
language Logo. The key change the developer made when
creating Starlogo was to include parallelism, and this allows you
to “to help non expert users model the workings of decentralized

system such as ant colonies” as said by Mitchel Resnick in his
1996 paper17.
Users can specify programs for each actor and for each square on
the map which all execute in parallel. This allows interactions
between many different entities in the system and allows the end
user to study massive parallelism without having to learn how to
program such hard to create applications. An example from
Starlogo can be seen below:

Figure 1 – Starlogo

The large image shows all the different programs running in
parallel. By using colors users can see how their changes
influence the programs output.

2.2.2 Scratch
Scratch is a name anyone interested in the game based learning
field will most likely have heard about. It is one of the longer
running research projects and has a large online community. The
project has been running since 2003 and since its public launch in
May 2007 it has been attracting more and more visitors.
So what is Scratch? It is a graphical programming language that
lets children program interactive workflows to develop a sense of
systematic thinking. The creators state in their 2009 paper10 that
“As Scratchers program and share interactive projects, they learn
important mathematical and computational concepts, while also
learning to think creatively, reason systematically, and work
collaboratively”. This does not mean that it is used purely to get
children ready for being a programmer later but it helps them in
all sorts of jobs and programming is just one of them. It helps
children getting used to use certain constructs to express ideas.
An example workflow in Scratch could look like this:

Figure 2 - Scratch example

These simple blocks can be used by children to create all sorts of
interactive storyboards. By thinking in loops and in small steps
children are forced to use a systematic approach to get the story
they want on the computer. Another nice thing about Scratch is

that the sharing part is very easy; this is something very important
as it allows children to share their creations with others and get
ideas and feedback from others.
An example case of this is presented in the 2008 paper11 of
Maloney et al. called “Programming by Choice”. This paper
describes a case study at a Computer Clubhouse where children
aged 8-18 actually favor using an environment such as Scratch
over other more common games like playing on an Xbox. In their
study they also found that more than 50% of the projects included
some sort of looping construct, other popular topics included user
interaction, conditional statements, and communications and
synchronization.
The writers attribute this success partially to the fact that “Most
youth didn’t identify scripting in Scratch as a form of
programming”. They simply saw it as something “cool” and as a
part of the culture which engaged them more socially. In their
paper they also quote Kelleher and Pausch12 who state that “by
simplifying the mechanics of programming, by providing support
for learners, and by providing students with motivation to learn
to program”. All three areas described here are actually addressed
by Scratch they argue.

2.2.3 Alice2
Alice2 is similar to Scratch in a way that they both use a block
style interface to control a graphical output. By using a drag and
drop system users can create programming structures as taught in
programming classes.
In their 2002 paper13 the authors of Alice2 state that “Beginners
must learn to find structured solutions to problems, express those
solutions in a rigid, formal syntax they must memorize and
mechanically enter, and learn to understand the behavior of the
running program”.

Figure 3 - Alice2

Alice2 seems to be comparable to scratch but there is one key
factor missing in their design and that’s the social / sharing aspect.
Whereas Scratch is really focused on showing off your creations
and getting help/suggestions from other users Alice2 seems to be
more for the user that wants to do it on his own.

2.2.4 Examples from education
Another option for game based learning is to incorporate this in
an actual video game and to use an element of competition to
motivate people. By letting people battle each other using some

sort of artificial intelligence you can motivate students to create a
better bot because they want to win.
An example of this was in the VU Bachelor Course “Intelligente
Systemen” (English: Intelligent Systems) and the course
“Pervasive Computing”. Both of these courses had a competitive
element included which helped in motivating students to try and
win even though there was no large money prize to be won. In
both courses you were teamed up with a fellow student which also
had a positive influence on the end result by allowing discussion.
The first course, Intelligent Systems, was based around the game
Planet Wars. This is a game from the Google AI challenge in 2010
and it was simplified for the course to make it easier for students
to participate and get an actual working bot. The game is a
strategy game set in outer space and your objective is to take over
all planets on the map or to eliminate all of your opponent’s ships.
By providing students with a Java starter package and some very
simple bots users can start by experimenting with modifying these
existing bots. This learning by modifying and simply trying helps
but it does require that you know some basic Java already. By
simply trying and playing against your own bot you can test its
performance and intuitively improve the performance by adjusting
cases where the bot fails to perform properly. This process
encourages students to think of problems such as the space-time
tradeoff and also to rehearse their Java skills because they actually
have to program.
The second course, Pervasive Computing, did not include any
actual syntax but used a slightly different approach. By using a
block style software called RoboPAL students had to make a
LEGO Mindstorms robot do all sorts of assignments. By letting
students experiment using a simple visual language it becomes
easier to learn things such as constructs or recursion.
This form of education is also suited for younger children;
because everything is displayed in a visual way everyone that can
read is able to direct the robot. The education material used the
practical part of this course was actually the same material used
for teaching 15-17 year old children how to program robots. A
simple example program can be seen below.

Figure 4 - RoboPAL

This program simply sends the robot back and forth over a
straight piece of land. By allowing children to program simple
programs such as this into a simulator or even into an actual robot
you learn how to think sequentially and you can see what happens
when the robot branches in your program. This prepares users for
the concepts used in actual programming.

3. CURRENT STATUS OF RESEARCH
A rather recent tool for learning programming via game based
learning is called Pex4Fun, this is a tool released by Microsoft
and described by some of their employees in a paper14 from 2013.
This tool takes a different approach than the earlier mentioned
tools because it focuses on writing actual code and you can win
the game by writing functions that adhere to the specification.

The problem with writing actual code is that you do need some
way to validate this. In Massive Open Online Courses (MOOCs)
this is often done by peer grading but this might not have the
wanted accuracy. In Pex4Fun Microsoft used an automated test
suite to test whether your code is correct. This allows users to
quickly try multiple solutions and immediately get feedback on
whether their solutions are correct.
This approach can be used to train introductory programming
courses by starting off with some short syntax training and then
letting people user their account to do some of the exercises. They
vary from very easy (i.e. calculate the square of 21) to harder ones
(i.e. cipher codes). Although this is not a graphical solution I feel
that a solution like this would work well for students.
In this paper they note the social part and state that “Holding a
contest of solving coding duels in either a public setting or a
classroom setting can serve the purpose of engaging students to
solve coding duels in a dynamic social context within a specific
period of time”. This challenge aspect seems key in motivating
users to win and get the best solutions possible.
An interesting problem next to the solution for game-based
learning is the acceptance of the teachers. Teachers can sometimes
be reluctant to switch their lesson plan to something digital which
they might not fully comprehend because they didn’t grow up
with computers. In their 2013 paper15 Bourgonjon et al describe a
case study where they asked over 500 teachers what their opinion
is on using a system like this.
Their research shows that “On the one hand, teachers are not
really convinced that video games are very useful for enhancing
their job performance. On the other hand, they believe that video
games provide opportunities for learning in a similar way that
teachers perceive the merits of ICT in the classroom”. This
translates into the fact that teachers do not intend to use games in
the near feature but when offered to use them most likely will use
them.
The root of this acceptance problem might lie at the fact that
teachers have a limited frame of reference and when thinking of
games immediately think of commercial games which might cause
this negative influence. Another problem is that there are simply
not enough people who are skilled in programming enough to
teach this to other people. One possible solution for this is to not
let the teachers give these courses as it will be hard to change this
idea.
A possible solution is provided by Peter Greuenbaum in his 2014
article16. He suggests that undergraduates teach programming to
middle school students using the earlier mentioned language
Scratch. The major benefit of doing this is that there is no need to
educate teachers with programming and that this relieves the
stress for older teachers that have to use a computer to teach. The
added benefit for the undergraduates is that they get a crash
course on how to teach a class of middle school students.
The undergraduates were given a quick course on how to use
Scratch and where then tasked with developing a lesson plan in a
group. This lesson plan was finalized and after this they were
tasked with getting interest from the middle school students. By
organizing an activity at a school Halloween party they recruited
students to participate in the course.
Over the course of three sessions the children were taught some
basic programming principles which included conditionals, loops
and events. The nice thing about this research is that all the
children got to choose their own images; this ensured a unique

look and feel for each game and gave them the experience that
they were creating something of their own.
In the conclusion of the research the author mentions that “Using
undergraduate computer science majors to teach middle school
students is an effective way to bring computing expertise into
learning environments where very few teachers have the skills to
teach this subject”. This is a valuable conclusion as using these
undergraduates can help relief the problems teachers might have
with teaching like this as it can have undergraduates take over so
the teachers do not have to teach subjects they might not be very
good at.

4. CONCLUSION
Unfortunately it has proven to be hard to find actual research done
in teaching programming to children under 18. Most of the
research found in papers focuses on university students rather
than earlier. In this paper I have provided the reader with a few
examples where this research was indeed done in the designated
age group. Based on the other examples I have created a few
general recommendations for teachers or researchers that want to
set up a program to teach younger children how to program.
The first and in my eyes most important recommendation I would
like to give is to make your application social. Children should be
able to pair up or share creations with each other to help each
other and spark ideas. The helping of others will train both the
person being helped and the helper and increase their knowledge
on the subject. Sharing experiences and finished products is
important for ideas and help. The social part helps as it lets
students motivate each other while also providing support.
Another important point is that when teaching the basics of
programming you shouldn’t have to be too focused on syntax. It is
not uncommon that introductory programming courses start off in
a Java IDE and students will be instructed to start with things like
outputting “Hello world!”. Although this is a good start to learn a
specific programming language this does not contribute to the
student grasping the actual concepts of programming. The
fundamental understanding of how programming works is key in
becoming a programmer that can program in any language.
For younger children it is especially important that they do not see
the programming part as a chore or as a school thing. If it is
possible to include it in some sort of game children will see it as
something cool and might actually do this instead of picking up
that Xbox controller and playing a commercial game.
The actions done by the users should be made as visual as
possible. By providing a visual interface children will be attracted
to the visual part more and will be able to experience their
creativity in using fun and inviting graphics for their game. The
choice of graphics will give the program a personal touch and
masks the programming part as this will then become more of a
step in creating the graphical experience that they want.

5. FURTHER READING
As a first reading suggestion I would highly recommend the
article about teaching middle school children using
undergraduates [16]. This article is a good example of how
combining university students with middle school students can
generate positive effects for both groups and provides an excellent
idea for more research into this topic. A study like this could
perhaps be executed on a larger scale with more students and a
more scientific way of measuring the effects. It would be nice to
also see if they are actually better at programming later on.

Another interesting topic I came across on the internet is the
recently funded Kickstarter project Hello Ruby[20]. The author
aims to publish a book meant for 5-7 year old children with which
they can learn to program. The author describes the book as “a
children’s book that teaches programming fundamentals through
stories and kid-friendly activities”. Now that the Kickstarter has
ended there is also a website which you can see at [19].

While browsing the internet for more information on game based
learning I also found the following not entirely scientific but
nonetheless interesting article on gamification [21]. This focuses
on the training departments and how you could improve your
learning route by gamifying your existing trainings.

For the readers that know how to program I would highly suggest
taking a look at Microsoft’s Pex4Fun program [18]. You can
login using a windows live account and something like this is a
good way to train your language syntax while also practicing your
ability to solve problems and deduct solutions from output.

6. REFERENCES

[1] Harel, Idit. Children designers: Interdisciplinary

constructions for learning and knowing mathematics in a
computer-rich school. Greenwood Publishing Group, 1991.

[2] Kafai, Yasmin B. Minds in play: Computer game design as a
context for children's learning. Routledge, 1995.

[3] Papert, Seymour, and Idit Harel. "Situating constructionism."
Constructionism 36 (1991): 1-11.

[4] Randel, Josephine M., et al. "The effectiveness of games for
educational purposes: A review of recent research."
Simulation & Gaming 23.3 (1992): 261-276.

[5] Mitchell, Alice, and Carol Savill-Smith. "The use of
computer and video games for learning: A review of the
literature." (2004).

[6] Gee, James Paul. "What video games have to teach us about
learning and literacy." Computers in Entertainment (CIE) 1.1
(2003): 20-20.

[7] Muratet, Mathieu, et al. "Towards a serious game to help
students learn computer programming." International
Journal of Computer Games Technology 2009 (2009): 3.

[8] Greitzer, Frank L., Olga Anna Kuchar, and Kristy Huston.
"Cognitive science implications for enhancing training
effectiveness in a serious gaming context." Journal on
Educational Resources in Computing (JERIC) 7.3 (2007): 2.

[9] Prensky, Marc. "Computer games and learning: Digital
game-based learning." Handbook of computer game studies
18 (2005): 97-122.

[10] Resnick, Mitchel, et al. "Scratch: programming for all."
Communications of the ACM 52.11 (2009): 60-67.

[11] Maloney, John H., et al. "Programming by choice: urban
youth learning programming with scratch." ACM SIGCSE
Bulletin. Vol. 40. No. 1. ACM, 2008.

[12] Kelleher, Caitlin, and Randy Pausch. "Lowering the barriers
to programming: A taxonomy of programming environments
and languages for novice programmers." ACM Computing
Surveys (CSUR) 37.2 (2005): 83-137.

[13] Kelleher, Caitlin, et al. "Alice2: programming without syntax
errors." User Interface Software and Technology. 2002.

[14] Tillmann, Nikolai, et al. "Teaching and learning
programming and software engineering via interactive
gaming." Software Engineering (ICSE), 2013 35th
International Conference on. IEEE, 2013.

[15] Bourgonjon, Jeroen, et al. "Acceptance of game-based
learning by secondary school teachers." Computers &
Education 67 (2013): 21-35.

[16] Gruenbaum, Peter. "Undergraduates Teach Game
Programming Using Scratch." Computer 47.2 (2014): 82-84.

[17] Resnick, Mitchel. "StarLogo: An environment for
decentralized modeling and decentralized thinking."
Conference companion on Human factors in computing
systems. ACM, 1996.

7. LINKS

[18] Pex4Fun,

http://www.pexforfun.com
[19] Hello Ruby Website,

http://www.helloruby.com/
[20] Hello Ruby Kickstarter,

https://www.kickstarter.com/projects/lindaliukas/hello-ruby
[21] Article on gamification,

http://www.learningsolutionsmag.com/articles/1337/gamifica
tion-game-based-learning-serious-games-any-difference

http://www.pexforfun.com/
http://www.helloruby.com/
https://www.kickstarter.com/projects/lindaliukas/hello-ruby
http://www.learningsolutionsmag.com/articles/1337/gamification-game-based-learning-serious-games-any-difference
http://www.learningsolutionsmag.com/articles/1337/gamification-game-based-learning-serious-games-any-difference

	1. INTRODUCTION
	Many researchers have proven that humans learn languages much easier at a younger age than at an older age and this same principle might very well also be valid for learning how to program. Children can be motivated to study simply by providing them w...
	2. EXISTING WORKS
	2.1 Game based learning
	2.2 Programming and game-based learning
	2.2.1 Starlogo
	2.2.2 Scratch
	2.2.3 Alice2
	2.2.4 Examples from education

	3. CURRENT STATUS OF RESEARCH
	4. CONCLUSION
	5. FURTHER READING
	6. REFERENCES
	7. LINKS

